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a b s t r a c t

We consider k-regular graphs with loops, and study the Lovász
ϑ-numbers and Schrijver ϑ ′-numbers of the graphs that result
when the loop edges are removed. We show that the ϑ-number
dominates a recent eigenvalue upper bound on the stability
number due to Godsil and Newman [C.D. Godsil and M.W.
Newman. Eigenvalue bounds for independent sets, J. Combin.
Theory B 98 (4) (2008) 721–734].
As an application we compute the ϑ and ϑ ′ numbers of certain

instances of Erdős–Rényi graphs. This computation exploits the
graph symmetry using the methodology introduced in [E. de
Klerk, D.V. Pasechnik and A. Schrijver, Reduction of symmetric
semidefinite programs using the regular *-representation, Math.
Program. B 109 (2–3) (2007) 613–624].
The computed values are strictly better than the Godsil–

Newman eigenvalue bounds.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In this paperwe study the Lovászϑ-number [12] and Schrijverϑ ′-number [16] for classes of almost
regular graphs, i.e. graphs that become regular if a ‘small’ number of loops are added to the edge set.
The purpose is to study upper bounds on the stability (independence) numbers of such graphs.
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Assume now that G is a k-regular graph with ` loops and adjacency matrix A, and let τ denote
the smallest eigenvalue of A. Godsil and Newman [10] recently derived the following upper bound on
α(G):

α(G) ≤
−τ +

√
τ 2 + 4

( k−τ
n

)
`

2
( k−τ
n

) , (1)

where n is the number of vertices, and α(G) is the stability number of G. Here, and throughout the
paper, we use the convention that vertices with loops are allowed in a stable set.
For k-regular graphs without loops, i.e. if ` = 0, (1) reduces to the well-known Hoffman–Delsarte

eigenvalue bound; see [4] Section 3.3, or [3] page 115.
The Lovász ϑ-number is not defined for graphs with loops, but for the purpose of providing an

upper bound on α(G) we simply delete the loop edges and compute the ϑ-number of the resulting
graph. We will show that this ϑ-number, and therefore also the related Schrijver ϑ ′-number, are
upper bounded by the right-hand side of (1). This is a generalization of the well-known result that the
ϑ-number bound is stronger than the Hoffman–Delsarte eigenvalue bound for k-regular graphs
without loops.
In practice it is possible to compute ϑ and ϑ ′ for large graphs with symmetries, by using a

methodology introduced in [8].
As an application we compute the ϑ and ϑ ′ numbers of certain instances of Erdős–Rényi graphs.

The Erdős–Rényi graph ER(q) is the graph whose vertices are the points of the projective plane
PG(2, q), with two vertices x and y adjacent if they are distinct and xTy = 0. The graph ER(q) has
q2 + q + 1 vertices and can be made (q + 1)-regular by adding q + 1 loops. In the present work we
restrict ourselves to q being an odd prime.
The ER(q) graphs were first introduced in [2,5] as examples of graphs with many edges but no

4-cycle. They were further studied in [15,6,7,14,10].
Godsil and Newman [10] showed that, for ER(q), the eigenvalue bound (1) becomes

α(ER(q)) ≤

√
q+

√
q+ 4(q+ 1) q+

√
q+1

q2+q+1

2 q+
√
q+1

q2+q+1

= q3/2 − q+ 2
√
q− 1/q+ 3/q2 + O

(
1
q3

)
. (2)

Recently, Mubayi and Williford [14] proved that

α(ER(q)) ≥
120

73
√
73
q3/2 > 0.19239q3/2,

which shows that the upper bound (2) is tight in terms of the dependence of its leading term on q.
In this paper, we apply the approach from [8] to compute the Lovász ϑ and Schrijver ϑ ′ numbers

of ER(q). We show that, for q ≤ 31, odd and prime, the computed bounds are in fact strictly better
than the eigenvalue bounds (2), although the differences are small.

Outline of the paper
The paper is organized in the following way. In Sections 2 and 3 we show that the ϑ-number

dominates the Godsil–Newman eigenvalue bound (1). In Section 4 we define the Erdős–Rényi graph
ER(q) and review its properties. In Section 5 we provide basic facts on finite groups and regular
∗-representations of matrix algebras. In Section 6 we review how regular ∗-representations may be
used to reduce the size of certain semidefinite programming problems, and apply thismethodology to
reduce the sizes of the semidefinite programming problems that define ϑ and ϑ ′. Finally, in Section 7
we provide numerical results on the computation of ϑ(ER(q)) and ϑ ′(ER(q)) for q ≤ 31, odd, and
prime.
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Notation
We use tr(A) to denote the trace of a square matrix A. The space of symmetric matrices is denoted

by:

Sn := {X ∈ Rn×n : X = XT}.

For A, B ∈ Sn, A � 0 (resp. A � 0) denotes positive semidefiniteness (resp. positive definiteness),
and A � B denotes A− B � 0. The cone of n× n positive semidefinite matrices is denoted by

S+n := {X ∈ Sn : zTXz ≥ 0 ∀z ∈ Rn}.

For two matrices A, B ∈ Sn, A ≥ B, (A > B) means aij ≥ bij, (aij > bij) for all i, j. The vector of all ones
is denoted by e and the matrix of all ones by J . We denote the Kronecker delta by δij.
A graph with vertex set V = {1, . . . , n} and edge set E is denoted by G = (V , E).

2. The maximum stable set problem, ϑ and ϑ′

Given a graph G = (V , E)with adjacency matrix A, a subset V ′ ⊆ V is called a stable set of G if the
induced subgraph on V ′ contains no edges except loops. Themaximum stable set problem is to find the
stable set of maximum cardinality. The stability number α(G) is the cardinality of the largest stable set
in the graph G.
The Lovász ϑ number
The Lovász ϑ-number, introduced in [12],

ϑ(G) := max tr( JX)
s.t. Xij = 0, {i, j} ∈ E (i 6= j)
tr(X) = 1
X ∈ S+n ,

 (3)

gives an upper bound on α(G).
The Schrijver ϑ ′ number
The Schrijver ϑ ′-function [16] is defined as:

ϑ ′(G) := max tr(JX)
s.t. tr(AX) = 0
tr(X) = 1
X ≥ 0
X ∈ S+n .

(4)

Clearly one has α(G) ≤ ϑ ′(G) ≤ ϑ(G).

3. An eigenvalue bound and its relation to ϑ

Let G = (V , E) be a k-regular graph with ` loops. Let A denote its adjacency matrix and τ < 0 the
smallest eigenvalue of A.
Godsil and Newman [10] derived the upper bound (1) onα(G) as follows. Let z be the characteristic

vector of a maximum stable set of G, and assume that this stable set contains ¯̀ loops.
Since A− τ I � 0, one has:(

z −
α(G)
n
e
)T
(A− τ I)

(
z −

α(G)
n
e
)
≥ 0

which simplifies to(
k− τ
n

)
α(G)2 + τα(G) ≤ ¯̀.
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Using ¯̀ ≤ `, we obtain bound (1), and we reproduce it here for convenience:

α(G) ≤
−τ +

√
τ 2 + 4

( k−τ
n

)
`

2
( k−τ
n

) .

We will show that ϑ(G) dominates the eigenvalue bound (1). To this end, consider the following
formulation of the ϑ-number (see Lemma 2.17 in [13]):

ϑ(G) = max eTx
s.t.

X − xxT � 0
Xii = xi (i ∈ V )
Xij = 0 ({i, j} ∈ E, i 6= j).

 (5)

Note that the first constraint implies that any feasible solution satisfies xi ∈ [0, 1](i ∈ V ).

Theorem 1. Let G = (V , E) be a connected, k-regular graph with ` loops. Let ϑ(G) be the Lovász
ϑ-number of the graph obtained by removing the loop edges from E. One has

ϑ(G) ≤
−τ +

√
τ 2 + 4

( k−τ
n

)
`

2
( k−τ
n

) .

Proof. Let x, X denote an optimal solution of the ϑ formulation (5). Since

A− τ I −
k− τ
n
J � 0,

one has

xT
(
A− τ I −

k− τ
n
J
)
x ≥ 0.

Using J = eeT and eTx = ϑ(G), this becomes

xT (A− τ I) x ≥
k− τ
n

ϑ(G)2.

We now use X − xxT � 0 to find

xT (A− τ I) x = tr
(
(A− τ I) xxT

)
≤ tr ((A− τ I) X)
≤ `− τϑ(G),

where the last inequality is due to tr(AX) ≤ ` (since Xii = xi ∈ [0, 1](i ∈ V )), and tr(X) = eTx = ϑ(G).
Thus we have obtained(

k− τ
n

)
ϑ(G)2 + τϑ(G)− ` ≤ 0,

and the required result follows. �

In the next section we introduce the so-called Erdős–Rényi graphs, that form a class of ‘almost
regular’ graphs. The aim is to illustrate the results of this section. In particular, we will show how to
compute ϑ and ϑ ′ in an efficient manner for the Erdős–Rényi graphs, and will compare the results to
the Godsil–Newman eigenvalue bound (1) for these graphs.
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4. Erdős–Rényi graphs

Let V be a three-dimensional vector space over the finite field of order q, GF(q), where q is an
odd prime. There are q2 + q + 1 one-dimensional subspaces of V : these are the points of PG(2, q).
There are q2 + q + 1 two-dimensional subspaces of V : these are the lines of PG(2, q). Each point
may be represented by any non-zero vector in its one-dimensional subspace (which then spans that
subspace). For background on projective planes, see [11].
The Erdős–Rényi graph ER(q) is the graph whose vertices are the points of PG(2, q), with two

vertices x and y adjacent if they are distinct and xTy = 0.
Consider the graph whose vertices are the points of PG(2, q), with x and y adjacent if they are

distinct and xTMy = 0, where

M =

( 0 0 −1
0 1 0
−1 0 0

)
.

By the classification of bilinear forms over GF(q) (see [11]), this graph is isomorphic to ER(q). For
convenience, we will use this definition of ER(q) and let 〈x, y〉 := xTMy. The reason for the alternative
definition is to avoid the problem of the distinguished cases of primes modulo 4.
Most vertices of ER(q) have degree q+ 1 but there are q+ 1 vertices of degree q. These are known

as absolute vertices, and are self-orthogonal (removing theword ‘‘distinct’’ from the definition of ER(q)
wouldmake it regular,with loops). The absolute vertices forman independent set. There are (q2+q)/2
vertices that are adjacent to exactly 2 absolute vertices each; these are the external vertices. The
remaining (q2 − q)/2 vertices are adjacent to no absolute vertices; these are the internal vertices.
See [15] for more details. We will denote the absolute, external, and internal vertices byR,L andM,
respectively. The automorphism group of ER(q), for q an odd prime, is shown in [15] to be PO3(q).
By the properties of ϑ , ϑ ′ and Theorem 1 we know that

α(ER(q)) ≤ ϑ ′(ER(q)) ≤ ϑ(ER(q)) ≤

√
q+

√
q+ 4(q+ 1) q+

√
q+1

q2+q+1

2 q+
√
q+1

q2+q+1

,

where the last expression is the Godsil–Newman eigenvalue bound (2) for ER(q).
Our goal is to use the automorphism group of ER(q) to compute the ϑ and ϑ ′ numbers of ER(q)

in an efficient way. This is necessary since the computation of ϑ(ER(q)) involves matrices of order
|V | = q2 + q + 1, and this computation is already problematic for relatively small values of q. To
this end, we first review some facts from representation theory, and then review how they may be
used to simplify the calculation of ϑ and ϑ ′ for symmetric graphs (like ER(q)). We will see that the
values ϑ(ER(q)) and ϑ ′(ER(q))may actually be computed by solving semidefinite programs involving
matrices of order 2q+ 11.

5. Finite groups and regular *-representations

Let V be a finite set and SV the group of all permutations of V . Let G be a finite group acting on V ,
and for each g ∈ G define πg : V → V by πg(z) = g · z. Then πg ∈ SV , and φ : G → SV given by
φg := πg is a homomorphism, i.e. φgg ′ = φgφg ′ and φg−1 = φ

−1
g for all g, g

′
∈ G.

The image φg of g under φ can be represented by the permutation matrix Pg ∈ R|V |×|V |,

(Pg)x,y :=
{
1 if φg(x) = y
0 otherwise,

for x, y ∈ V . The representation φ is orthogonal, i.e.

Pgg ′ = PgPg ′ and Pg−1 = P
T
g .

In what follows, we will identify Gwith its representation {φg | g ∈ G}.
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The orbit of an element z ∈ V under the action of a group G is the set{
x̄ : x̄ = φg(z) for some g ∈ G

}
.

Similarly the orbit of a pair (x, y) ∈ V × V under the action of a group G is the set{
(x̄, ȳ) : (x̄, ȳ) = (φg(x), φg(y)) for some g ∈ G

}
.

Recall that x ∈ V and y ∈ V either have the same orbits under the action of G, or disjoint orbits.
The centralizer ring (or commutant) of the group G is defined as

A =
{
X ∈ R|V |×|V | : XPg = PgX ∀g ∈ G

}
.

The matrix *-algebraA has a basis of 0− 1 matrices

(Bk)ij =
{
1 if (i, j) in orbit k;
0 otherwise ((i, j) ∈ V × V , k = 1, . . . , d). (6)

Also note that:

•
∑
k Bk = J;

• For each k there is a k∗ (possibly k∗ = k) with Bk = BTk∗ .

For what follows, we need to normalize the basis Bk, k = 1, . . . , d:

Dk :=
1√

tr(BTkBk)
Bk, k = 1, . . . , d. (7)

Note that

tr(DTrDs) = δrs (r, s = 1, . . . , d).

Themultiplication parameters γ krs are defined by

DrDs =
d∑
k=1

γ krsDk

for r, s = 1, . . . , d. Note that:

γ krs = tr(Dk∗DrDs) (k, r, s = 1, . . . , d). (8)

Now, for k = 1, . . . , dwe define d× dmatrices Lk:

(Lk)rs := γ rks, r, s = 1, . . . , d. (9)

The matrices Lk form a basis as a vector space of a faithful representation of A, say A′, that is called
the regular ∗-representation ofA.

Theorem 2 (See e.g. [8]). The linear map ϕ : Dk → Lk, k = 1, . . . , d defines a *-isomorphism fromA to
A′.

The following is a consequence of this theorem.

Corollary 3 ([8]). Let x ∈ Rd. One has

d∑
k=1

xkDk � 0⇐⇒
d∑
i=1

xkLk � 0.
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6. Exploiting symmetry in semidefinite programs

We now show how to use the ideas from the previous section to reduce the size of certain
semidefinite programs, and subsequently apply this to the semidefinite programming formulations of
the ϑ and ϑ ′ numbers. The methodology we will describe is essentially due to [8], where it was used
to bound crossing numbers of complete bipartite graphs. The idea of using representation theory to
reduce the size of certain semidefinite programs dates back to Schrijver [16], and there is a recent
survey on the topic by Gatermann and Parrilo [9].
Assume that the following semidefinite programming problem is given

min
X�0
{tr(A0X) : tr(AkX) = bk k = 1, . . . ,m} , (10)

where thematrices Ai ∈ Sn (i = 0, . . . ,m) and the vector b ∈ Rm are given. Assume further that there
is a finite group G such that the associated Reynolds operator

R(X) :=
1
|G|

∑
g∈G

PTg XPg , X ∈ Rn×n

maps the feasible set of (10) into itself and leaves the objective value invariant, i.e.

tr(A0R(X)) = tr(A0X) if X is a feasible solution of (10).

Since the Reynolds operator is a projection onto the centralizer ring of G, maps the convex feasible
set into itself, and preserves the objective values of feasible solutions,wemay restrict the optimization
to feasible solutions in the centralizer ring of G. As explained in the previous section, we may obtain
a normalized basis Di (i = 1, . . . , d) of the centralizer ring via (6) and (7), by determining the orbits
of pairs under the action of G.
In otherwords,wemay restrict our attention to feasible solutions of (10) of the form X =

∑d
i=1 xiDi

for some x ∈ Rd.
From Corollary 3 it follows that the SDP problem (10) can be formulated as

min
x∈Rd

{
d∑
i=1

xitr(A0Di) :
d∑
r=1

xr tr(AkDr) = bk ∀k,
d∑
r=1

xrLr � 0

}
, (11)

where the Lr ’s are defined in (9).
We assume that the numbers tr(AkDr) may be computed beforehand, so that problem (11) only

involves d× d data matrices (i.e. the Lr matrices) as opposed to n× nmatrices (i.e. the matrices Dr ).
Thus wemay have a considerable reduction of the size of thematrices to whichwe apply semidefinite
programming.
If problem (10) has the additional constraint X ≥ 0, then its reformulation is identical to (11)

except for the additional requirement x ≥ 0.
Application to ϑ and ϑ ′
Wenow reformulate the SDPproblem (3) that defines theϑ-number using the technique described

above. The following lemma explains how problem (3) fits in the general setting.

Lemma 4. Let G = (V , E) be given and denote G := Aut(G) and n = |V |. If X is a feasible point of (3),
then

R(X) =
1
|G|

∑
g∈G

PTg XPg , X ∈ Rn×n

is also a feasible point with the same objective value.

Proof. Assume X is a feasible point of (3). By the definition of Aut(G), one has

R(X)ij = 0 if {i, j} ∈ E,
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since Xij = 0 for all (i, j) ∈ E. Moreover,

tr(JR(X)) =
1
|G|

∑
g∈G

tr(JPTg XPg)

=
1
|G|

∑
g∈G

tr(Pg JPTg X) = tr(JX),

since Pg JPTg = J . Similarly, tr(R(X)) = tr(X) = 1. Finally, one has R(X) ∈ S+n since X ∈ S+n . �

Thus the general ‘symmetry reduction’ methodology applies to problem (3), and we have the
following theorem.

Theorem 5. Let G = (V , E) be given and denote G := Aut(G). Denote the number of orbits of V × V
under the action of G by d, and the length of orbit k by lk (k = 1, . . . , d). Finally denote the set of orbits
of identical pairs (v, v) ∈ V × V under the action of G byΠG.
One has

ϑ(G) = max
x∈Rd

d∑
k=1

xk
√
lk

subject to

xk = 0 if orbit k intersects E (k = 1, . . . , d)∑
k∈ΠG

√
lkxk = 1

d∑
k=1

xkLk � 0,

where the d× d matrices Lk (k = 1, . . . , d) are constructed from the orbit matrices Bk (k = 1, . . . , d) via
(7)–(9).

Proof. The proof follows from (11), after writing problem (3) in the standard SDP form (10) (with
maximization instead of minimization). We omit the details. �

We may replace ϑ(G) by ϑ ′(G) in the statement of the theorem by simply adding the additional
constraint x ≥ 0.

7. Numerical results

In this section we give numerical results for computing ϑ and ϑ ′ for the Erdős–Rényi graph ER(q),
for all odd, prime values q ≤ 31. As discussed in the previous section, the first step is to construct the
orbits of pairs of vertices under the action of the automorphism group of the graph ER(q).
There are d = 2q+11 such orbits for q odd and prime; the details may be found in the appendix to

this paper. Thuswemay formulate the d = 2q+11matrices Bk (k = 1, . . . , d) that are associatedwith
the orbits of pairs. After normalizing the matrices Bk (k = 1, . . . , d), we use (8) to obtain the matrices
Lk (k = 1, . . . , d). Finally, we solve the SDP problems described in Section 6 to obtain ϑ(ER(q)) and
ϑ ′(ER(q)).
Note that, for given q, the Schrijver ϑ ′-function in the form (4) is an SDP problem with a matrix

variable of order q2 + q+ 1 and O(q4) sign constraints. For q > 17, say, solving such an SDP problem
is difficult. However, using the regular ∗-representation, we reduce this to obtain a problem that
involves matrices of order 2q + 11 only. Thus it is possible to obtain ϑ ′(ER(q)) for the values of q
listed in the table by interior-point methods in a couple of seconds on a standard pc.
In Table 1 we present our numerical results. All computations were done using the semidefinite

programming software SeDuMi [17] and Matlab 6.5. In the first column we give the order q of
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Table 1
Bounds for the stability number of the graph ER(q)

q α(ER(q)) ϑ ′(ER(q)) ϑ(ER(q)) (2)

3 5 5.00 5.00 5.56
5 10 10.07 10.09 10.56
7 15 15.74 15.82 16.73
11 29 31.09 31.29 32.05
13 38 40.51 40.52 41.03
17 n.a. 60.22 60.42 61.29
19 n.a. 71.30 71.49 72.49
23 n.a. 96.2400 96.2408 96.86
29 n.a. 136.98 137.07 137.91
31 n.a. 151.70 151.95 152.71

the projective plane which defines the Erdős–Rényi graph; the second column lists known stability
numbers (due to J. Williford, private communication); in the third column we give the computed
values for the Schrijver ϑ ′-number, and in the fourth column the values of the Lovász theta number
for ER(q). In the last column we give the eigenvalue bound (2) from [10].
Note that the ϑ(ER(q)) bounds are strictly better than the eigenvalue bounds (2), but the

differences between the bounds are small. In six cases the bound bϑ ′(ER(q))c improves on the bound
from (2) (rounded down), but in all these cases the difference is only 1. Also note that bϑ(ER(q))c gives
the same bound as bϑ ′(ER(q))c in all cases except q = 29.

Appendix. Constructing the orbits of pairs of Aut(ER(q))

In this appendix we give the details of the orbits of pairs of vertices under the action of Aut(ER(q).
With reference to the notation introduced in Section 4, there are exactly three orbits of vertices of

ER(q):R,L, andM.
The absolute vertices are exactly the vertices x such that 〈x, x〉 = 0. Due to our choice ofM , for the

external vertices 〈x, x〉 is a square and for the internal vertices 〈x, x〉 is a non-square. So we may scale
the external vertices so that 〈x, x〉 = 1 and the internal vertices so that 〈x, x〉 = g , where g is some
generator of the multiplicative group of the field.
(There is an abuse of notation here: we are using x to represent both a one-dimensional subspace

and a particular vector in that subspace.)
If one uses themore ‘‘standard’’ choice ofM = I , the external verticeswould have norm alternating

between square and non-square according to q (mod 4), and the opposite for the internal vertices.
We will now compute the orbits of the automorphism group of ER(q) on the pairs of vertices. (See

also [1], where they derive the parameters of the association schemes on the external and internal
vertices, which can be used to read off the orbits forL×L andM ×M.)
There are of course three diagonal orbits on pairs, corresponding to the three orbits on vertices:

• {(x, x) : x ∈ R}
• {(x, x) : x ∈ L}
• {(x, x) : x ∈M}.

For a pair of distinct vertices (x, y), let X be the matrix whose columns are x and y, and let
A := XTMX . Similarly, for (x′, y′) we define X ′ and A′. Assume (x, y) and (x′, y′) are in the same orbit.
Then X ′ = mXd for some m ∈ PO3(q) and some non-singular diagonal matrix d (as PO3(q) acts on
1-subspaces, we may need to rescale to achieve our normalization, hence d). Now

X ′ = mXd ⇐⇒ X ′TMX ′ = dXTmTMmXd ⇐⇒ A′ = dAd. (12)

The diagonal elements of A are either 0, 1, or g (according to the type of x and y) andmust be identical
to the diagonal elements of A′. Our task is then to classify such matrices A under the equivalence
suggested by Eq. (12).
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If x is absolute then all pairs (x, y)where y is of fixed type and 〈x, y〉 6= 0 are in the same orbit; this
can be seen from(

0 b
b c

)
=

(
b 0
0 1

)(
0 1
1 c

)(
b 0
0 1

)
.

Recalling that for absolute vertices adjacency means equality, and that absolute vertices are never
adjacent to internal ones, we have the following orbits on pairs of distinct vertices:

• {(x, y) : x ∈ R, y ∈ R, x 6= y}
• {(x, y) : x ∈ R, y ∈ L, 〈x, y〉 = 0}
• {(x, y) : x ∈ R, y ∈ L, 〈x, y〉 6= 0}
• {(x, y) : x ∈ R, y ∈M}.

(There are of course two analogous orbits inL×R, and one inM ×R.)
If neither vertex is absolute then the diagonal entries of d are constrained to be ±1, and we have

the following orbits on pairs of distinct vertices:

• {(x, y) : x ∈ L, y ∈ L, 〈x, y〉 = 0}
• {(x, y) : x ∈ L, y ∈ L, 〈x, y〉 = ±g t}, t = 0, 1, 2, . . . , q−32
• {(x, y) : x ∈M, y ∈M, 〈x, y〉 = 0}
• {(x, y) : x ∈M, y ∈M, 〈x, y〉 = ±g t}, t = 0, 2, . . . , q−32
• {(x, y) : x ∈ L, y ∈M, 〈x, y〉 = 0}
• {(x, y) : x ∈ L, y ∈M, 〈x, y〉 = ±g t}, t = 0, 1, 2, . . . , q−32 ,

(similarly for orbits inM × L). Note that it can be shown that there are no internal vertices x, y
with 〈x, y〉 = g .
In total there are 2q+11 orbits of pairs and they form a basis for the centralizer ring of Aut(ER(q)),

for q odd and prime.
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