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Abstract

We supply a simple algorithm which describes the sub-Markov kdPnatsociated to
a nonsingular generalized ultrametric mattx This algorithm is based on the dyadic tree
structure ofU, it identifies the exiting roots o and P!, and the couple$ = j for which
Pij >0 (equivalently(U—l),-j < 0). © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let I be afinite setan@ = (U;;: i, j € I) be a nonnegative matrix. Generalized
ultrametric (GU) matrices and nested block form (NBF) matrices were introduced
in [8,11]. After a suitable permutation, every GU matrix can be put in NBF. On
the other hand, GU matrices generalize the notion of ultrametric matrices defined
in [9]. Indeed, an ultrametric matrix is a symmetric GU matrix. Theorem 4.4 in
[8] provides a remarkable criterion for the nonsingularity of a GU madtrixJ is
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nonsingular if and only iU does not contain a row of zeros and no two rows of

U are the same (see also the criterion given in [1l}s nonsingular if and only if

U + U'is nonsingular). In the sequel, we assuthis a nonsingular GU matrix.
Theorem 4.4 in [8] and Theorem 3.6 in [11] state thiat' = (U~1);;:i,j € I)

is a row and column diagonally dominant M-matrix (row and column DDM), i.e.

(U™ <0 fori #jinl,
W™ >0 Viel,

Y W™ >0 Viel (rowDD)
jel
and

Y W™),i>0 Viel (columnDD)

jel
This result generalizes the DDM property shown in [9] for ultrametric matrices. An
algebraic proof of this last fact was given in [10].

The row DDM property implies that for every> n(U) := max(U1);;:i € I}

the matrix P := PY, depending om and given byP = (I — n~1U~1), is a sub-
Markov kernel:P;; > 0Vi, j € I, P1< 1pointwise (wherd is the identity matrix
andl is the constant 1-vector). Therefore,

nW=@0-pPt=> P"
m=>0

and U is proportional to the potential matrix associated to the transient kéxnel
SinceP;; > 0 & Ui‘.l < Ofori #+ j, the existence of links between different points
does not depend an On the other hand, the conditidy > 0 depends on the value
of n.

In the theory of row DDM matrices, the main role is played by pogential
vectory := uy associated tt) by u := U~11. From the row DDM propertyy is
a nontrivial positive vectory; > 0 and its total masg := 1 is strictly positive.
Notice that the following equivalence holds:

ni>0 & (U™, >0 & (P1); <1 (1)

Everyi satisfying this property is called axiting root of U(or of P) and the set of
them is denoted by? := %y . The Markov chain defined by looses mass dte %.
Sincepu is nontrivial,Z is nonempty and is strictly sub-Markovian.

For U, a row and column DDM matri® is a double sub-Markov kernel, in par-
ticular P'1 < 1. The potential vectop := vy, associated t&/!, is given byv :=
(UY 11 and its total mass by := 1'v. Notice thati = v becausd'y = (Uv)iu =
viU e = v, A relation similar to (1) holds fot/t. We definez! := % as the set
of points, where the chain defined B looses mass. We hawé = {i € I: v; > 0}
is nonempty andP! is strictly sub-Markovian.
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Our main results characterize, in an algorithmic way, the following properties
(which do not depend on): “i is an exiting root ofP” and “for a given couple
i # j, P;; >0". These properties and other related problems were studied in [3]
for the class of ultrametric matrices by means of a tree algorithm whose levels are
given by the different values of the matrix. The methods we used in [3] for studying
ultrametric matrices do not work, in general, for GU matrices.

In Section 2, we revisit GU matrices by means of dyadic filtrations, already used
in [5] in the context of supermetric matrices. This idea is close to the one intro-
duced in [11] for describing GU matrices. Theorem 1, stated and proved in Section
3, describes the exiting roots and associated sets for inverses of row DDM matrices.
The rest of Section 3 is devoted to GU matrices, Theorems 2—4, where we charac-
terize the exiting roots and the links of the sub-Markov kernel in terms of a graph
algorithm. These results are proved in Sections 4 and 5. Our main tools are Schur’s
decomposition, constancy sets along geodesics and Lemma 6, which provide a pre-
cise description on the disappearance of links. Theorem 5, in Section 6, describes
the combinatorics of NBF matrices (permutations and filtrations). In Section 7, we
revisit row DDM matrices in the framework of Markov chains and we prove some
extra properties of GU matrices by probabilistic arguments.

We point out that since the pioneering work [2], ultrametricity has gained at-
tention on matrix and operator theory (see for example [5,12,13] and references
therein).

2. Generalized ultrametric

A tree(T, ) is afinite nonoriented and connected graph, which does not contain
nontrivial cycles of length greater than or equal to 3. &os) € T x T, t + s, there
is a unique path gedd s) of minimum length, which is called the geodesic between
t ands. We put geod, 1) = {¢}, which is of length 0. We fix* € T and we call
it the tree rootof T. If s € geodt, t*), we denotes < ¢, which is a partial order
relation onT. Forz,s € T, t A s = sufv: v € geodr, t*) Ngeods, t*)} denotes
the closest common ancestoréndt. For everyr # t*, there exists a unique el-
ement inT, called thepredecessoof t, denoted byp(z), which satisfiesp(z) < t,
and(p(t),t) € 7. The set of successorsbiss(t) ={s e T: s =t,(s,t) € T }.
1(7) ={i € T:s(i) = @} is the set of leaves of the tree. The tree is said tdytzalic
if |s(t)] =2fort ¢ (7). Fort ¢ 1(7), the successors are denotedrbyand:™,
the signs— and+ are fixed once and for all in a dyadic tree. We also denoté, by
the successors ofvhen we do not want to precise their sign.

Fort € T, the setL(¢) :={i € I(7): t € geodi, t*)} characterizes Then, we
can identifyt and L(¢), in particulart* is identified with L(*) = I(7") andi €
1(7) with the singletor{i}. Hence, we can assume that each nodeisfa subset of
the set of leave$(.7). The distinction between the roleslofasL € T andL C I,
will be clear in the context we use them.
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We define GU matrices by using similar concepts as those introduced in relations
(2.4) and (2.5) of [11].

Definition 1. U = (U;;:i, j € I)is a GU matrix if there exist a dyadic tr¢&, 7)
and positive real vectgﬁs =(a:teT), ﬁ = (B;: t € T) satisfying
@ I =1(7),al; = B,
(0) a; < B forr e T;
(c) @ andp are=<-increasing, i.et < s impliesa; < oy andp; < By;
(d) Uij = o, if (i, j) €t~ x tT andU;; = B if (i, j) e tT x 17, wheret =i A j;
(e) Ujj =a; =p;fori eI.
We will say that(7T', ") supportdJ.

The proof that this definition is equivalent to Definition 2.4 in [8] or to Definition
2.3in[11]is givenin Theorem 3.3 in [11]. The main point is that the symmetric ma-
tricesU! = (Ul%. = ajn;) andU? = (Ul%. = Bin,) are ultrametric matrices, and the
same tree can be associated to each of them. In this framework, ultrametric matrices
are those GU matrices with= .

Observe that for every, € T the matrixUy := U|.x is also GU. The tree
supporting it, denoted b§7;., 7 1), is the restriction of 7, 77) on the subtree orig-
inated atL, and the associated vectors are the restrictions afid g on 7. The
potential vectors and the exiting roots bf, Uz are denoted, respectively, by
uwr,ve, Zr, %2 If Uis a nonsingular GU matrix and € T, Schur’s decomposition
and an inductive argument show tfiat is also a nonsingular GU matrix. Therefore,
all our results obtained fdg will also apply forUy..

We now introduce the following relatioq ;- in the set of leavek

fori £ j, weputi<s,j ifiet™, jert witht=iAj. (2)
It is easy to see tha{  is a total order inl. A setY C [ is called a< s-interval
if i <s7k<sjandi,jeY]=keY. Clearly every elemenL € T is a <s-
interval.

Assume that/ = {1, ..., n}. By permutingl we can suppose& - is the usual
order relation< onl (i.e.i + 1 is the successor ofwith respect to< ). Fori < j,
we havei A j =i Ai+1A---A j. Therefore, from thes-increasing property of
a, p we get

U — m?n{ai/\i—i-lw-waj—lAj} ?f i <],
Y Min{Bjnj+1, - .» Bi—ani} i i > j.
Observe that there exisigsatisfyingio A (io + 1) = t* = I. Then,
Qignig+1 = a7 = MiNfajpi41:i=1,...,n =1} = min{U,-j: i,jel},

Bionio+1 = Br =min{Binip1:i =1, ...,n =1} =min{U;;:i > j}.
This situation takes place at all levels of the tree. We will assume that this is the
standard presentation of the GU mattixcalled an NBF. A more precise discussion
is developed in Section 5.
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Let us partition/ = I~ U I and denote/ := I~, K := It. The NBF implies
thatU;«x = Ol]l]ltK, Ugxj = ,311](15 and

U:[ Uy a,l,l}]’

Brlk1, Uk
whereUy;, Uk are also nonsingular matrices in NBF. Denote
-1_|C D
U-t= [E F} |
By Schur’s decomposition one obtains
_ arBritk Bi
C=U]1+f,ujvtj, E:_fﬂKUtjv
l—a/Brpnspnk 1—orBrinspik 3)
o t 1 o Brity t
D=——+—r———ujvg, F=Ug +——F———uUgvg.
1—oBrirsnk K K " 1—aBrinsik K

These equations constitute the basic tool for our analysis.

3. Main results

We begin by studying the set of exiting rootsléf Theorem 1 below has a proba-
bilistic meaning, as it will be stated in Section 7. In this way, part (a) asserts that the
point minimizing the mean absorption time is an exiting rooUofThe rest of this
Theorem is devoted to analyze the sets

Hy={jel:Uj =U,} definedfor € .

In the sequel, we use the notation argfhia I: Z;} for the set of points minimiz-
ing Z.

Theorem 1. Let U be the inverse of a row DDM matrix.

(@) argmir{i € I: Zje] Uij} € %;

(b) (). r € ) are disjoint

o Forrez. # - NR=1{r} and[j eHy,jFETrSE N = (U‘l)js =0].

Proof. (a) Takeip € argmir{i € I: Zje, Uij}. From the equalityy~1U =1, we
obtainy",, ZJEI(U_J')[OZUZJ' = 1. For¢ # ig, we have(U™ 1), < 0. Then, the
minimal condition onig implies Zje, Uiyj Zea(U_l)iof > 1, from which
Zee,(U—l),-Og > 0. Hencejp is an exiting root. As a by-product we have obtained
the lower boundiiy > (3 ¢/ Uig;) ™t

(c) Letustakej € #,, j +£r. ThereforeZseI(U—l)sts, = 0 or equivalently
Urr Y sen, U™ js = = Y scpon, (U™H s Usr. Since all the off-diagonal elements
of U~* are nonpositive, we get 3", ., ,, (U™1) ;s = 0. If this last sum were strictly
positive, we shall arrive at the inequality
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Ur ) W Y <=Up Y U Yy,

seAy sel\Ay

because fos € 7\ .#, we haveUs, < U,,. Then, U, > _,(U™Y);; < 0, which
contradicts the fact thdf — is a row DD matrix. We conclude

(U™ =0 foreverys ¢ #, and Z U =0,
seHy
in particularj ¢ £, which proves (c).
(b) Let r, ¥’ be two different exiting roots. From (c), one obtaing #, and
r' ¢ A,. Assume thaj € #, N A ,.. Thenr # j # r’. From (c) we also get that
(U5 <0 impliess € #, N A . SinceU =n~1Y, o P" andUj, = Uy >
0, there existar > 1 satisfyingP;f’) > 0. Consider

mo = min{m >1:P™ > 0andt e #, N yf,,} ,

and letjo € #, N #,» be some optimal site for the above minimization problem. In
casemng > 2, we obtain
0< PO =" Pip PI"07D.
sel
However, this last sum vanishes becaigg > 0 only if s € 2, N ', and then,

by the definition ofmy, Rv(:"o_l) = 0. This is a contradiction and we are left with
the caseng = 1. Hence P, > O or equivalentl)(U‘l)jO, < 0,andthem € #, N
A .. This is also a contradiction and the result is proved.

Remark 1. We point out that in case there is a unique rodhen#, = I as is
proved in the last section using probabilistic arguments.

We pursue with the idea of the previous proof to get an algorithm for detecting all
the exiting roots in the context of a GU matrix, which is based on the block structure
of these matrices.

For convenience, whenever we need to select a peiatargmin{i € I: Z;} we
take the smallest one.

Theorem 2. Let U be a nonsingular GU matrix.
(a) The set of exiting root% is given by the following algorithm. Initially we put
Io=1,%2_1=@andk =0.
iy € argmir{i € I: Zjel Uij},
Stepk: { Hy ={j € Ix: Uji, = Uy},
Rk = Rk—1 Uik}, Irv1 = I\ H.
If I +1 = @, thenZ = %, and we stop. Otherwisge continue with step + 1.
(b) #, = Hy if r =iy, (. r € R) is a partition of | and every?, is a <, -
interval.
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Remark 2.

(a) For the inverse of a row DDM matrix, the algorithm provided in Theorem 2
does not work in general. Even though the faniil,: r € %) is disjoint (after
Theorem 1(b)), these sets do not necessarily cbvir fact, consider a sub-
Markov kerneP with at least two different exiting rootg, r» and an extra point
i ¢ # and verifyingP;,, > 0, P, > 0. Then, by Theorem 1,¢ | J,c, # ;.

(b) For GU matrices, even if the set¥’, are intervals, they are not necessarily
elements ofl. For instance, také = {1, 2, 3} and consider the GU matrix

5 &
x &1,
X v

U =

X X X

wherey > x > 6 > & > 0. We havel' = {{1, 2, 3}, {1, 2}, {1}, {2}, {3}}, </ is
the usual orderih, # = {1, 2} and#'> = {2,3} ¢ T.

Let us introduce the following subsets (reaall= g; for a leafi € I):
NFP={LeT:L=<iap =0;} and N7 ={LeT:L=ipL=0}p

Sincez is increasing in7, <), -/V?L is the set of constancy afstarting from the leaf
i (similarly for g and.4";"). This means

L e /7 (respectively/ )
implies geodi, L) € A" (respectively/Vl*).

In particular, if L € A7 (respectiverJt/;L), L #+ {i}, then L™ or L™ belongs to
N7 (respectively /7).

Sincew; = B; > BL > o, if ap =«;, thenay = B = B; = «;. Hence,Vi €
I <

Recall the notation of successs(é) = {L’, L”}. We construct the following sets
of (forbidden) nonoriented ards< .7, It c 7:

(L,L'"YeTI' & 3ieL”suchthat
{[L'=L"=Leland[L' =L = Le A1},
(L,L')eTI' & 3i e L”suchthat (4)
{[L'=L"=Le7land[L' =L* = L e /]]}.

Theorem 3. Let U be a nonsingular GU matrj. € T andi € L. Theni € Z; <
geodi, L) NI = ¢ andi € #, < geodi, L) N It = ¢.
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As a consequence of this theorem, we get the following characterization of the
conservation of exiting roots. Fdr € s(L)

R SR & (L L)¢r.

In the next result, we describe exactly the linksRobut of the diagonal. It is
established in terms of roots which we are able to recognize because of previous
theorems.

Theorem 4. Let U be a nonsingular GU matrix. Lét j € I, L =i A j, S(L) =
(L', L"}, withi ¢ L’andj € L”. Then
@ Py >0&iezandje R,
(b) Pij >0& PI§ > 0 and one(and only ong of the following two conditions is
satisfied
(bY) Uij = Binj > ainj;
(b2) U;j = ajnj and for everyM < i A j such thatry = «;; it holds

(i, j}SM™ =M, M) ¢I'l and [{i, j}S M = (M, M*) ¢T].
Part (a) is a consequence of Schur’s decomposition and follows directly from rela-
tion (3). The deeper part of Theorem 4 is (b) which characterizes when a connection
at some level pursues until the coarsest level

Corollary 1. If U;; > sufUi;, Uj;: j #i} for all i € I, then# = #' = I and
P;; > Ofor every couplé # ;.

Proof. Itis sufficient to notice that in this cageand I are empty. O

Example 1. Lety <§ <é&,1={1,...,6}. Consider the following matrixty =
(Uij:i,j el):

S S > S O >
S o O e R
S > R R

S IR R R

S > » R R R

S » ROR R

5 6

In Fig. 1, at the left-hand side, we display a dyadic tree supporting its GU struc-
ture,.7 being the set of arrows between the nodes of the tree. At the right-hand side,
we display the nonoriented graph\I'. In this examplex; =y, 85 =68, ax =
8,Bxk =8, J =L, J"=1{3},1A3=J, /] ={L L, J, I}, /'} = {5 M, K}.

From Theorem 3 we hav#® = {1}, Zx = {5}, 1€ #,-,3 € % ;+. From Theorem
4(a), we getP;; > 0. Onthe otherhand/, J) € I'* becausd € 4"z, 5 K. Since
Ujj = ajnj = o, we deduce from Theorem 4(b2) theiz = 0.
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4. Proof of Theorems 2 and 3

In the sequel, we will denote by, ; thejth column ofU and byU,, its ith row.
This notation is also used fdrf; . We assume thad is in NBF.
The following result follows from Theorem 3.6 in [8].

Lemma 1.

@ ajpp < landfrie < 1.

(b) oyt = 1iff 3! jo € I such thatU, j, = «;1 and Uj,e = a;1'. Moreover f; =
ar andp = v = a; '8, (Where(s,,); = 1if i = jo and= 0 otherwisg.

(©) Brip = limpliesU,; = B; Vj € %.

The following lemma, whose proof is based on Schur’s decomposition, relates the
exiting roots of Uy, Ug, U, as well as their potential vectors, wheye= 1—,
K=1".

Lemma 2. The quantityd := 1 — ;81 ik is strictly positive and the potential
vectors are related by

el o=l
with
a= A:i(l —arfik). b= A:i(l = BifLy), ©6)
c=A4"1-Bipk), d=4""1A—oaruy).
Moreover

R=R;\U Ry iff [O{],ELK <landBriny < 1],

(7)
R=Ry iff ﬂ[ﬂj=1andc@=%1( iff arppg = 1.
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An analogous statement holds for the exiting root#/bf

Proof. The equation®/ 1 = 1, U'v = 1 have unique solutions, and we shall prove
that these solutions are given by (5) and (6). The systems for the unknawn, d
are

a+aipgb=1 c+pipxd=1
apipg+b=1 cap;j+d =1

The determinant of both equationss Sinceg;i; <1 andBriux <1, we get
that4 = 0 impliesa; iy = 1 andajigx = 1. Thereforep; = 8; and both matri-
cesUy, Uk have a constant line equal &, which impliesU has two equal lines,
contradicting the nonsingularity &f. Relation (7) follows directly. [

Lemma 3.

@ arpp = 1iff [a;iy = Lorayig = 1]. Inthefirst casgjo € J and in the second
one jo € K (wherejg is the index of Lemma(b)).

(b) Bria =1 iff [Bras =1or Bk =1]. In the first caseUyj = B1 Vj € %,
(wherem = |J|) and in the second on®,; = ; Vj € %k.

Proof. (a) Follows at once from Lemma 1.
(b) We only prove the equivalence because the rest follows from Lemma 1(c). We
have

B = Brlapy +bpg) = %(ﬂ] + g — (o7 + By k).
A simple computation gives

Brir < 1 isequivalentto(l — B;us)(1— Britk) = 0,

with the equality being satisfied simultaneously on both sides. Then the equivalence
is shown. O

As mentioned before, the results already obtained, even if they are formulated for
I, the first level of the tree, can be applied for every nade T'.

Lemma 4.

(@ appr =1ifandonlyifL € JV?_ for some leaf € L. Inthis casef; = ar =
a; = Bi.

(b) Bring = LifandonlyifL € 477 for some leaf € L. In this casef, = B;.

Proof. For part (a), we must show that there exists a leafL such thaty; = «y..
From Lemma 1(b)er i = 1 iff there exists a colummn € L such that(Uy)e; =
arly; andU;; = o; = ay. Reciprocally, assume that = oy, fori € L. SinceU;; =
a; = oz, we conclude the result. The equaly = «; = «; follows from Lemma
1(b).
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We now turn to the proof of (b). IL is a leaf, the result follows at once. Oth-
erwise, we must show that there exists a leaf L such thatg; = g;. We deduce
from Lemma 3 that for somgé’ € s(L), we must have8; i, = 1. SinceB; > Br
and B i < 1, we deduced;, = .. By recurrence we show that the condition
is necessary. The condition is also sufficient becaijse- 8; for some leafi € L
implies 8y = B YM € geodi, L). Then, by Lemma 3 and recurrence, it follows
thatBy iy = 1VM € geodi, L). O

Proof of Theorem 2. We reason by induction on. Notice that if U+ = o for
some* € I, which is necessarily unique, then in the algorithya= i*, Io = 1, 1 =
#. HenceZ = {ip}, and the result is shown in this case. Therefore, in the sequel, we
can assume;; > ay foreveryi € I.

(a) We prove that the algorithm supplies the exiting roots of

(al) First consider the cag&; > g; for all i € J. For every stefk in the algo-
rithm, we have

lixeJ=H,CJ] and [ix € K = Hx C K]. (8)

In fact, ifiy € J andj € K, we haveU;;, = B; < Uy, and ifix € K andj € J,
we getU;;, = ay < Ujj;.

Accordingto Lemmas 2 and 4(B) = 25 U Zx. We can assume, by an inductive
argument, that our algorithm works for matridés andUx: 2, = {iJ. ..., i[{} and
Ak =ik, ..., i(f}. We denote by, Ji, HX, K the corresponding sets obtained
when applying the algorithm t&; andUk .

Denote byk, . . ., k; the steps at which the algorithm applied to the matriyives
nodesiy, . . ., i, iN J. We now prove that = p and (ixy, - - - , ix,) = (ig, e, il{).
Using (8) we get/ C Ii,. Sinced_,_,;(Uy)ie +ar|K| =", Ui foreveryi € J,
we obtain that] = ik, S0 Hj = Hiy, J1 = lig+1 N J, Iig+1 N K = Ity N K. An-
other inductive argument shows the desired relafien p and (ix,, - . -, ix,) =
(i, ..., iI{). We can argue similarly for matri&/x, and hence = #; U Z.

(a2) We are left with the casé;«;+ = B; for somei* € J (notice that from the
GU property this is the complementary of the above case). From Lemmas 2 and 4(b),
% = R;. Then we must show that our algorithm supplies this result. Notice that in
this casex; < B;. Then

foreveryj e K we havez Upee < Bl + arK| < ZUJ-@.
tel tel
Since(Hy) is clearly a partition of, there exists a stem such that* € H,,. We
assume that* is optimal in the sense thaf;«;+ = ; andm is the smallest possi-

ble value. We necessarily havg . ..,i, € J, H, N K = ¢ for everyk < m, and
Ui*im = Uimim' Now

Br = Upxix = Upxi,, = Ujpi, = Pr-



12 C. Dellacherie et al. / Linear Algebra and its Applications 318 (2000) 1-21

ThenU,,, = Br = Uj;, for everyj e K. We deduce,, = H,ﬁ U K, and hence
the algorithm supplies the equality = % ;.

(b) Notice thatHy € #, for r = i). Since(Hy) coversl, so doeg.#’,). Theorem
1 ensures that#’,) is a disjoint family proving that it is a partition. We also deduce
thatH, = 4, for r = iy.

Let us prove that for every € %, #, is an interval. Observe that< <7k
implies

Uik <Ujk < U and U;; 2 Ui > Ujg.

Letie #,. Ifi <y j<sr, thenU, =U; <Uj < U, and we concludg e
A . Analogously ifr <, j <7 k. O

Proof of Theorem 3.We only prove the part concerniggy , the other one is entirely
analogous. LeM € s(L). From Lemmas 3 and 4, the set of linkgiven in (4) can
be described as follows:

(L,M)eTl iff [M=L ,arpig+ =10rM =L", Bria;,- =1]. 9)

Fori € L, denote geod, L) = (Lo = {i}, L1,..., L¢ = L). From (7) we haveé €
A ifandonlyifi € #;, foreveryk =0, ..., £. The resultis proved by recurrence
on ¢ with the help of (9) and (7). O

We pursue with the study df in order to give a graphical description &f, for
reaA.

Lemmab. Lets(L) = {L', L"}. Then(L, L") € I iff there exists a uniquee Z;~
such that

[L'=L"=LeN]] and [L'=L*=LeA]]. (10)

Proof. If L’ = L, then from Lemma 1(b) and (9) there exists a uniqueZ, -
satisfying (10). Hence, in the rest of the proof we assurhe: L. We first prove
the existence.

By definition, (L, L") € I if there existsk € L” satisfying (10). By an inductive
argument it suffices to show that éfe %), for someM’ = L” but £ ¢ %, for
M = p(M’), then there existg € M” satisfying (10). In fact, i’ = M™, sincel €
Rp \ Au, then necessarily exisfse M~ such thaify = ;. Hencepy = B, =
BrandL € A7 If M’ = M~ , then there existg € M such thatryy = o; = B;.
SoBL =B =ay = ,3]' andL e JV;.

Let us show the uniqueness. Considej € #;» to be two different elements
satisfying (10). LetM =i A j, which satisfies > L”. Given thatL’ = L™, we
haveg; = By = Bi = B, and no element of2),+ belongs taZy,. Sincei € Z -+
or j € #y+, one of the two elements does not belongig, contradictingZ;» N
MC Ry. U
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We putjCiifi € Z;7, j € #; and (10) is satisfied by” andi (i eliminatesj
from the set of exiting roots). Denote 3y the transitive and reflexive closure of
Observe that € %, if and only ifr is ©-maximali.e. [f € j = r = j].

Proposition 1. Forr € #,we have#’, = {j e I: jCr}.

Proof. LetjCiandL =i A j.If j € L7, thenU;; = ajn; = a1 = o; = U;; and,

if j € LT, thenUjj = Binj = B = Bi = Uii. In particular, if j C r, thenj € #,.

If k€ jCr, we havej Ar =k Ar, thenUy, = Uj, = U, from whichk € #,.
Therefore,{j € I: jCr) € #,. Now, if k C r is not satisfied and € #, we can
directly show thatUy, # U,,. Also this can be proved by the fact that’,: r € %)
and({j € I: jCr}: r € %) are both partitions of (the last one by construction, the
first one from Theorem 2)ang € I: jEr} € #,. O

5. Proof of Theorem 4

From (3), everyi, j) € J x K UK x J satisfies
(U™ <0 ifandonlyif G, j) € #; x B U Rk x R,

Then Theorem 4(a) follows.

Previously to show Theorem 4(b) it will be useful to supply some elementary
properties. Considdr (y) = U — y11!. Observe that; i < 1is equivalentte; <
min{U;;: i € I}. Under this condition, for aly € [0, «;] we get

vy t=ut e Lt (11)
1-yn
By direct computations, we find that the potential vector& ¢f) andU (y)! satisfy
1 1 (12)
KU (y) = 7= s VU(y) = —V.
) 1—yi ) 1—yi
For our analysis we will need the following key lemma.
Lemma6. Lety € [0,«;] andy < min{U;;:i € I}. Thenfori + j:
Uj>y = (U™ <0 & W)Y <o, (13)
Uj=y = Uy =0 (14)

Proof. From hypothesis, the GU matriX(y) is nonsingular because its diagonal is
strictly positive and no two rows are equal. Denotefliy ) a sub-Markovian matrix
suchthat/(y) =n=1),, o P(y)™ for somen > 0. Fori + j we have(P(y));; =

0 if and only if(U()/)_l)[j = 0. Since(U (y));j = 0implies(P(y));; = 0, relation
(14) is satisfied.
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Let us prove (13). Assume# j, U;; > y. From (11) and since > 0, we get
that (U (y)™1);; < 0 implies(U~1);; < 0. We now prove the reciprocal. Thus, we
assume(U*l)ij < 0, and split the proof into two cases.

Casey < ay.If (U(y)™b);; = 0, we arrive at a contradiction becaug&(y)~1);;
is increasing in the sty < «;}. Then we are able to find somé < «; such that
(U(y")™Y);; > 0 which contradicts thal/ (y’)~* has nonpositive off-diagonal ele-
ments.

Casey = «ay. By hypothesigy; i < 1. Thenayiny < 1 andayiig < 1. Hence,

B Uj(ay) 0
vien = [(ﬂl — ikl UK(O”)]
and
1 Us(ap?t 0
Ular)™ " = |: E UK(Oll)le‘

Inthe casei, j) € J x J,we get(U (a;) 1) = (U (ar)~ij. From (3),(U; ) <
(U‘l)i,- < 0 and we obtain the result by induction on the dimension of the matrix.
The argument whelt, j) € K x K is similar. Therefore, we can assume K,
jeld. Since(U(a,))ij > 0, we haveg; > «;. From (3), we obtairE = —(8; —
aI)MK(o”)vJ(a ) Whereug ;) andvy () are, respectively, the potentials of ma-
trices Uk (ar) and U, ()t To finish the proof we must show the equivalence of
Eij<0& E,j < 0. SinceE = —(ﬁI/A)MKvJ, we conclude the result from (12)
because

1 1

HE e = 1—aipk pe Meen = l—arpny b -

Lemma?. Fori # j in Jwe have
iy =1 = (U= (Uj_l)l'jv (15)

U™ =0 & (Uj_l)ij =0 or [Ujj =a;andp;ig =1]. (16)

Proof. From (3) we have
_r
1-ypy
with y = a;Briig <o <min{(Uy);j:i, j € J}.

Assume thatr; iy = 1. Then, we obtainy; = 8y anduy; = vy = al_18j0 for
somejo € J, from which (15) follows.

We now turn to the proof of equivalence (16). Froth, ),j u- 1),, 0 we

get (U‘l),] =0= (U~ 1),, = 0. Thus, for the rest of the proof we may assume
(Uj‘l)ij < 0 and we must show the following equivalence:

wh,=ut+ v =07t

U™ =0 & [Uj=a;andpjix = 1.
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Consider first the case; iy = 1. Hence, from (151U—1),3,- = (U;l)i,- < 0. Since
A=1—arp;Bring > 0, one obtaing;iix < 1, proving in this case the equiva-
lence.

Finally, we assume that;i; < 1. Sincey < ay < min{(Uy);;:i € J}, we can
apply Lemma 6 to the matri&, . If (U;);; = U;; = oy andBrjig = 1, we areinthe
case(Uy);j = y. Hence(U™1);; = (U, (y)™1);; = 0. On the contrary, iU;; >
or Britg <1, we are in the casd/;);; > y, which impIies(UJ(y)—l)ij <0<«
(U;hij < 0, from which the result follows. [

We now furnish the proof of Theorem 4(b). Since (b1) and (b2) cannot be sat-
isfied simultaneously and cleark; > 0 = Pi§ > 0, we are reduced to prove the

equivalent statement: undeﬁ > 0, the equivalenc®;; > 0 < (bl) or (b2), holds.
Relation (16) in Lemma 7 shows that under condition (b1) one Bgts 0. Assume
now that (b1) is not satisfied, thatl; = «;, and consideM < L such thatry, =
ay. Denotes(M) = {M’, M} with {i, j} € M’. From Lemma 7, we get thd#j‘.” >

0 [PM > 0andBupunr < 11. Using Lemma 2By ey < 1is equivalent to
M =M~ = %, C#,] and [M' =M = Ry C Ayl
From Theorem 3, we get this statement is equivalent to
M =M~ = (M,M™) ¢TI and [M' = M* = (M, M") ¢ I,
proving the result by an inductive argument]

6. Combinatoric aspects of nested block form matrices

The purpose of this section is to describe some combinatorial aspects of the NBF
matrices introduced in Definition 2.8 in [8] and Theorems 3.2 and 3.3 in [11]. In
Section 3, we have shown that a GU matrix can be put in NBF after a suitable per-
mutation. In Theorem 5(a) below, we will describe the set of permutations preserving
the NBF structure of a matrix. We provide a criterion in terms of the tree supporting
the matrix, or equivalently in terms of the associated sequence of partitions.

The elements of a partitiom of I = {1, ..., n} are called atoms; they are dis-
joint, nonempty and covdr We denote by = {I} the trivial partition and byv =
{{i}: i € I} the discrete one. We say partitions dyadicallyw, we putw <9 o/, if
every atom ofw which is not a singleton is partitioned into two atomscuihh We
call # = (wg <% - -+ <9 w,) a dyadic filtration (of partitions) ofl, and if wp = @
andw, = @, Z is said to be d@otal dyadic filtration We associate to the dyadic tree
(T, 7) the total dyadic filtrationZ = (wp <9 - -- <% w,), wherew;1 is formed
from wy by partitioning all the atomk in w; which are not singletons, intb~ and
L™ in wry1. Reciprocally, associated to a total dyadic filtrati@nwe construct the
following dyadic treg(T, .7") (belowC means strict inclusion):
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,
=)L and 7 ={(L.N:Lew.]ewrJCL,
k=0 Lewy

and with tree root equal tb In the definition below, we assume tHais endowed
with the standard order.

Definition 2.  The nonnegative matri¥/ = (U;;: i, j € I) is in NBF if the vec-
torsa, b € R"1 defined bya; = U j41.b; = Uip1; i = 1,...,n — 1, satisfy the
following conditions:
@ a <b;ji=1,...,n—1,
(b) U;; > maxb;_1, b;}, where for convenienday = 0, b, = Uy,;
© Ui = min{a;, ..., aj—1} ifi < j, Uij = min{bj, e b} ifi > g
(d) The following algorithm starting from the trivial partitiang = w at stepk = 0
stops at the discrete partitian
Step k For eachL € w; which is not a singleton, findg :=i(L) € L := L\
{maxi:i € L}} suchthat;, = min{a;: j € L}andb;, = min{b;: j € L}. PutL™ =
lieL:i<ipyand Lt ={ieL:i>ip}, and definewy,1 ={L~,L": L € wy
is not asingleton U {L € wy: L is a singletoih.

The total dyadic filtrationZ = (wg <9 - - - <9 w,) constructed by the algorithm
is said to beassociatedo the NBF.

We point out that in Definition 2.8 in [8], the NBF matrices are defined by induc-
tion on the dimension of the matrix. Itis easy to show that this definition is equivalent
to ours. Observe that, up to permutation, an ultrametric matrix is an NBF matrix
with a; = b; (see [4]). Furthermore, if we also impose that< --- < a,-1 < a,
andU;; = a;, i =1,...,n,one obtains the type-D matrices considered in [7].

Remark 3.

(@) An NBF matrix is a GU matrix. The tre€l’, ) associated to the total dyadic
filtration # supports the GU matrix. We notice that all the atoms in this filtration
are intervals in, or equivalently, all nodesg € T are intervals in. Moreover,
oL = ajw), PL = biw)-

(b) From Definition 2(c), one get®;; = a;(z for (i, j) € L~ x LT and U;; =
bi) for (i, j) e LT x L™.

(o) If Uisin NBF, the filtration# is not necessarily unique. In fact, at some dtep
there could exist severa{L) satisfying the condition, but it can be shown (by
induction om) that the algorithm stops atindependently on the choice &(fL).
We describe all the filtrations associated to an NBF in Theorem 5(b).

To describe the permutations preserving the NBF of a matriwe use its GU
property and the tre€l’, ) supporting it. Recall the total ordet introduced in
(2) also orders the disjoint s-intervals.
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b of OJRC

F1 F!
Fig. 2.

TakeL e T. We will fix a partitionw” of L (formed by elements of). If L is a
leaf, we putw’ = {L}. WhenL is not a leaf, we define

J et < J>L, (Olp(]), ,Bp(j)) = (az, B1) and

[Jisaleafor(ay, B1) # (ar. BL)].

Observe that the sef” = {J = L: (ay, B7) = (ar, Br)} Uw! is a dyadic tree,
when endowed with the relation inherited fraffi, 7). The treeT L has the tree
rootL and set of leaves’. We denote byZ’ the filtration associated tB-.

A total dyadic filtrationZ " = (@ <9 - - - <9 &,) of L is said to bev’-compat-
ible if @9 = {L}, & = !’ and the atoms of every, are the union of consecutive
atoms ofw’ (consecutive with respect to the ordgr, in intervals, in particular,
they are<,-intervals). By definition,Z * is w’-compatible.

A permutationy;, : L — L is said to be a’-interval exchangéf for every J
ol @r(J) is a < -interval of L andg; : J — ¢ (J) is increasing with respect
to <7, 0. () <7 () it i <7 J, i,j € J. We will also denote byp; the
extension of this permutation towhere we pufp; (i) =i ifi € L.

In Fig. 2 we displayZ’ for Example 1, as well as &' filration which isw!-
compatible. Observe that’ = ({1}, {2}, {3}, K}.

Theorem 5. Let/ = {1, ..., n} and the matrix U be in NBF. Then

(@ ¢ : I — I is a permutation such thdf?¥ := WUy-1yp-1(jy 1. J € 1) is in NBF
if and only ify is a composition of permutations , whereg; is aw’-interval
exchange and L satisfieg, = .

(b) Let# be a fixed total dyadic filtration associated to the NBF. T,Hae class
of total dyadic filtrations associated to the NBF is constructed by making all

possible replacements gt~ by w-compatible filtrations7 "~ of Lfor L € T..
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The proof is direct. Notice that in statements (a) and (b) of the theorem it suffices
to restrict our attention td. = 7 and thosel satisfying(cap(z), Bpr)) # (oL, BL),
because they generate dyadic maximal subtfées

For instance, in Example 1, the set of permutations which preserve the NBF are
those which fix the pointgl, 2, 3}.

7. Probabilistic insight and general results for potential matrices

Let U be a nonsingular matrix witt/ ~1 a row DDM matrix. Lety > 5(U) and
consider the sub-Markov kerngl = | — n~*U~1. The properties of matrik), from
a probabilistic point of view, come from the fact thats proportional to the potential
of PgivenbyV := (1 — P)~1 . By adding an absorbing statez 7, we can construct
a Markov chain X,,) with kernel P satlsfylngP|1X1 = P.We refer to [1] for gener-
al considerations on Markov chains. Denotefhythe law of the chain starting from
i and byt; the associated mean expected value operator. From the definitgmvef
getthatV;; = E; (3,20 1(x,,=))) is the expected number of visitsjtstarting from
i. From the strong Markov property, one obtaiig = P; {T{;; < oo}V;;, where in
generalT; is the hitting time of a sef C I, that is the first (random) time that the
chain visitsJ.

Thus, the ratid/;; / V;; = U;;/Uj; represents the probability that the chain start-
ing fromi ever visity. This probability is one if and only if every path starting from
visitsj before absorption, from which one deduces, for example, Theorem 3.2 in [8].
Moreover, in this general framework, for every exiting ro@te can characterize the
set#', ={j € I: Uj, = U,,} as follows:

jeA, & Pi{lT;y <oo}=1

Hence, if there is only one roof then the right-hand side of the above equivalence
is true for allj € I and therefore#, = 1.

If I — P is a strictly row DDM matrix (all the row sums are strictly positive), then
every vertex e I is an exiting root and therefor®, {7} < oo} < 1. This implies
the necessary condition stated in [6]:

Vi >maxV;:iel\{j}}.

Also, the implicationU;; = 0= (U‘l),-j =0 for i # j (see the additional
property in Theorem 3.6 in [11]) has a simple meaning because it is equivalent to
Pi{T{j; < oo} = 0= P;; =0, which is trivial.

The termsy 3, Ui; involved in the determination of exiting roots can be de-
scribed in probabilistic terms. In fact if the chain starts frigitihe time of absorption
is Ty := inf{m: X,, =0} =3, -0 Lix,en. Thenfori € I

BT =Y Y P =n> Uy

m=0 jel jel
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Intuitively, the site minimizing this quantity should be an exiting root, as it was
provenin Theorem 1.

In the next result, we get an extra property on the structure of th¢ g6ts € #}
by using probabilistic tools.

Proposition 2. Let U be the inverse of arow DDM matrix. Le€ #, j € #), k ¢
J . Then

Pi{Twy < Ty} =0 and Ujk = Upg.

Proof. Sincek ¢ ', and j € #,, we haveP{T} = oo} > 0 andP;{T <
oo} = 1. Hence, the following inequality

0=P{Ty) = oo} = Pi{Tyy < Tyy}PilT(ry = oo}

impliesP;{Txy < T} = 0.
The second relation follows by the strong Markov property, conditioning on the
first visit fromj tor or k. In fact,

Ujk = Pi{Tuwy < Ty} Uik + P i{Tyy < Ty}Urk = Uri,

where the last equality follows from the above discussidnl.

Schur’s decomposition has also a probabilistic meaning. Assumd that, and
we would like to study the Markov chaiiy,,) induced onl, whose transition matrix
Qis given by

Qij = Pi{T; < o0, X1, = j}
=P +Pi{l<T; <o0, X7, = Jj} fori,j e J.

Since the potential of this new chainJdns the same as for the initial chain, as the
expected number of visits is the same, we obtain thatQ = (V) ~1, but from
Schur’s decomposition

Vix) P =0 =P)yxs — (0= P)yx (0= P)kxg) 20 = P)kxy.

In particular; € J is an exiting root foQ (or equivalently for the chaity,)) if and
only if i is an exiting root foIP or if there is a path from to the absorbing state
passing only througK. This statement is what appears in Lemma 3.1(ii) in [8]. We
point out that our results in Lemmas 6 and 7 are a sort of reciprocal of the formula
stated in the proof of Lemma 3.1(iii) in [8].

So far we have discussed how row DDM matrices arise in probability theory. In
the sequel, we shall assume thhis the inverse of a nonsingular M-matix — P,
that is we assume that is strictly larger thano := p(P), the spectral radius of
the nonnegative matriR. In generalP is not sub-Markovian except in the row DD
case. Neverthelesd,has a probabilistic interpretation astatransform of a suitable
potential. In order to explain the main ideas here, we assumePtisatrreducible.
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Therefore, by the Perron—Frobenious theorem there exists a unique strictly positive
right eigenvectoh: Ph = ph. Consider the Markov kern& given by

-1
Rij = FPZ']'.
1

A direct computation shows that

m _ ol pm
P; _p”h—jRij forn > 0.
Therefore, we get
- 0 hi o~ (P\" i)
—1 — n —1"™" n
Uij=a Za "P;l =a ;TZ(E) R
n=0 J n=0

DefineW the potential
o p n
DR
> (5
n=0
associated to the sub-Markovian kerpéh R. Then, we have
hA
-1
Uij=a i ijs
andU is anh-transform ofW. This result allows us to give a probabilistic insight into
Theorem 3.9 in [8]. We use definitions and notations introduced therein. The condi-
tion “j does not have accesskin G;(P)” is the same asj‘does not have accessko
in G;(R)” because the connections are the same uR@eIR. In probabilistic terms,
this condition is stated &8 ;{7 < Tj;;} = 0, whereP is the law of the underline

chain defined by the kernel/a R (adding of course an absorbing state). Under this
hypothesis, the strong Markov property implies

ij=Pj{T{k} < oo} Wi = PJ{T{,'} < T{k} < 00} Wi
=P{Tiy < o0}Pi{Tiy < 00} Wik = Wi Wi/ Wi (17)
Using the relation betwedd andW, one gets the same formula for This proves
the first part of Theorem 3.9 in [8]. The second part of this theorem follows in a

similar way, by noticing that the second equality in (17) becomes a strict inequality
>, whenever | has access toin G;(P)".

7.1. Final comment

For U, the inverse of a row DDM matrix, we provide an estimatiomol/) =
max{(U1);;: i € I} in terms ofU. Considere(U) := min{U;; — max{U;;: j #i}:
i € I}. Thenp(U) < e(U)~2. In fact, from the row DDM property we get

U HiUi=1=Y (U ™Uji <1— Ui —e) Y (U
JFi J#i
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<1+ (Ui — eU)U i,

from which(U~1);; < e(U)~1 and the claim follows.

Notice thate (U) > 1 impliesn(U) < 1, and thenP = | — U~ is a sub-Marko-
vian kernel. If in additionlU is a GU matrix, we get that— U1 is a double sub-
Markovian kernel and this is also the case for all the lelels the tree, because
n(Ur) < n(U) (see (3)).
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