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Abstract

We supply a simple algorithm which describes the sub-Markov kernelP associated to
a nonsingular generalized ultrametric matrixU. This algorithm is based on the dyadic tree
structure ofU, it identifies the exiting roots ofP andP t, and the couplesi /= j for which
Pij > 0 (equivalently(U−1)ij < 0). © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let I be a finite set andU = (Uij : i, j ∈ I) be a nonnegative matrix. Generalized
ultrametric (GU) matrices and nested block form (NBF) matrices were introduced
in [8,11]. After a suitable permutation, every GU matrix can be put in NBF. On
the other hand, GU matrices generalize the notion of ultrametric matrices defined
in [9]. Indeed, an ultrametric matrix is a symmetric GU matrix. Theorem 4.4 in
[8] provides a remarkable criterion for the nonsingularity of a GU matrixU: U is
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nonsingular if and only ifU does not contain a row of zeros and no two rows of
U are the same (see also the criterion given in [11]:U is nonsingular if and only if
U + U t is nonsingular). In the sequel, we assumeU is a nonsingular GU matrix.

Theorem 4.4 in [8] and Theorem 3.6 in [11] state thatU−1 = ((U−1)ij : i, j ∈ I)

is a row and column diagonally dominant M-matrix (row and column DDM), i.e.

(U−1)ij 6 0 for i /= j in I,

(U−1)ii > 0 ∀i ∈ I ;
∑
j∈I

(U−1)ij > 0 ∀i ∈ I (row DD)

and ∑
j∈I

(U−1)ji > 0 ∀i ∈ I (column DD).

This result generalizes the DDM property shown in [9] for ultrametric matrices. An
algebraic proof of this last fact was given in [10].

The row DDM property implies that for everyη > η(U) := max{(U−1)ii : i ∈ I }
the matrixP := PU , depending onη and given byP = (I − η−1U−1), is a sub-
Markov kernel:Pij > 0 ∀i, j ∈ I, P1 6 1 pointwise (whereI is the identity matrix
and1 is the constant 1-vector). Therefore,

ηU = (I − P)−1 =
∑
m>0

Pm

andU is proportional to the potential matrix associated to the transient kernelP.
SincePij > 0 ⇔ U−1

ij < 0 for i /= j , the existence of links between different points
does not depend onη. On the other hand, the conditionPii > 0 depends on the value
of η.

In the theory of row DDM matrices, the main role is played by thepotential
vectorµ := µU associated toU by µ := U−11. From the row DDM property,µ is
a nontrivial positive vector:µi > 0 and its total mass̄µ := 1tµ is strictly positive.
Notice that the following equivalence holds:

µi > 0 ⇔ (U−11)i > 0 ⇔ (P1)i < 1. (1)

Every i satisfying this property is called anexiting root of U(or of P) and the set of
them is denoted byR := RU . The Markov chain defined byP looses mass ati ∈ R.
Sinceµ is nontrivial,R is nonempty andP is strictly sub-Markovian.

For U, a row and column DDM matrixP is a double sub-Markov kernel, in par-
ticular P t1 6 1. The potential vectorν := νU , associated toU t, is given byν :=
(U t)−11 and its total mass bȳν := 1tν. Notice thatµ̄ = ν̄ because1tµ = (U tν)tµ =
νtUµ = νt1. A relation similar to (1) holds forU t. We defineRt := RU t as the set
of points, where the chain defined byP t looses mass. We haveRt = {i ∈ I : νi > 0}
is nonempty andP t is strictly sub-Markovian.
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Our main results characterize, in an algorithmic way, the following properties
(which do not depend onη): “ i is an exiting root ofP” and “for a given couple
i /= j , Pij > 0”. These properties and other related problems were studied in [3]
for the class of ultrametric matrices by means of a tree algorithm whose levels are
given by the different values of the matrix. The methods we used in [3] for studying
ultrametric matrices do not work, in general, for GU matrices.

In Section 2, we revisit GU matrices by means of dyadic filtrations, already used
in [5] in the context of supermetric matrices. This idea is close to the one intro-
duced in [11] for describing GU matrices. Theorem 1, stated and proved in Section
3, describes the exiting roots and associated sets for inverses of row DDM matrices.
The rest of Section 3 is devoted to GU matrices, Theorems 2–4, where we charac-
terize the exiting roots and the links of the sub-Markov kernel in terms of a graph
algorithm. These results are proved in Sections 4 and 5. Our main tools are Schur’s
decomposition, constancy sets along geodesics and Lemma 6, which provide a pre-
cise description on the disappearance of links. Theorem 5, in Section 6, describes
the combinatorics of NBF matrices (permutations and filtrations). In Section 7, we
revisit row DDM matrices in the framework of Markov chains and we prove some
extra properties of GU matrices by probabilistic arguments.

We point out that since the pioneering work [2], ultrametricity has gained at-
tention on matrix and operator theory (see for example [5,12,13] and references
therein).

2. Generalized ultrametric

A tree(T ,T) is a finite nonoriented and connected graph, which does not contain
nontrivial cycles of length greater than or equal to 3. For(t, s) ∈ T × T , t /= s, there
is a unique path geod(t, s) of minimum length, which is called the geodesic between
t ands. We put geod(t, t) = {t}, which is of length 0. We fixt∗ ∈ T and we call
it the tree root of T. If s ∈ geod(t, t∗), we denotes � t , which is a partial order
relation onT. For t, s ∈ T , t ∧ s = sup{v: v ∈ geod(t, t∗) ∩ geod(s, t∗)} denotes
the closest common ancestor ofs andt. For everyt /= t∗, there exists a unique el-
ement inT, called thepredecessorof t, denoted byp(t), which satisfies:p(t) ≺ t ,
and(p(t), t) ∈ T. The set of successors oft is s(t) = {s ∈ T : s � t, (s, t) ∈ T}.
I (T) = {i ∈ T : s(i) = ∅} is the set of leaves of the tree. The tree is said to bedyadic
if |s(t)| = 2 for t 6∈ I (T). For t 6∈ I (T), the successors are denoted byt− andt+,
the signs− and+ are fixed once and for all in a dyadic tree. We also denote byt ′, t ′′
the successors oft when we do not want to precise their sign.

For t ∈ T , the setL(t) := {i ∈ I (T): t ∈ geod(i, t∗)} characterizest. Then, we
can identify t and L(t), in particulart∗ is identified withL(t∗) = I (T) and i ∈
I (T) with the singleton{i}. Hence, we can assume that each node ofT is a subset of
the set of leavesI (T). The distinction between the roles ofL, asL ∈ T andL ⊆ I ,
will be clear in the context we use them.
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We define GU matrices by using similar concepts as those introduced in relations
(2.4) and (2.5) of [11].

Definition 1. U = (Uij : i, j ∈ I) is a GU matrix if there exist a dyadic tree(T ,T)

and positive real vectorsEa = (αt : t ∈ T ), Eb = (βt : t ∈ T ) satisfying
(a) I = I (T), Ea|I = Eb|I ;
(b) αt 6 βt for t ∈ T ;
(c) Ea andEb are�-increasing, i.e.t � s impliesαt 6 αs andβt 6 βs ;
(d) Uij = αt if (i, j) ∈ t− × t+ andUij = βt if (i, j) ∈ t+ × t−, wheret = i ∧ j ;
(e) Uii = αi = βi for i ∈ I .

We will say that(T ,T) supportsU.

The proof that this definition is equivalent to Definition 2.4 in [8] or to Definition
2.3 in [11] is given in Theorem 3.3 in [11]. The main point is that the symmetric ma-
tricesU1 = (U1

ij = αi∧j ) andU2 = (U2
ij = βi∧j ) are ultrametric matrices, and the

same tree can be associated to each of them. In this framework, ultrametric matrices
are those GU matrices withEa = Eb.

Observe that for everyL ∈ T the matrixUL := U |L×L is also GU. The tree
supporting it, denoted by(TL,TL), is the restriction of(T ,T) on the subtree orig-
inated atL, and the associated vectors are the restrictions ofEa and Eb on TL. The
potential vectors and the exiting roots ofUL, U t

L are denoted, respectively, by
µL, νL,RL,Rt

L. If U is a nonsingular GU matrix andL ∈ T , Schur’s decomposition
and an inductive argument show thatUL is also a nonsingular GU matrix. Therefore,
all our results obtained forU will also apply forUL.

We now introduce the following relation6T in the set of leavesI,

for i /= j, we puti <T j if i ∈ t−, j ∈ t+ with t = i ∧ j. (2)

It is easy to see that6T is a total order inI. A setY ⊆ I is called a6T-interval
if [i 6T k 6T j andi, j ∈ Y ] ⇒ k ∈ Y . Clearly every elementL ∈ T is a 6T-
interval.

Assume thatI = {1, . . . , n}. By permutingI we can suppose6T is the usual
order relation6 on I (i.e. i + 1 is the successor ofi with respect to6T). For i < j ,
we havei ∧ j = i ∧ i + 1 ∧ · · · ∧ j . Therefore, from the�-increasing property of
Ea, Eb we get

Uij =
{

min{αi∧i+1, . . . , αj−1∧j } if i < j,

min{βj∧j+1, . . . , βi−1∧i} if i > j.

Observe that there existsi0 satisfyingi0 ∧ (i0 + 1) = t∗ = I . Then,

αi0∧i0+1 = αI = min{αi∧i+1: i = 1, . . . , n − 1} = min{Uij : i, j ∈ I },
βi0∧i0+1 = βI = min{βi∧i+1: i = 1, . . . , n − 1} = min{Uij : i > j }.

This situation takes place at all levels of the tree. We will assume that this is the
standard presentation of the GU matrixU, called an NBF. A more precise discussion
is developed in Section 5.
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Let us partitionI = I− ∪ I+ and denoteJ := I−, K := I+. The NBF implies
thatUJ×K = αI 1J 1t

K , UK×J = βI 1K1t
J and

U =
[

UJ αI 1J 1t
K

βI 1K1t
J UK

]
,

whereUJ , UK are also nonsingular matrices in NBF. Denote

U−1 =
[
C D

E F

]
.

By Schur’s decomposition one obtains

C = U−1
J + αIβI µ̄K

1 − αI βI µ̄J µ̄K

µJ νt
J , E = − βI

1 − αI βI µ̄J µ̄K

µKνt
J ,

(3)

D = − αI

1 − αIβI µ̄J µ̄K

µJ νt
K, F = U−1

K + αI βI µ̄J

1 − αIβI µ̄J µ̄K

µKνt
K.

These equations constitute the basic tool for our analysis.

3. Main results

We begin by studying the set of exiting roots ofU. Theorem 1 below has a proba-
bilistic meaning, as it will be stated in Section 7. In this way, part (a) asserts that the
point minimizing the mean absorption time is an exiting root ofU. The rest of this
Theorem is devoted to analyze the sets

Hr = {j ∈ I : Ujr = Urr} defined forr ∈ R.

In the sequel, we use the notation argmin{i ∈ I : Zi} for the set of points minimiz-
ing Z.

Theorem 1. Let U be the inverse of a row DDM matrix.
(a) argmin{i ∈ I : ∑

j∈I Uij } ⊆ R;
(b) (Hr : r ∈ R) are disjoint;
(c) For r ∈ R: Hr ∩ R = {r} and

[
j ∈ Hr , j /= r, s /∈ Hr ⇒ (U−1)js = 0

]
.

Proof. (a) Takei0 ∈ argmin{i ∈ I : ∑
j∈I Uij }. From the equalityU−1U = I, we

obtain
∑

`∈I

∑
j∈I (U

−1)i0`U j̀ = 1. For` /= i0, we have(U−1)i0` 6 0. Then, the

minimal condition on i0 implies
∑

j∈I Ui0j

∑
`∈I (U

−1)i0` > 1, from which∑
`∈I (U

−1)i0` > 0. Hence,i0 is an exiting root. As a by-product we have obtained
the lower boundµi0 > (

∑
j∈I Ui0j )

−1.

(c) Let us takej ∈ Hr , j /= r. Therefore,
∑

s∈I (U
−1)jsUsr = 0 or equivalently

Urr

∑
s∈Hr

(U−1)js = − ∑
s∈I\Hr

(U−1)jsUsr . Since all the off-diagonal elements

of U−1 are nonpositive, we get− ∑
s∈I\Hr

(U−1)js > 0. If this last sum were strictly
positive, we shall arrive at the inequality
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Urr

∑
s∈Hr

(U−1)js < −Urr

∑
s∈I\Hr

(U−1)js,

because fors ∈ I \Hr we haveUsr < Urr . Then,Urr

∑
s∈I (U

−1)js < 0, which
contradicts the fact thatU−1 is a row DD matrix. We conclude

(U−1)js = 0 for everys /∈ Hr and
∑
s∈Hr

(U−1)js = 0,

in particularj /∈ R, which proves (c).
(b) Let r, r ′ be two different exiting roots. From (c), one obtainsr /∈ Hr ′ and

r ′ /∈ Hr . Assume thatj ∈ Hr ∩ Hr ′ . Thenr /= j /= r ′. From (c) we also get that
(U−1)js < 0 impliess ∈ Hr ∩ Hr ′ . SinceU = η−1 ∑

m>0 Pm andUjr = Urr >

0, there existsm > 1 satisfyingP (m)
jr > 0. Consider

m0 = min
{
m > 1: P

(m)
`r > 0 and` ∈ Hr ∩ Hr ′

}
,

and letj0 ∈ Hr ∩ Hr ′ be some optimal site for the above minimization problem. In
casem0 > 2, we obtain

0 < P
(m0)
j0r =

∑
s∈I

Pj0sP
(m0−1)
sr .

However, this last sum vanishes becausePj0s > 0 only if s ∈ Hr ∩ Hr ′ and then,

by the definition ofm0, P
(m0−1)
sr = 0. This is a contradiction and we are left with

the casem0 = 1. Hence,Pj0r > 0 or equivalently(U−1)j0r < 0, and thenr ∈ Hr ∩
Hr ′ . This is also a contradiction and the result is proved.�

Remark 1. We point out that in case there is a unique rootr, thenHr = I as is
proved in the last section using probabilistic arguments.

We pursue with the idea of the previous proof to get an algorithm for detecting all
the exiting roots in the context of a GU matrix, which is based on the block structure
of these matrices.

For convenience, whenever we need to select a pointi0 ∈ argmin{i ∈ I : Zi} we
take the smallest one.

Theorem 2. Let U be a nonsingular GU matrix.
(a) The set of exiting rootsR is given by the following algorithm. Initially we put

I0 = I,R−1 = ∅ andk = 0.

Stepk:



ik ∈ argmin{i ∈ Ik: ∑
j∈I Uij },

Hk = {j ∈ Ik: Ujik = Uikik },
Rk = Rk−1 ∪ {ik}, Ik+1 = Ik\Hk.

If Ik+1 = ∅, thenR = Rk and we stop. Otherwise, we continue with stepk + 1.
(b) Hr = Hk if r = ik, (Hr : r ∈ R) is a partition of I and everyHr is a 6T-

interval.
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Remark 2.
(a) For the inverse of a row DDM matrix, the algorithm provided in Theorem 2

does not work in general. Even though the family(Hr : r ∈ R) is disjoint (after
Theorem 1(b)), these sets do not necessarily coverI. In fact, consider a sub-
Markov kernelP with at least two different exiting rootsr1, r2 and an extra point
i /∈ R and verifyingPir1 > 0, Pir2 > 0. Then, by Theorem 1,i /∈ ⋃

r∈RHr .
(b) For GU matrices, even if the setsHr are intervals, they are not necessarily

elements ofT. For instance, takeI = {1, 2, 3} and consider the GU matrix

U =

γ δ ξ

χ χ ξ

χ χ γ


 ,

whereγ > χ > δ > ξ > 0. We haveT = {{1, 2, 3}, {1, 2}, {1}, {2}, {3}}, 6T is
the usual order inI, R = {1, 2} andH2 = {2, 3} /∈ T .

Let us introduce the following subsets (recallαi = βi for a leafi ∈ I ):

N+
i = {L ∈ T : L � i, αL = αi} and N−

i = {L ∈ T : L � i, βL = βi}.

SinceEa is increasing in(T ,�),N+
i is the set of constancy ofEa starting from the leaf

i (similarly for Eb andN−
i ). This means

L ∈ N−
i (respectivelyN+

i )

implies geod(i, L) ⊆ N−
i (respectivelyN+

i ).

In particular, if L ∈ N−
i (respectivelyN+

i ), L /= {i}, thenL− or L+ belongs to
N−

i (respectivelyN+
i ).

Sinceαi = βi > βL > αL, if αL = αi , thenαL = βL = βi = αi . Hence,∀i ∈
I : N+

i ⊆ N−
i .

Recall the notation of successorss(L) = {L′, L′′}. We construct the following sets
of (forbidden) nonoriented arcsC ⊆ T, Ct ⊆ T:

(L,L′) ∈ C ⇔ ∃i ∈ L′′ such that{[L′ = L− ⇒ L ∈ N+
i ] and[L′ = L+ ⇒ L ∈ N−

i ]} ,

(L,L′) ∈ Ct ⇔ ∃i ∈ L′′ such that (4){[L′ = L− ⇒ L ∈ N−
i ] and[L′ = L+ ⇒ L ∈ N+

i ]} .

Theorem 3. Let U be a nonsingular GU matrix, L ∈ T andi ∈ L. Theni ∈ RL ⇔
geod(i, L) ∩ C = ∅ andi ∈ Rt

L ⇔ geod(i, L) ∩ Ct = ∅.
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As a consequence of this theorem, we get the following characterization of the
conservation of exiting roots. ForL′ ∈ s(L)

RL′ ⊆ RL ⇔ (L,L′) /∈ C.

In the next result, we describe exactly the links ofP out of the diagonal. It is
established in terms of roots which we are able to recognize because of previous
theorems.

Theorem 4. Let U be a nonsingular GU matrix. Leti /= j ∈ I, L = i ∧ j, s(L) =
{L′, L′′}, with i ∈ L′ andj ∈ L′′. Then
(a) PL

ij > 0 ⇔ i ∈ RL′ andj ∈ Rt
L′′ ;

(b) Pij > 0 ⇔ PL
ij > 0 and one(and only one) of the following two conditions is

satisfied:
(b1) Uij = βi∧j > αi∧j ;
(b2) Uij = αi∧j and for everyM ≺ i ∧ j such thatαM = αi∧j it holds

[{i, j } ⊆ M− ⇒ (M,M−) 6∈ Ct] and [{i, j } ⊆ M+ ⇒ (M,M+) 6∈ C].

Part (a) is a consequence of Schur’s decomposition and follows directly from rela-
tion (3). The deeper part of Theorem 4 is (b) which characterizes when a connection
at some levelL pursues until the coarsest levelI.

Corollary 1. If Uii > sup{Uij , Uji : j /= i} for all i ∈ I, thenR = Rt = I and
Pij > 0 for every couplei /= j .

Proof. It is sufficient to notice that in this caseC andCt are empty. �

Example 1. Let γ < δ < ξ , I = {1, . . . , 6}. Consider the following matrixU =
(Uij : i, j ∈ I):

U =




δ γ γ γ γ γ

δ ξ γ γ γ γ

δ δ δ γ γ γ

δ δ δ ξ δ δ

δ δ δ δ δ δ

δ δ δ δ δ ξ




.

In Fig. 1, at the left-hand side, we display a dyadic tree supporting its GU struc-
ture,T being the set of arrows between the nodes of the tree. At the right-hand side,
we display the nonoriented graphT\C. In this example,αJ = γ, βJ = δ, αK =
δ, βK = δ, J− = L, J+ = {3}, 1 ∧ 3 = J , N−

1 = {1, L, J, I },N+
5 = {5,M,K}.

From Theorem 3 we haveR = {1},RK = {5}, 1 ∈ RJ−, 3 ∈ RJ+ . From Theorem
4(a), we getPJ

13 > 0. On the other hand,(I, J ) ∈ Ct becauseI ∈ N−
5 , 5 ∈ K. Since

Uij = αi∧j = αI , we deduce from Theorem 4(b2) thatP13 = 0.
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Fig. 1.

4. Proof of Theorems 2 and 3

In the sequel, we will denote byU•j the jth column ofU and byUi• its ith row.
This notation is also used forUL. We assume thatU is in NBF.

The following result follows from Theorem 3.6 in [8].

Lemma 1.
(a) αI µ̄ 6 1 andβI µ̄ 6 1.
(b) αI µ̄ = 1 iff ∃! j0 ∈ I such thatU•j0 = αI 1 andUj0• = αI 1t. Moreover, βI =

αI andµ = ν = α−1
I δj0 (where(δj0)i = 1 if i = j0 and= 0 otherwise).

(c) βI µ̄ = 1 impliesUnj = βI ∀j ∈ R.

The following lemma, whose proof is based on Schur’s decomposition, relates the
exiting roots of UJ ,UK,U , as well as their potential vectors, whereJ = I−,

K = I+.

Lemma 2. The quantityD := 1 − αIβI µ̄J µ̄K is strictly positive, and the potential
vectors are related by

µ =
[
aµJ

bµK

]
, ν =

[
cνJ

dνK

]
(5)

with

a = D−1(1 − αI µ̄K), b = D−1(1 − βI µ̄J ),

c = D−1(1 − βI µ̄K), d = D−1(1 − αI µ̄J ).
(6)

Moreover,

R = RJ ∪ RK iff
[
αI µ̄K < 1 andβI µ̄J < 1

]
,

(7)
R = RJ iff βI µ̄J = 1 andR = RK iff αI µ̄K = 1.
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An analogous statement holds for the exiting roots ofU t.

Proof. The equationsUµ = 1, U tν = 1 have unique solutions, and we shall prove
that these solutions are given by (5) and (6). The systems for the unknowna, b, c, d

are

a + αI µ̄K b = 1, c + βI µ̄K d = 1,

a βI µ̄J + b = 1, c αI µ̄J + d = 1.

The determinant of both equations isD. SinceβI µ̄J 6 1 andβI µ̄K 6 1, we get
that D = 0 impliesαI µ̄J = 1 andαI µ̄K = 1. Therefore,αI = βI and both matri-
cesUJ ,UK have a constant line equal toαI , which impliesU has two equal lines,
contradicting the nonsingularity ofU. Relation (7) follows directly. �

Lemma 3.
(a) αI µ̄ = 1 iff [αI µ̄J = 1 or αI µ̄K = 1]. In the first case, j0 ∈ J and in the second

one, j0 ∈ K (wherej0 is the index of Lemma1(b)).
(b) βI µ̄ = 1 iff

[
βI µ̄J = 1 or βI µ̄K = 1

]
. In the first case, Umj = βI ∀j ∈ RJ

(wherem = |J |) and in the second one, Unj = βI ∀j ∈ RK .

Proof. (a) Follows at once from Lemma 1.
(b) We only prove the equivalence because the rest follows from Lemma 1(c). We

have

βI µ̄ = βI (aµ̄J + bµ̄K) = βI

D
(µ̄J + µ̄K − (αI + βI )µ̄J µ̄K).

A simple computation gives

βI µ̄ 6 1 is equivalent to(1 − βI µ̄J )(1 − βI µ̄K) > 0,

with the equality being satisfied simultaneously on both sides. Then the equivalence
is shown. �

As mentioned before, the results already obtained, even if they are formulated for
I, the first level of the tree, can be applied for every nodeL ∈ T .

Lemma 4.
(a) αLµ̄L = 1 if and only ifL ∈ N+

i for some leafi ∈ L. In this case, βL = αL =
αi = βi .

(b) βLµ̄L = 1 if and only ifL ∈ N−
i for some leafi ∈ L. In this case, βL = βi .

Proof. For part (a), we must show that there exists a leafi ∈ L such thatαi = αL.
From Lemma 1(b),αLµ̄L = 1 iff there exists a columni ∈ L such that(UL)•i =
αL1L andUii = αi = αL. Reciprocally, assume thatαi = αL for i ∈ L. SinceUii =
αi = αL, we conclude the result. The equalityβL = αL = αi follows from Lemma
1(b).
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We now turn to the proof of (b). IfL is a leaf, the result follows at once. Oth-
erwise, we must show that there exists a leafi ∈ L such thatβL = βi . We deduce
from Lemma 3 that for someL′ ∈ s(L), we must haveβLµ̄L′ = 1. SinceβL′ > βL

andβL′µ̄L′ 6 1, we deduceβL′ = βL. By recurrence we show that the condition
is necessary. The condition is also sufficient becauseβL = βi for some leafi ∈ L

implies βM = βL ∀M ∈ geod(i, L). Then, by Lemma 3 and recurrence, it follows
thatβMµ̄M = 1 ∀M ∈ geod(i, L). �

Proof of Theorem 2. We reason by induction onn. Notice that ifUi∗i∗ = αI for
somei∗ ∈ I , which is necessarily unique, then in the algorithmi0 = i∗, I0 = I , I1 =
∅. HenceR = {i0}, and the result is shown in this case. Therefore, in the sequel, we
can assumeUii > αI for everyi ∈ I .

(a) We prove that the algorithm supplies the exiting roots ofU.
(a1) First consider the caseUii > βI for all i ∈ J . For every stepk in the algo-

rithm, we have

[ik ∈ J ⇒ Hk ⊂ J ] and [ik ∈ K ⇒ Hk ⊂ K]. (8)

In fact, if ik ∈ J andj ∈ K, we haveUjik = βI < Uikik , and if ik ∈ K andj ∈ J ,
we getUjik = αI < Uikik .

According to Lemmas 2 and 4(b)R = RJ ∪ RK . We can assume, by an inductive
argument, that our algorithm works for matricesUJ andUK : RJ = {iJ0 , . . . , iJp } and

RK = {iK0 , . . . , iKq }. We denote byHJ
k , Jk,H

K
k ,Kk the corresponding sets obtained

when applying the algorithm toUJ andUK .
Denote byk0, . . . , kl the steps at which the algorithm applied to the matrixU gives

nodesik0, . . . , ikl in J. We now prove thatl = p and(ik0, . . . , ikp ) = (iJ0 , . . . , iJp ).
Using (8) we getJ ⊆ Ik0. Since

∑
`∈J (UJ )i` + αI |K| = ∑

`∈I Ui` for everyi ∈ J ,
we obtain thatiJ0 = ik0, so HJ

0 = Hk0, J1 = Ik0+1 ∩ J, Ik0+1 ∩ K = Ik0 ∩ K. An-
other inductive argument shows the desired relationl = p and (ik0, . . . , ikp ) =
(iJ0 , . . . , iJp ). We can argue similarly for matrixUK , and hence,R = RJ ∪ RK .

(a2) We are left with the caseUi∗i∗ = βI for somei∗ ∈ J (notice that from the
GU property this is the complementary of the above case). From Lemmas 2 and 4(b),
R = RJ . Then we must show that our algorithm supplies this result. Notice that in
this caseαI < βI . Then

for everyj ∈ K we have
∑
`∈I

Ui∗` 6 βI |J | + αI |K| <
∑
`∈I

Uj`.

Since(Hk) is clearly a partition ofI, there exists a stepm such thati∗ ∈ Hm. We
assume thati∗ is optimal in the sense thatUi∗i∗ = βI andm is the smallest possi-
ble value. We necessarily havei0, . . . , im ∈ J , Hk ∩ K = ∅ for everyk < m, and
Ui∗im = Uimim . Now

βI = Ui∗i∗ > Ui∗im = Uimim > βI .
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ThenUimim = βI = Ujim for everyj ∈ K. We deduceHm = HJ
m ∪ K, and hence

the algorithm supplies the equalityR = RJ .
(b) Notice thatHk ⊆ Hr for r = ik. Since(Hk) coversI, so does(Hr ). Theorem

1 ensures that(Hr ) is a disjoint family proving that it is a partition. We also deduce
thatHk = Hr for r = ik.

Let us prove that for everyr ∈ R, Hr is an interval. Observe thati 6T j 6T k

implies

Uik 6 Ujk 6 Ukk and Uii > Uij > Uik.

Let i ∈ Hr . If i 6T j 6T r, thenUrr = Uir 6 Ujr 6 Urr and we concludej ∈
Hr . Analogously ifr 6T j 6T k. �

Proof of Theorem 3.We only prove the part concerningRL, the other one is entirely
analogous. LetM ∈ s(L). From Lemmas 3 and 4, the set of linksC given in (4) can
be described as follows:

(L,M) ∈ C iff [M = L−, αLµ̄L+ = 1 orM = L+, βLµ̄L− = 1]. (9)

For i ∈ L, denote geod(i, L) = (L0 = {i}, L1, . . . , L` = L). From (7) we havei ∈
RL if and only if i ∈ RLk for everyk = 0, . . . , `. The result is proved by recurrence
on` with the help of (9) and (7). �

We pursue with the study ofC in order to give a graphical description ofHr for
r ∈ R.

Lemma 5. Let s(L) = {L′, L′′}. Then(L,L′) ∈ C iff there exists a uniquei ∈ RL′′
such that

[L′ = L− ⇒ L ∈ N+
i ] and [L′ = L+ ⇒ L ∈ N−

i ] . (10)

Proof. If L′ = L−, then from Lemma 1(b) and (9) there exists a uniquei ∈ RL′′
satisfying (10). Hence, in the rest of the proof we assumeL′ = L+. We first prove
the existence.

By definition,(L,L′) ∈ C if there existsk ∈ L′′ satisfying (10). By an inductive
argument it suffices to show that if̀∈ RM ′ for someM ′ � L′′ but ` 6∈ RM for
M = p(M ′), then there existsj ∈ M ′′ satisfying (10). In fact, ifM ′ = M+, sincè ∈
RM ′ \ RM , then necessarily existsj ∈ M− such thatβM = βj . HenceβM = βj =
βL andL ∈ N−

j . If M ′ = M−, then there existsj ∈ M+ such thatαM = αj = βj .

SoβL = βM = αM = βj andL ∈ N−
j .

Let us show the uniqueness. Consideri, j ∈ RL′′ to be two different elements
satisfying (10). LetM = i ∧ j , which satisfiesM � L′′. Given thatL′ = L+, we
haveβL = βM = βi = βj , and no element ofRM+ belongs toRM . Sincei ∈ RM+
or j ∈ RM+ , one of the two elements does not belong toRM , contradictingRL′′ ∩
M ⊆ RM . �
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We putj @ i if i ∈ RL′′ , j ∈ RL′ and (10) is satisfied byL′ andi (i eliminatesj
from the set of exiting roots). Denote bỹ@ the transitive and reflexive closure of@.
Observe thatr ∈ R, if and only if r is @̃-maximal, i.e. [r @̃ j ⇒ r = j ].

Proposition 1. For r ∈ R, we haveHr = {j ∈ I : j @̃ r}.

Proof. Let j @ i andL = i ∧ j . If j ∈ L−, thenUij = αi∧j = αL = αi = Uii and,
if j ∈ L+, thenUij = βi∧j = βL = βi = Uii . In particular, ifj @ r, thenj ∈ Hr .
If k @̃ j @ r, we havej ∧ r = k ∧ r, thenUkr = Ujr = Urr , from whichk ∈ Hr .
Therefore,{j ∈ I : j @̃ r} ⊆ Hr . Now, if k @̃ r is not satisfied andr ∈ R, we can
directly show thatUkr /= Urr . Also this can be proved by the fact that(Hr : r ∈ R)

and({j ∈ I : j @̃ r}: r ∈ R) are both partitions ofI (the last one by construction, the
first one from Theorem 2) and{j ∈ I : j @̃ r} ⊆ Hr . �

5. Proof of Theorem 4

From (3), every(i, j) ∈ J × K ∪ K × J satisfies

(U−1)ij < 0 if and only if (i, j) ∈ RJ × Rt
K ∪ RK × Rt

J .

Then Theorem 4(a) follows.
Previously to show Theorem 4(b) it will be useful to supply some elementary

properties. ConsiderU(γ ) = U − γ 11t. Observe thatαI µ̄ < 1 is equivalent toαI <

min{Uii : i ∈ I }. Under this condition, for allγ ∈ [0, αI ] we get

U(γ )−1 = U−1 + γ

1 − γ µ̄
µνt. (11)

By direct computations, we find that the potential vectors ofU(γ ) andU(γ )t satisfy

µU(γ ) = 1

1 − γ µ̄
µ, νU(γ ) = 1

1 − γ µ̄
ν. (12)

For our analysis we will need the following key lemma.

Lemma 6. Letγ ∈ [0, αI ] andγ < min{Uii : i ∈ I }. Then, for i /= j :

Uij > γ ⇒ [(U−1)ij < 0 ⇔ (U(γ )−1)ij < 0], (13)

Uij = γ ⇒ (U(γ )−1)ij = 0. (14)

Proof. From hypothesis, the GU matrixU(γ ) is nonsingular because its diagonal is
strictly positive and no two rows are equal. Denote byP(γ ) a sub-Markovian matrix
such thatU(γ ) = η−1 ∑

m>0 P(γ )m for someη > 0. Fori /= j we have(P (γ ))ij =
0 if and only if (U(γ )−1)ij = 0. Since(U(γ ))ij = 0 implies(P (γ ))ij = 0, relation
(14) is satisfied.
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Let us prove (13). Assumei /= j, Uij > γ . From (11) and sinceγ > 0, we get
that (U(γ )−1)ij < 0 implies(U−1)ij < 0. We now prove the reciprocal. Thus, we
assume(U−1)ij < 0, and split the proof into two cases.

Caseγ < αI . If (U(γ )−1)ij = 0, we arrive at a contradiction because(U(γ )−1)ij
is increasing in the set{γ 6 αI }. Then we are able to find someγ ′ < αI such that
(U(γ ′)−1)ij > 0 which contradicts thatU(γ ′)−1 has nonpositive off-diagonal ele-
ments.

Caseγ = αI . By hypothesisαI µ̄ < 1. ThenαI µ̄J < 1 andαI µ̄K < 1. Hence,

U(αI ) =
[

UJ (αI ) 0
(βI − αI )1K1t

J UK(αI )

]
and

U(αI )
−1 =

[
UJ (αI )

−1 0
Ê UK(αI )

−1

]
.

In the case(i, j) ∈ J × J , we get(U(αI )
−1)ij = (UJ (αI )

−1)ij . From (3),(U−1
J )ij 6

(U−1)ij < 0 and we obtain the result by induction on the dimension of the matrix.
The argument when(i, j) ∈ K × K is similar. Therefore, we can assumei ∈ K,
j ∈ J . Since(U(αI ))ij > 0, we haveβI > αI . From (3), we obtainÊ = −(βI −
αI )µK(αI )ν

t
J (αI )

, whereµK(αI ) and νJ (αI ) are, respectively, the potentials of ma-
tricesUK(αI ) andUJ (αI )

t. To finish the proof we must show the equivalence of
Eij < 0 ⇔ Êij < 0. SinceE = −(βI /D)µKνt

J , we conclude the result from (12)
because

µK(αI ) = 1

1 − αI µ̄K

µK, νJ (αI ) = 1

1 − αI µ̄J

νJ . �

Lemma 7. For i /= j in J we have

αI µ̄J = 1 ⇒ (U−1)ij = (U−1
J )ij , (15)

(U−1)ij = 0 ⇔ (U−1
J )ij = 0 or [Uij = αI andβI µ̄K = 1]. (16)

Proof. From (3) we have

(U−1)J = U−1
J + γ

1 − γ µ̄J
µJ νt

J = UJ (γ )−1

with γ = αIβI µ̄K 6 αI 6 min{(UJ )ij : i, j ∈ J }.
Assume thatαI µ̄J = 1. Then, we obtainαI = βI and µJ = νJ = α−1

I δj0 for
somej0 ∈ J , from which (15) follows.

We now turn to the proof of equivalence (16). From(U−1
J )ij 6 (U−1)ij 6 0 we

get (U−1
J )ij = 0 ⇒ (U−1)ij = 0. Thus, for the rest of the proof we may assume

(U−1
J )ij < 0 and we must show the following equivalence:

(U−1)ij = 0 ⇔ [Uij = αI andβI µ̄K = 1].
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Consider first the caseαI µ̄J = 1. Hence, from (15)(U−1)ij = (U−1
J )ij < 0. Since

D = 1 − αI µ̄J βI µ̄K > 0, one obtainsβI µ̄K < 1, proving in this case the equiva-
lence.

Finally, we assume thatαI µ̄J < 1. Sinceγ 6 αI < min{(UJ )ii : i ∈ J }, we can
apply Lemma 6 to the matrixUJ . If (UJ )ij = Uij = αI andβI µ̄K = 1, we are in the
case(UJ )ij = γ . Hence(U−1)ij = (UJ (γ )−1)ij = 0. On the contrary, ifUij > αI

or βI µ̄K < 1, we are in the case(UJ )ij > γ , which implies(UJ (γ )−1)ij < 0 ⇔
(U−1

J )ij < 0, from which the result follows. �
We now furnish the proof of Theorem 4(b). Since (b1) and (b2) cannot be sat-

isfied simultaneously and clearlyPij > 0 ⇒ PL
ij > 0 , we are reduced to prove the

equivalent statement: underPL
ij > 0, the equivalencePij > 0 ⇔ (b1) or (b2), holds.

Relation (16) in Lemma 7 shows that under condition (b1) one getsPij > 0. Assume
now that (b1) is not satisfied, that isUij = αL, and considerM ≺ L such thatαM =
αL. Denotes(M) = {M ′,M ′′} with {i, j } ⊆ M ′. From Lemma 7, we get thatPM

ij >

0 ⇔ [PM ′
ij > 0 andβMµM ′′ < 1]. Using Lemma 2,βMµM ′′ < 1 is equivalent to

[M ′ = M− ⇒ Rt
M ′ ⊆ Rt

M ] and [M ′ = M+ ⇒ RM ′ ⊆ RM ].
From Theorem 3, we get this statement is equivalent to

[M ′ = M− ⇒ (M,M−) /∈ Ct] and [M ′ = M+ ⇒ (M,M+) /∈ C],
proving the result by an inductive argument.�

6. Combinatoric aspects of nested block form matrices

The purpose of this section is to describe some combinatorial aspects of the NBF
matrices introduced in Definition 2.8 in [8] and Theorems 3.2 and 3.3 in [11]. In
Section 3, we have shown that a GU matrix can be put in NBF after a suitable per-
mutation. In Theorem 5(a) below, we will describe the set of permutations preserving
the NBF structure of a matrix. We provide a criterion in terms of the tree supporting
the matrix, or equivalently in terms of the associated sequence of partitions.

The elements of a partitionω of I = {1, . . . , n} are called atoms; they are dis-
joint, nonempty and coverI. We denote byω = {I } the trivial partition and bȳω =
{{i}: i ∈ I } the discrete one. We sayω′ partitions dyadicallyω, we putω ≺d ω′, if
every atom ofω which is not a singleton is partitioned into two atoms inω′. We
call F = (ω0 ≺d · · · ≺d ωr) a dyadic filtration (of partitions) ofI, and if ω0 = ω

andωr = ω̄, F is said to be atotal dyadic filtration. We associate to the dyadic tree
(T ,T) the total dyadic filtrationF = (ω0 ≺d · · · ≺d ωr), whereωk+1 is formed
from ωk by partitioning all the atomsL in ωk which are not singletons, intoL− and
L+ in ωk+1. Reciprocally, associated to a total dyadic filtrationF we construct the
following dyadic tree(T ,T) (below⊂ means strict inclusion):



16 C. Dellacherie et al. / Linear Algebra and its Applications 318 (2000) 1–21

T =
r⋃

k=0

⋃
L∈ωk

{L} and T = {(L, J ): L ∈ ωk, J ∈ ωk+1, J ⊂ L},

and with tree root equal toI. In the definition below, we assume thatI is endowed
with the standard order.

Definition 2. The nonnegative matrixU = (Uij : i, j ∈ I) is in NBF if the vec-
tors Ea, Eb ∈ Rn−1 defined byai = Ui,i+1, bi = Ui+1,i i = 1, . . . , n − 1, satisfy the
following conditions:
(a) ai 6 bi i = 1, . . . , n − 1;
(b) Uii > max{bi−1, bi}, where for convenienceb0 = 0, bn = Unn;
(c) Uij = min{ai, . . . , aj−1} if i < j, Uij = min{bj , . . . , bi−1} if i > j ;
(d) The following algorithm starting from the trivial partitionω0 = ω at stepk = 0

stops at the discrete partition̄ω:
Step k: For eachL ∈ ωk which is not a singleton, findi0 := i(L) ∈ L̃ := L \

{max{i: i ∈ L}} such thatai0 = min{aj : j ∈ L̃} andbi0 = min{bj : j ∈ L̃}. PutL− =
{i ∈ L: i 6 i0} and L+ = {i ∈ L: i > i0}, and defineωk+1 = {L−, L+: L ∈ ωk

is not asingleton} ∪ {L ∈ ωk: L is a singleton}.

The total dyadic filtrationF = (ω0 ≺d · · · ≺d ωr) constructed by the algorithm
is said to beassociatedto the NBF.

We point out that in Definition 2.8 in [8], the NBF matrices are defined by induc-
tion on the dimension of the matrix. It is easy to show that this definition is equivalent
to ours. Observe that, up to permutation, an ultrametric matrix is an NBF matrix
with ai = bi (see [4]). Furthermore, if we also impose thata1 < · · · < an−1 < an

andUii = ai, i = 1, . . . , n, one obtains the type-D matrices considered in [7].

Remark 3.
(a) An NBF matrix is a GU matrix. The tree(T ,T) associated to the total dyadic

filtrationF supports the GU matrix. We notice that all the atoms in this filtration
are intervals inI, or equivalently, all nodesL ∈ T are intervals inI. Moreover,
αL = ai(L), βL = bi(L).

(b) From Definition 2(c), one getsUij = ai(L) for (i, j) ∈ L− × L+ and Uij =
bi(L) for (i, j) ∈ L+ × L−.

(c) If U is in NBF, the filtrationF is not necessarily unique. In fact, at some stepk
there could exist severali(L) satisfying the condition, but it can be shown (by
induction onn) that the algorithm stops atω̄ independently on the choice ofi(L).
We describe all the filtrations associated to an NBF in Theorem 5(b).

To describe the permutations preserving the NBF of a matrixU, we use its GU
property and the tree(T ,T) supporting it. Recall the total order6T introduced in
(2) also orders the disjoint6T-intervals.
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Fig. 2.

TakeL ∈ T . We will fix a partitionωL of L (formed by elements ofT). If L is a
leaf, we putωL = {L}. WhenL is not a leaf, we define

J ∈ ωL ⇔ J � L, (αp(J ), βp(J )) = (αL, βL) and

[J is a leaf or(αJ , βJ ) /= (αL, βL)].

Observe that the setT L = {J � L: (αJ , βJ ) = (αL, βL)} ∪ ωL is a dyadic tree,
when endowed with the relation inherited from(T ,T). The treeT L has the tree
rootL and set of leavesωL. We denote byFL the filtration associated toT L.

A total dyadic filtrationF̃
L = (ω̃0 ≺d · · · ≺d ω̃r ) of L is said to beωL-compat-

ible if ω̃0 = {L}, ω̃r = ωL and the atoms of everỹωk are the union of consecutive
atoms ofωL (consecutive with respect to the order6T in intervals, in particular,
they are6T-intervals). By definition,FL is ωL-compatible.

A permutationϕL : L → L is said to be aωL-interval exchangeif for everyJ ∈
ωL, ϕL(J ) is a 6T-interval of L andϕL : J → ϕL(J ) is increasing with respect
to 6T, i.e. ϕL(i) 6T ϕL(j) if i 6T j, i, j ∈ J . We will also denote byϕL the
extension of this permutation toI, where we putϕL(i) = i if i 6∈ L.

In Fig. 2 we displayFI for Example 1, as well as ãF
I

filtration which isωI -
compatible. Observe thatωI = {{1}, {2}, {3},K}.

Theorem 5. Let I = {1, . . . , n} and the matrix U be in NBF. Then:
(a) ϕ : I → I is a permutation such thatUϕ := (Uϕ−1(i)ϕ−1(j): i, j ∈ I) is in NBF

if and only ifϕ is a composition of permutationsϕL, whereϕL is aωL-interval
exchange and L satisfiesαL = βL.

(b) Let F be a fixed total dyadic filtration associated to the NBF. Then, the class
of total dyadic filtrations associated to the NBF is constructed by making all

possible replacements ofFL byωL-compatible filtrations̃F
L

of L for L ∈ T .
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The proof is direct. Notice that in statements (a) and (b) of the theorem it suffices
to restrict our attention toL = I and thoseL satisfying(αp(L), βp(L)) /= (αL, βL),
because they generate dyadic maximal subtreesT L.

For instance, in Example 1, the set of permutations which preserve the NBF are
those which fix the points{1, 2, 3}.

7. Probabilistic insight and general results for potential matrices

Let U be a nonsingular matrix withU−1 a row DDM matrix. Letη > η(U) and
consider the sub-Markov kernelP = I − η−1U−1. The properties of matrixU, from
a probabilistic point of view, come from the fact thatU is proportional to the potential
of P given byV := (I − P)−1. By adding an absorbing stateo 6∈ I , we can construct
a Markov chain(Xm) with kernelP̃ satisfyingP̃ |I×I = P . We refer to [1] for gener-
al considerations on Markov chains. Denote byPi the law of the chain starting from
i and byEi the associated mean expected value operator. From the definition ofV, we
get thatVij = Ei

(∑
m>0 1{Xm=j}

)
is the expected number of visits toj starting from

i. From the strong Markov property, one obtainsVij = Pi{T{j} < ∞}Vjj , where in
generalTJ is the hitting time of a setJ ⊆ I , that is the first (random) time that the
chain visitsJ.

Thus, the ratioVij /Vjj = Uij /Ujj represents the probability that the chain start-
ing from i ever visitsj. This probability is one if and only if every path starting fromi
visits j before absorption, from which one deduces, for example, Theorem 3.2 in [8].
Moreover, in this general framework, for every exiting rootr we can characterize the
setHr = {j ∈ I : Ujr = Urr } as follows:

j ∈ Hr ⇔ Pj {T{r} < ∞} = 1.

Hence, if there is only one rootr, then the right-hand side of the above equivalence
is true for allj ∈ I and therefore,Hr = I .

If I − P is a strictly row DDM matrix (all the row sums are strictly positive), then
every vertexi ∈ I is an exiting root and therefore,Pi{T{j} < ∞} < 1. This implies
the necessary condition stated in [6]:

Vjj > max{Vij : i ∈ I \ {j }}.
Also, the implicationUij = 0 ⇒ (U−1)ij = 0 for i /= j (see the additional

property in Theorem 3.6 in [11]) has a simple meaning because it is equivalent to
Pi{T{j} < ∞} = 0 ⇒ Pij = 0, which is trivial.

The termsη
∑

j∈I Uij involved in the determination of exiting roots can be de-
scribed in probabilistic terms. In fact if the chain starts fromI, the time of absorption
is To := inf{m: Xm = o} = ∑

m>0 1{Xm∈I }. Then fori ∈ I

Ei (To) =
∑
m>0

∑
j∈I

P
(m)
ij = η

∑
j∈I

Uij .
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Intuitively, the site minimizing this quantity should be an exiting root, as it was
proven in Theorem 1.

In the next result, we get an extra property on the structure of the sets{Hr : r ∈ R}
by using probabilistic tools.

Proposition 2. Let U be the inverse of a row DDM matrix. Letr ∈ R, j ∈ Hr , k /∈
Hr . Then

Pj {T{k} < T{r}} = 0 and Ujk = Urk.

Proof. Sincek /∈ Hr and j ∈ Hr , we havePk{T{r} = ∞} > 0 andPj {T{r} <

∞} = 1. Hence, the following inequality

0 = Pj {T{r} = ∞} > Pj {T{k} < T{r}}Pk{T{r} = ∞}
impliesPj {T{k} < T{r}} = 0.

The second relation follows by the strong Markov property, conditioning on the
first visit from j to r or k. In fact,

Ujk = Pj {T{k} < T{r}}Ukk + Pj {T{r} < T{k}}Urk = Urk,

where the last equality follows from the above discussion.�

Schur’s decomposition has also a probabilistic meaning. Assume thatJ ⊆ I , and
we would like to study the Markov chain(Ym) induced onJ, whose transition matrix
Q is given by

Qij := Pi{TJ < ∞, XTJ = j }
= Pij + Pi{1 < TJ < ∞, XTJ = j } for i, j ∈ J.

Since the potential of this new chain inJ is the same as for the initial chain, as the
expected number of visits is the same, we obtain thatI − Q = (VJ×J )−1, but from
Schur’s decomposition

(VJ×J )−1 = (I − P)J×J − (I − P)J×K((I − P)K×K)−1(I − P)K×J .

In particular,i ∈ J is an exiting root forQ (or equivalently for the chain(Ym)) if and
only if i is an exiting root forP or if there is a path fromi to the absorbing stateo
passing only throughK. This statement is what appears in Lemma 3.1(ii) in [8]. We
point out that our results in Lemmas 6 and 7 are a sort of reciprocal of the formula
stated in the proof of Lemma 3.1(iii) in [8].

So far we have discussed how row DDM matrices arise in probability theory. In
the sequel, we shall assume thatU is the inverse of a nonsingular M-matrixaI − P ,
that is we assume thata is strictly larger thanρ := ρ(P ), the spectral radius of
the nonnegative matrixP. In generalP is not sub-Markovian except in the row DD
case. Nevertheless,U has a probabilistic interpretation as anh-transform of a suitable
potential. In order to explain the main ideas here, we assume thatP is irreducible.



20 C. Dellacherie et al. / Linear Algebra and its Applications 318 (2000) 1–21

Therefore, by the Perron–Frobenious theorem there exists a unique strictly positive
right eigenvectorh: Ph = ρh. Consider the Markov kernelRgiven by

Rij = ρ−1hj

hi

Pij .

A direct computation shows that

P
(n)
ij = ρn hi

hj

R
(n)
ij for n > 0.

Therefore, we get

Uij = a−1
∞∑

n=0

a−nP
(n)
ij = a−1 hi

hj

∞∑
n=0

(ρ

a

)n

R
(n)
ij .

DefineW the potential

W =
∞∑

n=0

(ρ

a

)n

Rn,

associated to the sub-Markovian kernelρ/a R. Then, we have

Uij = a−1 hi

hj

Wij ,

andU is anh-transform ofW. This result allows us to give a probabilistic insight into
Theorem 3.9 in [8]. We use definitions and notations introduced therein. The condi-
tion “j does not have access tok in Gi(P )” is the same as “j does not have access tok
in Gi(R)” because the connections are the same underP or R. In probabilistic terms,
this condition is stated asPj {T{k} < T{i}} = 0, whereP is the law of the underline
chain defined by the kernelρ/a R (adding of course an absorbing state). Under this
hypothesis, the strong Markov property implies

Wjk =Pj {T{k} < ∞}Wkk = Pj {T{i} < T{k} < ∞}Wkk

=Pj {T{i} < ∞}Pi{T{k} < ∞}Wkk = WjiWik/Wii . (17)

Using the relation betweenU andW, one gets the same formula forU. This proves
the first part of Theorem 3.9 in [8]. The second part of this theorem follows in a
similar way, by noticing that the second equality in (17) becomes a strict inequality
>, whenever “j has access tok in Gi(P )”.

7.1. Final comment

For U, the inverse of a row DDM matrix, we provide an estimation ofη(U) =
max{(U−1)ii : i ∈ I } in terms ofU. Considerε(U) := min{Uii − max{Uji : j /= i}:
i ∈ I }. Thenη(U) 6 ε(U)−1. In fact, from the row DDM property we get

(U−1)iiUii =1 −
∑
j /=i

(U−1)ijUji 6 1 − (Uii − ε(U))
∑
j /=i

(U−1)ij
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61 + (Uii − ε(U))(U−1)ii ,

from which(U−1)ii 6 ε(U)−1 and the claim follows.
Notice thatε(U) > 1 impliesη(U) 6 1, and thenP = I − U−1 is a sub-Marko-

vian kernel. If in addition,U is a GU matrix, we get thatI − U−1 is a double sub-
Markovian kernel and this is also the case for all the levelsL in the tree, because
η(UL) 6 η(U) (see (3)).
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