
JsL __ 
6B g$ 

JOURNAL OF 
COMPUTATIONAL AND 
APPLIED MATHEMATICS 

ELSEVIER Journal of Computational and Applied Mathematics 53 (1994) 225-241 

Moments of Dirichlet splines and their applications 
to hypergeometric functions 

Edward Neuman a,*, Patrick J. Van Fleet b,l 

a Department of Mathematics, Southern Illinois Unioersity at Carbondale, Carbondale, IL 62901-4408, United States 
b Department of Mathematics, Vanderbilt Uniuersity, Nashville, TN 37240, United States 

Received 2 July 1992; revised 27 November 1992 

Abstract 

Dirichlet averages of multivariate functions are employed for a derivation of basic recurrence formulas for the 

moments of multivariate Dirichlet splines. An algorithm for computing the moments of multivariate simplex splines 
is presented. Applications to hypergeometric functions of several variables are discussed. 
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1. Introduction 

In [6], Curry and Schoenberg have pointed out that univariate B-splines can be constructed 
from volumes of slices of convex polyhedra. An extension of this idea to the case of multivariate 
splines is due to de Boor [ll]. Since the geometric construction is too complicated to be used in 
numerical computations, some basic recurrence formulas for these functions have been found 
(see [5,7,8,13,14,17-19,22,23]). Multivariate B-splines (also called simplex splines) have been 
studied extensively over the past thirteen years by many researchers. These functions have been 
found useful for some applications of data fitting, computer aided geometric design and 
mathematical statistics. In [29] the author addressed some new problems where the simplex 
splines could play a prominent role. 
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Further generalizations of multivariate simplex splines appear in [10,19]. Here and thereafter 
we call these functions Dirichlet splines. Our choice of terminology is motivated by the fact that 
the distributional definition of the Dirichlet splines (see (2.2)) involves the Dirichlet density 
function. It has been demonstrated that this class of splines is well designed for some problems 
of mathematical statistics (see [10,19] and references therein). Applications to the theory of 
multivariate convex functions are reported in [26,28]. 

Recently we have noticed that there is a simple relationship between univariate Dirichlet 
splines and some special functions such as R-hypergeometric functions and confluent hyperge- 
ometric functions (see [27]). In this paper, we present some results for multivariate Dirichlet 
splines together with their applications to special functions of several variables. 

The outline of this paper is as follows. In Section 2 we introduce notation and definitions 
which will be used throughout the sequel. In Section 3 we give a definition and basic properties 
of a Dirichlet average of a multivariate function. Also, we give a recurrence relation for these 
averages. In Section 4 we give two results which play a crucial role in our subsequent 
considerations. Moments of the class of splines under discussion together with two moment 
generating functions are presented in Section 5. Therein, we also give an algorithm for 
computing the moments of multivariate simplex splines. Applications to hypergeometric func- 
tions, including Appell’s F4 and Lauricella’s FB, are discussed in Section 6. In the same section, 
we give a recurrence formula, two generating functions and an inequality for Lauricella 
polynomials. 

2. Notation and definitions 

Let us introduce some notation and definitions which will be used throughout the sequel. By 
x, Y, * * * we denote elements of Euclidean space [w”; s > 1, i.e., x = (x1,. . . , x,>. Superscripts are 
used to number vectors. The inner product (or dot product) of x, y E KY” is denoted by 
x ‘Y = C~=rX/&. For a given set XC [w” the symbols [Xl and vol,(X) mean the convex hull of 
X and the s-dimensional Lebesgue measure, respectively. We use standard multi-index nota- 
tion, i.e., for /3 E Z$, I p I = PI + * - * +/3,, p! = PI! * * * p,!, a <p means (Y~ < pr,. . . , a, <p,, 
ffE.zS,,x~=X~~Xp* xc. For r E Z, and p E Z: with 1 p I = r, the multinomial coefficient 
(b) is defined in the usual way: 

BY 

En= t=(tl,...,tn)~Rn: tj~O,forallj, ktjG1 
i 

7 

j=l I 

we denote the standard n-simplex. Let [w , represent the set of all positive real numbers and let 
b = (b,, . . . , b,) E R;+‘. The Dirichlet density function on En, denoted by c&,, is given by 

(2.1) 

where t E E,, t, = 1 - t, - . . . -t, and c = 6, + . . . + b,. 
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For X={X~,...,P}CR~, it > s 2 1, with vol,([ X]) > 0, the multivariate Dirichlet spline 
M(. ( b; X) is defined by requiring that 

(2.2) 

holds for all f~ C,(R”), the space of all multivariate continuous functions on R” with compact 
support (see [10,19]>. Here dx = dx,. . .dx,, dt = dt,. . .dt,, Xt = Cr,otixi. When b, = . * * = 

b, = 1, 4b( t) = n!, and the corresponding spline becomes a simplex spline. The latter spline will 
be denoted by M( * ) X). When s = 1, we will write m(. ( b; Z> instead of M(. I b; X>, where 
z = {z,, . . . ) zn} c R. In this case (2.2) becomes 

/h(u)m(u I b; Z) du = / h(Zt)&(t) dt, h E C,(R). (2.3) 
R En 

3. Dirichlet averages 

The purpose of this section is two-fold. We give a definition of Dirichlet averages of 
multivariate functions. Next we prove a recurrence formula for these averages. This result has 
an immediate application in Section 5. For the reader’s convenience, let us recall a definition of 
the Dirichlet average of a univariate function h E C,(R). Assume that the set Z = (zo, . . . , zn) C 

R is such that min{zj: 0 <j G n} < max{zj: 0 <j < n). For b E KY;+‘, the Dirichlet average of h, 
denoted by H(b; Z), is given by 

H(b; Z) = / h(Zt)c#+,(t) dt 
En 

(34 

(see [3]). Comparison with (2.3) yields 

H(b; Z) = j-h(u)m(u 1 b; Z) du. (3.2) 

We list below soie elementary properties of H(b; Z). 
(i) A vanishing parameter bi can be omitted along with the corresponding variable zi (see [3, 

(6.3-3)]). 
(ii) Mb,, . . . , b,; to,. . . , z,) is symmetric in indices 0, 1,. . . , n (see [3, Theorem 5.2-31). 

(iii) Equal variables can be replaced by a single variable if the corresponding parameters are 
replaced by their sum (see [3, Theorem, 5.2-41). 

We now introduce the Dirichlet average of f E C,(R’). For XC R" with vol,([X]) > 0 and 
b E iI??;+‘, n & s 2 1, the Dirichlet average of f, denoted by F(b; X), is given by 

F(b; X) =/ f(Xt)&(t) dt, (3.3) 
E?l 

where Xt and $J~ have the same meaning as in Section 2. Comparison with (2.2) shows that 

F(b; X) =/ f(x)M(x(b; X) dx. 
R” 

(3.4) 
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It is clear that the properties @-(iii> are also valid for the average Y. In particular, property 
(iii), when applied to M(* I b; X), yields 

provided 
(3.5) is a 
this class 

lb; X)=M(*l~“,.I.‘XU_ )...) ,x” ,.:., x$ (3.5) 
b, times b, times 

the b’s are positive integers (see also [10,19]). The spline on the right-hand side of 
multivariate simplex spline with coalescent knots (see [14] for a detailed analysis of 
of splines). 

Before we state and prove the first result of this section, let us introduce more notation. By 
ej, 0 <j G II, we denote the jth coordinate vector in lFY+l. 
as follows: 

For f~ C$LY> define a function fj 

fjCx> =Dxj-,f(x). (3.6) 

Here 0, f denotes the directional derivative of f in the direction y E R”, i.e., 

D,f(x) = i Y&f(x). 
k=l k 

We are now ready to prove the following. 

Theorem 3.1 (Carlson [4]). Let X= {x0,. . . , x”} c R”, II a s a 1, be such that vol,([X]) > 0. 
Further, let f E C,$R’) and let the vector b E II??;+ ’ be such that bi 2 1 for some 0 < j < n. Then 
the identity 

(c - l)F(b; X) = (c - l)F(b - ej; X) +T(b; X) 

is valid. Here 5 denotes the Dirichlet average of the function fj. 

(3.7) 

Remark. The proof presented below bears no resemblance to what was done in [4, Theorem 31. 
In this paper, the author has established (3.7) using generalized Euler-Poisson partial differen- 
tial equations. 

Proof. In order to establish the identity (3.71, we employ the following one: 

(c - l)H(b; Z) = (c - l)H(b - ej; Z) + Hj(b; Z). (3.8) 

Here Hi stands for the Dirichlet average of the function hi(u) = (Zj - u)h’(u), h E C,#R). The 
relation (3.8) readily follows from [3, (5.6-1311. Application of (3.2) to (3.8) yields 

(c - l)jRh(u)m(u I b; Z) du = (c - l)lRh(u)m(u I b - ej; Z) du 

+ 
/ R 

(zj - u)h’(u)m(u I b; Z) du. (3.9) 

We will lift (3.9) to the case of multivariate functions. To this aim we shall employ the formula 

/h(u)m(u I b; Z) du = / h(h *x)M(x I b; X) dx, 
R [ws 

(3.10) 
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where now Z = {A *x0,. . . , A *x~), A E R’\{O}, and h( A -x) is a ridge function (or plane wave). 
Since the proof of (3.10) is similar to that presented in [23, p.4961, we omit further details. 
Application of (3.10) to (3.9) yields 

(c - l)/ h(h XX)M(.X I b; X) d 
RS 

x = (c - l)/nsIz(A *+4(x 1 b - ej; X) dx 

+ 
/( 

A *_x? - A +‘(A +k!(x I b; X) dx. (3.11) 
ns 

We appeal now to the denseness of ridge functions (these functions form a dense subset in 
C,@“>> to conclude that the above identity is valid for any multivariate function f~ C,@“>, see 
[20]. Substituting h(A .x> =f(x> into (3.111, we obtain the assertion and the proof is completed. 

0 

Corollary 3.2. Along with the hypotheses of Theorem 3.1, assume that for some 0 < i, j < It, 
1~ k <s, that XL # 0, XL # 0, and bi > 1, bj 2 1. Then, 

(c-l)[ST(b-ej; X)-F(b-ei; x)] +$(b; X)-T(b; X)=0 (3.12) 

and 

(C - 1)(x: -xi)F(b; X) = (C - l)[xiS(b-ej; X) -x[T(b -ei; X)] 

+xiq(b; X) -x;q(b; X). (3.13) 

Remark. Eqs. (3.12) and (3.13) are generalizations of [3, Exercise 5.9-61 with the latter being an 
extension of Zill’s identity for R-hypergeometric functions. 

Since the proof of (3.12) and (3.13) follows the lines introduced in [3, p.3051, we omit further 
details. 

4. Auxiliary results 

Our first result reads as follows. 

Proposition 4.1. Let p(x) be an affine function on R”. Then, 

p(~)M(x 1 b; X) = 2 w~P(x’)M(x I b + ei; X), 
i=O 

(4.1) 

provided the splines M(x I b + ei; X), 0 < i < n, are continuous at x E I%“. Here, wi = bJc, i = 0, 
1 n. >***, 

Proof. We need the following identity for the Dirichlet density function 13, (U-8)1: 

t&(t) = w&+Jt), t E E,, 0 G i <n. (4.2) 
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Since t, + . * - +t, = 1, (4.2) gives 

&(t) = k Wi&+e,(t). 
i=O 

Multiplying both sides by f(Xt) and next integrating over E,, we obtain by virtue of (2.21, 

L;f(x)M(nIb; X) dn=/ni(x) tw,M(xIb+e,; X) dx. 
i=O 

Hence, (4.1) follows when p(x) = 1. To complete the proof, we utilize (4.2) again. Multiplying 
both sides by of and next summing over i, we obtain 

Kw&%w = e w,44i?+e~~h 
i=O 

Here (Xf), denotes the Ith component of Xt. This leads to the following integral relation: 

/ f(~)~,hf(~lb; X) dx=[ f(n) kw,n;M(xIb+q; X) dx, 
Iws [ws i=O I 

which proves (4.1) when p(x) = xl, 14 I < s. •I 

Micchelli [22] gave a different proof of (4.1) for simplex splines. For this class of splines, 
identity (4.1) is called the “degree elevating formula”. A special case of (4.1) appears in [14]. 

For our further aims, we recall a definition of the R-hypergeometric function in the real 
case. Let the set Z={Z~,...,Z,JC[W~+~ be such that 0 e [Z]. Further, let b E rW;+‘. The 
R-hypergeometric function R_,(b; Z>, a E II& is given by 

R_,(b; Z) = / (Zf)-a4&) dt 
En 

(4.3) 

(see [3]). When -a E N, the restriction 0 @ [Z] can be dropped. Comparison with (3.1) shows 
that the R_, is the Dirichlet average of the power function UP’. It is worth mentioning that the 
Gauss hypergeometric function 2F1, Lauricella’s hypergeometric function F,, the Gegenbauer 
polynomials and the elliptic integrals in the Legendre form can all be represented in terms of 
the function R_,. Combining (4.3) and (2.3) gives 

R_,(b; Z) = /zPm(u 1 b; Z) du. 
w 

(4.4) 

For later use, let us record a very useful formula for R-hypergeometric functions (see [3, 
Theorem 6.8-31) 

R_,(b; Z) = ,~oz,~b~R,-c(k Z-l), (4.5) 

where Z-l:={z;l,..., z; I}, zj > 0, for all j, c # 0, - 1, - 2,. . . . This important result is 
commonly referred to as Euler’s transformation. 

We close this section with the following proposition. 
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Proposition 4.2 Let a E [w and let the vector A E [w” be such that A *xi < 1, j = 0, 

/( 
1 -A .x)-“M(x I b; X) dx = R_,(b; Y), 

W 

where 

Y=l-A*X={(l+xO),...,(l-A~x”)}. 

Proof. Substituting 2 = Y into (4.41, we obtain 

R_,(b; Y) = /u-%z(u I b; 1 -A .X) du = / (1 - u)-%z(u I b; A .X) du 
aB K! 

= 
/( 

1 -A *X)-“M(x ) b; X) dx. 
Iws 

In the last step we have used (3.10). 0 

When a = c, (4.6) becomes Watson’s identity (see [31]) 

/( [w” 
1 -A xpcM(x 1 b; X) dx = ]fio(l -A *xi)-? (4.8) 

231 

,n. Then, 

(4.6) 

(4.7) 

The above identity follows by applying (4.5) to the right-hand side of (4.6) and using R, = 1. 
An alternative proof of (4.8) appears in [lo] (see also [19] for some comments concerning this 

identity). 

5. Moments of multivariate Dirichlet splines 

A motivation for the investigation of the moments of Dirichlet splines has its origin in two 
mathematical disciplines. It is well known that the spline M( * I b; X) is a probability density 
function on 1w”. We feel that the results of this section can be applied to some problems in 
mathematical statistics. A second area of possible applications is the theory of special functions. 
We have already mentioned that some important special functions can be represented by the 
R-hypergeometric functions. For particular values of the a-parameter and the b-parameters in 
(4.4), this function becomes a complete symmetric function. For particular values of the 
z-variables, (4.4) gives an integral formula for the q-binomial coefficients (Gaussian polynomi- 
als) (see [25] for more details). 

In this section, we derive recurrence formulas for the moments of multivariate Dirichlet 
splines. Also, we discuss implementation of these results in the case when b = (1,. . . , 1) E [Wntl. 
For related results when s = 1, see [24]. We employ the multi-index notation introduced in 
Section 2. 

For p E [w”, we define the moment of order I p I, I /3 I = PI + . . . +/3,, of M(. I b; X> as 
follows: 

mp(b; X) = / x%4(x) b; X) dx, 
Iws (5-I) 
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provided 0, @ [X], 0, being the origin in R”. When p E Z> , this restriction is nonessential. In 
the case of the simplex spline, we shall omit the vector b and write m,(X) instead of 
m,(b; Xl. Also, let d, stand for the Zth coordinate vector in R”. 

We are now ready to state and prove the following. 

Theorem 5.1. Let the weights wO,. . . , w,, be the same as in Proposition 4.1. Then, 

m,(b; X) = 2 wimp(b +e,; X), 
i=O 

(5.2) 

mp+d,(b; X) = 2 wixfmp(b + ei; X), 
i=O 

for all I= 1, 2,. . . , s. Moreover, if vol,([X]) > 0 and bj > 1, for some 0 <j < n, then 

(5.3) 

(c + I p I -l)mp(b; X) = (c - l)mp(b -ej; X) + c&x/m,-,,(k X). 
I=1 

(5.4) 

Iffor some 0 < i, j <n, 1 < k <s, XL z 0, xi z 0, and bi > 1, bj 2 1, then 

(c-l)[mp(b-ej; X)-mp(b-ei; x)] + c Pk(xi-xi)mp_d,(b; X)=0 (5.5) 
k=l 

and 

(c+ IpI-l)(xi-xi)m,(b; X)=(c-l)[ximp(b-ej; X)-ximp(b-e,; x)] 

where 

+ c &Wk,lmp-d,(b; x)7 
I=1 

(5.6) 

Remark. When bj = 1, formula (5.4) holds true provided n > s. 

Proof. In order to establish the recursions (5.2) and (5.31, we substitute p(x) = 1 and p(x) =xI 
respectively, into (4.1) and next integrate over R”. For the proof of (5.41, we utilize formula (3.7) 
with f(x) =x p. The resulting equation, together with (3.6) and (5.11, yields the assertion. 
Formulas (5.5) and (5.6) follow immediately from Corollary 3.2 with f(x) =xP. 0 

We now give two moment generating functions. The first generating function involves the 
confluent hypergeometric function S. Following [3, (5.8-l)], we define 

S(b; Z) = / exp(Zt)&,(t) dt, 
& 

(5.7) 

b E R;+‘, Z = {z,,, . . . , zJ. Use of (3.1) and (3.2) gives 

S(b; 2) = /exp(u)m(u I b; Z) du. 
n 
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Letting Z=A.X={A.xO,..., A .xn}, A E RS\{O}, and next using (3.10), we arrive at 

S(b; A .X) = /nSexp(A +‘U(x I b; X) dx. (5.8) 

To obtain the first moment generating function, we expand exp(A *x> into a power series. 
Applying the multinomial theorem to powers of A *x and next integrating the corresponding 
power series one term at a time, we obtain by virtue of (5.8) and (5.11, 

S(b; A .X) = C ~mi(b; X), (5 *9> 

where the summation extends over all multi-indices j E .Z’c. 
It is worth mentioning that the hypergeometric function S(b; A *X) can be expressed as a 

divided difference of exp( t) provided that b,, . . . , b, E Z +, We have 

k! S(b; A .X) = [A .x’(b,), . . ., A *xn(b,)]ez, (5.10) 

where k = b, + * * * +b, - 1. Here the symbol A *x’( bi) means that the knot A . xi is repeated bi 
times. Formula (5.10) readily follows from (5.81, (5.7) and the Hermite-Genocchi formula for 
divided differences. 

A second generating function is given by 

.(4jl) 
~_,(b; Y) = CA’ 

jr mj(‘; X)7 (5.11) 

I A *xi ) < 1, for all i, where the summation extends over all multi-indices j E Z>. Here, a E R, 
the set Y is given in (4.7) and (a, I) stands for the Appell symbol, i.e., (a, 0) = 1, (a, I) = da + 
1) * * . (a + I- l), 1 E N. In order to establish (5.11), we expand (1 - A *x)-” into a power series 
and next utilize the multinomial theorem to obtain 

(5.12) 

To complete the proof, we substitute (5.12) into (4.6) and next integrate term by term. 
Applications of (5.9) and (5.11) are discussed in the next section. 

We shall now turn our attention to the case of multivariate simplex splines. To this end, let 
p E Z$ . In the case under discussion, the formulas (5.3) and (5.4) of Theorem 5.1 take the form 

(5.13) 

(5.14) 

1 <j <II, 1 < 1 <s. Here X’ =XU {xi} and Xi =X\{x’}, 0 < i G n. The set Xi appears on the 
right-hand side of (5.13) because of (3.5). A closer look at (5.14) shows that the recursion is in 
two directions. That is, given X = {x0,. . . , xn) c R", II <s, to compute m,(X), we need the 
moment of order I p 1 for the knot set consisting of one less vector than X, and also s moments 
of order IPI -1. 
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Define a set x,=(x” ,..., xk), k=s,s+l,... ,II, and note RzJ~,) = 1 when 1 pl = 0, 
k=SJS+l,..., II. To employ (5.141, we must precompute certain moments of the form 
mJX,>, 1 p 1 > 0, and m,,(x,), k = s,. . . , n. Let us note that 

follows immediately from the defining equation (2.2). 
In order to compute the moments rn&~J, I /? I > 0, we first introduce some new notation 

and next appeal to the proposition that follows. 
Let t = (to, t,,.. ., tn) E IWn+r with (tl ,..., t,) E E, and to = 1 - Crclti. Also, let 1= 

(I O,...,ln)E.z~+l, with m = 11 I. Then we define the Bernstein polynomial by 

B;“(t) = 

For given coefficients {p,}, 111 = m, we shall call any polynomial of the form 

4(t) = c MY(t) 
Ill=m 

a Bezier polynomial. It is well known that any such q may be stably and efficiently evaluated 
using decasteljau’s algorithm (see [9,12]). 

Proposition 5.2 illustrates that we may indeed incorporate decasteljau’s algorithm when 
evaluating mp( XJ. 

Proposition 5.2. Let n 2 s > 1, /3 E Z:, and X= {x0,. . . , x"} c rW: with vol,([X]) > 0. Let 
y’=(xO ,,...,x,“)ER:+l andsetg,= (y’l,i=l,..., s. Then, 

(5.15) 

Here, ki = (kio, . . . , kin) E ZT”, q! = TO! : . . T,!, with qj = C~=,kij, 0 <j <n, j’ = (l/gi)Y’, 
i=l >***, s. 

Proof. We use the defining relation (2.2) to write 

mp(X) = n!/, 
n 
,oI (toxp + * * * +t,x:)Pi dt 

= n! C 
( ! 

fl ( yl)kl . . . 

lklI=p, l 
,kE,, [~j~ep dt, 

” 

where v, yi, ki, i = 1, . . . , s, are given in Proposition 5.2. Using [3, 4.3-41 to simplify the integral 
in the above identity, we have 

mp(X) = n! 
4! 

f1 (Y'p ** * 

lklI=P, l El1 
fs (Y')".(lBPjn)!. 

Ik,l=P, s 

(5.16) 
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Now ?j, j = 1,. . . , s, given in Proposition 5.2 can be viewed as the barycentric coordinates of 
some point in R”. Inserting jj’s into (5.16) and scaling by gp gives the desired result. 0 

Thus all moments of the form rn,(xJ can be expressed as a nested sum of Bezier 
polynomials and subsequently may be evaluated using decasteljau’s algorithm. It should be 
noted that while both decasteljau’s algorithm and (5.14) are possible candidates for the task of 
computing m&X,), k = s + 1,. . . , ~1, the latter scheme requires the evaluation of fewer terms at 
each recursion step and is thus the preferred choice, In order to summarize the procedure for 
evaluating the moments of simplex splines in Algorithm 5.3, we introduce d, = (0,. . . ,O) E R”. 

Algorithm 5.3. Given X= {x0,. . .,x"} c R", n as, and p E zi”, with 1 p 1 > 1, this algorithm 
generates the moment m,(X) of the simplex spline M(. I Xl. 

(1) cr := do. 
(2) For k = s to n 

m,(XJ = 1. 
(3) For )(YI =l to IpI, a~ziS,, a<~ 

Use (5.15) to express m,(x,) in terms of Bezier polynomials and evaluate using 
decasteljau’s algorithm. 

(4) For k = s + 1 to n 
For crEz:, cu<p 

Compute m,( Xk) using (5.14). 

We close this section with a remark that this algorithm is numerically stable if xj > 0 for all 
j = 0, 1 >***, ~1. 

6. Applications to hypergeometric functions 

In this section we demonstrate a relationship between Dirichlet splines and an important 
class of hypergeometric functions of several variables. We will deal mainly with Appell’s F4 and 
Lauricella’s F,. The link between these classes of functions is provided by another integral 
average which is commonly referred to as a double Dirichlet average (see [l] for more details). 
Throughout the sequel the double Dirichlet average of a continuous univariate function h will 
be denoted by %. 

Let XE RsX(n+l), n >.s 2 1. Further, let u = (ul,.. ., us> be an ordered s-tuple of nonnega- 
tive numbers with u, + * * * +u, = 1, and similarly u = (uo, . . . , u,). We define 

s n 

u .xu = c c uix;ui, 

where x! stands for the ith component of the jth column of X. Let h be a continuous function 
on Z = [Min x{, Max xi”], In order to avoid trivialities, we will assume that Z has a nonempty 
interior. For b = (b,, . . . , b,) E RS, and d = Cd,,. . . , d,) E RT’l, let [l, p.4211 

Z(b; X; d) = / / h(u -Xu)&,(u)&(u) du du, 
E, Es-1 
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du = du,. . . du,, dv = dv, . . . dv,. Here 4b and $d are the Dirichlet densities on ES_ I and E,, 
respectively (see (2.1)). It is known that for b E R;, 

Z(b; X; d) = /, _ H(d; u .X)qf~~(u) du 
S 1 

(6.1) 

(see [l, (2.8)]). In (6.1) H stands for the single Dirichlet average of h (see (3,1)), u .X= {u . 
X0,... ,u *xy, x0 )...) xn are the columns of X. 

We are in a position to state and prove the following theorem. 

Theorem 6.1. Let d E rWT+’ and let the vector b E R” be such that c # 0, - 1,. . . , c = b’ 
+ . . . +b,. If vol,([X]) > 0, then 

z(b; x; d) = &V(X Id; X)ff(b; x) dx, 

x=(x1,..., x,), dx = dx, . . . dx,. 

(64 

Proof. In order to establish (6.2), assume for the moment that b E lR> . Application of (3.2) and 
(3.10) to (6.1) gives 

z(b; X; d) = Ls_,[ j--f+ --+4(x I d; X> d+#dU) du. 

Interchanging the order of integration and next using (3.1), we obtain the assertion provided 
bG!S,. This restriction can be dropped because the average H can be continued analytically 
in the b-parameters, provided that c # 0, - 1,. . . (see [3, Theorem 6.3-71). This completes the 
proof. 0 

Before we state a corollary of Theorem 6.1, let us introduce more notation. For h(z) = ~7, 
a E R, the double Dirichlet average of h will be denoted by Z-a (cf. [l]). 

Corollary 6.2 (Carlson [4]). Let d E rWT+‘, b E IR”, and let the matrix X be such that 0, @ [Xl. 
Then, 

m&i; X) =S_,(b; X; d), (6.3) 

where m_,(d; X) stands for the moment of order -c of the Dirichlet spline M( - 1 d; X). 

Proof. Apply [3, (6.6-5)] 

R_,(b; X) = zfix;bl 

to (6.2) with h(t) = tP. 0 

(6.4) 
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Hereafter, we will deal with the hypergeometric functions and polynomials of several 
variables. Appell’s hypergeometric function F4 is defined by the double power series [3, 
Example 6.3-51 

a!, p, y, 6 E R, y, 6 # 0, - 1,. . .) I x1 I l’* + I x* I l’* < 1. The integral formula [2, p.9631 

F&, P; Y, 6; x1(1 -x2)> x2(1 -XI)) 

=1^,1” ( pa d,, d,, d,; u .x0, u .x1, u .x”)&,(u) du (6.5) 

provides the analytic continuation of the F,-series to the region A defined by 

A = ((x1, x2) E lw*: x1 < 1, x2 < 1, x, +x, < l}. 

In (6.5), b=(p, y-p), d,=y+6 --(Y - 1, d, =(Y+P - y-6 + 1, d2=6 -/3, 4h(~) is the 
Dirichlet density on E, and x”, x1, and x2 are the columns of X, where 

x= (l-x,)(1-x,) 

[ 

l-x,-x, 1 -x1 

1 -x2 1 -x2 1 1 * (6.6) 
Corollary 6.3. Let d = (d,, d,, d2) E rW3> and let b = (p, y - /3) E R*. If vol,([X]) > 0, then 

F&q S; Y, 6; x1(1 -x2), x2(1 -x1)) = ~;,]M(Y Id; X)R-a@; Y) dy, (6.7) 

Y = (yl, y2), dy = dy, dy,. Here, K, is the single Dirichlet average of h(z) = Z? and the 
matrix X is given in (6.6). 

Proof. Apply (6.1) to (6.5) and next use (6.2). q 

A special case of (6.7) is 

F&, P; a, 6; x1(1 -x2), ~(1 -xl)) =m,(d; X), 

where now b = (p, (Y - p) and d = (S - 1, p - 6 + 1, 6 - p>. This follows immediately from 

(6.7) and (6.4). 
We will now deal with Lauricella’s FB function and Lauricella polynomials. Let (Y = 

(q, . . . , a,> E [w”, p = (PI,. . . , p,) E R”, y E R, y # 0, -l,..., and let x=(x, ,..., x,) E R”, 
with 1 xi 1 < 1, for all i. Following [21], we define 

F&r, p; y; x) = c ‘;’ ;;;f,)xk, 
Y7 . 

(6.8) 

where the summation extends over all multi-indices k = (k,, . . . , k,) E 27:. In (6.8) we employ 
multi-index notation introduced in Section 2. Also, 

(a, k) = &% k)* 

(p, k) is defined in an analogous manner. When II = 1, FB becomes Gauss’ *F1 function. 
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Corollary 6.4. Let d = (p, y - ( p 1) E rWT+’ and let 

l-x, 1 **a 1 1 

1 

1. 

l-x, a*. 1 1 
x= . . . . . . 

. * *- 
i ; ..: 1-x,, 1 

I 

Then, 

(6.9) 

4?(% P; Y; x> =m-,(4 X), 

provided that xi < 1 for all i. 

(6.10) 

Proof. In the stated domain the entries of X are positive. Thus 0, @ [Xl. In order to establish 
(6.10), we utilize [l, (5.1111 to obtain 

&(a; P; Y; x) =sc(a; X; d), 

where now c=(~i + ... +a,. This in conjunction with (6.3) gives the assertion. q 

Lauricella polynomials Lj(x), j E ZT, x E R”, are defined in the following way: 

Lj(x) =FB(-j7 P; Y; x)’ 

These polynomials play an important role in the study of coherent states (cf. [161). On account 
of (6.10), 

Lo =mj(d; X), (6.11) 

where the vector d and the matrix X are the same as in Corollary 6.4. 
Two generating functions for the polynomials under discussion can be derived from (5.9) and 

(5.11). Let A = (A, ,..., A,), e = cl,.. ., l), A, e E R”, and let d = C/3, y - I p I) E Bin+‘. Then, 

exp(A.e)S(d;-Aix,,..., -A,x,, 0)= EELi( 
j! 

jEZ:. If 

Max(IA.e-A,x,],...,]A*e-A,x,], ]A.e]}<l, 

then 

R_,(d; Y) = 
.(a, l.il> 

CA’ j, Lj(x)T 

(6.12) 

(6.13) 

aE[W, jEZ:, Y={l-A*e+A,x,,..., 1 -A.e+A,x,, 1 -A-e}. 
For the proof of (6.12) we replace b by d in (5.9) and next use (6.111, (6.91, and [3, (5%3)]. 

This gives the desired result provided that d E rWT+‘. The latter restriction can be dropped 
because the S-function can be continued analytically in the d-parameters [3, Corollary 6.331. 
The generating function (6.13) can be derived from (5.11) by the same means. Feinsilver’s 
generating function [15] can be obtained from (6.13) by letting a = y and then using (4.5). 
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Recall that R, = 1. It is not hard to show that the R-hypergeometric function R_, in (6.13) is a 
multiple of the Lauricella function of the fourth kind. We have 

R_,(d; Y) = (1 -A *e)-‘Fo(a, /3; y; zi,. . ., z,), 

where 

-Aixi 
zi= l_A.e’ 

i= 1, 2,..., n. We omit further details. 
Our next goal is to establish a recurrence formula obeyed by Lauricella polynomials 

(Y + I k I>L+&) - Ml - KPm) + I k ~l~k(4 

+ 2 klElm[ Lk-dl(x) -Lk-d,+d,(X)] = Oy 
(6.14) 

I=1 

m = 1, 2,..., ~1. In (6.141, y E Iw,, k=(k, ,..., k,) E Z:, d, stands for the mth coordinate 
vector in 1w”, similarly d,, IV,,, = P,/y, pm > 0, 1 G m < IE, 

i 

1, if l#m, 
Elm = 1 -x,7 if l=m. (6.15) 

Here we adopt the convention that Lk( x) = 0 if -km E N for some m. In order to establish the 
recursion (6.14), we derive first a recurrence formula for the moments of multivariate Dirichlet 
splines with s = n and X given in (6.9). We have 

(c + I P I)mp+&b; X) - [4 - w,.h) + I P I]mp(k X) 

+ 2 Plqm[mp-,i(k X) -mp-d,+d,(k X)] 4 
I=1 

(6.16) 

b E w+l, c = b, + . . . +bntl, p E RF, ( p) =pl + . . . p,,. The recursion (6.14) now follows 
from (6.16) by letting b = d, p = k E Z: and using (6.11). To complete the proof, we need to 
establish (6.16). To this aim we increase the indices of summation in (5.2) and (5.3) by one unit. 
Next we let s = II and solve the resulting linear system for m&b + e,; X), 1 <m G n + 1. Let 
us note that the assumption volJ[X]) > 0 is equivalent to x, # 0, 1 < m < n. This assures 
uniqueness of the solution. Subtracting (5.3) from (5.21, we obtain 

mp(b + em; X) = 
m,(b; X) - mp+dm(k X> 

> 
Wm”r?l 

(6.17) 

1 G m G n. The remaining moment mp(b + e, + 1; X) can be found using (5.2) and (6.17). To 
complete the proof of (6.16), we utilize (5.4). Replacing the index j by m and next using (6.17), 
we can easily obtain the assertion. 

We close this section with an inequality for Lauricella polynomials. To this end, let xi < 1, 
1 < i G n. It follows from (6.9) that [X] c rW= in the stated domain. This in conjunction with 
(6.11) and (5.1) provides 

Lj(x)=/ yjM(y(d; X) dy>O, 
[Xl 
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SZ;, d=@, y- IPI)ER”,+~, Y =(yl ,..., Y,), dy=dy i . . . dy,. A standard argument ap- 
plied to the last formula gives 

[ Lj(xJ]2 GLj-k(x)Lj+k(x)Y 

where the vector k E z: is such that j - k E Z:. In particular, if k = e,, the mth coordinate 
vector in R”, then 

[ Lj(x)]2 ~Lj-em(X)Lj+e,(X)~ 

provided j - e, E Z: . Thus the function g : Z: +- IR, where 

is log-convex in each variable separately. 
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