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SUMMARY
Tauopathies represent a group of neurodegenerative disorders characterized by the accumulation of pathological TAU protein in brains.

We report a human neuronal model of tauopathy derived from induced pluripotent stem cells (iPSCs) carrying a TAU-A152T mutation.

Using zinc-finger nuclease-mediated gene editing, we generated two isogenic iPSC lines: one with the mutation corrected, and another

with the homozygous mutation engineered. The A152T mutation increased TAU fragmentation and phosphorylation, leading to

neurodegeneration and especially axonal degeneration. These cellular phenotypes were consistent with those observed in a patient

with TAU-A152T. Upon mutation correction, normal neuronal and axonal morphologies were restored, accompanied by decreases in

TAU fragmentation and phosphorylation, whereas the severity of tauopathy was intensified in neurons with the homozygousmutation.

These isogenic TAU-iPSC lines represent a critical advancement toward the accuratemodeling andmechanistic study of tauopathies with

human neurons and will be invaluable for drug-screening efforts and future cell-based therapies.
INTRODUCTION

Tauopathies are a group of neurodegenerative disorders

characterized by the accumulation and aggregation of

the pathological TAU protein in human brains (Hutton,

2000; Lee et al., 2001; Mandelkow and Mandelkow,

2012; Vossel and Miller, 2008). TAU, encoded by the

MAPT gene on chromosome 17, is a microtubule binding

protein that is highly expressed in neurons and predomi-

nantly located in neuronal axons (Goedert et al., 1989;

Kosik et al., 1989; Morris et al., 2011; Neve et al., 1986).

Hyperphosphorylation and aggregation of TAU cause

neurofibrillary pathologies, including tangles and neuro-

pil threads that are often seen in brains of patients with

Alzheimer’s disease (AD) (Hutton, 2000; Kosik et al.,

1986; Lee et al., 2001; Mandelkow and Mandelkow,

2012; Vossel andMiller, 2008). Tauopathies are also typical

of other neurodegenerative disorders, including fronto-

temporal dementia (FTD) and progressive supranuclear

palsy (PSP) (Hutton, 2000; Lee et al., 2001; Mandelkow

and Mandelkow, 2012; Vossel and Miller, 2008). Most

FTD and PSP cases are sporadic, but a minority are familial

(Weder et al., 2007). FTD and PSP syndromes can be

caused by mutations in the MAPT gene that result in
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abnormal TAU phosphorylation and aggregation, leading

to neurodegeneration.

Transgenic murine models of tauopathies have revealed

fundamental insights into the disease (Lee et al., 2001;

Mandelkow and Mandelkow, 2012), but their value as

predictive preclinical models is unknown. In fact, many

candidate drugs successful in rodent models of neuro-

degenerative diseases have failed in humans (Ashe and

Zahs, 2010; Huang and Mucke, 2012). Thus, new human-

ized disease models, such as mutation- and patient-specific

induced pluripotent stem cells (iPSCs), are urgently needed

for further development of therapeutic strategies for

tauopathies.

Human iPSCs are a highly promising approach for inves-

tigating cellular properties of traditionally challenging

neurodegenerative disorders (HD iPSC Consortium, 2012;

Israel et al., 2012; Kondo et al., 2013; Park et al., 2008;

Yamanaka, 2009). Because postmortem tissue represents

late-stage disease, modeling tauopathy onset and progres-

sion are problematic with autopsy samples alone. iPSC-

derived neurons grown in culture allow for the detection

of specific molecular and temporal signatures from muta-

tion-carrying patients, thereby improving our understand-

ing of the pathogenesis of tauopathies.
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Figure 1. Generation of Isogenic Human TAU-A152T-iPSC Lines
with ZFN-Mediated Gene-Editing Technology
(A) Schematic of ZFN-mediated correction of the TAU-A152T
mutation.
(B) Screening of iPSCs with genetic correction of the TAU-A152T
mutation by HphI restriction digestion of a TAU PCR product from
genomic DNA (gDNA) of different iPSC clones. Sequencing of the
gDNA from the isogenic TAU-152A/A-iPSCs confirmed correction of
the nucleotide from A to G at the original mutation site (red
arrows). For more information, see Figure S1.
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One limitation of using iPSCs is the inability to carry out

studies under genetically defined conditions, leading to

increased experimental variability. To overcome these

obstacles, we used a zinc-finger-nuclease (ZFN)-mediated

gene-editing technique (An et al., 2012; Corti et al., 2012;

Li et al., 2012; Soldner et al., 2011) to generate isogenic

human iPSC lines from an individual carrying a TAU-

A152T mutation. We demonstrate that isogenic TAU-iPSCs

are not only useful for modeling tauopathies, but also for

identifying unknown molecular mechanisms underlying

the disease-causing mutations.
RESULTS

Generation of iPSCs from an Individual

with a TAU-A152T Mutation

Wegenerated iPSCs from an individual carrying a heterozy-

gous TAU-A152T mutation (Coppola et al., 2012; Kara

et al., 2012; Kovacs et al., 2011) using a protocol published

previously (Takahashi et al., 2007; Takahashi and Yama-

naka, 2006). The TAU-152A/T-iPSCs had characteristics

similar to embryonic stem (ES) cells, including their ES

cell-like morphology (Figure 1D) and positive staining for

ES cell markers (Figures 1E and 1F; Figures S1B–S1E avail-

able online). DNA sequencing confirmed a heterozygous

TAU-A152T mutation (Figure 1B), and chromosomal anal-

ysis revealed a normal karyotype (Figure 2A). The TAU-

152A/T-iPSCs formed teratomas in immunodeficient mice

(Figures S1N–S1P), confirming their pluripotency.

Generation of Isogenic TAU-A152T-iPSC Lines

We used ZFN-mediated gene-editing technology to

generate isogenic TAU-A152T-iPSC lines (Hockemeyer

et al., 2009; Miller et al., 2007; Soldner et al., 2011). The

ZFN was designed to target �30 base pairs upstream of

the A152T mutation on the MAPT gene (Figure 1A). We

also used a 1,500 bp linear donor DNA fragment carrying

the wild-type nucleotide sequence at position 152 as a

repair template for homologous recombination (Figure 1A).

Alternatively, a donor DNA fragment with a TAU-A152T

mutation could be used to generate a homozygous TAU-

A152T mutation. To obtain ‘‘scarless’’ genome editing,
(C) Screening of iPSCs with engineered homozygous TAU-A152T
mutation by HphI restriction digestion of a TAU PCR product from
gDNA of different iPSC clones. Sequencing of the gDNA from the
isogenic TAU-152T/T-iPSCs confirmed the change in nucleotide
from G to A to generate a homozygous mutation (red arrows). For
more information, see Figure S1.
(D–L) Isogenic TAU-A152T-iPSCs demonstrated similar ES cell
morphology (D, G, and J) and stained positive for pluripotency
markers Oct4 (E, H, and K) and Sox2 (F, I, and L).
Scale bars represent 50 mm. See also Figure S1.
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Figure 2. Characterization of the Isogenic TAU-A152T-iPSC Lines
(A–C) Karyotype and G-band analysis confirmed a normal 46, XY karyotype in all three isogenic TAU-A152T-iPSC lines.
(D–F) Global gene expression profiling demonstrated very few variations among all three isogenic TAU-A152T-iPSC lines.
(G–K) All three isogenic TAU-A152T-iPSC lines generated neurospheres at similar levels and of comparable sizes.
(L–N) Stable NSCs expressing the neural precursor markers Sox2 (green) and Nestin (red) could be generated equally well from all three
isogenic TAU-A152T-iPSC lines.
Values are mean ± SD. Scale bars represent 100 mm (G–I) and 50 mm (L–N).
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the donor DNA fragment contained no selection marker or

excisable sequence. After nucleofection of the TAU-152-

ZFN and the donor DNA fragment into 2 3 106 TAU-

152A/T-iPSCs (Fong et al., 2011), the cells were allowed to

recover for 2 days and then were plated in a single-cell

format in 96-well plates for 7–14 days.

Inspection of the DNA sequence of the TAU PCR product

revealed two restriction cleavage sites for HphI on the wild-

type allele and three sites on themutant allele (Figure S1A).

After screening 107 clones, a corrected clone was identified

(Figure 1B, 152A/A-iPSC). From screening an additional 86

clones, we also found a clone containing a homozygous

version of the TAU-A152T mutation, where the mutation

was present on both alleles (Figure 1C, 152T/T-iPSC).

DNA sequencing confirmed the correction or homozygous

mutation of TAU-A152T in the isogenic iPSC lines (Figures

1B and 1C). The overall efficiency of TAU-ZFN-mediated

gene editing was 1%�1.5%.

Isogenic TAU-A152T-iPSC Lines Have Similar Genetic

and Neural Stem Cell Differentiation Properties

Both isogenic TAU-152A/A-iPSC and TAU-152T/T-iPSC

lines exhibited similar ES cell morphology to the parental

TAU-152A/T-iPSC line and stained positive for pluripo-

tency markers as seen in the parental iPSC line (Figures

1D–1L and S1B–S1M). Furthermore, the newly generated

isogenic iPSC lines had a similar ability as the parental

iPSC line to form teratomas in immunodeficient mice

(Figures S1N–S1V), suggesting similar pluripotency among

all three iPSC lines.

Karyotyping analysis showed that all three isogenic iPSC

lines had a normal 46, XY karyotype (Figures 2A–2C).

Global gene expression profiling of all three lines showed

very few differences in gene expression patterns (Figures

2D–2F). Importantly, all three isogenic iPSC lines had

similar abilities to generate neurospheres (Figures 2G–2K)

and neural stem cells positive for Sox2 and Nestin (Figures

2L–2N).

Genetic Correction of TAU-A152T Mutation Abolishes

and Homozygous TAU-A152T Mutation Intensifies

Tauopathy Phenotypes

Upon neuronal differentiation of the parental TAU-152A/

T-iPSCs (Chambers et al., 2009; Hu and Zhang, 2009;

Ring et al., 2012), immunocytochemical analysis of TAU

revealed unhealthy looking neurons with punctate TAU

staining in neuronal processes (Figure 3E). Their neurites

were short and tapering and appeared to bulge and

constrict with odd bends and breaks (Figure 3E). MAP2

immunostaining confirmedmild degeneration of neuronal

processes (Figure 3B). Genetic correction of themutation in

the isogenic TAU-152A/A-iPSCs abolished the neurodegen-

erative phenotype, leading to the generation of healthy
Stem Cell R
looking neurons with smooth TAU and MAP2 staining

(Figures 3A and 3D). In sharp contrast, the isogenic homo-

zygous TAU-152T/T-iPSCs generated neurons with severe

degeneration and a much lower survival of neurons, as

indicated by MAP2 staining (Figure 3C), and much more

punctate TAU staining in neuronal processes (Figure 3F).

Quantitatively, there was a gene-dose-dependent effect of

the TAU-A152T mutation on neurodegeneration as evi-

denced by abnormal TAU staining (Figure S2A). High-

magnification images revealed severe axonal degeneration

and fragmentation of neurons derived from TAU-152T/

T-iPSCs (Figure 3H), which was completely rescued by

correcting the mutation in the isogenic TAU-152A/A-iPSCs

(Figure 3G). Neurodegeneration was also observed in a

subclone of TAU-152T/T-iPSCs (152T/T-2), as evidenced

by abnormal TAU staining (Figure S2B). Low-density

neuronal culture and double immunostaining for TAU

and MAP2 revealed mislocalization of TAU-A152T to the

somatodendritic domains in TAU-152T/T-iPSC-derived

neurons (Figures S2E and S2F).

AT8-positive phosphorylated TAU (p-TAU) was found in

some neurons derived from TAU-152A/T-iPSCs, with a pre-

dominant and punctate location in axons (Figure 3J).

Again, genetic correction of the mutation abolished

p-TAU accumulation (Figure 3I), whereas the homozygous

mutation exacerbated p-TAU accumulation in both axons

and cell soma (Figures 3K and 3L). Themutation-related in-

crease in p-TAU was also observed in a subclone of TAU-

152T/T-iPSC-derived neurons (Figure S2C). Strikingly, the

numbers of p-TAU-positive neurons increased in a TAU-

A152T gene-dose-dependent manner (Figure 3M). Accu-

mulation of p-TAU was restricted to neurons as there was

no p-TAU in GFAP-positive astrocytes (Figure S2G). West-

ern blotting analysis confirmed the presence of high levels

of p-TAU in neurons derived from TAU-152A/T-iPSCs or

TAU-152T/T-iPSCs, which was dramatically decreased

in neurons derived from TAU-152A/A-iPSCs (Figures 4L

and 4M).

Genetic Correction of TAU-A152T Mutation

Eliminates and Homozygous TAU-A152T Mutation

Intensifies the Generation of Pathological TAU

Fragments in Neurons

We observed a greater degree of TAU fragmentation, as

determined by western blotting using the antibody

TAU-5, in neurons derived from TAU-152A/T-iPSCs than

those derived from unrelated control iPSCs without the

mutation (Figures 4A and 4B). More TAU fragmentation

was also observed in brain samples from a patient with

PSP carrying the TAU-A152T mutation than in those from

a control subject without the variant (Figure 4C, arrows).

Importantly, the mutation-related increase in TAU frag-

mentation in human iPSC-derived neurons was confirmed
eports j Vol. 1 j 226–234 j September 10, 2013 j ª2013 The Authors 229
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Figure 3. Genetic Correction of TAU-A152T Mutation Abolishes and Homozygous TAU-A152T Mutation Intensifies Tauopathy
Phenotypes in iPSC-Derived Neurons as Determined by Immunocytochemistry
(A–F) Mild neurodegeneration and accumulation of punctate TAU were found in neurons derived from TAU-152A/T-iPSCs (B and E), which
were abolished in the mutation-corrected TAU-152A/A-iPSC-derived neurons (A and D) and intensified in homozygous TAU-152T/T-iPSC-
derived neurons (C and F).
(G and H) High magnification of TAU-152T/T-iPSC-derived neurons showed severe axonal degeneration with the accumulation of punctate
TAU (H), which was completely rescued by genetic correction of the mutation in TAU-152A/A-iPSC-derived neurons (G).
(I–L)AT8-positivephosphorylated TAU (p-TAU)was found in the axons of someneurons fromTAU-152A/T-iPSCs (J, green). Thisphenotypewas
intensified in the axons and cell soma of neurons derived from TAU-152T/T-iPSCs (K and L, green). Correction of the mutation eliminates the
phenotype as evidencedby little to nop-TAU inneuronsderived fromTAU-152A/A-iPSCs (I).All neuronswere also costained for total TAU (red).

(legend continued on next page)
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Figure 4. Genetic Correction of TAU-A152T Mutation Abolishes and Homozygous TAU-A152T Mutation Intensifies Tauopathy
Phenotypes in iPSC-Derived Neurons as Determined by Western Blotting
(A and B) Western blotting with the TAU-5 antibody revealed more TAU fragmentation in neurons derived from the parental TAU-152A/
T-iPSCs than in neurons derived from control iPSCs without the mutation (A). Quantification of TAU bands showed a significantly greater
amount of total fragments of TAU in TAU-152A/T-iPSC-derived neurons than in the control iPSC-derived neurons (B).
(C) Western blotting with the TAU-5 antibody also revealed increased fragmentation of the TAU protein (arrows) in the brain lysate of a
patient with PSP carrying the TAU-A152T mutation.
(D–I) Western blotting with an antibody against the central part (D and E, TAU-5), the N terminus (F and G, TAU-A12), or the C terminus (H
and I, TAU-C17) of the TAU protein confirmed the increases in TAU fragmentation in neurons derived from TAU-152A/T-iPSCs and
TAU-152T/T-iPSCs. The numbers and amounts of TAU fragmentations were dramatically less upon genetic correction of the mutation.
(J and K) A mutant gene-dose-dependent increase of caspase-cleaved TAU (TAU-C3) was observed in neurons derived from the three
isogenic TAU-152A/T-iPSC lines.
(L and M) Higher levels of AT8-positive p-TAU at two molecular masses (>250 and�74 kDa) were found in neurons derived from TAU-152A/
T-iPSCs and TAU-152T/T-iPSCs than in neurons derived from TAU-152A/A-iPSCs.
All TAU band quantifications were normalized to total TAU. Values are mean ± SD. *p % 0.05, **p % 0.01.
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by western blotting with three different TAU antibodies

(TAU-5, TAU-A12, and TAU-C17 that recognize the central

core, N terminus, and C terminus of the protein, respec-
(M) Quantification of AT8-positive neurons derived from the isogenic
(N–P) Caspase-cleaved TAU (C3) was found in the axons of neurons de
derived from TAU-152T/T-iPSCs (P), but not in neurons derived from
(Q) Quantification of C3-positive neurons derived from the isogenic T
(R–U) Caspase-cleaved TAU (C3, green) and p-TAU (red) were also fo
carrying the TAU-A152T mutation.
Values are mean ± SD. Scale bars represent 30 mm (A–F, I–L, and N–P
See also Figure S2.

Stem Cell R
tively) (Carmel et al., 1996; Porzig et al., 2007) and was

decreased dramatically upon genetic correction of the mu-

tation (Figures 4D–4I). The mutation-related increase in
TAU-A152T-iPSC lines.
rived from TAU-152A/T-iPSCs (O), which was intensified in neurons
TAU-152A/A-iPSCs (N).
AU-A152T-iPSC lines.
und in the axons and cell soma of neurons from a patient with PSP

), 5 mm (G and H), and 10 mm (R–U).
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TAU fragmentationwas confirmed inneurons derived from

a subclone of TAU-152T/T-iPSCs (Figure 4D, 152T/T-2).

Most strikingly, there was a mutant gene-dose-depen-

dent increase in caspase-cleaved TAU fragments, as deter-

mined by the caspase-cleaved TAU-specific antibody C3

(Gamblin et al., 2003; Guillozet-Bongaarts et al., 2005), in

neurons derived from the isogenic TAU-A152T-iPSCs

(Figures 4J and 4K). In line with this observation, immuno-

staining with the TAU-C3 antibody revealed the accumula-

tion of caspase-cleaved TAU in axons of neurons derived

from TAU-152A/T-iPSCs and TAU-152T/T-iPSCs (Figures

3O and 3P) but not in those of neurons derived from

TAU-152A/A-iPSCs (Figure 3N). Themutation-related accu-

mulation of caspase-cleaved TAU was also observed in

neurons derived from a subclone of TAU-152T/T-iPSCs

(Figure S2D). The numbers of caspase-cleaved TAU-positive

neurons increased in a mutant gene-dose-dependent

manner (Figure 3Q). We observed no caspase-cleaved TAU

in GFAP-positive astrocytes (Figure S2H). Likewise, cas-

pase-cleaved TAU also accumulated in neuronal soma and

axons in the patient with PSP carrying the TAU-A152T

mutation (Figures 3R–3U).
Genetic Correction of TAU-A152T Eliminates the

Detrimental Effects of the Mutation on Different

Subtypes of Neurons

We then determined the effects of the TAU-A152T muta-

tion on different subtypes of neurons, including tyrosine-

hydroxylase (TH)-positive dopaminergic neurons, T-box

brain 1 (TBR1)-positive glutamatergic excitatory neurons

(Hevner et al., 2001), and gamma-aminobutyric-acid

(GABA)-positive inhibitory neurons. Strikingly, very low

percentages of dopaminergic neurons were found in

neuronal cultures from TAU-152A/T-iPSCs and TAU-

152T/T-iPSCs (Figures S2J–S2L). Genetic correction of the

mutation increased the percentages of dopaminergic

neurons by 4- to 8-fold (Figures S2I–S2L), suggesting that

dopaminergic neurons are especially vulnerable to TAU-

A152T-induced neurotoxicity. Interestingly, the percent-

ages of glutamatergic and GABAergic neurons were

not significantly altered by the mutation (Figures S2M–

S2T). However, many glutamatergic (Figure S2V) and

GABAergic (Figure S2X) neurons had abnormal morphol-

ogies, including neurite fragmentation/degeneration,

which were also eliminated by genetic correction of the

mutation (Figures S2U and S2W).
DISCUSSION

By combining the iPSC and ZFN-mediated gene-editing

techniques, we generated ‘‘scarless’’ isogenic human iPSC

lines carrying wild-type TAU or a heterozygous or homozy-
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gous TAU-A152Tmutation. The use of genetically matched

isogenic iPSC lines, with three gene doses of the mutation

(zero, one, and two copies) on an identical genetic

background, eliminates potential subject-to-subject and

line-to-line variations of iPSCs and helps draw a clear

conclusion regarding mutation-specific phenotypes. The

isogenic TAU-iPSC lines generated in this study will be

invaluable for further mechanistic studies of tauopathies

and for related drug-screening efforts.

Before the TAU-A152T mutation was identified in

humans, it was widely accepted that mutations of TAU

cause FTD and PSP, but not AD (Huang and Mucke,

2012). The TAU-A152T mutation is the first to show the

association of a TAU mutation with increased risks for

FTD, PSP, and AD (Coppola et al., 2012). Thus, the tauop-

athy model of human iPSCs, and the related molecular

mechanisms identified in this study, should be applicable

to all three tauopathy-related diseases for further mecha-

nistic studies and drug screening.

Although modeling neurodegenerative diseases with

iPSCs has been reported (HD iPSC Consortium, 2012; Israel

et al., 2012; Kondo et al., 2013; Park et al., 2008; Yamanaka,

2009), they typically recapitulate phenotypes reported in

cell cultures or animal studies. Our study, however, iden-

tifies an unknown molecular mechanism underlying a

disease-causing TAU mutation using isogenic iPSCs. A

previous study reported that the TAU-A152T mutation

increased soluble TAU oligomers and decreased microtu-

bule-binding affinity of TAU in cell cultures and test tubes

(Coppola et al., 2012). We demonstrate in iPSC-derived

humanneurons that thismutation predisposes TAU to pro-

teolysis by caspase and other proteases, leading to tauop-

athy, axonal degeneration, and other related pathologies.

We further demonstrate that correction of the mutation

eliminates TAU proteolysis, indicating the specific effect

of the mutation on TAU proteolysis. Our work therefore

directly demonstrates that iPSCs, especially isogenic iPSCs,

are a powerful tool not only for disease modeling but also

for studies of disease mechanisms. Interestingly, dopa-

minergic neurons are especially vulnerable to TAU-

A152T-induced neurotoxicity, which is in line with the

observation that tauopathy in PSP is associated with exces-

sive dopaminergic neuron loss (Murphy et al., 2008). The

underlying mechanism remains to be determined.
EXPERIMENTAL PROCEDURES

Reprogramming Human Dermal Fibroblasts into

iPSCs
Fibroblasts were obtained from an individual carrying the TAU-

A152T mutation in the MAPT gene. iPSCs were generated from

early passages of fibroblasts by a retroviral reprogramming strategy

with four factors (Oct4, Sox2, Klf4, and c-Myc) (Takahashi et al.,
Authors
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2007; Takahashi and Yamanaka, 2006). The animal procedure for

testing teratoma formation was approved by the Gladstone Insti-

tutes and the University of California, San Francisco.

Preparation of ZFNs and Generation of Isogenic iPSC

Lines
A specific pair of five-finger ZFNs engineered to target a region

�30 bp upstream of the A152T mutation site was prepared by

Sigma. The ZFNs bound (uppercase) and cut (lowercase) the

following sequence on the MAPT gene: CCCCTCTATCATGTTt

catttACAGGGGGCTGATGG. Isogenic TAU-A152T-iPSC lines

were generated using this ZFN pair and a donor construct (An

et al., 2012; Corti et al., 2012; Li et al., 2012; Soldner et al., 2011).

Neuronal Differentiation of iPSCs
iPSCs were differentiated into neurons following a modified

version of published protocols (Chambers et al., 2009; Hu and

Zhang, 2009; Ring et al., 2012). Tauopathies were characterized

by western blotting and immunocytochemistry with different

TAU antibodies.

Human Neuropathology
Tauopathies were characterized by western blotting and immuno-

cytochemistry with different TAU antibodies on postmortembrain

tissues from a 56-year-old woman with clinical and pathological

PSP who carried the MAPT A152T variant and a 76-year-old man

who died of prostate cancer without cognitive complaints.

Statistical Analyses
Values are expressed as mean ± SD. Differences between means

were assessed by t test or analysis of variance (ANOVA). p < 0.05

was considered statistically significant.

Detailed methods, including isogenic iPSC generation and char-

acterization, neuronal differentiation, immunostaining, western

blotting, and tauopathy analyses can be found in the Supple-

mental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, two figures, and one table and can be found with this

article online at http://dx.doi.org/10.1016/j.stemcr.2013.08.001.
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