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If X is an arc in the complex plane C with 0 as an endpoint, then the preimage of X
under f (z) = z2 is also an arc, and the endpoints of f −1(X) are the points in the preimage
of the nonzero endpoint of X . In this paper, the author explores necessary and sufficient
conditions under which a chainable continuum in C has chainable preimage under f . The
paper contains an example of a chainable continuum X (the simple three-fold Knaster
continuum) embedded in the complex plane in such a way that 0 is an endpoint of X and
the preimage of X under the square map is not chainable.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

For this paper, let C denote the one-point compactification of the complex plane, and let ∞ be the point in C \ C. Let 0
denote the origin in C. A continuum is a nonempty, compact, connected metric space. A continuum is a planar continuum if
it can be embedded in C. Let f refer to the map on the complex plane given by f (z) = z2. An arc is a continuum which is
homeomorphic to the unit interval. An ε-chain is a finite collection of open sets, called links, indexed by {1,2, . . . ,n}, each
with diameter less than ε , such that each link intersects only the previous and subsequent links of the chain. The end-links
of a chain are the first and last links of the chain. A nondegenerate continuum X is chainable if for every ε > 0 there exists
an ε-chain covering X . A point p in a chainable continuum X is an endpoint if there exist ε-chains as mentioned above in
which p is in an end-link of each chain.

Let C be a finite collection of n open sets such that the intersection of any three elements of C is empty. Define the
nerve of C as a graph G in the following manner. G has n vertices, each corresponding to a unique element of C , and for any
two distinct vertices of G there exists an edge connecting the vertices if and only if the intersection of the corresponding
elements of C is nonempty. A tree-chain is a finite open cover whose nerve is a tree. If for every ε > 0 there exists a
finite open cover of a continuum X whose nerve is isomorphic to some graph P , then X is P -like. Note that a chainable
continuum is arc-like by the above definition.

A map g : X → Y is called an ε-map if for any x ∈ X , the diameter of g−1( f (x)) is less than ε . It is known that a
continuum X is chainable if and only if for every ε > 0 there exists an ε-map from X onto the unit interval I = [0,1] (see,
for example, [4, p. 114]).

If X is an arc in C with endpoints 0 and p, then f −1(X) can be written as X1 ∪ X2, where X1 and X2 are arcs such
that X1 ∩ X2 = {0} and each Xi maps homeomorphically via f onto X . Then f −1(X) is also an arc, and the endpoints of
f −1(X) are exactly the points in f −1({p}). This may lead us to believe that the same is true for all chainable continua
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which contain 0 as an endpoint. We will give conditions for which the above statement is true and an example for which
it is false.

2. Preservation of lack of chainability

The following theorem was proven by Rosenholtz in [8].

Theorem 1 (Rosenholtz). Let g : X → Y be an open map. If X is chainable, then Y is chainable.

Corollary 1. Let f (z) = z2 . If X ⊂ C is not chainable, then f −1(X) is not chainable.

Proof. This follows directly from Theorem 1 and the fact that f restricted to the domain f −1(X) is an open map. �
The span of a continuum X is the supremum of all ε for which there exists Z ⊂ X × X with π1(Z) = π2(Z) and for every

point (x, y) ∈ Z we have d(x, y) > ε . Lelek showed in [3] that chainability implies span zero for a continuum. Kawamura [2]
proved the following theorem.

Theorem 2 (Kawamura). Let g : X → Y be an open map. If X is has span zero, then Y has span zero.

Corollary 2. Let f (z) = z2 . If X ⊂ C is has positive span, then f −1(X) has positive span.

Proof. This follows directly from Theorem 2 and the fact that f restricted to the domain f −1(X) is an open map. �
Question. Let f (z) = z2. If X ⊂ C is a chainable continuum such that f −1(X) is also chainable, must 0 be an endpoint of X?

3. Sufficient conditions for preservation of chainability

The previous section demonstrates that chainability of X is necessary for chainability of f −1(X). We now give some
sufficient conditions for which f −1(X) is chainable. Let p be a point in a planar continuum X . The point p is accessible if
there exists an arc α in C which only intersects X at p. The point p is accessible from the unbounded complement of X if
there exists an arc α in C from p to ∞ such that α ∩ X = {p}.

Lemma 1. Let X be an embedding of a planar continuum containing 0 such that 0 is accessible from the unbounded complement of X .
Then f −1(X) is the union of two subcontinua X1 and X2 , each homeomorphic to X via f , such that X1 ∩ X2 = {0}.

Proof. Let α be an arc with 0 and ∞ as endpoints such that α ∩ X = {0}. Then f −1(α) is a simple closed curve separating
C into two components C1 and C2, such that f restricted to either of these components is a homeomorphism. Let Xi =
( f −1(X) ∩ Ci) ∪ {0} for i = 1,2. �
Lemma 2. Let X be the union of two chainable continua X1 and X2 such that X1 ∩ X2 = {p} and p is an endpoint of both X1 and X2 .
Then X is chainable.

Proof. Let f1 be an ε/2-map from X1 onto [0,1/2] such that f1(p) = 1/2. Let f2 be an ε/2-map from X2 onto [1/2,1]
such that f2(p) = 1/2. Let f3 the union of f1 and f2. Then f3 is an ε-map from X onto [0,1]. �
Theorem 3. Let f (z) = z2 . Let X be an embedding of a chainable planar continuum such that 0 is an endpoint of X . If 0 is accessible,
then f −1(X) is chainable.

Proof. Since X is chainable, it does not separate C, so 0 is accessible from the unbounded complement of X . The remainder
of the proof follows directly from Lemmas 1 and 2. �

The converse of Theorem 3 is false. Let α be an arc with 0 as an endpoint, and let X be the closure of a ray spiraling
around α with only α as the remainder. Each point in α is inaccessible. Then f −1(X) is the closure of two disjoint rays
spiraling around f −1(α), with f −1(α) as the remainder. This continuum is chainable.

Definition 1. Let X be an embedding of a chainable continuum with p as an endpoint. Define p to be a strong endpoint of
X if for every ε > 0, there is an ε-chain covering X whose links are convex, such that p is in an end-link of the chain.
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Theorem 4. Let f (z) = z2 . Let X be a planar embedding of a chainable continuum with 0 as a strong endpoint of X . Then f −1(X) is
chainable.

Proof. Let C be an ε-chain of convex links covering X with 0 in an end-link. Let D be the chain covering f −1(X) whose
links are exactly the components of preimages of links of C . It is easy to show that D is a chain with small mesh. Then
f −1(X) is chainable. �

While it has been shown that any chainable continuum with one or more endpoints can be embedded in the plane as a
continuum with 0 as a strong endpoint, our particular embedding determines the shape of the preimage. In addition, Bing
[1] showed that there exist embeddings of chainable continua which cannot be covered by chains of connected links of
arbitrarily small mesh. Therefore, Theorem 3 will not hold for all embeddings of chainable continua. We will later give an
example of an embedding of a chainable continuum with 0 as an endpoint whose preimage under z �→ z2 is not chainable.

4. Preimages of endpoints

If X is an arc with endpoints 0 and p, then f −1(X) is an arc whose endpoints are precisely the two points which map
via f onto p. However, if X is an arbitrary chainable planar continuum with chainable inverse f −1(X), it is not necessarily
true that all points the preimage of endpoints of X are endpoints of f −1(X). For example, if we transform the standard
embedding of the sin(1/x) continuum by a rigid translation so that 0 is an endpoint of the limit arc, then the preimage has
two endpoints, each of which maps onto the locally connected endpoint of the curve. If we translate the curve so that 0 is
the locally connected endpoint, then the preimage has four endpoints, each of which maps onto an endpoint on the limit
arc. The following theorem tells us something about endpoints of f −1(X).

Theorem 5. Let f (z) = z2 , and let X be a planar embedding of a chainable continuum. If f −1(X) is chainable and y is an endpoint of
f −1(X), then f (y) is an endpoint of X .

Proof. In Rosenhotz’s proof [8] that X must be chainable if f −1(X) is chainable and f is an open map, the first link of the
chain D covering X is the image of the first link of the chain C covering f −1(X). We can always index our links so that our
endpoint of f −1(X) is in the first link of C , so the image of this point is always in the first link of D . �
5. An example of lack of preservation of chainability

We now give an example of a chainable continuum X with 0 as an endpoint such that f −1(X) is not chainable.

5.1. Construction of X

Let C and D be chains. D refines C if every link of D is a subset of a link of C . The pattern of D in C is the set of pairs
(i, j) such that Di ⊂ C j . A pattern P is said to be monotone if either (a) for every (i1, j1), (i2, j2) ∈ P , if i1 > i2 then j1 � j2
or (b) for every (i1, j1), (i2, j2) ∈ P , if i1 > i2 then j1 � j2. Let C∗ denote the union of all the links of C .

Let C̃0 be a chain of convex links such that 0 is contained in exactly one link of C̃0 and the link containing 0 is a
positive distance from the end-links of C̃0. We will inductively construct each Cn+1 and C̃n+1. For each n � 0, let αn be a
simple closed curve containing 0 and ∞ which separates each link of C̃n into two components, and separates C̃∗

n into two
components. Define Cn+1 as follows. Let Cn+1,0 be a convex link containing 0 whose closure is contained in the link of C̃n

which contains 0 and has diameter less than 1/(2n+1). Choose each subsequent link Cn+1,i of Cn+1 such that

(1) Cn+1,i is contained in a link of C̃n ,
(2) Cn+1,i has two components, each of which is convex, one in either component of C \ αn ,
(3) 0 is contained in only one link of Cn+1,
(4) the diameter of each component of Cn+1,i is less than 1/(2n+1),
(5) Cn+1 contains a link in the last link of C̃n ,
(6) the last link of Cn+1 is contained in the first link of C̃n , and
(7) Cn+1 can be written as the union of two subchains such that the pattern in C̃n of each subchain is monotone.

Then Cn+1 is a 1/(2n)-chain since C̃n is a 1/(2n)-chain. Now let C̃n+1 be a chain such that each link of C̃n+1 is a
component of a link of Cn+1, and such that C̃∗

n+1 = C∗
n+1. Then C̃n+1 is a 1/(2n+1)-chain with convex links.

Let X = ⋂∞
n=1 C∗

n , and let Y = f −1(X).
Visual representations of the continua X and Y = f −1(X) are given in Fig. 1, where the gray regions represent the

nesting of open covers of Y .



R.P. Vernon / Topology and its Applications 158 (2011) 52–59 55
Fig. 1. Visual representations of X and Y .

Fig. 2. Two bonding maps on the interval which each yield X .

5.2. Bonding maps

For i = 1,2,3, . . . , we have Ci refines C̃i and C̃i refines Ci−1. Define φ : I → I and ψ : I → I as follows:

φ(x) =
{

1/2(3x + 1), 0 � x < 1/3,

3/2(1 − x), 1/3 � x � 1,

ψ(x) =
{

1 − 2x, 0 � x < 1/2,

2(x − 1/2), 1/2 � x � 1.

Then φ and ψ are maps corresponding to the pattern of Ci in C̃i−1 and the pattern of C̃i in Ci , respectively.
Then the pattern from the sequence of chains {Ci}∞i=1 indicates that X ∼= lim←−{I,ψ ◦ φ}, where ψ ◦ φ is given below (see

Fig. 2A):

ψ ◦ φ(x) =
{3x, 0 � x < 1/3,

3(2/3 − x), 1/3 � x < 2/3,

3(x − 2/3), 2/3 � x � 1.

In addition, the pattern from the sequence {C̃i}∞i=1 indicates that X ∼= lim←−{I, φ ◦ψ}, where φ ◦ψ is given below (see Fig. 2B):

φ ◦ ψ(x) =

⎧⎪⎨⎪⎩
3x, 0 � x < 1/3,

3(2/3 − x), 1/3 � x < 1/2,

3(x − 1/3), 1/2 � x < 2/3,

3(1 − x), 2/3 � x � 1.

5.3. The continuum Y = f −1(X)

Theorem 6. If Y = f −1(X) as described above, then every nondegenerate proper subcontinuum of Y is an arc.
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Proof. By its construction, any nondegenerate proper subcontinuum of X is an arc. Moreover, any nondegenerate proper
subcontinuum of X containing 0 is an arc with 0 as an endpoint. Any nondegenerate proper subcontinuum of Y not
containing 0 maps homeomorphically onto its image, and is thus an arc. Any nondegenerate proper subcontinuum of Y
containing 0 is contained in the preimage of its image; that is, in the preimage of an arc with 0 as an endpoint. Since this
preimage is an arc, we have that the subcontinuum of Y is contained in an arc, and is thus an arc as well. �
Theorem 7. Y is simple-4-od-like.

Proof. For i = 1,2,3, . . . , let Ki be the tree-chain whose links are exactly components of preimages under f of links of C̃i .
Note that the preimage of the link containing 0 has one component, whereas the preimage of any link not containing 0 will
have two components. Then each Ki is a tree-chain whose nerve is a simple-4-od, so Y is simple-4-od like. �
Theorem 8. Let H̃ be a graph isomorphic to the letter H. Then Y is H̃-like.

Proof. For i = 1,2, . . . , let Ci1 be the maximal subchain of Ci containing 0 whose pattern in C̃i−1 is monotone. Let Ci2 be
the set of links of C̃i which are not components of links of Ci1. Define Ti = Ci1 ∪ Ci2. Then Ti is a tree-chain whose nerve
is a simple triod. For each link Ti, j of Ti which is also a link in Ci1, let T ′

i, j denote the convex hull of Ti, j . Define Mi as

follows. For the link Ti,0 of Ti containing 0, let f −1(Ti,0) be a link of Mi . If Ti, j is a link of Ci1 but does not contain 0,
then f −1(T ′

i, j) has two components, each of which contains a subset ξ of f −1(Ti, j) such that f (ξ) = Ti, j . Define each such

ξ to be a link of Mi , and for each link Ti, j of C12, define each component of f −1(Ti, j) to be a link of Mi . Then Mi is a
tree-chain whose nerve is homeomorphic to H̃ , and for i = 2,3,4, . . . we have Mi ⊂ Mi−1, and the pattern of Mi in Mi−1
can be shown by either Fig. 3 or a vertical flip of Fig. 3. The domain is given by the dashed line, the range is given by the
solid line, each vertex in the domain is mapped to the nearest corresponding vertex in the range, and the map is linear on
each edge of the domain. Thus Y is H̃-like. �
5.4. Graph-like structure

A graph is a one-dimensional finite simplicial complex. The vertices and edges of a graph G will be denoted V (G) and
E(G), respectively. A simplicial map between two graphs is a map taking each vertex in the domain to a vertex in the range,
and taking each edge of the domain to either an edge or a vertex in the range. A simplicial map is light if the image of each
edge is nondegenerate. For two adjacent vertices v0 and v1, let 〈v0, v1〉 denote the edge connecting v0 to v1. A simplicial
map φ : G1 → G0 between graphs is ultra light if each component of the preimage of an edge of G0 is an edge of G1.

A graph G ′ subdivides a graph G if V (G) ⊂ V (G ′) and for every edge e ∈ E(G) there exists an arc (e, G ′) in G ′ such that

(1) (e, G ′) has the same endpoints as e,
(2) (d, G ′) ∩ (e, G ′) = d ∩ e for d, e ∈ E(G) and d �= e, and
(3) every vertex of V (G ′) belongs to some (e, G ′) and every edge of E(G ′) is an edge of some (e, G ′).

If G ′ subdivides G then for v ∈ V (G), e ∈ E(G), let (v, e, G ′) denote the edge in (e, G ′) which contains v as a vertex.
If φ : G1 → G0 is a simplicial map and G ′

0 subdivides G0, define a simplicial map φ′ : G ′
1 → G ′

0 to be a subdivision of φ

matching G ′
0 if φ′(v) = φ(v) for each v ∈ V (G1), and for each edge e ∈ E(G1),

(1) if φ(e) is degenerate then (e, G ′
1) = e, and

(2) if φ(e) is an edge of G0 then φ′ is an isomorphism of (e, G ′
1) onto (φ(e), G0).

5.5. A simplicial approach

Piotr Minc defined the following terms in [7] to help determine whether certain graph-like continua are chainable.
For a given graph G , let D(G) denote the graph such that

(1) the set of vertices of D(G) consists of edges of G , and
(2) two vertices of D(G) are adjacent if and only if they intersect as edges of G .

For a map φ : G1 → G0, let K (e) denote the set of components of φ−1(e) which are mapped by φ onto e. Let K (φ)

denote the union of all K (e). Define D(φ, G1) as the graph such that

(1) the vertices of D(φ, G1) are the elements of K (φ), and
(2) two vertices of D(φ, G1) are adjacent if and only if they intersect as subgraphs of G1.
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Fig. 3. The simplicial bonding map B .

Let d[φ] : D(φ, G1) → D(G0) be the map defined by d[φ](v) = φ(v) for each vertex v in D(φ, G1). Inductively define
dn[φ] = d[dn−1[φ]] for each n � 1. For a vertex v of D(G), let v∗ denote the corresponding edge of G .

Let φ : G1 → G0 be simplicial maps between graphs. Define d[φ,ψ] : D(φ ◦ ψ, G2) → D(φ, G1) to be the map such that
for each vertex v of D(φ ◦ ψ, G2), we have that d[φ,ψ](v) is the vertex of D(φ, G1) containing ψ(v∗). Define dn[φ,ψ] =
d[dn−1[φ],dn−1[ψ]]. Note that dn[φ ◦ ψ] = dn[φ] ◦ dn[φ,ψ].

The following theorems were proven by Minc.

Theorem 9 (Minc). If Ψ = lim←−{Xi, f i
i−1}, such that each f i

i−1 is a simplicial bonding map, then Ψ is chainable if and only if there exists
some n such that for every m > n, the bonding map f m

n can be factored through an arc.

Theorem 10 (Minc). Every simplicial map φ between two graphs can be factored through an arc if and only if d[φ] can be factored
through an arc.

For a graph G , define an edge selection S on G to be a function which maps every vertex v of G to a set of edges of G
such that each edge in S(v) contains v . If φ : G ′

1 → G0 is a simplicial map from a subdivision G ′
1 of G1 into G0, then φ is

consistent on S if there is a simplicial isomorphism λ from a subdivision H1 of G1 onto D(φ, G ′
1) such that

(1) (v, e, G ′
1) ⊂ [λ(v)]∗ for each v ∈ V (G1) and each e ∈ S(v), and

(2) [λ(v)]∗ ⊂ (e, G1)
′ for each e ∈ E(G1) and v ∈ V ((e, H1)) \ V (G1).

Let ψ : G ′
2 → G1 be a simplicial map from a subdivision G ′

2 of G2 into G1, and let S1, S2 be edge selections on G1, G2.
We say that ψ preserves (S1, S2) if

(1) ψ((v, e, G ′
2)) ∈ S1(ψ(v)) for each v ∈ V (G2) and each e ∈ S2(v), and

(2) for any two different edges e, e′ ∈ E(G ′
2) intersecting at a vertex v we have ψ(e) ∈ S1(ψ(v)) or ψ(e′) ∈ S1(ψ(v)).

Let N denote the either set {0,1, . . . ,n} or the set of all nonnegative integers. Let N1 denote N \ {0}. Let G0, G1, G2, . . .

be a sequence of graphs with N as the set of indices. Let Σ be a sequence of simplicial maps φ1, φ2, . . . such that for each
j ∈ N1, φ j maps a graph G ′

j subdividing G j into G j−1. Define a sequence of simplicial maps ψ1,ψ2, . . . such that ψ1 = φ1

and for each j ∈ N1 \ {1}, ψ j is a subdivision of φ j matching the domain of ψ j−1. For each j ∈ N1, let Σ j denote the domain
of ψ j . Let Σ0 = G0. For i, j ∈ N such that i > j, let Σ i

j denote the composition ψ j+1 ◦ · · · ◦ ψi mapping Σi into Σ j . We will

say that the inverse system {Σ j,Σ
i
j} is generated by the sequence Σ .

Let S j be an edge selection on G j for j ∈ N1. We say that Σ preserves the sequence S1, S2, . . . if φ j preserves S( j −
1, S j) for each j ∈ N1 \ {1}. We say that two inverse systems {K j, κ

i
j} and {H j, ν

i
j} are isomorphic if there is a sequence of

isomorphisms λ0, λ1, . . . where λ j : K j → H j such that λ j ◦ κ i
j = ν i

j ◦ λi for i > j � 0.

Theorem 11 (Minc). Let Σ be defined as above. Suppose φ1 is consistent on S1 and Σ preserves the sequence S1, S2, . . . . Let λ1 :
H1 → D(φ1, G ′

1) be a consistency isomorphism for φ1 , where H1 is a subdivision of G1 . Then the system {D(Σ
j

0 ,Σ j),d[Σ j
0 ,Σ j]} is

isomorphic to the system generated by the sequence d[φ1] ◦ λ1, φ2, φ3, . . . .
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Fig. 4. A (left): A seven-vertex simplicial figure H ; B (right): A six-vertex simplicial figure H .

Fig. 5. The bonding map M .

Let H denote the simplicial graph with six vertices which is isomorphic to the letter H , as shown in Fig. 4B, and let H ′
be the subdivision of H obtained by the addition of a vertex as shown in Fig. 4A. Let φ : H ′ → H be the map taking v6 and
v4 to v4, taking each other vi ∈ V (H ′) to the same-labeled vi ∈ V (H), such that φ is linear on each edge of H ′ . Then φ

is a simplicial monotone map. Let σ : H → H be the symmetry satisfying σ(v0) = v2, σ (v2) = v0, σ (v3) = v5, σ (v5) = v3,
and for all other vi ∈ V (H) we have σ(vi) = vi . Let σ ′ be the subdivision of σ matching H ′ . Note that σ and σ ′ can be
visualized by flipping the figure-H vertically.

Let B be as defined in Fig. 3, and let M be as defined in Fig. 5. Let B̃ = σ ′ ◦ B and M̃ = σ ◦ M . Then φ ◦ B = M ◦ φ and
φ ◦ B̃ = M̃ ◦ φ. By the proof of Theorem 8 we have that Y ∼= lim←−{Hi,hi}, where H0 = H ′ and for i = 1,2, . . . , the map hi is a

subdivision of B or B̃ matching Hi−1. Let P = lim←−{ J i,ki}, where J0 = H and for i = 1,2, . . . , the map ki is a subdivision of

M or M̃ matching J i−1. For each i, define σi : Hi → J i to be the subdivision of σ matching J i . Let σ∞ be the induced map
from lim←−{Hi,hi} to P . Then σ∞ is monotone, and P = σ∞(lim←−{Hi,hi}).

Since every proper nondegenerate subcontinuum of Y is an arc and σ∞ is monotone, every proper nondegenerate sub-
continuum of P is also an arc. So P is atriodic. Note that P is also the inverse limit of graphs with simplicial bonding maps.
Then by Minc [6], since P is atriodic and is the inverse limit of graphs with simplicial bonding maps, then P is weakly
chainable if and only if P is chainable.

Lemma 3. If P is as above, then P is not chainable.

Proof. The following proof mirrors that in Example 5.12 of [7]. Let S be the edge selection on H defined by S(v1) =
{〈v0, v4〉}, S(v4) = {〈v1, v4〉, 〈v4, v5〉}, and for each other vi ∈ V (H), define S(vi) to be the set of all edges of H containing
vi . Then M and M̃ are consistent on S and preserve (S, S). Let λ and λ̃ be consistency isomorphisms for M and M̃ respec-
tively. Let M1 = d[M] ◦ λ and M̃1 = d[M̃] ◦ λ̃. Then M1 and M̃1 are consistent on S as well. Let λ′ and λ̃′ be consistency
isomorphisms for M1 and M̃1, respectively. Let M2 = d[M1] ◦ λ′ and M̃2 = d[M̃1] ◦ λ̃′ . The maps M1 and M2 can be seen in
Figs. 6A and 6B, respectively. Notice that M2 and M̃2 are ultra-light.

Let Σ be an infinite sequence of simplicial maps φ1, φ2, . . . , each of which is either M or M̃ . By {Σ j,Σ
i
j} we denote the

system generated by Σ . We claim that Σn
0 cannot be factored through an arc. Clearly, this holds for n = 1. Now suppose

the claim is true for any sequence of n − 1 maps each of which is either M or M̃ . In particular, assume the claim is true for
Σ2, . . . ,Σn .

If Σ1 = M then set λ1 = λ,ψ1 = M1, and λ′
1 = λ′ . If Σ1 = M̃ then set λ1 = λ̃,ψ1 = M̃1, and λ′

1 = λ̃′ . Using The-

orem 11, we have that the system {D(Σ
j

0 ,Σ j),d[Σ j
0 ,Σ i

j]}n
j=0 is isomorphic to the system generated by the sequence

d[φ1] ◦ λ1, φ2, . . . , φn . Using Theorem 11 again, we have that the system {D2(Σ
j
,Σ j),d2[Σ j

,Σ i ]}n is isomorphic to the
0 0 j j=0
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Fig. 6. A (left): The map M1; B (right): The map M2.

system generated by the sequence d[ψ1]◦λ′
1, φ2, . . . , φn . Let Γ denote the sequence d[ψ1]◦λ′

1, φ2, . . . , φn and let {Γ j,Γ
i
j }n

j=0
denote the system generated by Γ .

Suppose Σn
0 can be factored through an arc. Then d2[Σn

0 ] and thus Γ n
0 can also be factored through an arc. Since the

map Γ 1
0 = d[ψ1] ◦ λ′

1 is either M2 or M̃2, it is ultra-light. Then Γ n
1 can be factored through an arc. But the domain of Γ 1

0
is H , so the system {Γ j,Γ

i
j }n

j=1 is generated by φ2, . . . , φn , and by our assumption Γ n
1 cannot be factored through an arc,

contradicting our assumption. So the inverse limit of the system {Σ j,Σ
i
j} is not chainable and has positive span. �

Then P is also not weakly chainable, meaning P is not the image of a chainable continuum. But P is the image of
lim←−{Hi,hi} ∼= Y , so this implies that Y is not chainable.

Corollary 3. If Y = f −1(X) as described above, then Y is an indecomposable simple-4-od like continuum which is not arc-like.

Question. Is Y simple-triod-like? An example of a continuum which is simple-4-od-like but not simple-triod-like is given
in [5].

Question. If X is a planar embedding of a chainable continuum with 0 as an endpoint, is f −1(X) at most simple-4-od-like?

Question. Can we characterize the collection of continua with chainable preimages under z �→ z2?
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