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Abstract

We construct an endomorphism of the Khovanov invariant to prove H-thinness and pairing
phenomena of the invariants for alternating links. As a consequence, it follows that the Khovanov
invariant of an oriented nonsplit alternating link is determined by its Jones polynomial, signature,
and the linking numbers of its components.
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1. Introduction

Khovanov invariant is a cohomology theory for oriented links with values in graded
abelian groups, and specializes to the Jones polynomial by taking graded
Euler characteristic of those cohomology groups (Theofeff). Khovanov [7] con-
structed the invariant in a search of connections between combinatorial invariants and
differential geometric invariants of three- and four-dimensional manifolds. He inter-
preted his coboundary map as the image of a functor from the category of two
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dimensional cobordisms between one dimensional manifolds to the category
of Z[c]-modules.

The Khovanov invariant specialized by setting= 0 and tensoring withd (will be
just called the Khovanov invariant from now on) has been computed by Bar-[\a&jn
for the prime knots with up to 11 crossings. From Bar-Natan’s data, two conjectures
[2,5] on the values of Khovanov invariant for alternating knots were formulated by
Bar-Natan, Garoufalidis, and Khovanov. The conjectures (Theofiethand 1.4) imply
that the Khovanov invariant of an alternating knot determines and is determined by its
Jones polynomial and signature.

The following is the theorem if7] which states that the Khovanov invariant spe-
cializes to the Jones polynomial. The Khovanov invariant of a (relatively) oriented
link L in rational coefficients is denoted b¥ (L) following [7], and is defined in
Section?2. Its associated polynomial is denoted Ky:(L) as it is in[2].

Kh(L)t. ) LS tig/ dimH (L),
Theorem 1.1 (Khovanov[7]). For an oriented link L. the graded Euler characteristic

Y (=Dig/ dimHHi (L)
i,jeZ

of the Khovanov invariant{(L) of L is equal to(¢g~1+¢) times the Jones polynomial
V(L) of L.

> DigldimHY (L) = (g + V(L) g,
i,jeZ

In terms of the associated polynomikli(L),
Kh(L)(—1,q) = (@ "+ V(L) 45—,

The following two theorems are the conjectures[2h proved in this paper.

Theorem 1.2 (Bar-Natan[2, Conjecture 2]and Garoufalidis[5]). For any alternating
knot L, the Khovanov invariant${"-/ (L) of L are supported in two lines

j=2i—a(L)£1.
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In other words the equality
Kh(L)(t,q) =q "D (g™t A(tg®) + q - B(1t¢®)

holds for some polynomials A and ®herea(L) is the signature of L

Theorem1.2, in fact, holds for any (relatively) oriented nonsplit alternating link
(See Theoren8.12)

Definition 1.3 (H-thinness[8]). A diagram/knot/linkD is H-thin if its Khovanov in-
variant H(D) (or H(D) if D is a diagram) is supported in two diagonal lines as in
Theorem1.2 up to a shift of the grading.

Theorem1.2 implies that any nonsplit alternating link is H-thin.

Theorem 1.4 (Bar-Natan[2, Conjecture 1]and Garoufalidis[5]). For an alternating
knot L, its Khovanov invariantsH’/ (L) of degree differencé&l, 4) are paired except
in the Oth cohomology group.

More precisely in terms of the polynomiaKi (L), the equality

Kh(L)(t,9) =g (@ + @)+ (g +1¢%-q) - C(t,q)

holds for some integer s and some polynomial C

Theorem1.4 was extended to (relatively) oriented nonsplit alternating links in The-
orem4.5.
Combining Theorem4..2 and 1.4, we can writeKh(L) as

Kh(L)(t,q) =q " Plq +q) + (¢ +14%- q) - KN (L)(1¢?))

for some polynomialK 7’ (L).

As it is discussed in[2,5], Theorems1.2 and 1.4 with Theorem 1.1 imply
that the Khovanov invariant, or equivalently the associated polynokialL), of an
alternating knot_ is completely determined by the Jones polynomial and the signature
of L.

Fortunately, that is not the case for nonalternating knots. A counterexample can be
found in [3]: 10136 and 1%, both have signature-2 and the same Jones polynomial,
but their Khovanov invariants do not agree.

The organization of the coming sections is as follows. Secflononsists of a
brief summary of the Khovanov invariant. Secti8ns devoted to our proof of Theo-
rem 1.2 In Section4, an endomorphism of Khovanov invariant is defined and used to
prove 1.4.
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We follow [9,4] for basic notions in knot theory and graph theory, di§l for
notations and terminologies related to the Khovanov invariant. We only need a relative
orientation to define the Khovanov invariant, so an orientation and oriented can be read
as a relative orientation and relatively oriented.

2. Khovanov invariant

In this section, the construction and some properties of Khovanov invariant in
[7] are summarized. Khovanov’s original construction is more general, but we will
concentrate on a specialized case with coefficient&inThe interested reader should
read[7].

2.1. Construction

2.1.1. Cubes of diagrams

Let L be an oriented link an® be its diagram, a regular projection bftogether
with the information of relative height at each double point. A double poinD afan
be resolved in two ways.

)(— X — X

O-resolution 1-resolution

Let Z be the set of double points ob. Each subset7 of Z corresponds
to a complete resolutionD(7) of D in which points in J are resolved to
their 1-resolutions, points not in7 are to their O-resolutions. Regard those
subsets ofZ as vertices. For each pair of verticgs and 7' satisfying 7 c J’
and |7/ — J| = 1, there is a directed edge frogf to [J'. A directed cube is
constructed.

2.1.2. Cubes of modules
Let A = Q1 ® OQx be a two-dimensional module ovér with a multiplicationm, a
comultiplication A, a unit:, and a counit: defined as

m(l®1l =1,
mlX)=m(XQ1L = X,

mxX®x) = 0,
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AD) =1X+X®1,

AX) = X® X,
(1) = 1,
(1) = 0,
e(x) = 1.

For each vertex.7 of a cube, assign a tensor product of as many copies
of A as the number of components ab(7), and denote it byM (D).
There is a 1-1 correspondence between those copied @nd the components
of D(J).

2.1.3. Chain complexes
A chain complex can be constructed from the cube of modulesthtshain group
is a direct sum of all the modules over verticesi agflements.

()= P My
|T =i

To define the coboundary map choose an ordering af—the set of crossings of
D, and regard7 C Z as an orderedJ|-tuple of its elements in the chosen order
instead of just a subset df.

For a homogeneous element M (D), dx lies in the sum of all the modules over
those vertices which are end-points of the directed edges ffom

dx € &b M 7/(D) for x € M 7(D).
JCT T ~T|=1

Each homogeneous componentdds defined in the way that : AQA — A is applied
to corresponding modules if two components merge into one,Aand — AQ®A s if
one component splits to two. If the order¢d7| + 1)-tuple 7 followed by the element
in J'—J is an odd permutation of the orderéd7 |+ 1)-tuple 7', —m or —A, instead
of mor A, is used for theM 7(D) — M 7(D) component ofd. With this choice of
signs, d satisfiesd? = 0.

2.1.4. Relation to TQFT

The algebraA above is a Frobenius algebra and it is related to a two-dimensional
topological quantum field theory. There is a functeérthat maps one-dimensional
manifolds consisting of disjoint simple closed curves tA®*’s, and cobordisms in
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the following figure to:
F(S3) =m, F(S%) = A, F(S}) = 1. F(S9) = ¢, F(S3) = (permutation, F(S1) = id.
o 7/ 7 e % L
S
The unit, counit, (co)associativity, (co)commutativity, together with the identity
Aom= (m®id)o (id®A)
ensures well-definedness Bf (See[7].)

1 9oy

unit assoclativity commutativity

1\

counit coassociativity cocommutativity

g

Aom=(m@id)e(id2A)

=

0

=

a

From the viewpoint of the previous sections, well-definednesE ofplies d? = 0.
The following figure tabulates all the possible relative locations of two crossings and the
associated surfaces obtained by continuous change of resolutions of the two crossings
one after the other.
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J3350 3000
3 8 &=18 § &=1
%

I

o0 %S

For d? to be equal to 0, those in the first two columns from the left only require
andA to be (co)commutative, the top right one requine$o be associative, the middle
right one requires\ to be coassociative, and the bottom right one requires the identity
Aom = (m®id)o (id ® A). The unit and counit can be dropped if we are concerned
only aboutd? = 0. (See[1] for more discussion of Frobenius algebra associated to a
two-dimensional TQFT.)

2.1.5. Grading on the chain groups

A is a graded modulex is of degree—1, 1 is of degree 1M (D) has a grading
induced from that ofA. Note thatm and A are maps of degree-1 with respect to
these gradings.

The chain grourfi(D) above has a grading shifted from thoseMf; (D):

c'(D)= P MsD)-i).
| T =i

M{k} means a module identical td with a shifted grading. An element of degrge
in M is of _d_egreej —k in M{k}. _

Define C"/(D) as the degre¢ component ofC' (D). Due to the shiftsd is now
degree preserving, so thaf (D) is also decomposed &; 7 (D).

A chain complexC(D) is defined fromC(D) with the orientation ofD taken into
account.
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For each crossing oD, a sign is given as below (Note that this is opposite to the
sign convention in7].)

Py Py

+ —_

Let x(D) and y(D) be the number of negative crossings and positive crossings of
D, respectivelyC(D) is defined as
C(D) = C(D)[x(D)]{2x(D) — y(D))
with the same coboundary map Square brackets indicate a shift of the indices of

chain groups, i.e.,

t+x(D) Jj+2x(D)—y(D)

CH(D) = (D).

2.1.6. Example
Here is an illustration of what had happened in the previous sections to the following
diagramD of the lefthanded trefoil:

2 O ) Qb &D({a, B

I= {a b, ¢}
a<b<c D({a b, ¢})
D({a c})

)
@ - @ """
D(g)

D({ed) (}0 ______ > &) D({B, )

Numbers for components of a resolution indicate which piece Af
corresponds to which component, dotted edges indicate the places whem —A
should be used.

(D) = My(D) =ARA A,
C'(D) = M@ (D) ®M (D) &M (D) = AR A) B AR A) ® (AR A),
CX(D) = Ma)(D) ® Ma.)(D) ® M) (D) = A DA DA,

—3
C (D) =Mpupag(D)=AQA,
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[0
XQXQX € EO’_s(D) N 0:| e@l’_s(D),
0

—0,1 d [ x®1 —1.1
1x®1eC (D) — | 1®x | €eC (D),
_x®1

0 X

1®X_ =11 d _0 =21
x®1| el (D) S | x | el (D),

o
{1 e L _1ox—x®1el (D),
0

spanx ® X ® x}
{0} ’

1®x 1®x X®1 Xx®1
span{{l@x]{x®1:|[1®x:|,[x®1:|}
gl‘l(D)Z 1®x X®1 X®1 1®x ’
1® X X®1 X®1
spand | X®1 |,| 1®x |, x®1
X®1 X®1 1®x

go,—s(D) _

3,3 sparfl® X, x ® 1}

D) = spafl®x +x® 1}’
—35 spafl ® 1}
H(D) = ——M—M—,
(D) 0]
—i,j _Jo for (i, j) = (0, —3), (1, 1), (3,3),0r (3,5),
H(D) = {O otherwise

x(D) = 3 and y(D) = 0 for this diagramD. (A knot or a knot diagram has only
one relative orientation.) Hence,

@ fOr (l7 .]) = (_37 _9)7 (_25 _5)7 (07 _3)’ or (07 _1)3
0 otherwise

HZ’J(D) _ ﬂi+3,j+6(D) _ {
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2.2. Invariance

To defineH(L) as H(D), we need to see invariance &f(D) under a change of
ordering of Z and under the Reidemeister moves. We will just state isomorphisms.
Detailed proofs can be found 7, Chapter 5]

2.2.1. Change of ordering

If the | J|-tuple J with respect to one ordering & is an even permutation Qff
with respect to the other orderindy] ; component of our isomorphism between them
is the identity. Otherwise, it is minus identity.

2.2.2. Reidemeister moves
) / ) /\/
-~
/
Type 1 Type I Type III

[Type 1]

D D' D'(*0) D'(*1)

Let a be the crossing which appears only . The setZ’ of crossings ofD’
is Z, the set of crossings db, followed by a as an orderedZ’|-tuple. Let D’(x0)
and D’(x1) denote D’ with only its last crossing (that is) resolved to its 0- and
1-resolutions, respectively.

As a group,C(D’) is a direct sum ofC(D'(x0)) and C(D'(x1))[—1]{—1}. De-
note the part of the coboundary mapP on C(D’) that maps fromC(D’(x0)) to
C(D'(x1)[-11{—1} by d}  ;, and the coboundary maps @D (x0)) and C(D(x1))
by dy anddj, so that

d'(y +2) = dy(y) +dg_,1(y) — di(2)

for y € C(D'(x0)) and z € C(D'(x1))[—1]{—1}. Similar notation should be compre-
hended similarly from now on.
Define

and
Xo={y®1+z|ly € C(D),z € C(D' (x1)[—1]{—1}}.

Here C(D'(x0)) is identified withC(D) ® A.
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X1 and X, are subcomplexes @f(D’), C(D’) is decomposed a¥1 @ X» as a chain
complex, X» is acyclic, and

p: X, — C(D){1}
YR1I+z®X > 2

induces an isomorphism betweéf(D’") and H (D).
[Type 1]

S
D(*00)  D(*10)  D(*01)  D(*11)

\ D 0D 0 § 0
IS Q ™~

D D

As before, the sef’ of crossings ofD’ is Z, the set of crossings db, followed by

a, thenb as an orderedZ’|-tuple.
This time,

X1 = {z+a(z)|z € C(D'(x01))[-1]{—1}},
X2 = {z+d'ylz, y € C(D'(x00))},

X3 = {z+y®1z,y € C(D'(x11)[-2]{-2}},

whereo(z) = —dfy; ,11(z) ® 1 € C(D'(x10)[—1{—1} ~ C(D' (*1D))[-1{-1} ® A.
Then,C(D’) is a direct sum of its subcomplexés;, X», and X3, X» and X3 are
acyclic, and

p: C(D)[-1){-1} ~ C (D' (+01)[-1]{-1} — X1 NC (D)
z — (=1 (z + «(2))

induces an isomorphism betweéf(D) and H(D').
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[Type 1]

D 2y

QR

D(*0) | D(*100) D(*110)

Qo RN

D(*000) D(*010) D(*101) D(*111) D'(*000) D'(*010) D'(*101) D'(*111)
{ (
A AL Plmp;
D(*001) D(*011) D(*1) D'(*001) D(*011)  D'(*1)

Again, a,b,c andd’,b’, ¢’ are the last three elements ihand Z’, and the others
are in the same order.
Definew, B, o/, f’ as
o: C(D(x110)[-2l{~2} — C(D(x010)[~1]{~1} ~ C(D(+110)[-1H{~1} ® A,
Z —z®1
f: C(D(+100)[-1]{~1} — C(D(+010)[-1]{-1},
z > ad100-110(2)
o 1 C(D'(+110)[-2]{~2} — C(D'(+100)[~1}{~1} ~ C(D'(x110)[~1l{-1} ® A,
z —z®1
B C(D'(x010)[~1]{~1} —> C(D'(x100)[~1]{~1}.

! 3/
z > — odp10-,110(2)

C(D) andC(D’) can be decomposed into their subcomplexes as below.

C(D) = X1 0 X2 ® X3,
X1 = {x + B(x) + ylx € C(D(x100)[—1]{—1}, y € C(D(+1)[-1|{-1}},
X2 = {x +dyl|x, y € C(D(x000))},
X3 = {a(x) +da(y)|x, y € C(D(*110)[-2|{-2}};
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CD)=Y1®Y20 Y3,
Y1 = {x + B/ (x) + ylx € C(D'(x010)[-1]{—1}, y € C(D'(x1))[-1]{—1}},
Y2 = {x +d'y|x, y € C(D'(x000))},
Y3 = {¢/(x) +d'd/ (y)lx, y € C(D'(x110)[-2]{~2}}.

As before, X2, X3, Y2, Y3 are acyclic,C(D(x100)[—1]{—1} and C(D’(x010))[—1]
(=1}, C(D(*1)[-1]{—1} andC(D’(x1))[—1]{—1} are naturally isomorphic, an#l; is
isomorphic toY; via

pix+B)+yr— x4+ 0 +y.
2.3. Properties
The following results are proved ifY] and will be used in the coming sections.
Proposition 2.1. For an oriented n component link diagram, D
C(D)=0
unless;j = n(mod 2.
Corollary 2.2. For an oriented n component link, L
H(L)=0
unlessj = n(mod 2.
Proposition 2.3. For a disjoint unionD L1 D’ of two oriented link diagrams D and’,
C(DuD)=C(D)®C(D).
Corollary 2.4. For a disjoint unionL U L’ of two oriented links L and.’,
H(LUL") =H(L) QH(L).

Proposition 2.5. The Frobenius algebréA, m, A, 1, ¢) is isomorphic to its dual algebra
(A*, A*, m*, &, 1%).

Proposition 2.6. Let D' be the mirror image of an oriented link diagram D. The
complexC(D") is isomorphic to the dual of (D).
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Corollary 2.7. For an oriented link L and its mirror imagé.',
H(LY) = (H(L))*.

Theorem 2.8 (Theoreml.1). For an oriented link L. the graded Euler characteristic

> (=g dimHH (L)

i,jeZ

of the Khovanov invariant{(L) of L is equal to(g~1+¢) times the Jones polynomial
V(L) of L.

> (=D dimH (L) = (¢ + V(L) yie
i,jeZ

In terms of the associated polynomi&li(L),

Kh(L)(—1,q) = (@ "+ V(L) 45—,

3. H-thinness of alternating links

In this section, we prove Theoreh.2 The proof is based on induction on the
number of crossings. We will show that the support of the Khovanov invariant of a
nonsplit oriented alternating link is included in the union of the supports for two such
links with fewer crossings, then that the two lines of the two supports agree.
3.1. Exact sequences

Theorem 3.1. The chain complexe§(D), C(D(x0)), and C(D(x1))[—1]{—1} form a
short exact sequence

0 — C(D(x1))[-1]{—1} — C(D) — C(D(x0)) — 0

with degree preserving mapso that?(D) is an extension of the kernel and cokernel
of the connecting map as a bigraded-module

S 7 N DE0) S H THDED)) (-1) > H (D) — H (D(x0))
S H (DED) -1} — -+

__In particular, the support of (D) is included in the union of the support of
H(D(x0)) and H(D(x1))[—1]{—1}.
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Proof. We have already seen th@tD) is decomposed a& D (x0)) ®C (D (x1))[—1]{—1},
and the coboundary magh can be written as

d(y +z) = doy + do-1y — daz.
Now, it is easy to see that
0 — C(D(x1)[-1]{—1} — C(D) — C(D(x0)) — 0

is a short exact sequence of chain complexes (after a little adjustment of sign), and
that 6 : ﬁl(D(*O)) — ﬁlH(D(*l))[—l]{—l} is induced bydp;. O

3.2. Properties of black and white coloring of alternating link diagrams

Let D be a link diagram. For brevity of the statements to follow, let us think of
diagrams ons? rather than onR?. The regions ofs? divided by D can be colored
black and white in checkerboard fashion.

At each crossing, a coloring of nearby regions falls into one of the two following
patterns:

N g
N 7
A B

>4 XX

As it is shown above, adjacent alternating crossings have the same coloring pattern
of nearby regions. Hence, in a coloring of a nonsplit alternating diadbaranly one
of the pattern A or B appears for every crossing. Reversing the coloring changes that
pattern.

Resolutions of a colored diagram have induced colorings.
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Definition 3.2. For a nonsplit alternating diagra®, the coloringof D is the coloring
of D in which only pattern A appear3he coloringof a resolution oD is the coloring
of that resolved diagram induced from the coloringCof

For the coloring ofD (%) (O-resolutions of pattern A), the trace of each crossing lies
in a white region. Now, our claim is:

Proposition 3.3. For a reduced nonsplit alternating diagram ,Dthe components
of D(®) bound nonoverlapping black disks in the coloring of it. Each black
disk corresponds to each of the black regions in the coloring of D. Furthermore
every pair of black disks are connected by a chain of black diskéch are connected
by the trace of the crossings of D. Alswo trace of crossing connects a black disk to
itself.

Here is visualization of our claim for diagrams of the lefthanded trefoil and the
figure 8 knot. (The unbounded black region shown below is a diskip

E-8 ()

Proof of Proposition 3.3. At each crossing, its O-resolution separates incident black
regions. That gives a correspondence between the black regions in the coloiihg of
and those in the coloring oD (@). (While most white regions oD merge in the
process.)

In the coloring of D(¥), there is no trace of crossing in black regions. That
implies:

e if there is a black region which is not a disk, thénis split.

o if there is a pair of black disks which cannot be connected by any chain,Rhien
split.

e if there is a trace of crossing connecting a black disk to itself, that crossing is
removable, sd is not reduced.

Q) %

Definition 3.4. For a link diagramD, let ¢(D) be the number of crossings &f, and
o(D) be the number of components 6f(¢).
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For D in Proposition3.3, o(D) agrees with the number of black disks in the coloring
of D(9).

Let Z be an ordered set of crossings Bf Note thatD(Z) agrees withD' (%), and
that o(D) + o(D') equals the total number of black and white regions in the coloring
of D, which isc(D) + 2.

We need one further step for the inductive argument to be used in our proof of
Theorem1.2

Proposition 3.5. Let D be a reduced nonsplit alternating link diagram wittD) > O.
Then one of the following holds

(A) There is a pair of black disks in the coloring @i(¥) connected by exactly one
crossing

(B) There is a pair of black disks in the coloring &f (@) connected by exactly one
crossing

(C) D is a connected sum aD’ and the Hopf link for another nonsplit alternating
link diagram D’ with ¢(D) — 2 crossings

p|2[D) |2

Proof. Sinceo(D) + o(D") = ¢(D) + 2, one of the following holds:

(@) o(D) > ¢(D)/2+ 1.
(b) o(D") > ¢(D)/2+ 1.
(€) o(D) = o(D") = c(D)/2+ 1.

[@) = (A)] For o(D) black disks to be connected to each other by chains of
connected disks, there are at leagtD) — 1 different pairs that are connected by
crossings. If 2o0(D) — 1) > ¢(D), then at least one of those pairs is connected by
exactly one crossing.

[(b) = (B)] Same as (a}= (A).

[(c) & not (A) & not (B) = (C)] To fail (A), there are exactly(D) — 1 different
pairs that are connected by crossings and those pairs are connected by exactly two
crossings.

Consider a graph consists ofD) vertices and(D)—1 edges. Each vertex represents
each black disk. For each pair of black disks connected by two crossings, there is
an edge joining the corresponding pair of vertices. This graph is connected, so it is
a tree.
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For an edg€a, b}, mark thea-end of it with arrow if the two crossings connecting
the diska and b are adjacent on the boundary af For example,

b a e d
P> QPc—@<—>@
c f

®

A vertex of a tree is called a pendent vertex if it is incident with only one edge,
and an edge is called a pendent edge if it is incident with a pendent vertaxs &
pendent vertex, the unique edge incident vdtts necessarily marked at tteeend. Ifb
is not a pendent vertex, at least two edges have mabkend, since the two crossings
connecting diskd and c and those connecting disksand d never alternate.

If o(D) =2, then there is only one edge, that is a pendent edge, and both ends of
that edge is marked. Far(D) > 2, let p be the number of the pendent vertices. The
number of the pendent edges is alsoThere are at leasp + 2(o(D) — p) marked
ends, but the number of nonpendent edges(®) — 1 — p, so there is at least one
pendent edge with both ends marked. That implies (C) (up to relocatiax)of

7B — |7D

colored D(@) colored D

Lemma 3.6. For a reduced nonsplit alternating diagram ,Dﬁi’j(D) is
supported in the box0<i<c(D) and —o(D)<j<2c(D) — o(D) + 2, with

ﬂO,—o(D)(D) _ gc(D)’ZC(D)_O(DH_Z(D) -0

Proof. First of all, it is clear from the construction @ (D) thatC ™’ (D) = 0 unless
0<i<ce(D).

When a resolution oD is changed to another resolution Bf by replacing one
O-resolution by 1-resolution, the number of components either increases or decreases
by one. That ensure@ "’ (D) to be supported in-o(D) < j<2c(D) —o(D) + 2.

Proposition3.3 implies thatD(#) has one more component than abya) has, be-

cause two black disks merge into one in the process. In termsC df(D)
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this means

Sijo | Q if i=0,j=—o0(D),
¢ (D)—{o it i > 0.7 = —o(D).
so one half of the result follows.
For the other half, look at the other enfl(Z) = D'(#) also has one more component
than anyD(Z — {a}) = D'(a) has, so that

(D) = { Q if i =c(D),j=2c(D)—o(D)+2,
0 if i <c(D),j=2c(D)—o(D)+2 O

Let D be a diagram satisfying (A) in Propositiodl5. Let a be a crossing oD
connecting a pair of black disks that no other crossing connects. Choose an ordering
of Z in which a comes the last. Them)(x0) still has the property thab(x0)(#) has
one more component than amy(x0)(b) has. The use of (A) is that it allow® (x1)
to have that property, too.

Corollary 3.7. In the above setting ﬁi""(D(*O)) is supported in the box
0 < i < ¢(D(0) and —o(D(0)) < j < 2c(D(x0)) — o(D(x0)) + 2, with
H P b0y = @ and H/(D(1) is supported in the box
0 < i < ¢(Dx1) and —o(D(x1)) < j < 2c(D(x1)) — o(D(x1)) + 2, with

gO,—o(D(*l))(D(*l)) _ gc(D(*l)),2c(D(>kl))—o(D(*1))+2(D(*l)) _ Q.

Finally, to apply induction hypothesis tB(x0) and D(x1) later on, they need to be
nonsplit alternating.

Proposition 3.8. In the above settingD (x0) and D(x1) are nonsplit alternating

Proof. Alternating property is easy to see.

To be nonsplit, their black disks in the induced coloring have to be connected. That is
clear for D(x1). For D(x0), if the black disks ofD(¥) are disconnected after removing
a, thena was a removable crossing D, which contradictdD being reduced. [J

3.3. Signature of an alternating link

This section consists of the result [ and an application to alternating links, to
relate the shift with the signature in Theoren?

Definition 3.9 (Goeritz matrix: following Section 1 d6]). Let D be an oriented link
diagram. Color the regions @2 (or $2) divided byD in checkerboard fashion. Denote
the white regions byXg, X1, ..., X,. Assume that each crossing is incident to two
distinct white regions. Assign an incidence numigés) = +1 to each crossin@ as
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in the figure below. For &, j <n define

% = { — 24 incident to bothx; and x; (@) fori#j,
l - . .
! _Zogkgn,k;ﬁi 8ik fori =j.

The Goeritz matrixG(D) of D is then x n (not (n + 1) x (n + 1) 1) symmetric
matrix G(D) = (gij)r<i,j<n-
a

MM M P M

m(a)=+1 nla)=-1 Type I Type 1I

The signature of an oriented link can be obtained from the signature of Goeritz
matrix of its diagram by adding a correction term.

Theorem 3.10(Gordon and Litherland6, Theorem 6). For an oriented link L

o(L) = signG (D) — (D)

for its diagram O whereu(D) = > n(a), summed over all crossings a of type (Bee
the figure above

Proposition 3.11. For an oriented nonsplit alternating link L and a reduced alternating
diagram D of L, (L) = o(D) — y(D) — 1.

Proof. In the reversed coloring dD, n(a) = 1 for any crossinga, components of the

resolution D (%) bound nonoverlapping white disks, crossings are of the type Il, and

— crossings are of the type |, so that; <O for i # j, g; >0, and u(D) = y(D).

Reducedness dD ensures that each crossing is incident to two distinct white regions.
Since

n
Yo sxxi= ) lgijlti —x)?+ ) Igiolk? >0,

1<i,j<n 1<i<j<n i=1
G (D) is a positive-definite matrix, and hence,
a(L) =signG(D) — u(D) = rankG (D) — y(D) = o(D) — 1 — y(D). O
3.4. Proof of Theorem 1.2
The proof is based on induction on the number of crossings of a link diagram.
First, we prove the theorem for some numbegL) instead ofs(L), and then, show

s(L) = o(L). For convenience of proof, we will restate Theordm2 in more detailed
and extended form as follows.
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Theorem 3.12. For any oriented nonsplit alternating link,LK A (L)(z, g) is supported
in two linesdeqq) = 2dedt) —o(L) + 1, its nonzero coefficient of the smallest degree
in t is on the linedeqgq) = 2dedt) — a(L) — 1, its nonzero coefficient of the largest
degree in t is on the linglegqg) = 2dedr) — o(L) + 1, and those coefficients ark

In other words

m
Kh(L)(t,q) =Y _ (ait'q? 7B = 4 byl gZ=oWHY
i=p

for somep <m with a, = b,, = 1.

The lines de¢y) = 2dedqr) — s(L) — 1 and degy) = 2dedr) — s(L) + 1 will be
called the upper diagonal, and the lower diagonal, respectively, and the positions of
ap, =1 andb,, = 1 will be referred to as the top &p, 2p —s(L) — 1) and the bottom
at (m, 2m — s(L) + 1), thinking of the table of coefficients in which the powers tof
increase from left to right, and the powers @fincrease from top to bottom. These
terms will be applied to Khovanov's cohomology groups as well.

Theorem 3.13. For any nonsplit alternating link diagram ,Dﬁi'j(D) is supported in
two linesj = 2i — s + 1 for some integer s with the top and bottom on the upper
diagonal and the lower diagonatespectively

Proof. For the base case, the theorem holds for the unknotted diagram of unknot.

Assume that the statement is true for all such diagrams with lessdtossings.
Let D be a nonsplit alternating link diagram withcrossings. IfD is not reduced, then
H(D) is a shift of H(D') for some such diagran®’ with less thanc crossings, so the
statement is true foD as well.

Let D be reduced. By Corollarg.7, it is enough to show the theorem for either
or D'. So, we may assume thBt has the property (A) or (C) in Propositich5.

[Case (A)] The induction hypothesis applies @(x0) and D(x1). H(D(x0)) is
supported in two lines with the top @, —o(D(x0))), andH(D(x1)) is also supported
in two lines with the top at0, —o(D(x1))).

Sinceo(D) = o(D(x0)) = o(D(x1)) + 1, the upper diagonal and the lower diagonal
of H(D(x0)) agree with those of{(D(x1))[—1]{—1}. By Theorem3.1 and Lemma
3.6, H(D) is supported in two lines with the top &0, —o(D)) and the bottom at
(c,2c — o(D) + 2).

[Case (C)] OurD(x0) and D(x1) are as below, and the induction hypothesis applies

to D'.
D o

D(*0) D(*1)
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__Choose orientations fob’, D(x0) and D(x1) accordingly.%(D"), H(D(x0)) and
H(D(x1))[—1]{—1} are shift of each other as follows.

H(D(x0)) = H(D(x0))[—x(D(x0))[{—2x(D(*0)) + y(D(x0))}
= H(D")[—x(D"){—2x(D") + y(D') + 1}
= H(D"[0]{1},

H(D(1)[—1{—1} = H(D1)[—x(D(x1)) — 1]{—2x(D(x1)) + y(D(¥1)) — 1}
= H(D"[—x(D") — 2){—2x(D") + y(D") — 3}
= H(D)[-2]{-3}.

By induction hypothesisH(D(x0)) is supported in two lines with the top at
(0, —o(D") — 1), and H(D(x1))[—1]{—1} is also supported in two lines with the
top at (2, —o(D’) + 3). Their upper diagonals and lower diagonals agree.

Again, by Theorem3.1 and Lemma3.6, H(D) is supported in two lines with the
top at (0, —o(D)) = (0, —o(D’) — 1) and the bottom atc, 2c — o(D) +2). O

Let L be an oriented nonsplit alternating link aBdbe a reduced alternating diagram
of L. From TheorenB.13 we can conclude thak (D) = H(D)[x(D)1{2x(D) — y(D)}
has the top at—x (D), —2x(D)+y(D)—o(D)). Since the top is on the upper diagonal,
our s(L) equalso(D) — y(D) — 1.

In Proposition3.11, we saw thats(L) = o(D) — y(D) — 1. That finishes the proof
of Theorem1.2

4. An endomorphism of the Khovanov invariant

In this section, we prove Theorefh4. The strategy of our proof is as follows. We
define a map® of degree (1,4) from the Khovanov invariaff(L) of any oriented
link L to itself, which pairs most of{(L). This map® added to the coboundary map
d gives rise to a new cohomology theory which can be computed explicitly. Then, we
compare the cohomology groups ®f on #(L) with the new cohomology groups of
D +d.

4.1. Definition (on chain level)

Theorem1.4 states that there is an almost pairing of cohomology groups of degree
difference (1,4), so it is natural to think of a map of degree (1,4) on the cohomology
groups.
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On chain level, the ma@ is defined in the same fashion as the coboundary map.
Instead of

191+ 1,

19X, X®1 > X,

X®X —> 0,
15 1@x+x® L,

A
X — X® X.
®’'s assignment is as follows:

1®1,1®x,X®1

X @ X

> Is Is
(=] = =]
=

1+— 0,

X— 1® 1

This new multiplicationm¢ is commutative and associative.
me(me(x ® y) ® ) = me(x ® me(y ® z)) =0 for anyx, y, z € A.
The comultiplicationAg is also cocommutative and coassociative.
(Ap ® id) o Ap(z) = (id ® Ag) o Ap(z) = 0 for anyz € A.
They also satisfy
Apomgp = (me ®id) o (id ® Ag),
since
Apomp(y®z) = (mep Qid)(y ® Ap(z)) =0 for any y, z € A.

As discussed in Sectio.1.4 these properties are enough for ensurdrg= 0.
Although mg¢ and Ag cannot have any compatible unit or counif, mg, Ag) IS
isomorphic to(A*, Ag, my,).
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4.2. Invariance of®

We would like to seeb is well defined on#(L). For that,® should (anti)commute
with d and be invariant under the Reidemeister moves.

4.2.1. Anticommutativity with d
From the viewpoint of Sectio2.1.4 we only need to check the following identities:

(1) mo(mep ®id) +mpo(mid) = mo (id @ mg) + me o (id @ m),
2 A®id)oAp+Ap®id) oA = (id @A) oAg + (id ® Agp) o A,
B) Aomp+Apom = (m®id)o (id ® Ap) + (mp ® id) o (id @ A).

Proof. (2) can be checked in the following table.

(A®id)oAg (Ap ®id)o A (id ® A) o Ag (id ® Ap) o A
1— 0 11l 0 11l
X—>1XR1I+X®1R®1 11X 1R1X+1x®1 x®1x1

(1) is deduced from (2) since botti, m, A) and (A, mg, Agp) are self dual.
A table for (3) follows.

Aomg Apom (m®id)o (id®Ap) (mgp Q@ id) o (id ® A)

I1®l— 0 0 0 0

1®X 0 I1®1l 1®1 0
X®1l— 0 I1®1l 0 I1®1l
X@X— 1®x+x®1 0 X®1 l®x ]

4.2.2. Invariance under the Reidemeister moves
We also want® to commute with the isomorphisms in Sectigr.2
[Type 1] The isomorphism was given by

p: Cc(D") — C(D){1},
YR®1+z®X+x 2z

for y®@ 1+ z®x € C(D'(x0)) ~ C(D) @ A andx € C(D'(x1))[—1]{—1}.
Then,

(p® —Dp)(y @ L+ z@X+x) = p(@h(y) ® 1+ Dp(z) ® X
+ 0 (y®1+z®X) — Dj(x)) — D(z)
= B(z) — D(z) = 0.
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[Type Il] Let d(z) = 0,z € C (D)[—1]{—1}.

(=D (p® — D' p)(z) = (=1 pd(z) — D' (z + a(z))
= —(Dpy(2) + 2Dy (2)) — (—Ppyy () — Pyx(2)
+ @y, 11(2) + Phg,13%(2)
= dp1,11P01(2) ® 1 — ydpy ,11(2) ® 1= Dy, 15 (2)
= —d'(Pp.11x)® D)
— (C(D'(*11)[—2]{—2} component of(d'®'+d'd")(z)) ® 1
= —d'(Dhy_11(2) ® D).

[Type HI] If d(x + B(x) +y) = 0, then C(D(x100))[—1]{—1} component of
d(x + B(x) + y), that is —digo(x), equals 0.
In C(D),

DO(x + fx) +y) = —DP1o0(x) + P100-110(x) + P100-101(x) — Po10(d100->110¢ @ 1)
+ @010--110(d100- 1108 ® 1) + Do10-011(d100>110¢ @ 1) — D1(y)
= —®100(x) + P100-110(x) + P100-101(X)

— D110d1005110¢ ® 1 — P1(y)

= —®100(x) + f(—=DP100(x)) + d110P100- 1108 ® 1+ P100-110(x)

+®100-101(x) — P1(y)
—®100(x)+B(—P100(x)) +P100-110v011X +P100--101(x) — P1(y).
(1) is from

0 = (C(D(x110)[—2]{—2} component of(d® + ®d)(x) )

= d100-110(—P100%) + d110P100-110% + P100->110(—d100%)

+ ®1104100-110% s

and

P(—D100(x)) = d100->110(—P100(x)) ® 1

= —(d110®100-110¢ + P1104100->110%) ® 1.
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(2) is from

do(®100-110¢) = —do10(P100-110¢ ® 1) + do10-110(P100-110¢ ® 1)

+ do10-011(P100-110r ® 1)

—d110(P100-110¢) ® 1 — P100- 1108 + P100->110v011X-

Similarly, in C(D"),

Q' (x+ B (x)+y) ~ —Dh1p(x) + B (—Pp10x)) — P10 110v101X)
+ @510 011(¥) — P1()

= p(—=®100(x) + f(—D100(x)) + P100-101(x)

+ @100 11000128 — P1(Y)).

4.2.3. Example

Let T be the lefthanded trefoil with the diagrabh in Section2.1.6 We have com-
putedH(T) = H(D) in Section2.1.6

Since ® is of degree (1, 4), the only possible pladecan be nontrivial is from
H3=%T) to H~275T). The value of ® at a generator[x ® x ® x] of

H3(T)=0Q'is
1®x
O([x@x®X)=1||1®% ||,
1® X

which is a generator of{=%~°(T) = @, so ® is nontrivial there.

ji-3-2-10
-9

-7 E'I)

-5 Q

-3 Q
-1 Q
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4.3. ® + d and change of variables

4.3.1. Change of variables
Let us forget the grading and make a change of variables as follows:

a=x-+1, b=x-1.

Since (® + d)? = ®? + ®d + dD + d?> = 0, we can regard +d as a new coboundary
map. Its assignment is as follows:

M(®+d)
a®a — 2a,

M (d+d)
—

a®b,b®a 0,

M (@4d)
—

beb —2b,

A(cb+d
r—>) a® a,

Aw@+a)
—

b b®b.

Definition 4.1. For an oriented diagrand, H(D) is the cohomology of the chain
complex(C(D), ® + d), andH(D) is that of (C(D), ® + d).
4.3.2. Invariance of D) under the Reidemeister moves

It would not be interesting if we can define orty(D), but notH(L). Our proof of
invariance follows[7, Chapter 5](summarized in Sectio2.2.2 with only the multi-
plication and comultiplication maps replaced by thosebof d. Details are left to the
reader. See Sectiok.2.2 for figures.

[Type 1] Define

X1=Ker(@ +d)o1

and
)}2 = {y X % (a— b) +z|y € E(D)’ FAIS E(D/(*l))[_l]} .

C(D’) is decomposed aX1 @ X, as chain complexesy» is acyclic, and
R X1 — C(D)
ya+z®br—y+z

induces an isomorphism betweél{D’) and H(D).
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[Type 11] This time,

X1 = {z+&(z)|z € C(D'(x01))[—1]},
Xo = {24 (@ +d)y|z, y € C(D'(x00))},

% = {Z +y® % @-b)zye E(D’(*ll))[—Z]} ,

whered(z) = —(®" + d/)01—>11(z)®%(a—b) € C(D'(x11)[—1]®A =~ C(D'(x10))[—1].
Then,C(D’) = X1 & X» @ X3 as chain complexesY, and X3 are acyclic, and

5:C (D)[-1] ~C (D'(+01))[-1] — X1NC (D)
z — (=D (z + &(2))

induces an isomorphism.
[Type 1] Let &, B, %, f be maps of complexes given by

. C(D(x110)[-2] — C(D(x010)[—1] ~ C(D(*110)[-1] ® A,

KR

1
Z v—>z®§(a—b)

. C(D(x100)[—1] — C(D(x010)[—1],

=t

z > (P + d)100-110(2)

& : C(D'(%110)[—2] — C(D'(x100)[—1] ~ C(D'(x110)[—1] ® A,
1
z — 2z ® i(a —b)

B : (D' (x010)[—1] —> C(D'(¥100)[1].

z — —&(® +d")o10-110)

C(D) andC(D’) can be decomposed as below.

C(D) = X1 @ X2 ® X3,
X1 = {x + B(x) + ylx € C(D(x100)[—1], y € C(D(x1)[—1]},
Xo = {x + (@ +d)y|x, y € C(D(x000))},
X3 = {a(x) + (® + d)a(y)|x, y € C(D(x110)[—2]};
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C(D) =Y1 @Y & T3,
71 = {x+ B ) + ylx € CD'(x010)[ 1], y € C(D'(+1)[ -1},
Yo = {x + (@ +d")y|x, y € C(D'(x000))},
Y3 = {&(x) + (®' + d"V& (y)|x, y € C(D'(x110)[-2]}.

_As before, Xp, X3, Y2, Y3 are acyclic, C(D(x100)[—1] and C(D'(x010)[—1],
C(D(x1))[-1] and C(D’(x1))[—1] are naturally isomorphic, and; is isomorphic to
Y1 via

pix+ B +y s x+ B0+ y.

4.4, Cohomology theory ab + d

4.4.1. Resolutions of oriented links in orientation preserving way

Consider the resolution of an oriented link diagram in orientation preserving way,
that is, O-resolutions for- crossings and l-resolutions for crossings. This is the
standard way to get a Seifert surface from a diagram of an oriented link.

Consider a graph whose vertices are in 1-1 correspondence with the components of
this resolution and whose edges connecting a pair of vertices are in 1-1 correspondence
with the crossings connecting the corresponding pair of components. Since the Seifert
surface obtained by the method above is oriented, the graph has no cycle consisting
of odd number of edges, so the vertices of this graph can be parted into two groups
in a way that the two end-points of each edge do not belong to the same group.
Accordingly, the components of this resolution can be parted into two groups in a way
that each crossing connects a component in one group to another in the other group.
This partition does not depend on the positioncof

-
-~

{0

\.}_n

4.4.2. Hodge theory
We can give an inner product on a chain complex so that monomiads bnform
an orthonormal basis, then the adjoidi + d)* of ® + d is defined as follows:

M (®+dy*
a®a — a,

M (D4d)*
—

a®b,b®a 0,
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M (@+d)*
—>

b®b b,

A@+aye
—

2a®a,

A@ray*
—

b —-2b®b.

By Hodge theory,
H (D) ~ Ker(® +d) : C (D) — C (D)) NKer((® +d)* : C (D) — C_(D)).

4.4.3. Computation of H

For ann component link, there are”2! different (relative) orientations. Each of
them gives a distinct resolution when the link is resolved in orientation preserving
way. Since no crossing connects components in the same group in such a resolution,
the two monomials consisting @ for the components in one group abdfor those
in the other clearly belong to Ke&b + d) N Ker(® + d)*. The claim is that these are
all, i.e., others are linear combinations of these.

Theorem 4.2. The dimension of H.) = @,.zH'(L) for an oriented link L of n com-
ponents equals t@".

Proof. As is in Theorem3.1, we have a long exact sequence of cohomology groups.
> H TN D) — H N DED) — H (D) — H (D(H0)) — H (D(x1)) — - -

So, dimH(D) does not exceed dild(D(x0)) + dimH(D(x1)).

Let us prove for knots and two component links first, using induction on the number
of crossings.

It clearly holds for the unknot. If we have a knot with a minimal diagr@mof
c crossings, then one ab(x0), D(x1) is a knot, the other is a two component link,
and they have one fewer crossings. Suppbe0) is a knot. One of the two relative
orientations ofD(x1) is compatible with the relative orientation &f, and the other is
compatible with that ofD(x0). Then in the long exact sequence, the two generators of

H' (D (x0)) map to the two generators Bf (D(x1)) coming from the relative orientation

compatible with that ofo (x0). If D(x1) is a knot, then the two generatorsﬁ?(D(*O))
coming from the relative orientation compatible with that Bfx1) map to the two

generators oF (D(x1)). Hence,

2< dimH(D) < dimH(D(x0)) + dimH(D(x1)) — 4 = 2.
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Let D be a minimal diagram for a two component link withD) = c. If D is a
disjoint union of two knot diagram#1 and D>, then H(D) = H(D1) ® H(D2) with
c(Dy), c(D2) <c, and therefore,

4< dimH(D) < dimH(D1) - dimH(Dy) = 4.
If not, choose a crossing so that bath(x0) and D(x1) are knot diagrams. Then,
4< dimH(D) < dimH(D(x0)) + dimH(D(x1)) = 4.

An n component link diagranD is either a disjoint union of link diagrams of fewer
components or can be resolved to two link diagrams: ef 1 components. The proof
that dimH(D) = 2" goes the same way as above.

We can tell exactly to whictH!(L) those generating monomials belong.

Proposition 4.3. Let L be an oriented n component link, ..., S, be its components
and ¢, be the linking number of; and S;. Then

dmH L)y=2-|{ Ec{2,...,n} Do 2| =i
jeE.k¢E

Proof. Let O be the given (relative) orientation df with a diagramD, and O’ be
another (relative) orientation obtained by reversing the orientations Spf
j€EC{2...,n}. Letx(D), y(D) be the numbers of positive crossings and negative
crossings with respect t®, and x’(D), y’(D) be those with respect t0’.

Since a resolution in orientation preserving way is resolviagcrossings to its
O-resolutions and- crossings to its 1-resolutions, those two monomials corresponding
to 0’ appear inH{* P)—x(D)(p).

On the other hand, the number of negative crossings among the crossings b&fween
and S, does not change if none or both of the orientationsSpfand S; are reversed,
and if only one of them is reversed, the number is changed by

2-Lj = (y — x among the crossings betwedn and Sk)

= (x" —x among the crossings betweén and S).

Therefore,

x'(D) — x(D) = Z 20 O
jeE k¢E
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4.5. Proof of Theorem 1.4

In the previous section, we have computddTo prove Theoreni.4, we are going
to relateH to Ker(®@ : H — H)/Im(® : H — H).

Theorem 4.4. For any H-thin link L,

_Ker(®: H(L) — H(L))

H(L) = Im(® : H(L) > H(L)) '

Proof. For any linkL, (C(L),d(L), ®(L)) is a double complex up to an index shift.
In the spectral sequence of the double complé«L), d(L), ®(L)), the E» and E«
term are isomorphic to Ke® : H(L) — H(L))/Im(D : H(L) — H(L)) andH(L), re-
spectively.

If L is H-thin, thend> and thereafter must be zero maps because of their degree.
Hence,

Ker(® : H(L) — H(L))
Im(® : H(L) — H(L))

H(L)~Ex~E>

1

4.6. Extension of Theorem 1.4 for alternating links

Theorems1.2 and 1.4 imply that the Khovanov invariant of an alternating knot
determines and is determined by its Jones polynomial and signature. This can be
extended to oriented alternating links.

Let L be a link satisfying the hypothesis in Propositiér8 and nonsplit alternating.

We already know that two monomials corresponding to an orientafiérbelong to
HXjerker 2Lik(L ).
To find out their degrees, consida®- - -®a®bR---b)+(bh®---ebRak- - -®a).

(a®...®a®b®...®b)+(b®...®b®a®...®a)

= 2. Z(monomials in1 and x with even number ofl),

AR ---Qakb® ---b)—-b® - -¥braw - --®a)

= ()2 Z(monomials in1 and x with odd number ofl) .

Degrees of monomials i1 and x with even numbers ofl are the same in (mod4),
degrees of monomials ith and x with odd numbers ofl are also the same in (mod 4),
and those two differ by 2 in (mod4). Therefore, we can conclude that on@ &f
-Ra®be--- b+ bR ---®b®a®---®a) is mapped to upper diagonal, the
other to lower diagonal.

Now, Theoreml.4 can be extended as follows.
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Theorem 4.5. For an n component oriented nonsplit alternating link L with its com-
ponentsSy, ..., S, and linking numberg j; of S; and Sk,

Kh(L)(t, ) =q "B 3@+ | D (tgP)Eicsuer 2
Ec{2,...,n}

+(q 4197 QKW (L) (1g%)

for some polynomiak #’(L).

Hence, with the linking numbers of pairs of components provided, the Khovanov
invariant of an oriented nonsplit alternating link determines and is determined by its
Jones polynomial and signature.
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