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Abstract

The finiteness of the little finitistic dimension of an artin algebra R is known to be equivalent to the
existence of a tilting R-module T such that {T }⊥ = (P<∞)⊥ where P<∞ is the category of all finitely
presented R-modules of finite projective dimension. Moreover, T can be taken finitely generated if and only
if P<∞ is contravariantly finite.

In this paper, we describe explicitly the structure of T for the IST-algebra, a finite-dimensional algebra
with P<∞ not contravariantly finite. We also characterize the indecomposable modules in P<∞, and all
tilting classes over this algebra.
© 2006 Elsevier Inc. All rights reserved.
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Infinite-dimensional tilting modules naturally occur in the approximation theory of modules
over general rings. Surprisingly, they also play an important role in the classical setting of artin
algebras.

The point is that the little finitistic dimension of an artin algebra R equals n < ∞ if and only
if there is an n-tilting R-module T such that {T }⊥ = (P<∞)⊥ where P<∞ is the category of all
finitely presented R-modules of finite projective dimension, and C⊥ = ⋂

1�i<ω Ker ExtiR(C,−)
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for a class of R-modules C. Moreover, T can be taken finitely generated if and only if P<∞ is
contravariantly finite, [3].

Though in principle T can be computed by an iteration of (P<∞)⊥-approximations of the
regular module R, the structure of T remains unknown in general.

The main goal of this paper is to give an explicit description of T in an important case where
P<∞ is not contravariantly finite, namely for the IST-algebra A—the particular path algebra over
a field with relations introduced by Igusa, Smalø and Todorov in [11]. A is known to have infinite
global dimension, but the little and the big finitistic dimensions of A equal 1, so T is an infinite-
dimensional A-module of projective dimension 1. Besides describing T , we also characterize all
indecomposable A-modules in P<∞, and all tilting classes over A.

The paper is organized as follows. After recalling necessary definitions and preliminary results
(Section 1), we concentrate on the IST-algebra A, giving an overview of basic facts (Section 2),
characterizing all indecomposable A-modules in P<∞ up to isomorphism (Proposition 16) and
computing their τ -translates. Next, we characterize the lattice of all tilting classes in A-Mod
(Section 4) and compute corresponding tilting modules for some of these classes (Section 5),
among them our tilting module T .

We also give examples of particular infinite-dimensional A-modules that are in the tilting
class T = (P<∞)⊥, but are not isomorphic to a direct limit of finite-dimensional A-modules
in T (Section 4.2).

1. Preliminaries

Let R be a ring (associative and unital) and let us denote by R-Mod (Mod-R) the category
of left (right) R-modules, respectively. Let R-mod and mod-R be the corresponding full sub-
categories of all modules possessing a projective resolution with all projective modules finitely
generated. Note that in case when R is noetherian, R-mod and mod-R coincide with the class of
finitely generated left and right modules, respectively. For convenience, all modules from now
on will be left R-modules if not stated otherwise. Further, let us denote by P<∞

n the full subcat-
egory of R-mod consisting of the modules with proj.dim � n and by P<∞ the full subcategory
of R-mod consisting of the modules of finite projective dimension.

A pair (A,B) of classes of modules is called a (hereditary) cotorsion pair if A = ⊥B and
B = A⊥, where ⊥B = {X ∈ R-Mod | ExtiR(X,B) = 0 for all B ∈ B and i � 1} and A⊥ = {X ∈
R-Mod | ExtiR(A,X) = 0 for all A ∈ A and i � 1}. A cotorsion pair (A,B) is said to be co-
generated by a class of modules C if the class A is the smallest possible containing C, that
is A = ⊥(C⊥) and B = C⊥. In case C contains just one module C, we will write C⊥ instead
of {C}⊥.

A module T (not necessarily finitely generated) is said to be n-tilting for n < ω if it satisfies
the following conditions:

(1) proj.dimT � n,
(2) ExtiR(T ,T (κ)) = 0 for each i � 1 and cardinal κ ,
(3) there is an exact sequence 0 → R → T0 → T1 → ·· · → Tm → 0, where m < ω and Tj ∈

AddT for 0 � j � m.

Here, AddT stands for the class of all modules isomorphic to direct summands of direct sums of
copies of T .
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A class of modules T is said to be n-tilting if there is an n-tilting module T such that T = T ⊥.
A cotorsion pair (A,B) is said to be n-tilting if B is an n-tilting class, or equivalently if it is
cogenerated by some n-tilting module. A (n-)tilting class is of finite type in the sense of [2] if
its corresponding cotorsion pair is cogenerated by some set of modules of R-mod. Note that
n-tilting classes of finite type are exactly the classes S⊥ for S ⊆ P<∞

n , [17, 2.9].
The tilting theory is closely related to the second finitistic dimension conjecture. Let us denote

by FdimR and fdimR the big and the little finitistic dimension of R, respectively; that is, the
supremum of the projective dimensions of all modules with proj.dim < ∞ or all finitely gen-
erated modules with proj.dim < ∞, respectively. The first finitistic dimension conjecture stated
that FdimR and fdimR coincide whenever R is a finite-dimensional algebra over a field, and
it was proved to be false (cf. [16,19]). The second conjecture states that fdimR < ∞ for finite-
dimensional algebras and it is still an open problem in general, even though it turned out to be
true for several special cases, [18]. In particular, a sufficient but not necessary condition is the
contravariant finiteness of P<∞. The following theorem relating the second conjecture to tilting
theory is shown in [3]:

Theorem 1. Let R be a left noetherian ring and (A,B) be the cotorsion pair cogenerated by
P<∞. Then fdimR < ∞ if and only if B is a tilting class. Moreover, if T is a tilting module such
that T ⊥ = B, then fdimR = proj.dimT .

In the rest of this section, we recall some results concerning modules over artin algebras.
A ring R is called an artin algebra if its center C is artinian and R is finitely generated as a
C-module. We will use the following notation: D will stand for the canonical duality between
left and right R-modules. For a finitely generated R-module X, we denote by TrX its transpose,
by τX = D TrX its Auslander–Reiten translation, and by τ− = TrD “inverse” of the translation.
For unexplained terminology see [6].

For R-modules X,Y , denote by HomR(X,Y ) the quotient group of HomR(X,Y ) by the sub-
group of homomorphisms from X to Y which factor through an injective module. Similarly,
let HomR(X,Y ) be the quotient of HomR(X,Y ) by the homomorphisms which factor through
projective modules. We will need the following important result:

Theorem 2 (Auslander–Reiten formulas). [5,12] Let R be an artin algebra and let X,Y ∈ R-
Mod, X finitely generated. Then there are following isomorphisms functorial in both X and Y :

(1) D Ext1R(X,Y ) ∼= HomR(Y, τX).
(2) Ext1R(Y,X) ∼= D HomR(τ−X,Y).

We also need a characterization of the finitely generated modules of projective or injective
dimensions at most 1, which immediately follows from [6, IV.1.16]:

Proposition 3. Let R be an artin algebra and X ∈ R-mod. Then:

(1) proj.dimX � 1 if and only if HomR(I, τX) = 0 for every injective module I .
(2) inj.dimX � 1 if and only if HomR(τ−X,P ) = 0 for every projective module P . �

As a straightforward corollary, we get:
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Corollary 4. Let X ∈ R-mod. Then:

(1) If proj.dimX � 1, then X⊥ = Ker HomR(−, τX).
(2) If inj.dimX � 1, then ⊥X = Ker HomR(τ−X,−).

Finally, we deduce the following lemma for artin algebras, which is useful in Section 4.2. It
was introduced in [4] with a different proof:

Lemma 5. A finitely generated module M belongs to (P<∞
1 )⊥ if and only if it is filtered by

factors of the injective cogenerator D(R).

Proof. The if part is obvious, since (P<∞
1 )⊥ ∩ R-mod is closed under factors and exten-

sions. For the only if part, it is enough to prove that HomR(D(R),M) 
= 0 for each non-zero
M ∈ (P<∞

1 )⊥ ∩ R-mod. Moreover, it is sufficient to prove this only for M indecomposable
non-injective. Assume to the contrary that HomR(D(R),M) is trivial. Then proj.dim τ−M � 1
by Proposition 3. Thus Ext1R(τ−M,M) = 0, a contradiction to the existence of an almost split
sequence, [6, V.1.15]. �
2. An example by Igusa, Smalø and Todorov

Let us fix an algebraically closed field k and let A be the algebra introduced by Igusa, Smalø
and Todorov in [11], shortly IST-algebra. It is a path algebra over k over the quiver

Γ : 1 ·
γ

· 2β

α

with relations αγ = βγ = γ α = 0. In our notation, paths are composed as maps from right to
left. From now on, all modules will be considered as modules over this algebra if not stated
otherwise. Basic properties of A-modules are summarized in [1, Section 5].

Let us denote Λ = A/〈γ 〉; then Λ is isomorphic to Kronecker algebra, the hereditary algebra
kΓ ′ over the following quiver:

Γ ′: 1 · · 2β

α

Modules M with γM = 0 will be called Kronecker modules, since they are also Λ-modules.
Let us denote by Pi , Ii and Si the indecomposable projective, injective and simple A-module
corresponding to the vertex i (i = 1,2), respectively. Then dimk P1 = 2, dimk P2 = 4 and
dimk I1 = dimk I2 = 3. Let P<∞ be the full subcategory of all finitely generated A-modules
of finite projective dimension as before, and let KP<∞ be the full subcategory of P<∞ having
exactly the Kronecker modules in P<∞ as objects.

We will briefly recall basic facts about the Kronecker modules. A detailed description of the
finite-dimensional Λ-modules is done in [6]. More properties of infinite-dimensional Λ-modules
can be found in [14], [13] or [9].

The finite-dimensional indecomposable Λ-modules are divided into three families, preprojec-
tive, preinjective and regular modules:
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(1) The preprojectives Qn, n � 1, are the modules with the representation V1 = kn, V2 = kn−1,
fβ = (E,0)T and fα = (0,E)T , where E is the unit matrix (n − 1) × (n − 1).

(2) The preinjectives Jn, n � 1, are the modules with the representation V1 = kn−1, V2 = kn,
fβ = (E,0) and fα = (0,E).

(3) For the quasi-simple regulars Rλ, λ ∈ k ∪ {∞}, the vector spaces of the representation are
V1 = V2 = k. For λ ∈ k, fβ is the multiplication by λ and fα is the identity map. For λ = ∞,
fβ the identity map and fα = 0.

(4) Every quasi-simple regular module Rλ, λ ∈ k ∪ {∞}, defines a tube; that is, a chain of inde-
composable modules

Rλ = Rλ,1 ⊆ Rλ,2 ⊆ Rλ,3 ⊆ · · ·

connected by the almost split sequences 0 → Rλ,n → Rλ,n−1 ⊕ Rλ,n+1 → Rλ,n → 0 in
Λ-mod. Any finite-dimensional indecomposable regular module occurs in this way.

Note, that there are no non-zero homomorphisms from preinjectives to preprojectives
or regulars, and no non-zero homomorphisms from regulars to preprojectives. Moreover,
dimk HomΛ(Rλ,Rμ) = δλ,μ for any λ,μ ∈ k ∪ {∞}.

Prüfer modules Rλ,∞ are defined as the direct limits of the ascending chains:

Rλ,1 ⊆ Rλ,2 ⊆ Rλ,3 ⊆ · · · .

Then HomΛ(Rλ,∞,Rμ) = 0 and dimk HomΛ(Rμ,Rλ,∞) = δλ,μ for any λ,μ ∈ k ∪ {∞}.

3. Finitely generated modules of finite projective dimension

3.1. Simple modules and composition series in P<∞

In fact, P<∞ is not an abelian category, but it is closed under extensions, kernels of epimor-
phisms and cokernels of monomorphisms. We will call an object X of P<∞ simple in P<∞, if
it has no proper submodule that is again an object of P<∞, or equivalently if it has no proper
factor again in P<∞.

For every finitely generated A-module M , there is an exact sequence

0 → P n
1 → M → M → 0

where n < ω and M is a Kronecker module. As a cosequence, we get:

Lemma 6. [1, Proposition 5.1] A module M is an object of P<∞ if and only if it has a finite
filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M

with the factors Mj/Mj−1 isomorphic either to P1 or to Rλ for some λ ∈ k.

Note also that the modules P1 and Rλ, λ ∈ k, are then precisely the simples in P<∞ in our
sense.



304 J. Šťovíček / Journal of Algebra 311 (2007) 299–318
3.2. The (non-)uniqueness of the composition series

In general, there is no result analogous to the Jordan–Hölder Theorem in P<∞. Take for
example the short exact sequences 0 → P1

ιλ−→ P2 → Rλ → 0. These exist for all λ ∈ k.
But the number of the factors isomorphic to P1 is unique. Consider a function f :P<∞ → ω

defined by the formula:

f (U) = dimk HomA(U,R∞).

Since P1 is projective, we have Ext1A(P1,R∞) = 0. The module R∞ has no submodule iso-
morphic to S2, so Ext1A(Rλ,R∞) = Ext1Λ(Rλ,R∞) = 0 for each λ ∈ k by [1, 5.3]. Thus,
Ext1A(U,R∞) = 0 for every U ∈ P<∞ and f (V ) = f (U) + f (W) for each exact sequence
0 → U → V → W → 0 of modules from P<∞. Further, f (P1) = 1 and f (Rλ) = 0 for each
λ ∈ k. The function f “counts” the number of factors isomorphic to P1 in composition series of
modules U ∈P<∞, and its definition is independent of the particular composition series.

If we are only concerned with the modules in KP<∞, then composition series are unique in
the sense of Jordan–Hölder. This can be seen by a similar reasoning as for P1, this time using the
functions:

gμ(U) = dimk HomA(U,Rμ,∞), μ ∈ k.

Again, Ext1A(Rλ,Rμ,∞) = 0 for every λ,μ ∈ k and gμ(Rλ) = δλ,μ. The function gμ “counts” the
factors isomorphic to Rμ and its definition is independent of the particular composition series.

3.3. Determining regular Kronecker modules by matrices

Let M ∈ KP<∞. Then we can write

M ∼= Rλ1,i1 ⊕ · · · ⊕ Rλm,im

for some Kronecker regular modules Rλ1,i1, . . . ,Rλm,im with λ1, . . . , λm ∈ k. In particular, the
linear map x �→ αx is a bijective map e2M → e1M , since this is true for every Rλj ,ij . Let us

denote by α−1
M the inverse map for a given module M and define the map χM ∈ Endk(e1M) by

the formula χM(x) = β · α−1
M (x).

Let us focus on the matrix JM of the linear map χM in the Jordan canonical form, with respect
to some suitable k-basis of the vector space e1M . When M ∼= Rλ,i , then JM is the Jordan cell of
size i × i corresponding to the eigenvalue λ, that is:

JM =

⎛
⎜⎜⎝

λ 1

λ
. . .
. . . 1

λ

⎞
⎟⎟⎠ .

In general, JM is block-diagonal, built of the Jordan cells corresponding to the direct sum-
mands Rλ1,i1, . . . ,Rλm,im of M . That is, JM = diag(JRλ ,i

, . . . , JRλ ,i
).
1 1 m m
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Let N be another module from KP<∞. It is easy to see that if the vector spaces e1M and e1N

have the same dimension and the linear maps χM and χN are similar, then the modules M and
N are isomorphic. Thus we can state:

Lemma 7. Two modules M , N from KP<∞ are isomorphic if and only if the Jordan canonical
forms of matrices of the linear maps χM and χN are the same up to the order of Jordan cells.

3.4. Special modules of finite projective dimension

Definition 8. A module M ∈P<∞ will be called special if its composition series in P<∞ admits
exactly one factor isomorphic to P1 and if it has no submodule isomorphic to any Rλ, λ ∈ k. Let
us denote by SP<∞ the full subcategory of P<∞ consisting of the special modules.

For example, the modules P1 and P2 are special. It is easy to see that special modules are
indecomposable. Clearly, if M ∈ SP<∞ and M ′ is a non-zero submodule of M belonging to
P<∞, then M ′ ∈ SP<∞ too. All modules in SP<∞ have even dimension, since by [11] the
same is true for all modules in P<∞. In the next few paragraphs we will show that for each non-
zero even n < ω there is exactly one isomorphism class of modules of dimension n in SP<∞.
We will start by proving the existence.

Lemma 9. Let λ ∈ k, and let δ : 0 → P1 → M → Rλ → 0 be an exact sequence. Then either δ

splits or M ∼= P2. Moreover, δ splits if and only if M has a submodule isomorphic to Rλ.

Proof. There is always an exact sequence 0 → P1
ιλ−→ P2 → Rλ → 0, and since P2 is projective,

we have the following commutative diagram:

0 P1

f

ιλ
P2 Rλ 0

δ: 0 P1 M Rλ 0.

Since dimk EndA(P1) = dimk e1P1 = 1, f is either the zero map or an isomorphism. In the
first case δ splits, in the second case M ∼= P2. The second assertion holds, because P2 has no
submodule isomorphic to Rλ. �
Proposition 10. Take n < ω non-zero even. Then there is a module M ∈ SP<∞ of dimension n.

Proof. We have the module P1 for n = 2. So let n > 2. Put m = n
2 − 1 and choose m dis-

tinct elements λ1, . . . , λm of the field k. For each λj , consider the exact sequence 0 → P1
ιj−→
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P2 → Rλj
→ 0. We will construct the desired module M by the following push-out, where

σ :P m
1 → P1 is the summation map:

0 P m
1

σ

⊕
j ιj

P m
2

⊕
j Rλj 0

0 P1
ι

M
π ⊕

j Rλj 0.

Suppose that there is a submodule N ⊆ M isomorphic to Rλ for some λ ∈ k. But socN ∼= S1 and
soc ι(P1) ∼= S2, so ι(P1) ∩ N = 0 and π � N is monic. The module π(N) being a submodule of⊕

j Rλj
and π(N) ∼= Rλ, there must be an index j such that λ = λj and π(N) = Rλj

. Then we
have the commutative diagram:

0 P1

σ�P1

ιj
P2 Rλj 0

0 P1
ι

ι(P1) + N
π�ι(P1)+N

Rλj 0.

The map in the left column, and therefore also the map in the middle column, is an isomorphism.
But the first row does not split and the second row does, a contradiction. Thus M ∈ SP<∞. �

Next, we would like to prove that every two modules in SP<∞ of the same dimension are
isomorphic. This is obvious for the dimension 2. First, we will prove a lemma which places a
restriction on possible forms of cokernels of inclusions of the module P1 into a chosen module
from SP<∞.

Lemma 11. Let M ∈ SP<∞ and 0 → P1
ι−→ M

π−→ ⊕m
j=1 Rλj ,ij → 0 be an exact sequence.

Then the elements λ1, . . . , λm are pairwise distinct.

Proof. Assume for a contradiction that the converse is true. Without loss of generality, put λ =
λ1 = λ2. Then the module

⊕m
j=1 Rλj ,ij has a submodule isomorphic to Rλ ⊕ Rλ, and this gives

rise to the exact sequence 0 → P1
ι−→ M ′ π�M ′−−−→ Rλ ⊕ Rλ → 0. Denote M ′

v = π−1(Rλ) where
Rλ is the vth component of Rλ ⊕ Rλ, v = 1,2. Since

0 → P1 → M ′
v → Rλ → 0 (1)

does not split, we have M ′
v
∼= P2 by Lemma 9. Take a generator h of ι(P1) corresponding to e1 in

the presentation of P1 as Ae1. Let g1, g2 be generators of M ′
1, M ′

2, respectively, corresponding
to the element e2 ∈ P2 = Ae2. We see immediately from the non-split exact sequence (1) that
βgv − λαgv ∈ ι(P1) \ {0} for v = 1,2. Hence

h, (βg1 − λαg1), (βg2 − λαg2) ∈ ι(e1P1).
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And since ι(e1P1) is a 1-dimensional k-vector space, we can assume by possibly multiplying g1
or g2 by a scalar that

βgv − λαgv = h, v = 1,2.

Finally, denote g = g1 − g2. It is straightforward to check that the submodule of M generated by
g is isomorphic to Rλ, a contradiction. �

The core of the proof of uniqueness is the following proposition, which states that there is no
other restriction for the form of a cokernel of the inclusion ι, apart from the one in Lemma 11.

Proposition 12. Let M ∈ SP<∞, M � P1. Put n = (dimk M)/2−1. Then for arbitrary pairwise
distinct elements λ1, . . . , λm ∈ k and positive integers i1, . . . , im such that i1 +· · ·+ im = n, there
is an inclusion ι :P1 → M with Coker ι ∼= ⊕m

j=1 Rλj ,ij .

Proof. Start by considering an arbitrary inclusion ι′ :P1 → M and denote C = Coker ι′ ∼=⊕q

j=1 Rμj ,i′j . Then by Lemma 7, the module C is determined up to isomorphism by the Jor-
dan canonical form of a matrix of the linear map χC . But there is only one Jordan cell for each
eigenvalue of χC in the Jordan canonical form by Lemma 11. Thus, the cokernel C is in fact
determined only by the multiplicities of the eigenvalues of χC . Using the following construction,
we can increase by 1 a multiplicity of a chosen λ ∈ k as an eigenvalue, or λ ∈ k will become an
eigenvalue if it has not been before. And we can do this at the cost of decreasing the multiplicity
of the eigenvalue μ1 by 1. After applying this method a finite number of times, we can “change”
the eigenvalues, and thus also the cokernel of an inclusion P1 → M , to any prescribed form.

Take an exact sequence 0 → P1
ι′−→ M

π−→ ⊕q

j=1 Rμj ,i′j → 0. Let us denote Mj =
π−1(Rμj ,i′j ). Further, take the “canonical” generators ḡj,v of Rμj ,i′j satisfying

βḡj,1 = μjαḡj,1, (2)

βḡj,v = μjαḡj,v + αḡj,v−1, 1 < v � i′j . (3)

Let us denote by gj,v some fixed preimages of ḡj,v under π ; that is, ḡj,v = π(gj,v). Since all
ḡj,v could have been chosen to lie in e2Rμj ,i′j , we can w.l.o.g. assume that all gj,v are in e2M .

Moreover, Eq. (2) yields that βgj,1 − μjαgj,1 ∈ ι′(e1P1). Since the vector space ι′(e1P1) is only
1-dimensional, we can assume, possibly by multiplying some of the gj,v’s by a scalar, that there
is a non-zero element h ∈ ι′(e1P1) such that h = βgj,1 − μjαgj,1 for each j � q . And it is easy
to see from the representation of P1 that h generates ι′(P1).

Take the module L ⊆ M1 generated by g1,1. Then L ∼= P2 by Lemma 9 and for any fixed
λ ∈ k, there is an exact sequence 0 → P1

ϑ−→ L → Rλ → 0. In fact, we have also the following
exact sequence for some regular Kronecker module Y :

0 → P1
ϑ−→ M

σ−→ Y → 0.

Denote f̄j,v = σ(gj,v) and let h′ be a generator of ϑ(P1) such that h′ = βg1,1 − λαg1,1. Then

βf̄j,v = σ(βgj,v) = σ(μjαgj,v + αgj,v−1 + cj,vh) = μjαf̄j,v + αf̄j,v−1 + cj,vσ (h)
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where cj,v ∈ k are suitable constants, and for convenience we assume gj,0 = 0 and f̄j,0 = 0. This
comes from the fact that βgj,v − μjαgj,v − αgj,v−1 ∈ ι′(e1P1) by Eqs. (2) and (3) and ι′(e1P1)

is a 1-dimensional k-vector space generated by h. Further:

h = βg1,1 − μ1αg1,1 = h′ + (λ − μ1)αg1,1.

So we have:

cj,vσ (h) = cj,v(λ − μ1)ασ(g1,1) = cj,v(λ − μ1)αf̄1,1

and together:

βf̄j,v = μjαf̄j,v + αf̄j,v−1 + cj,v(λ − μ1)αf̄1,1.

The matrix of the linear endomorphism χY of the vector space e1Y , with respect to the basis
αf̄j,v , j � q , v � i′j , and the pairs (j, v) being ordered lexicographically, is of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ ∗ ∗ ∗ ∗ ∗ · · ·
μ1

. . .

. . . 1
μ1

μ2 1
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the symbols ∗ in the first row are to be substituted by some suitably chosen elements
of k. Comparing the eigenvalues of χY with the eigenvalues of χC , we see that we have exactly
changed one occurrence of μ1 for one occurrence of λ. �
Proposition 13. Let n < ω. Then any two modules in SP<∞ of dimension n are isomorphic.

Proof. It is enough to carry out the proof only for n > 2 even. Choose an arbitrary M ∈ SP<∞
of dimension n. Put m = n

2 −1 and choose m pairwise distinct elements λ1, . . . , λm of the field k.
Then, by the former proposition, there is an exact sequence

0 → P1
ι−→ M

π−→
m⊕

j=1

Rλj
→ 0.

Let N be the factor of the module P m
2 , with generators of the individual components of P m

2
denoted g1, . . . , gm, determined by the relations βgi − λiαgi = βgi+1 − λi+1αgi+1. Then the
dimension of N is at most n = 2m + 2, since dimk e1P

m
2 = dimk e2P

m
2 = 2m, and for both

these vector spaces we have m − 1 k-independent relations. Further, considering the proof of the
preceding proposition, there is an epimorphism N → M which maps every element gi to some
suitably chosen generator of π−1(Rλi

). Thus, dimk M = dimk N = 2m + 2 = n and N ∼= M .
And since the module N is independent of the choice of the module M , we have at most one
isomorphism class of A-modules in SP<∞ for each dimension. �
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For every n � 1, let us denote by Pn one fixed representative of the objects of SP<∞ of
dimension 2n. This notation is consistent with the former notation of the indecomposable pro-
jectives P1 a P2, since these two modules are representatives of the modules in SP<∞ of
dimensions 2 and 4, respectively.

3.5. Auslander–Reiten translation of modules from P<∞

In view of Corollary 4, it is convenient to determine the Auslander–Reiten translations of the
modules in P<∞. In this subsection, we will prove that the modules Rλ, λ ∈ k, are invariant
with respect to the translation, while the modules from SP<∞ are mapped to the Kronecker
preprojective modules.

It is well known that the functor (−)∗ = HomA(−,A) maps the indecomposable projective
(left) A-module Pi = Aei to an indecomposable projective right A-module isomorphic to eiA,
i = 1,2. And the latter isomorphism assigns to the path p ∈ eiA ending at the vertex i the
following homomorphism from Aei to A:

p∗ :Aei → A,

ei �→ p (∈ A).

From now on, we will identify the modules eiA and P ∗
i . In particular, we will denote the homo-

morphism in P ∗
i corresponding to a path p ∈ eiA as p∗ to distinguish elements of A considered

as left or right A-module. Note that the right A-module structure of P ∗
i is given by p∗ ·q = (pq)∗

for a path q ∈ A. It is also clear that a homomorphism f ∈ P ∗
i is determined by its value on ei .

Thus, if f (ei) = ∑m
j=1 ajpj for some paths p1, . . . , pm ∈ A and elements a1, . . . , am ∈ k, then

f = ∑m
j=1 ajp

∗
j .

Lemma 14. Let λ ∈ k. Then τRλ
∼= Rλ.

Proof. The minimal projective presentation of the module Rλ is 0 → P1
ιλ−→ P2 → Rλ → 0,

where ιλ(e1) = β − λα. Considering the map ι∗λ :P ∗
2 → P ∗

1 , we see:

(
ι∗λ

(
e∗

2

))
(e1) = e∗

2ιλ(e1) = e∗
2(β − λα) = β − λα.

Thus, ι∗λ(e∗
2) = β∗ − λα∗. The module P ∗

1 has a k-basis e∗
1 , α∗, β∗. For M = P ∗

1 / Im ι∗λ, we
have dimk Me1 = dimk Me2 = 1 and Mγ = 0. Therefore, DM must be a Kronecker quasi-
simple regular module. Because M(β − λα) = 0, it is also (β − λα)DM = 0, and thus DM =
D TrRλ

∼= Rλ. �
Recall that Qj denotes the j th indecomposable Kronecker preprojective module; that is

dimk e1Qj = j and dimk e2Qj = j − 1. For P1 and P2, obviously τP1 = τP2 = 0.

Lemma 15. Let 3 � n < ω. Then τPn
∼= Qn−2.

Proof. Looking at the first (push-out) diagram in the proof of Proposition 10, we see that there
is a projective presentation of Pn of the form

0 → P n−2 ϑ−→ P n−1 → Pn → 0. (4)
1 2
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Next, fix n − 1 pairwise distinct elements λ1, . . . , λn−1 of the field k. Let us denote by fj the
residue of the trivial path e1 in the j th copy of P1 and by gl the residue of the path e2 in the lth
copy of P2. Examining the proof of Proposition 13 (namely, the construction of the module N

there which turns out to be isomorphic to Pn), we can assume that ϑ acts as follows:

ϑ(fj ) = (βgj − λjαgj ) − (βgj+1 − λj+1αgj+1), 1 � j � n − 2.

Consequently, it is straightforward to see that the presentation (4) is minimal.
For arbitrary A-modules M , N and non-zero natural numbers m, v, there is a canonical bi-

jection between the elements of HomA(Mm,Nv) and the matrices v × m over HomA(M,N).
Let us denote by ij :M → Mm the j th inclusion and by pl :Nv → N the lth projection. Then
this bijection assigns to an homomorphism h ∈ HomA(Mm,Nv) the matrix (plhij )l�v,j�m.
Moreover, i∗j : (M∗)m → M∗ is the j th projection, p∗

l :N∗ → (N∗)v is the lth inclusion, and
by the similar canonical bijection for right A-module homomorphisms, the element h∗ ∈
HomA((N∗)v, (M∗)m) corresponds to the matrix (i∗j h∗p∗

l )j�m,l�v .
Now put M = P1, N = P2, m = n − 2 and v = n − 1. Then the map ϑ corresponds to the

matrix (ϑlj ), where ϑlj = plϑ ij . It holds:

ϑlj (e1) = plϑ(fj ) =
⎧⎨
⎩

β − λlα for l = j,

−(β − λlα) for l = j + 1,

0 otherwise.

It follows that:

(
ϑ∗

jj

(
e∗

2

))
(e1) = e∗

2ϑjj (e1) = e∗
2(β − λjα) = β − λjα,

(
ϑ∗

j+1,j

(
e∗

2

))
(e1) = e∗

2ϑj+1,j (e1) = e∗
2

(−(β − λj+1α)
) = −(β − λj+1α).

Thus:

ϑ∗
lj

(
e∗

2

) =
⎧⎨
⎩

β∗ − λlα
∗ = e∗

1 · (β − λlα) for l = j,

−(β∗ − λlα
∗) = −e∗

1 · (β − λlα) for l = j + 1,

0 otherwise.

For the map ϑ∗ : (P ∗
2 )n−1 → (P ∗

1 )n−2, let us denote by g′
l the residue of the element e∗

2 in the
lth copy of P ∗

2 , and by f ′
j the residue of the element e∗

1 in the j th copy of P ∗
1 . We attain the

following formulas by composing the results of the former computations:

ϑ∗(g′
l

) =
⎧⎨
⎩

f ′
l (β − λlα) for l = 1,

f ′
l (β − λlα) − f ′

l−1(β − λlα) for 1 < l < n − 1,

−f ′
l−1(β − λlα) for l = n − 1.

Since λ1, . . . , λn−1 are pairwise distinct, we have dimk(Imϑ∗)e2 = n − 1. Clearly
(Imϑ∗)e1 = 0. And we have dimk P ∗

1 e1 = 1, dimk P ∗
1 e2 = 2. Thus for the module L =

(P ∗
1 )n−2/ Imϑ∗ we have dimk Le1 = n − 2 and dimk Le2 = 2(n − 2) − (n − 1) = n − 3. Then

dimk e1DL = n − 2 and dimk e2DL = n − 3. Moreover, DL = D TrPn must be an indecompos-
able Kronecker module, and by the characterization of such modules we have DL ∼= Qn−2. �
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3.6. Indecomposable modules in P<∞

We will use the results of the preceding section to characterize the indecomposable modules
of P<∞ up to isomorphism.

Proposition 16. Let 0 
= M ∈ P<∞ be indecomposable. Then one of the following cases holds
true:

(1) M ∼= Rλ,i for some λ ∈ k and i � 1,
(2) M ∼= Pn for some n � 1.

Before we prove the proposition itself, we need some auxiliary lemmas.

Lemma 17. Let M ∈ P<∞ such that M has no submodule isomorphic to Rλ for any λ ∈ k. Then
M is SP<∞-filtered.

Proof. We will prove the lemma by an induction on the number n of composition factors iso-
morphic to P1 in a composition series of M in P<∞. There is nothing to prove for n = 1. Let
n > 1. Take a composition series

0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M

of M such that the last index j for which Mj+1/Mj
∼= P1 is the greatest possible. Then M/Mj ∈

SP<∞ by the assumption and Mj is SP<∞-filtered by the induction hypothesis. Thus, M is
SP<∞-filtered too. �
Lemma 18. Let M be a finitely generated SP<∞-filtered module. Then M is a direct sum of
modules from SP<∞.

Proof. The modules P1 a P2 are projective and every module Pn, n � 3, has a minimal projective
presentation of the form 0 → P n−2

1 → P n−1
2 → Pn → 0. Thus, a minimal projective presentation

of the module M must be of the form:

0 → P m
1 → P u

1 ⊕ P v
2 → M → 0.

The module TrM is a factor of (P ∗
1 )m by definition. Therefore, the module D TrM is a submod-

ule of D(P ∗
1 )m = Im

1 . Since I1 is a Kronecker module, so is τM .
Let us choose an arbitrary λ ∈ k ∪ {∞}. Then

D Ext1A(Pn,Rλ) ∼= HomA(Rλ, τPn) ∼= HomA(Rλ,Qn−2) = 0

for all n � 3. The first isomorphism follows by Theorem 2 and Proposition 3 and the second by
Lemma 15. In particular, Ext1A(M,Rλ) = 0, and so HomA(Rλ, τM) = 0. Thus, the module τM

is preprojective, that is τM ∼= ⊕m
j=1 Qij for some i1, . . . , im. Then

M ∼= P ⊕ τ−(τM) ∼= P ⊕
m⊕

j=1

Pij +2

for some finitely generated projective module P . �



312 J. Šťovíček / Journal of Algebra 311 (2007) 299–318
Proof of Proposition 16. Let M ∈ P<∞ be indecomposable. If M is a Kronecker module, we
are in the case number 1.

Suppose M is not a Kronecker module and L is a maximal KP<∞-submodule of M . Since
the subcategory KP<∞ is closed under extensions, M/L has no submodule isomorphic to Rλ,
λ ∈ k. Then M/L is SP<∞-filtered by Lemma 17. Further, we have

D Ext1A(Pn,Rλ) ∼= HomA(Rλ, τPn) ∼= HomA(Rλ,Qn−2) = 0

for all λ ∈ k and n � 3—the first isomorphism by Theorem 2 and Proposition 3 and the second by
Lemma 15. In particular, Ext1A(M/L,L) = 0 and M ∼= L ⊕ M/L. Thus, L = 0 and M ∈ SP<∞
by Lemma 18. �
4. Tilting classes

4.1. The lattice of tilting classes

Since FdimA = 1 by [11], every tilting A-module is 1-tilting. By [8], all 1-tilting classes over
any associative unital ring are of finite type. Thus, every tilting class in A-Mod can be obtained
as S⊥, where S is some subset of objects of P<∞. Let us denote by indP<∞ a representative
subset of the indecomposable modules in P<∞. Obviously, it is always possible to choose S as
a subset of indP<∞.

Proposition 19. The class T ⊆ A-Mod is a tilting class if and only if there is a subset S ⊆
indP<∞ such that S⊥ = T .

Let S ⊆ indP<∞. Let us denote S̄ = ⊥(S⊥) ∩ indP<∞. It is easy to see that S⊥ = S̄⊥.
We will call a subset S of indP<∞ closed if S = S̄ . Clearly, the lattice of 1-tilting classes is
anti-isomorphic to the lattice of closed subsets of indP<∞. A description of the closed subsets
follows.

Theorem 20. A subset S ⊆ indP<∞ is closed if and only if it satisfies the following conditions:

(1) P1 ∈ S , P2 ∈ S .
(2) If Rλ,i ∈ S for some λ ∈ k and i � 1, then Rλ,j ∈ S for every j � 1.
(3) If Rλ,i ∈ S for some λ ∈ k and i � 1, then Pj ∈ S for every j � 1.
(4) If Pn ∈ S for some n � 3, then Pj ∈ S for every j � n.

Proof. First, assume S ⊆ indP<∞ is closed. The necessity of the condition (1) is obvious. For
Kronecker regular modules, we have the exact sequences:

0 → Rλ,i → Rλ,i−1 ⊕ Rλ,i+1 → Rλ,i → 0.

Thus, if Rλ,i ∈ S , then also Rλ,i−1,Rλ,i+1 ∈ S . The condition (2) follows by induction. Further,
by Proposition 12 we have

0 → P1 → Pj → Rλ,j−1 → 0,
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for each j � 3. This implies the condition (3). Let n � 3 and M ∈ P ⊥
n . Then HomA(M,Qn−2) =

0 by Corollary 4 and Lemma 15. Thus, HomA(M,Qj−2) = 0 for each 3 � j � n, since Qn−2 has
submodules isomorphic to Qj−2. This means that M ∈ P ⊥

j , and Pj ∈ ⊥(P ⊥
n ) for each 3 � j � n.

This yields condition (4).
Conversely, let S ⊆ indP<∞ satisfy the conditions (1)–(4). Assume that there is some M ∈

S̄ \ S . If M = Rλ,i for some λ and i, then Rλ,j /∈ S for each j � 1 by the condition (2). But
this implies Rλ ∈ S⊥ using the characterization of indP<∞ in Proposition 16. Then also Rλ ∈
S̄⊥, which is a contradiction. Thus, it remains only the case M = Pn for some n � 3. But then
Rλ,i /∈ S for each λ ∈ k, i � 1, and Pj /∈ S for each j � n by the conditions (3) and (4). So S
consists only of some of the modules P1, . . . , Pn−1, again by Proposition 16. But then Corollary 4
and Lemma 15 yield Qn−2 ∈ S⊥ = S̄⊥ and D Ext1A(Pn,Qn−2) ∼= HomA(Qn−2,Qn−2) 
= 0, a
contradiction to the assumption Pn ∈ S̄ . �
Corollary 21. (P<∞)⊥ = {Rλ | λ ∈ k}⊥ = ⋂

λ∈k Ker HomA(−,Rλ).

Proof. For the first equality, see [1, 5.4]. Or alternatively, if we take S = {Rλ | λ ∈ k}, then
S̄ = indP<∞ by the former theorem. Thus S⊥ = (indP<∞)⊥ = (P<∞)⊥. The second equality
follows from Corollary 4 and Lemma 14. �
4.2. Impossibility of reconstructing a tilting class from finitely generated modules by direct
limits

This section is inspired by the dual case, where every 1-cotilting class C over a noetherian
ring could be reconstructed from its finitely generated modules by direct limits. That is C =
lim−→(C ∩ R-mod), C being closed under direct limits, since every 1-cotilting module is pure-
injective by [7]. So there is a bijective correspondence between the 1-cotilting classes and the
torsion-free classes of finitely generated modules containing RR, [17].

But an analogous proposition with direct limits is not true for 1-tilting classes over IST-
algebra. Take T = (P<∞)⊥ and T <∞ = T ∩A-mod. Then T = lim−→T <∞ implies that lim−→T <∞
is closed under direct products. This is equivalent to the covariant finiteness of T <∞ in
A-mod by [1], and thus to the contravariant finiteness of P<∞ in A-mod by [15]. But this is
not true for IST-algebra. The aim of this subsection is to give particular examples of modules
from T \ lim−→T <∞.

Proposition 22. Let T = (P<∞)⊥ and T <∞ = T ∩ A-mod. Then the Prüfer module Rλ,∞ is a
member of T for each λ ∈ k, but HomA(M,Rλ,∞) = 0 for all M ∈ T <∞.

Proof. It is well known that HomA(Rλ,∞,Rμ) = 0 for each μ ∈ k. Therefore, Rλ,∞ ∈ T by
Corollary 21.

We have HomA(I,Rλ) = 0 for an injective cogenerator I = I1 ⊕ I2 by Proposition 3 and
Lemma 14. Then also HomA(I,Rλ,∞) = 0 and HomA(M,Rλ,∞) = 0 for every factor M of I .
Thus, HomA(M,Rλ,∞) = 0 for each M ∈ T <∞ by Lemma 5.

Corollary 23. Rλ,∞ ∈ T \ lim−→T <∞ for each λ ∈ k.
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5. Tilting modules

5.1. Constructing more complex preenvelopes

Now we are close to show an explicit structure of a tilting module for the class (P<∞)⊥.
First, we need the following general proposition which is valid for any ring R. Let us recall that a
module X over an arbitrary ring is said to be FP2, if it possesses an exact sequence W2 → W1 →
W0 → X → 0 with W0,W1,W2 finitely generated projective R-modules. Then whenever X is an
FP2 module, X⊥1 = Ker Ext1R(X,−) is closed under direct limits, thus also under filtrations and
arbitrary direct sums (see e.g. [1]).

Proposition 24. Let R be an arbitrary ring and S be a set of FP2 modules such that
Ext1R(X,Y ) = 0 for any pair of distinct modules X,Y ∈ S . Further, let M ∈ R-Mod be any
module and assume that

0 → M → JX → CX → 0

is a special X⊥1 -preenvelope with an {X}-filtered cokernel CX for each X ∈ S . Then the second
row of the following push-out diagram (the map σ just adding up the components of the direct
sum) is a special S⊥1 -preenvelope of M :

0 M(S)

σ

⊕
X∈S JX

⊕
X∈S CX 0

0 M J
⊕

X∈S CX 0.

Proof. It is sufficient to prove that J ∈ S⊥1 and C = ⊕
X∈S CX ∈ ⊥1(S⊥1) = Ker Ext1R(−,S⊥1).

But the latter is clear, since the module C is a direct sum of S-filtered modules and ⊥1C is closed
under direct sums and filtrations for an arbitrary class of modules C (see [10, Lemma 1]).

Choose an arbitrary Y ∈ S . If we take only the component corresponding to the module Y in
the first row of the commutative diagram above, and if we denote by σ ′ the restriction of the map
σ to that component, we will get an induced diagram:

0 0

0 M

σ ′

JY CY 0

0 M J
⊕

X∈S CX 0.

⊕
X∈S\{Y } CX

⊕
X∈S\{Y } CX

0 0



J. Šťovíček / Journal of Algebra 311 (2007) 299–318 315
By assumption, X ∈ Y⊥1 for each X ∈ S \ {Y } and Y⊥1 is closed under filtrations and direct
sums, thus

⊕
X∈S\{Y } CX ∈ Y⊥1 . But also JY ∈ Y⊥1 , therefore J ∈ Y⊥1 . And this is true for any

Y ∈ S , so J ∈ S⊥1 . �
5.2. Structure of tilting modules for R⊥

λ

Construction 25 (R⊥
λ -preenvelopes of P1 and P2). Let λ ∈ k. By Proposition 12, there is an exact

sequence 0 → P1 → Pn+1
σ−→ Rλ,n → 0 for each n � 1. If we take an inclusion j :Rλ,n−1 →

Rλ,n for any n � 2, then the module M = σ−1(Im j) is clearly an object of SP<∞ (cf. the remark
after Definition 8), thus M ∼= Pn by Proposition 13. Moreover, Pn+1/M ∼= Rλ,n/ Im j ∼= Rλ. So
we have the following exact sequence for any n � 1:

0 Pn

ιn+1,n

Pn+1 Rλ 0.

Let us denote ιm,n = ιm,m−1 . . . ιn+2,n+1ιn+1,n and ιn,n = 1Pn for every m > n � 1. The fol-
lowing squares are obviously commutative for n � 2:

P1
ιn,1

Pn

ιn+1,n

P1
ιn+1,1

Pn+1.

Further, Coker ιn,1 is Rλ-filtered, thus Coker ιn,1 ∼= Rλ,n−1 by Lemma 11. Therefore, we have
the exact commutative diagrams with monomorphisms in columns:

0 P1
ιn,1

Pn

ιn+1,n

πn
Rλ,n−1

jn

0

0 P1
ιn+1,1

Pn+1
πn+1

Rλ,n 0.

Let us denote by Tλ the direct limit of the modules Pn, n � 1, with the inclusions ιm,n, m �
n � 1. We obtain the exact sequence:

δ1 : 0 P1
ι

Tλ
π

Rλ,∞ 0.

Next, take the commutative diagram with the canonical inclusions in columns:

0 P1
ι2,1

P2

ι′

π2
Rλ

j ′

0

0 P1
ι

Tλ
π

Rλ,∞ 0.

Then Coker ι′ ∼= Coker j ′ ∼= Rλ,∞, thus we have the exact sequence:
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δ2 : 0 P2
ι′

Tλ
π ′

Rλ,∞ 0.

Using this notation, we get:

Proposition 26. The short exact sequences δ1 and δ2 are special R⊥
λ -preenvelopes of the inde-

composable projective modules P1 and P2, respectively.

Proof. It is sufficient to prove that Tλ ∈ R⊥
λ and Rλ,∞ ∈ ⊥(R⊥

λ ). The latter is clear, since the
Prüfer module Rλ,∞ is Rλ-filtered.

It is enough to show that HomA(Tλ,Rλ) = 0 by Corollary 4 and Lemma 14. Take an arbitrary
f ∈ HomA(Tλ,Rλ). If we apply the functor HomA(−,Rλ) to the exact sequence 0 → P1

ι2,1−−→
P2 → Rλ → 0, we obtain

0 HomA(Rλ,Rλ) HomA(P2,Rλ)
HomA(ι2,1,Rλ)

HomA(P1,Rλ).

But dimk HomA(Rλ,Rλ) = 1, and also dimk HomA(Pi,Rλ) = dimk eiRλ = 1 for i = 1,2. This
implies HomA(ι2,1,Rλ) = 0. So f ι = f ι′ι2,1 = 0. Therefore, there is a map f̄ such that f = f̄ π .
But now f̄ ∈ HomA(Rλ,∞,Rλ) = 0, and thus f = 0. �
Theorem 27. Let λ ∈ k and Tλ be as in Construction 25. Then Tλ ⊕ Rλ,∞ is a tilting module
corresponding to the tilting class R⊥

λ .

Proof. By the proof of [17, Theorem 29], once we have a tilting class T , we can construct a
corresponding tilting module by iterating special T -preenvelopes starting with the regular mod-
ule AA. Since R⊥

λ is a 1-tilting class, we need to construct only the first iteration. We have
AA ∼= P1 ⊕ P2, and by the former proposition, there is a special R⊥

λ -preenvelope of A of the
form

0 → A → Tλ ⊕ Tλ → Rλ,∞ ⊕ Rλ,∞ → 0.

The corresponding tilting module is then T = (Tλ ⊕ Tλ) ⊕ (Rλ,∞ ⊕ Rλ,∞). Note that if T ′ is a
module such that T ′ ∈ AddT and T ∈ AddT ′, then T ′ is tilting too, and T ⊥ = (T ′)⊥. Putting
T ′ = Tλ ⊕ Rλ,∞ gives us the desired result. �
Remark 28. Let us write down a linear representation corresponding to the module Tλ. It is of
the shape

V1

fγ

V2fβ

fα

with the linear maps satisfying equations fαfγ = fβfγ = fγ fα = 0.
Since Tλ is countable-dimensional, we put V1 = V2 = k(ω). Then the linear maps for Tλ are

given by the following column-finite matrices:



J. Šťovíček / Journal of Algebra 311 (2007) 299–318 317
fα =

⎛
⎜⎜⎝

0 0 0 . . .

0 1
0 1
...

. . .

⎞
⎟⎟⎠ , fβ =

⎛
⎜⎜⎝

0 1
0 λ 1

0 λ
. . .

...
. . .

⎞
⎟⎟⎠ , fγ =

⎛
⎜⎜⎝

1 0 0 . . .

0 0
0 0
...

. . .

⎞
⎟⎟⎠ .

For the sake of completeness, we also write down a representation of the corresponding Prüfer
module Rλ,∞:

fα =

⎛
⎜⎜⎝

1 0 0 . . .

0 1
0 1
...

. . .

⎞
⎟⎟⎠ , fβ =

⎛
⎜⎜⎝

λ 1
0 λ 1

0 λ
. . .

...
. . .

⎞
⎟⎟⎠ , fγ =

⎛
⎜⎜⎝

0 0 0 . . .

0 0
0 0
...

. . .

⎞
⎟⎟⎠ .

Note also that in contrast to Proposition 13, the modules Tλ and Tμ are non-isomorphic for
λ 
= μ. Otherwise, there would be an inclusion i :P1 → Tμ with the cokernel isomorphic to
Rλ,∞. But this is not possible, since a cokernel of any inclusion i :P1 → Tμ is isomorphic to
Rμ,∞ ⊕ M , where M is a suitable finitely generated Kronecker regular module.

5.3. Structure of a tilting module for (P<∞)⊥

Theorem 29. Let X ⊆ k be a non-empty subset and put S = {Rλ | λ ∈ X}. For each λ ∈ X

take the special preenvelope 0 → P1
ιλ−→ Tλ → Rλ,∞ → 0 from Construction 25, and take the

following push-out diagram with the summation map σ :

0 P
(X)
1

σ

⊕
λ∈X Tλ

⊕
λ∈X Rλ,∞ 0

0 P1 TX

⊕
λ∈X Rλ,∞ 0.

Then T = TX ⊕ ⊕
λ∈X Rλ,∞ is a tilting module corresponding to the tilting class S⊥.

Proof. The set S fulfills the assumptions of Proposition 24. Thus, the exact sequence 0 → P1 →
TX → ⊕

λ∈X Rλ,∞ → 0 is a special S⊥-preenvelope of the projective P1.
Take an arbitrary μ ∈ X. Then we have the following commutative diagram with isomor-

phisms in the first and monomorphisms in the other columns:

0 P1 P2

ι′

Rμ

j ′

0

0 P1

σ ′

ιμ
Tμ

ι′′

Rμ,∞

j ′′

0

0 P1 TX

⊕
λ∈X Rλ,∞ 0.



318 J. Šťovíček / Journal of Algebra 311 (2007) 299–318
Thus TX/ Im ι′′ι′ ∼= ⊕
λ∈X Rλ,∞/ Im j ′′j ′ ∼= ⊕

λ∈X Rλ,∞, and we have the following short
exact sequence, which is necessarily a special S⊥-preenvelope of the module P2:

0 P2
ι′′ι′

TX

⊕
λ∈X Rλ,∞ 0.

Since A ∼= P1 ⊕ P2, the module T ⊕ T is tilting corresponding to the tilting class S⊥ [17,
proof of Theorem 2.9], and so is T itself. �

With the notation of Theorem 29, we get for X = k:

Corollary 30. Tk ⊕ ⊕
λ∈k Rλ,∞ is a tilting module corresponding to (P<∞)⊥.
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