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Abstract

This paper describes the design, microfabrication and testing of a pre-aligned array of fiber couplers using direct UV-lithography of SU-8. The
fiber coupler array includes an out-of-plane refractive microlens array and two fiberport collimator arrays. With the optical axis of the pixels parallel
to the substrate, each pixel of the microlens array can be pre-aligned with the corresponding pixels of the fiberport collimator array as defined
by the lithography mask design. This out-of-plane polymer 3D microlens array is pre-aligned with the fiber collimator arrays with no additional
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djustment and assembly required, therefore, it helps to dramatically reduce the running cost and improve the alignment quality an
fficiency. In addition, the experimental results for the fiber couplers are also presented and analyzed.
2005 Elsevier B.V.
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. Introduction

Optical fiber is widely used in telecommunication and opti-
al sensors. Fiber couplers are very important components for
he optical communication system and fiber optical-based sen-
ors. Fiber couplers are commonly used to manipulate light
ignal and to complete the connection of light-source-to-fiber,
ber-to-fiber, and fiber-to-detector to relay the optical propaga-
ion for illumination delivery or signal collection. By reducing
ack-reflection and alignment errors, fiber couplers can increase

ight throughput. The alignment of the optical components in
ost optical fiber applications is extremely critical for ensuring

he maximum amount of light that flows through the coupled
evices. Fiber coupling is subject to three types of misalignment:
eparation (longitudinal misalignment,z-axis), offset (lateral
isalignment,x-axis), and tilt (angular misalignment,θ). In lon-
itudinal misalignment, the end of the fibers may not be in the
ptimized position; if the end of the second optical fiber is posi-

ioned away from the image position for the end of the first
ber, light from one fiber core will spread and lose much of its

intensity when coupled into the receiving fiber. In the cas
offset error, the fiber cores may be displaced laterally alon
direction perpendicular with the optical axis; light emitting fr
one core hits the cladding layer of the second fiber resultin
reduced light throughput. In the third case, one fiber ma
tilted (rotated around thex- andz-axis) relative to the other an
cause a signal transmission loss.

In a conventional fiber coupler with optical lenses and fib
the light from the source (such as, laser, diode, lamp, etc.) o
end of another fiber is focused by one or two optical lenses
coupled into another fiber or a detector. In a conventional
coupler, a mechanical fiberport collimator is used to prec
adjust the position of the fiber with respect to the lens to ob
the maximum coupling efficiency. Normally, the fiberport c
limator needs to be adjustable in several axes, normallyx, y,
z andθ. The conventional types of mechanical fiberport c
mators have a large size and are not easy to be integrate
other optical components. In conventional optical fiber syst
such alignment and assembly are often done manually, the
increasing the complexity of operation. Also, the cost and
limit of achievable precision in these mechanical fiberports
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determined by the complexity of the optical system (i.e., num-
ber of couplers and physical dimensions of the fiber) and the
operator expertise, respectively.
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Microfabrication of fiberport and coupling systems is an
attractive approach for simplifying the optical system, which
incorporate fiber optics. For example, silicon micromachined
V-groove fiber couplers[1,2] are attractive and simple devices
that can be used to obtain precise alignment of optical fibers and
also, can be directly integrated with other optical components.
By etching a series of V-grooves on the silicon substrate, high
precision coupling of many fibers to other optical devices can
be achieved.

There are many methods to fabricate microlenses or
microlens arrays and apply them in optical fiber systems. The
most commonly used method is to fabricate a spherical tip on
the optical fiber to enhance the coupling efficiency to a receiving
fiber or other optical component. These ball lenses are fabricated
by melting the optical fiber’s end to form a lens, which is based
on surface tension principles[3]. Micro-jet technology can also
be used to place a lenslet at the end of a multimode fiber to
improve coupling efficiency[4]. Ball lenses formed by thermal
re-flowing of two polymer layers has been shown to be assem-
bled into a silicon-based platform for fiber coupling[5,6].

In this paper, an approach using 3-D UV-lithography of SU-
8 photoresist[7,8] is presented for fabricating pre-aligned fiber
bundle couplers. This fiber bundle coupler includes a pre-aligned
out-of-plane refractive microlens array[9–13]and fiberport col-
limator arrays. With the optical axis of each pixel parallel to the
substrate, each pixel of the out-of-plane microlens array can
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tor array and the microlens array. Each pixel of this out-of-plane
polymer microlens array is pre-aligned with the corresponding
pixels of the fiberport collimator with no additional adjustment
and assembly requirement.

When the mask for the optical fiber bundle coupler is
designed, the fiberport and the microlens are pre-aligned to the
designed position. No changes and adjustment between the mask
and the photoresist on the substrate are needed during the lithog-
raphy process. The precision of the pre-assembled fiber bundle
coupler is therefore limited by the optical mask used. Without
any assembly and alignment, this microlens’ optical axis is par-
allel to the substrate on which the whole optical system is built.
This unique advantage makes it possible to design and fabricate
pre-aligned fiber bundle couplers with precise alignment and
high coupling efficiency.

The fabrication and working principle for the fiber bundle
coupler are shown inFig. 1. Because SU-8 is a negative tone
photoresist, the exposed regions remain after lithography and
development. The entire fiber bundle coupler is designed on
a single photomask. Two exposures at±45◦ tilt angles with
respect to the surface normal are conducted for the out-of-plane
microlens array fabrication. When two cylindrical light beams
in perpendicular are projected on the SU-8 resist, two perpen-
dicular cylindrical structures are formed at±45◦ angles with
respect to the substrate and the intersected region of the resist is
double-exposed. This faceted surface of the intersected region
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T onic
e pre-aligned with the corresponding pixels of the fiber
ollimator arrays in the mask design. The microlens array
berport collimator arrays are made using photolithograph
hat precise alignment can be obtained without accumul
f tolerances. As a simple example of a pre-aligned integ
ptical system[11], an out-of-plane polymer microlens arr
as pre-aligned to fiber collimator arrays in the mask desig
ach pixel of the fiber bundle coupler, lateral misalignment
ngular misalignment are minimized by this pre-alignment t
ology. The longitudinal misalignment also can be minim
y the stop function of the fiber-fixing groove in the coup
s a result, no additional adjustment or assembly was requ

eading to dramatically reduced running cost and significa
mproved alignment quality and coupling efficiency. This te
ology for a fiber bundle coupler can also be used to fabr
re-aligned fiber couplers for just single fiber-to-fiber junct
s well.

In the following sections, the design and working princip
or the pre-aligned fiber coupler will be presented followed
he detailed fabrication process used to make the fiber b
oupler. Finally, some test results for the pre-aligned fiber bu
ouplers fabricated with this principle are presented.

. Design of the fiber bundle coupler and tilted
ithography of SU-8

The research work presented in this paper uses a 3-D fa
ion method to obtain the pre-aligned fiberport collimator a
nd out-of-plane polymer microlens array. This technolog
ased on multiple-step UV-lithography of SU-8 and caref
ontrolled development process for both the fiberport coll
d
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ncludes four pieces of cylindrical surfaces. The lithogra
ight used is anh-line (λ= 405 nm) dominated UV light sour
ith optimized dosage and wavelength selection ratio. The

ion between the substrate and the mask are fixed durin
fter the exposure for the microlens and microlens array.
defined region of the microlens or microlens array cov

sing a shade mask, the fiberport collimator array is then
icated lithographically using ani-line (λ= 365 nm) dominate
roadband UV light source in an optimized exposure dosag
avelength selection ratio.
The development rates for the unexposed SU-8 and ex

U-8 with different exposure dosages are different. By c
ul control of the exposure dosages, wavelength selection
he optimized development time, the intersection regions
eveloped into the out-of-plane microlens and microlens a

9–13]. The rectangle posts tilted at±45◦ formed the fiberpor
ollimator. The final shape of this fiber bundle coupler a
evelopment is schematically shown inFig. 1(C). In a prac

ical lithography process, each pixel of this convex micro
rray can be expected to have a quasi-spherical shape
mooth surface profile and its optical axis is overlapped wit
entral line of the square opening for the corresponding fi
ort collimator. Each pixel of the out-of-plane microlens ca
ligned with the corresponding pixel of the fiberport collima
s schematically shown inFig. 1(D). A single optical mask use

herefore determines the pre-alignment precision of the w
ber coupler.

To obtain a cylindrical light beam in a tilted exposure of S
t±45◦ for the out-of-plane microlens and microlens array
ication, the opening in the photomask must be of a conic s
he conic curves associated with various values of the c
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Fig. 1. Fiber bundle couplers. (A)±45◦ tilted expose for the out-of-plane microlens array region. (B) Covering the microlens array region by a shade mask with
a ±45◦ tilted expose for the fiberport collimator region with the same mask. (C) After development, each pixel of the microlens array and corresponding pixel
of the fiberport collimator array are precisely aligned. (D) Diagram showing the position of the fibers after inserting the fiber bundle, in which the corresponding
fiber–microlens–fiber system are marked in blue for clear definition of the optical path.

constant can be used for the mask pattern of the out-of-plane
microlens or microlens array, depending on the requirements
for the microlens’ surface profile. The ellipse, circle, parabola,
and hyperbola can be used for the mask pattern for the out-of-
plane microlens or microlens array to achieve the corresponding
surface profiles. In general, the curvature of the mask opening
along the designed optical axis control the surface profile and
curvature of the microlens along the same optical axis. However,
since the development rate also plays significant rule in the pro-
cess, the mechanism is very complicated[11]. After stripping
the plastic coating layers, the diameter of the center glass fiber
(include core and clad) used here is 125�m. Because of the 45◦
tilted lithography, the distance between the two open blocks for
the fiberport collimator, as shown inFig. 2, is 125

√
2�m to

obtain a square opening with dimensions of 125�m by 125�m
to fix the optical fiber. If the fiber’s diameter of the core and clad
changes, corresponding changes in the designed dimensions of
the fiberport collimators need to be made. For easy develop-
ment of the square channels for the fiberport collimators, the

long square holes are separated by several cascaded pieces as
shown inFig. 2. In order to insert the optical fibers into the fiber-
port collimators easily, an opening larger than the optical fibers’
outside diameter can be designed as shown inFig. 2.

3. Fabrication of the fiber bundle coupler

3.1. Wavelength selection and refraction compensation in
tilted lithography

The lithography light used for the out-of-plane microlens and
microlens array fabrication is anh-line (λ= 405 nm) dominated
broadband UV light with optimized dosage and wavelength
selections light (inFig. 3, marked as “light intensity after PMMA
filter”). The transmission of a 1 mm thick unexposed SU-8 100 is

F -8 100
r f the
U sing
O of the
fi
Fig. 2. Mask patterns for the fiber bundle coupler.
ig. 3. Measured transmission spectrum of a 1 mm thick unexposed SU
esist, transmission spectrum of the PMMA filter, and the light intensity o
V station with and without the PMMA filter. The data was obtained u
cean Optics’ S2000 spectrometer and coupling fiber, the receiving end

ber was oriented in parallel with the light beam of the Oriel UV station.
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measured as shown inFig. 3. The components of shorter wave-
lengths are primarily absorbed in the surface region while the
longer wavelength components penetrate further down into the
resist and expose the bottom region. The absorption coefficient
of unexposed SU-8 for theh-line (λ= 405 nm) is about one fourth
that of thei-line (λ= 365 nm), and three times that of theg-line
(λ = 436 nm). In order to improve the exposure uniformity for
the entire area of the microlens array, wavelengths shorter than
365 nm needs to be filtered to avoid over-exposure of the surface
layer. Longer wavelengths (eitherg-line or h-line) with much
lower absorbances are used to permit more energy to reach the
bottom part of the thick SU-8 resist layer and to achieve bet-
ter uniformity of the absorbance. In our experiment, a 4.54 mm
thick PMMA sheet was used as a filter and an Oriel UV station
was used for the lithography. The transmission of this PMMA
sheet is about 0.3% at thei-line, 82% at theh-line, and 82% at the
g-line. The light intensities of the Oriel UV station with 200 W
output before and after the PMMA filter and the transmission of
the PMMA filter are also shown inFig. 3.

Because the absorbance at theh-line is about three times
that of theg-line, the lithography process for the out-of-plane
microlens and microlens array region ish-line dominated. Dur-
ing the development process, not only the unexposed SU-8 is
removed, the exposed regions may also be dissolved during
development, although at a much lower rate. The development
rate for the unexposed SU-8, single-exposed SU-8, and double-
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Fig. 4. Refraction compensation principle to obtain 45◦ refractive angle at
λ = 405 nm. To provide refraction compensation whenλ = 365 nm, just change
the angle of 52.19 to 53.32◦.

3.2. Microfabrication of pre-aligned fiber bundle coupler

The fabrication procedure for the pre-aligned fiber coupler
using direct lithography is as follows: (1) conduct tilted expo-
sures for the microlens and microlens array; (2) with the posi-
tion between the substrate and the mask fixed and a shade
mask to cover the pattern for the microlens or microlens array,
use a tilted exposure for the fiber-fixing grooves with full
exposure dosages and different wavelengths; (3) develop the
sample.

A layer of 1100�m thick SU-8 100 was spin-coated onto a
silicon substrate at 400 rpm for 20 s. The sample was then soft-
baked at 110◦C for 10 h and ramped down to room temperature
in 8 h. Two consecutive exposures were done in the fabrication
process while the optical mask and the wafer were held mechan-
ically without any adjustment. In the first exposure, the sample
was tilt-exposed at±45◦ to fabricate the microlens or microlens
array. In this exposure, the exposure dosage and light source
wavelength were carefully controlled to obtain the desired lens
profile[9–11]. After the exposure for the microlens or microlens
array, a shadow mask was placed on the optical mask to cover
the regions containing the microlens array. The second tilted-
exposure at±45◦ was conducted to fabricate the fiber-fixing
grooves using a full exposure dosage. The sample was then
post-baked at 96◦C for 20 min and cooled down to room tem-
perature in no more than 12 h. After the unexposed regions
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o
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xposed SU-8 also occur at different rates. During the dev
ent process, the single-exposed region is dissolved at a
igher rate than that of the double-exposed region. The u
osed SU-8 is normally developed many times faster tha
xposed SU-8. Our previously reported work[9–13]proved tha
hese intersection areas form microlenses with quasi-sph
urface profiles. In addition to the mask pattern geometry
ace profiles of the microlenses are also affected by exp
osage, wavelength selection, development conditions, and
onditions.

Sato et al. also reported an interesting work on multi-a
ilted lithography of SU-8[14]. In their work, the surface profi
ontrol is not important and the focus was on making thro
oles for fluidic filter application. The light source used for

ithographic fabrication of the fiberport collimator array is
-line (λ= 365 nm) dominated broadband UV light as marke
light intensity of light source” inFig. 3. Full exposure dosa
as used for the fabrication of the fiberport collimators to m
ure the bottom part of the device receives sufficient expo
osage and is fully cured. The dissolving rate of these sec
f the exposed SU-8 in the development process is negl
nd the shape of the fiberport collimator array can therefo
ssumed to depend only on the geometry of the mask pat

The refraction of the light at the surface of the SU-8 re
s dependent on the wavelengths of the light source. Fo
-line light (λ= 405 nm), the refractive index,n, is 1.650, the
ritical angle is 37.305◦. For thei-line light (λ= 365 nm) with
= 1.660, the critical angle is 36.836◦. To obtain 45◦ exposure
ngles inside the SU-8 resist, a coupling prism and optical l
lycerin (glyceryl) were required to compensate for refractio

hese interfaces[9–11]as schematically demonstrated inFig. 4.
e

ere removed in development stage, the remaining exp
egions of resist formed the microlens array and fiber-fi
rooves.

Three types of mask openings are used here: ellipse with
xis

√
2 times of the short axis and the long axis perpendic

o the lens’ optical axis (Group 1); circular openings for
ens (Group 2); and ellipse with long axis aligned to the le
ptical axis and equal to

√
2 times the short axis (Group 3).Fig. 5

hows a SEM Image of a prototype fiber bundle holders (G
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Fig. 5. SEM image of a prototype fiber bundle holder (Group 3) fabricated
using an elliptical mask pattern with long axis aligned to the lens’ optical axis:
250

√
2�m (L), 250�m (S).

3) fabricated using the direct lithography method as presented
in this paper.

After obtaining the SU-8 microstructures for the out-of-plane
microlens and fiber holder-grooves, optical fibers were inserted
into the fiber grooves to complete the construction of the fiber
couplers for our optical tests. The optical fiber were prepared
by stripping the plastic cladding from the fiber and then cut to a
required length so that it can be inserted into the groove holder
of the coupler. When the fiber was inserted into the coupler, it

was held in place by these grooves. The length of the stripped
fiber determines the separation between the terminal of optical
fiber and the surface of microlens.

The ends of the optical fibers were stripped of their plastic
coating by fiber stripping tools and fiber end terminated using a
fiber cleaver (Thorlabs Inc., Newton, NJ). The terminated opti-
cal fibers are then inserted into the holding grooves of the fiber
coupler.Fig. 6(A)–(C) shows several SEM images of the fabri-
cated fiber coupler with only one optical fiber inserted into the
array. From the SEM images, it can be seen that each pixel of the
microlens is pre-aligned with its corresponding fiber holders.

4. Experimental results and discussions

A simple test was conducted to test the focusing capabili-
ties of the microlens array. A collimated red light beam (about
630 nm) was projected onto the backside of the out-of-plane
microlens array and the focused image was acquired using CCD
camera (DXC-960MD SONY) in a Nickon OPTIPHOT-88 opti-
cal measurement microscope.Fig. 7 shows a photograph of
the focused image. The pixels at the array’s edge are partial
microlens so the focal pads are not as bright as the pixels con-
tained within the central region of the array. The pixel size of

F rofile e fiberport
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ig. 6. SEM image for the fiber coupler: (A) fiber coupler; (B) surface p
ollimator.
ig. 7. Optical images of the focal pads of the out-of-plane microlens array wit
isualization to help locate the individual pixels of the array. The picture at the
of the out-of-plane microlens array; (C) cascaded fixing grooves of th
h collimated red light projected on the backside. The dashed white lines are used for
right is a zoomed image of the focal pad.
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Fig. 8. Schematic diagram of the experimental setup for determining the coupling efficiency of the fiber bundle coupler.

the microlens array shown in the photograph was 247.89�m by
247.89�m. The size of the focused pads can be estimated to
have a diameter of 18.72�m.

The experimental setup for determining the optical system’s
coupling efficiency is schematically shown inFig. 8. A broad-
band light source (A1010 Arc lamp, Photon Technology Inter-
national) or laser diode (DL5038-021, Thorlabs, Nowton, NJ)
served as the light source, which was then focused using a cou-
pling microscope objective lens (NA = 0.4, 40×). The plastic
coating at the end of an optical fiber was stripped and then ter-
minated using a cleaver. One end of the fiber was then fixed
on the fiberport collimator facing the microscope objective lens.
The fiberport collimator’s relative position was then adjusted
with respect to the microscope lens to obtain maximum output
power at the opposite end of the fiber. A power meter (FieldMate
1067353, Coherent Inc., Santa Clara, CA) was used to measure
the input/output light power. In each measurement, the end of
the output fiber is perpendicular with the photo-cell and slightly
touching on the central area of the cell surface. This helped to
reduce the measurement error and improved the repeatability of
focus/align. After the output power from the first optical fiber
was measured, it was then inserted into one of the holder-grooves
in the fiberport collimator with the help of a microscope. The
second optical fiber (the receiving fiber) was inserted into the
holder-groove on the opposite side. The output power,Pout, for
the receiving optical fiber was then measured to obtain the cou-
p

pling
m oeffi
c dle
c light
s e en
o (f)
w e
n r are

matched (i.e., microlens’ NA equals or larger than optical fiber’s
NA), the highest coupling efficiency (dB= −10 log(Pout/Pin))
can be achieved. In addition, the cross-talk between neighbor-
ing channels was also tested by measuring the output powers of
several different receiving fibers not positioned directly within
the optical train and compared with the input light power.

Both multi-mode optical fibers (GIF625 from Thorlabs Inc.,
Newton, NJ) and single mode fibers (TBII single mode fiber,
Corning Inc., Corning, NY) were used in our tests for the fiber
coupling efficiency. The GIF625 fiber is a graded index fiber with
NA = 0.275 and a core diameter of 62.5�m. The TBII single
mode fiber has a NA of 0.13 and core diameter of 8�m. Both
a broadband light source and a 635 nm laser were used in these
tests. For the multi-mode optical fiber, the coupling efficiency
was measured to be 44.7% using the broadband light source,
and 24.5% using a laser diode with a wavelength of 635 nm. For
the single mode optical fiber, the coupling efficiency was found
to be about 22.7% for the laser diode at 635 nm. Because the
prototype lens has some significant aberration, this may have
made the focus pad for broadband light sources better at some
position, therefore higher coupling efficiency.

All three groups of out-of-plane microlens arrays with dif-
ferent surface profiles and dimensions were tested. The total
coupling efficiency with the 635 nm laser is shown inFig. 10.
For all of these fiber couplers, the cross-talk between neigh-
boring fiber pairs was also measured and the amount of light
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F ir of fi d
t

ling efficiency,Pout/Pin (dB = −10 log(Pout/Pin)).
The distances between the fiber pair and the cou

icrolens can be adjusted to obtain the highest coupling c
ient.Fig. 9shows a photo image of the prototype fiber bun
oupler with one pair of fibers inserted into the coupler and
upplied. The distances between the microlens array and th
f the fibers,l andl′, are close to two times the focal length
ith l slightly longer than 2fandl′ slightly shorter than 2f. If th
umerical aperture (NA) of the microlens and the optical fibe

ig. 9. Photograph of the top view of the fiber bundle coupler with one pa
o the fiber pair.
-
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eaking into these fibers was too small to be measured b
ower meter, therefore indicating that the degree of cross
as minimal.
In the coupling efficiency test, the light reflection and

bsorption by the structural material, cured SU-8 polymer,
eeds to be considered. Partial reflection exists at the inte
etween materials of different refractive index (such as air
lass, cured SU-8). The percentage of the reflection at a

icular interface depends upon the refractive indices, ang

bers inserted into the coupler and the light from a laser diode (λ = 635 nm) supplie
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Fig. 10. Coupling efficiency for the fiber coupler with different surface profiles
and dimensions.

incidence and the polarization state of the light. In the case of
normal incidence, the following equation is used to estimate the
back-reflection:

BR = (n2 − n1)2

(n2 + n1)2
(1)

At normal (0◦) incidence, light transiting between air and
another optical material with an index of 1.496 (fused silica
at 632.8 nm) will suffer an insertion loss of 0.15 dB or 3.3%
of the incident light is reflected. At normal (0◦) incidence, light
transiting between air and material with an index of 1.596 (cured
SU-8 at 632.8 nm) will have an insertion loss of 0.24 dB or 5.3%
of the incident light is reflected. These reflections result in a
reduction in the coupling efficiency of the fiber-to-fiber coupler.
To calculate the coupling efficiency for the fiber bundle cou-
pler, reflections at a total of five interfacial surfaces need to be
accounted for: one terminal of the input optical fiber, two lens’
surfaces, and two terminal faces of the output optical fiber. The
total insertion loss can be calculated as:

1 − (1 − 0.033)3 × (1 − 0.053)2 = 18.9%. (2)

The attenuation of the SU-8 microlens is estimated to be
about 5%. The theoretical coupling efficiency (assuming losse
only induced by reflection and SU-8 attenuation) that could
be achieved is∼76.1% for the fiber–microlens–fiber coupler
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the sample wafer and the optical mask to minimize the diffrac-
tion caused by the significant air gap between the resist and
mask. Glycerin is also necessary for the reflection composition
for 45◦ tilt exposure. A simple mechanical clip was used to hold
the wafer and the mask during the tilted exposures (at±45◦).
The glycerin liquid layer reduces the friction between the mask
and the photoresist, but increased the possible sliding move-
ment. Positional shift between the mask and the photoresist on
the substrate may reach several or even tens of microns. This
shift caused errors in the subsequent multiple exposures and sig-
nificantly reduced the fabrication precision and the alignment
precision for the fiber coupler. The alignment error therefore
contributed to the reduced coupling efficiency. A better design
for the mechanical holder is therefore necessary to improve the
lithography quality. The holder should permit rotation for well-
controlled angles for the tilted lithography and maintain precise
position control during lithography to avoid possible positional
shift.

The diameter of the focal pads is determined by the sur-
face profile of the microlens. The defects on the lens surface
and the surface roughness may also affect the quality of the
focal pads. In future work, the lithography conditions such as
the mask pattern shape, exposure dosage, wavelength selection,
development conditions, and bake conditions, need to be further
studied to obtain the optimal process parameters for better sur-
face profile and surface quality. In addition, optical aberration
o sur-
f een
d .

used
o g a
s mer-
i Two
c ored
a and
a atch
a this
s tion
f d by
r ocus-
i ction
o the
l inal
a

5

st of
p phy
o t-of-
p ith
t ixel
o cor-
r phy
m there-
f elps
t ality
ystem presented in this work. However, the experimen
btained coupling efficiency for this system was found to
5% for the multi-mode fiber and 23% for the single-mode fi
s shown inFig. 10, which are much lower than the theoret
alue of 76.1%.

There may be three reasons for the lower than expected
ling efficiency: (1) the relative position between the opt
ask and the photoresist changed during lithography; (2
ptical aberration caused the focal pads of the microlens
ecome larger than the end size of the fiber core; (3) the nu

cal aperture numbers between the fiber and the microlens
ot matched; (4) errors caused by the fiber inserted into
older.

In the foregoing estimation of coupling efficiency, it w
ssumed that no positional changes occurred between the
nd the photoresist on the substrate during the UV-lithograp
U-8. However, glycerin liquid was filled between the resis
s

-

o
r-
e

sk
f

f the microlenses can be reduced by better control for the
ace profile as further understanding for the relationship betw
evelopment rate and lens profile is achieved in the future

The prototype fiber coupler presented in this paper
nly one microlens for one fiber-lens-fiber channel. Usin
ingle microlens in coupling may cause mismatch in the nu
cal aperture (NA) between the fiber and the microlens.
ascaded microlenses with each lens symmetrically mirr
nother lens for the fiber coupler, one for the input fiber
nother for the output fiber, may help to improve the NA m
nd reduce possible longitudinal misalignment. In addition,
ymmetrical structure will help to reduce the optical aberra
or the lens pair. Further improvement may also be achieve
educing the distances between the fiber holders and the f
ng lens to avoid misalignment caused by mechanical defle
f fiber that is basically a cantilever. In addition, variations in

engths of the stripped fiber might also affected the longitud
lignment accuracy and contributed to the signal loss.

. Conclusions

We have presented the design, microfabrication and te
re-aligned array of fiber couplers using direct UV-lithogra
f SU-8. Each unit in the fiber coupler array consists of an ou
lane refractive microlens and two fiberport collimators. W

he optical axis of pixels parallel with the substrate, each p
f the microlens array was found to be pre-aligned with the
esponding pixels of fiberport collimator arrays in lithogra
ask design. No additional adjustment and assembly are

ore required for the integrated fiber coupler array. This h
o reduce the running cost and improve the alignment qu



130 R. Yang et al. / Sensors and Actuators A 127 (2006) 123–130

and coupling efficiency. The experimental results have proved
the feasibility of the integrated design approach and fabrication
using a single optical mask with direct UV-lithography of SU-8.
The coupling efficiency was found to be 25% for multi-mode
fiber and 23% single-mode fiber, much lower than the theoret-
ical maximum value of 76.1%. Further improvement may be
made using better mechanical holder in lithography to prevent
sliding errors and using two focusing lenses with symmetrically
mirrored structure.

Acknowledgements

The research work presented was partially funded by
Louisiana Space Consortium and the NIH (EB002115). The
authors also gratefully acknowledge the financial support of this
work through the National Science Foundation (DBI-0138048;
EPS-0346411) and partial support through the Louisiana Board
of Regents. The authors would like to thank Jason Emory for his
help in preparing the optical instruments for coupling efficiency
test.

References

[1] K. Song, J. Bu, Y. Jeon, C. Park, J. Jeong, H. Koh, M. Choi, Micro-
machined silicon optical bench for the low cost optical module, Proc.
SPIE Int. Soc. Opt. Eng. 3878 (1999) 375–383.

ath-
Soc.

ch-
hoku

Far-
996)

and
ech.

g in

sed
ng.

[8] R. Yang, D.L. Feeback, W. Wang, Microfabrication and test of three-
dimensional polymer hydro-focusing unit for flow cytometry applica-
tions, Sens. Actuators A: Phys. 118 (2) (2005) 259–267.

[9] R. Yang, W. Wang, Fabrication of out-of-plane SU-8 refractive microlens
using directly lithography method, in: Proceedings of the SPIE: SPIE
Photonics West, vol. 5346, San Jose, CA, 2004, pp. 151–159.

[10] R. Yang, W. Wang, Out-of-plane polymer refractive microlens fabricated
based on direct lithography of SU-8, Sens. Actuators A: Phys. 113 (1)
(2004) 71–77.

[11] R. Yang, W. Wang, Numerical and experimental study on an out-of-
plane pre-aligned refractive microlens fabricated using UV lithography
method, Opt. Eng. 43 (12) (2004) 3096–3103.

[12] R. Yang, S.A. Soper, W. Wang, Fabrication of out-of-plane concave and
convex refractive microlens array, in: Proceedings of the SPIE: SPIE
Photonics West, vol. 5717, San Jose, CA, 2005, pp. 134–141.

[13] R. Yang, W. Wang, S.A. Soper, Out-of-plane microlens array fabricated
using ultraviolet-lithography, Appl. Phys. Lett. 86 (2005) 161110.

[14] H. Sato, T. Kakinuma, J.S. Go, S. Shoji, A novel fabrication of in-
channel 3-D micromesh structure using maskless multi-angle: exposure
and its microfilter application, in: Proceedings of the IEEE MEMS Con-
ference, Kyoto, Japan, 2003, pp. 223–226.

Biographies

Ren Yang received his BS degree in Precision Instruments in May 1996 and
his MS degree in optical engineering in March 1999, both from Tsinghua
University of China. From June 1999 to August 2001, he studied microelec-
tromechanical systems (MEMS) in Louisiana State University and received
MS degree in Engineering Science in May 2002. From September 2001 to
February 2003, he worked in Ball Semiconductor Inc. in Dallas, Texas, as
a nt of
M asso-
c

S BS
d ska.
H and
w 991.
H tly is
t tate
U

W iao-
t PhD
d spec-
t tate
U nolo-
g

[2] H. Han, J.D. Stack, J. Mathews, C.S. Koehler, E. Johnson, A.D. K
man, Integration of silicon bench with micro optics, Proc. SPIE Int.
Opt. Eng. 3631 (1999) 234–243.

[3] T. Abe, Z. Ito, M. Enomoto, Y. Matsumura, New Fabrication Te
nique of Lens-ended Fibers for Optical Connector, No. 6, vol. 1, To
Kogyo Daigaku Kiyo, Rikogakuhen, 1986, pp. 21–27.

[4] W.R. Cox, T. Chen, D. Ussery, D.J. Hayes, J.A. Tatum, D.L. Mac
lane, Microjetted lenslet triplet fibers, Opt. Commun. 123 (4-6) (1
492–496.

[5] H. Yang, C. Chao, C. Lin, S. Shen, Micro-ball lens array modeling
fabrication using thermal reflow in two polymer layers, J. Microm
Microeng. 14 (2) (2004) 277–282.

[6] C.T. Pan, Silicon-based coupling platform for optical fiber switchin
free space, J. Micromech. Microeng. 14 (1) (2004) 129–137.

[7] R. Yang, J.D. Williams, W. Wang, A rapid micro-mixer/reactor ba
on arrays of spatially impinging micro-jets, J. Micromech. Microe
14 (10) (2004) 1345L 1351.
n optical engineer. Since March 2003, he works with the Departme
echanical Engineering in Louisiana State University as a research

iate.

teven A. Soper received his BS degree in Psychology in 1980 and his
egree in Chemistry in Chemistry in 1982, both from University of Nebra
e obtained his PhD in Chemistry in 1989 from University of Kansas
orked as postdoc in Los Alamos National Laboratory from 1989 to 1
e joined the faculty of LSU Chemistry Department in 1991 and curren

he William L. & Patricia Senn, Jr. Professor of Chemistry, Louisiana S
niversity.

anjun Wang received his BS in Mechanical engineering from Xian J
ong University of China in December 1981. He received his MS and
egrees from The University of Texas at Austin in 1986 and 1989, re

ively. He joined the faculty of Mechanical Engineering of Louisiana S
niversity in 1993. His current research interests include MEMS tech
ies, sensors and actuators.


	Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8
	Introduction
	Design of the fiber bundle coupler and tilted lithography of SU-8
	Fabrication of the fiber bundle coupler
	Wavelength selection and refraction compensation in tilted lithography
	Microfabrication of pre-aligned fiber bundle coupler

	Experimental results and discussions
	Conclusions
	Acknowledgements
	References


