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1. INTRODUCTION

It is easily seen that if the single ordinary differential equation

du
dt

= f (u)

has the property that each of its solutions remains bounded, then each
solution with bounded initial data of the partial differential equation

�u
�t

=2u+ f (u) in D

�u
�n

=0 on �D

also remains bounded.
Mizoguchi, Ninomiya, and Yanagida [6] recently proved that the analog

of this result is not true for systems of equations. More precisely, they showed
that there are solutions with bounded initial data of the nonlinear system

�u
�t

=du 2u+|u&v| p&1 (u&v)&u

�v
�t

=dv 2v+|u&v| p&1 (u&v)&v (1.1)

�u
�n

=
�v
�n

=0 on �D

with p>1 and 0�du<dv which blow up in finite time, even though all
solutions of the system obtained by setting du=dv=0 approach (0, 0).

The example of Mizoguchi, Ninomiya, and Yanagida depends strongly
on the fact that the two diffusion constants are different. In fact, we shall
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show near the beginning of Section 3 that when du=dv , any solution of the
system (1.1) with bounded initial data remains bounded.

It is the purpose of this note to exhibit a system with equal diffusion
constants which has the same properties as the example of Mizoguchi,
Ninomiya, and Yanagida. We shall prove that the system

�u
�t

==
�2u
�x2+uv(u&v)(u+1)&$u in (&1, 1)

�v
�t

==
�2v
�x2+vu(v&u)(v+1)&$v in (&1, 1) (1.2)

�u
�x

=
�v
�x

=0 at x=\1

has the property that when ==0 and $>0, the origin is a global attractor
of the positive solutions, but that when = and $ are both positive, there is
a positive solution with bounded initial data which blows up before any
prescribed positive time T.

A positive solution of the system (1.2) is also a solution of the system

�u
�t

==
�2u
�x2+u |v| ( |u|&|v| )( |u|+1)&$u in (&1, 1)

�v
�t

==
�2v
�x2+v |u| ( |v|&|u| )( |v|+1)&$v in (&1, 1) (1.3)

�u
�x

=
�v
�x

=0 at x=\1

for which the origin is a global attractor of the whole (u, v) plane when
==0 and $>0. Therefore, this system has the same properties as the example
of Mizoguchi, Ninomiya, and Yanagida, but the diffusion constants are
equal.

The proof of Mizoguchi, Ninomiya, and Yanagida depends upon estab-
lishing a rather sophisticated inequality between a certain integral and its
derivatives. In Section 2 we shall give an explanation of unequal-diffusion
blowup by applying a heuristic argument to a simple linear system. The
mechanism in this example does not work in the case of equal diffusions.

Section 3 presents a different heuristic argument to show that the system
(1.2) should have positive solutions with the desired blowup property, and
a computation to back up this argument. These are followed by two theorems
which state that when = and $ are positive, this system has positive solution
which blow up in a finite time. Because there are no comparison theorems
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for the solutions of the system (1.2), the usual maximum principle argu-
ments do not work, and some different techniques are introduced.

The seminal paper of A. M. Turing [7] showed that unequal diffusions
can produce an unstable manifold at a constant equilibrium solution
which, in the absence of diffusion, is an isolated attractor. In contrast, the
result of Mizoguchi, Ninomiya, and Yanagida [6] shows that unequal
diffusions can create a stable manifold for the point at infinity, which is, in
the absence of diffusion, a repeller. The present paper shows that this
phenomenon can also be brought about by by equal diffusions.

It has been shown by Y. Lou and W.-M. Ni [5, Theorem 1.2] that
adding diffusion to a diffusionless system with an attractor at infinity can
make the basin of attraction of the attractor at infinity grow. (This work
is still in progress, in collaboration with T. Nagylaki.)

There is an extensive blowup literature (see, e.g., the review article [4]),
in which it is shown that adding diffusion to one or more ordinary differen-
tial equations with solutions which blow up may not prevent this blowup.
In contrast, the examples (1.1) and (1.2) show that diffusion may actually
cause the blowup.

Churbanov [1] proved that there is a system of ordinary differential
equations all of whose solutions exist for all time with the property that the
corresponding system with equal diffusions has solutions which blow up in
a finite time. An explicit example of such a system was recently given by
Guedda and Kirane [3].

2. UNBOUNDEDNESS INDUCED BY UNEQUAL DIFFUSIONS

The fact that unequal diffusions can produce unboundedness seems
rather strange at first glance. We shall give a simple linear system which
displays such a phenomenon. Consider the system

�u
�t

=:= 2u+u&&v&$u

�v
�t

== 2v+u&&v&$v (2.1)

�v
�n

=0 on �D,

where

&>1, 0<:&<1. (2.2)
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It is not difficult to see that when ==0 and $>0, the origin is a global
attractor of the resulting system

When ==$=0, the solution (u(t, x), v(t, x)) approaches ((&[u(0, x)&
v(0, x)]�(&&1), [u(0, x)&v(0, x)]�(&&1)) as t � �. If = is positive but
small, then at times of order o(1�=) one still expects the solution to be close
to this. In particular, the largest values of u and v are approximately equal
to multiples of the largest value of u(0, x)&v(0, x). If this function has a
strict interior maximum, then as time increases, the diffusion will reduce
the maximum value of v by a small amount =' while, since ur&v, the maxi-
mum value of u is reduced by about :&='. The dynamics then drive the new
value (&[u(0, x)&v(0, x)]�(&&1)&:&=', [u(0, x)&v(0, x)]�(&&1)&=')
toward the point (&[u(0, x)&v(0, x)+(1&:&) =']]�(&&1), [u(0, x)&
v(0, x)+(1&:&) =']]�(&&1)).

In other words, while the diffusion reduces the maximum values of both
u and v, it increases the maximum of u&v. Thus the combination of the
diffusion and the dynamics actually increases the maximum values of u and
v, contrary to what one might expect. This heuristic argument indicates
that one might expect the solution to approach infinity, provided = and $
are sufficiently small.

To verify this heuristic argument, we look at a solution of the form
u=ae_t,2 , v=be_t,2 , where ,2 is a nonconstant Neumann eigenfunction of
the operator &2 with the corresponding positive eigenvalue *2 , and _, a,
and b are constants to be determined. The statement that this is a solution
leads to a matrix eigenvalue problem for _. It is easily seen that there is a
positive _ when

&*2(1&:&) =+*2
2 :=2+[&&1+*2(1+:)] =$+$2<0.

Once the condition (2.2) is satisfied, this condition is valid when = and then
$ are chosen sufficiently small. In such cases, the diffusion produces
unbounded solutions with bounded initial data. Because the system is
linear, one cannot expect finite-time blowup.

3. BLOWUP PRODUCED BY EQUAL DIFFUSIONS

We note that if :<1 so that the diffusion constants in (2.1) are unequal,
one can always choose & so that the conditions (2.2) are satisfied, and the
diffusions with suitable positive = and $ takes bounded initial data into
unbounded solutions.

The situation is different when the diffusion constants are equal. In this
case, Theorem 1 of [8] states that convex invariant sets for the system
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without diffusion are also invariant sets of the system with equal diffu-
sions.1 It is easily seen that any set of the form |u&v|�c, |u&&v|�d is a
convex invariant set for the system (2.1) with ==0. Since any bounded
initial data lie in such a parallelogram for suitable values of c and d, we
conclude that bounded initial data give bounded solutions when :=1.

Similarly, the parallelograms |u&v|�c, |v|�c p serve to show that when
du=dv in the Mizoguchi, Ninomiya, and Yanagida example (1.1), bounded
initial data lead to bounded solutions.

We now consider the system

ut==uxx+uv(u&v)(u+1)&$u in (0, �)_(&1, 1)

vt==vxx+vu(v&u)(v+1)&$v in (0, �)_(&1, 1)
(3.1)

ux(&1, t)=ux(1, t)=0

vx(&1, t)=vx(1, t)=0

with equal diffusion constants. The trajectories in the first quadrant of the
system of ordinary differential equations which is obtained by setting
==$=0 are arcs of the family of hyperbolas (u+1)(v+1)=c, along which
the solution moves from the line of equilibria u=v toward the nearer of the
lines of equilibria u=0 or v=0. In particular, all positive solutions of this
system of ordinary differential equations are bounded.

If $ is positive while = is zero, the flow goes toward the origin on the axes
and the line u=v, and the function (u+1)(v+1) is a Lyapounov function
which serves to show that the origin is a global attractor of positive solutions.
However, all the bounded convex invariant subsets of the first quadrant
with nonempty interior of this system lie in a fixed bounded set.

We consider the specific solution of the system (3.1) with the initial
conditions of the form

u(x, 0)=v(&x, 0)=c2+sin(?x�2). (3.2)

We assume that the prescribed constant c is greater than 1, so that the
initial data are positive. Because the first quadrant is an invariant set for
the system with ==0, it is also an invariant set when =>0. Thus the solu-
tion corresponding to the initial values (3.2) remains positive.

Because the system (3.1) and the initial conditions (3.2) are invariant
under the interchange of u and v together with the replacement of x by &x,
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and because the solution of the initial value problem is unique, we conclude
that

v(x, t)=u(&x, t) (3.3)

for all t�0 where the solution is defined.
We note that the system of ordinary differential equations obtained by

setting ==$=0 in (3.1) makes the solution with the initial values (3.2)
approach the discontinuous function

U(x)=V(&x)={
0 for x<0
c2 for x=0
(c2+sin(?x�2)+1)(c2&sin(?x�2)+1)&1

for x>0

(3.4)

as t � �. We now keep $=0 but take = small and positive. Then up to a
time of order 1�= the solution approaches (U, V). After a longer time, we
can expect the diffusion to replace the values of u and v near the discon-
tinuity by the averages of U and of V in a neighborhood, that is, by values
near (2c2+c4)�2>c2. The growth term again tries to reduce u to zero for
x<0, while the values for small positive x should approach [(2c2+c4)�2]2&1.
The averaging process now gives half of this value near x=0. Thus we see
that the value at 0 increases without bound. Moreover, one can expect, or
at least hope, that the process will accelerate as the jump gets larger, so
that the solution will blow up in a finite time, and that this phenomenon
will still occur when $ is small and positive.

To check this heuristic argument, we have done some computations to
obtain graphs of the components u (solid curve) and v (dashed curve) of
the solution of (3.1), (3.2) with ==1, $=0.1, and c2=10 at a sequence of
times.2 (See Fig. 1.)

Note that, as the heuristic argument predicted, the solution at t=0.0019
is close to the discontinuous function (3.4) except for a sharp but not verti-
cal interface near x=0. The interaction of the diffusion and the dynamics
near this interface then produces a peak, which is shown at t=0.0022. As
time increases, this peak becomes higher, narrower, and closer to x=0
with increasing time, as the last two pictures show. Further computations
seem to indicate that the peak becomes infinite at a t slightly above 0.0024.

While it is not too difficult to show that the solution of the problem
(3.1), (3.2) is unbounded, the computation challenges us to prove the
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FIGURE 1

stronger result that the solution blows up in a finite time. This is the content
of the following theorem, which is our main result.

Theorem 1. Let (u, v) be the solution of the initial value problem (3.1),
(3.2) with any prescribed =>0 and $�0. For any positive T there is a
positive c0 with the property that if c�c0 , then u and v blow up at some
t*<T. That is, the solution is defined for 0�t<t*, and limt � t* max u( } , t)
=limt � t* max v( } , t)=�.

Proof. Suppose that the solution of (3.1), (3.2) is defined on the interval
[0, T]. Subtracting the first two equations in (3.1) shows that

(u&v)t==(u&v)xx+[uv(u+v+2)&$](u&v). (3.5)

Moreover, condition (3.3) shows that u&v is zero at x=0, while the initial
conditions show that u&v>0 when t=0 and x>0. Since the convex set
0�v�u is invariant for the system (3.1) with ==0, it is also invariant for
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the system with =>0. We conclude that the function u(t, x)&v(t, x) is
positive for x>0.

Since u&v is odd, this fact implies that

(u&v) sin(?x�2)�0. (3.6)

Multiplying both sides of (3.5) by sin(?x�2), integrating with respect to
x, and integrating by parts gives the identity

d
dt |

1

&1
(u&v) sin(?x�2) dx

=|
1

&1
[&=?2�4+uv(u+v+2)&$](u&v) sin(?x�2) dx. (3.7)

We note that minx u(0, x)=c2&1>c&1. If for some t1 # (0, T]

min
x

u(t, x)=min
x

v(t, x)�c&1 for 0�t�t1 , (3.8)

then uv�(c&1)2 on this time interval. By using (3.6), (3.8), and the fact
that u+v�(u&v) sin(?x�2), we see that if

(c&1)2>(=?2�4+$)�2,

the equation (3.7) implies the inequality

d
dt |

1

&1
(u&v) sin(?x�2) dx�(c&1)2 |

1

&1
[(u&v) sin(?x�2)]2 dx

for 0�t�t1 .

Thus if we set

w(t)=
1

�1
&1 (u&v) sin(?x�2) dx

, (3.9)

and apply the Schwarz inequality

_|
1

&1
(u&v) sin(?x�2) dx&

2

�2 |
1

&1
[(u&v) sin(?x�2)]2 dx,

we see that

dw
dt

�&(c&1)2�2.
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We integrate this inequality to obtain the bound

w(t)�w(0)&(c&1)2t�2 for 0�t�t1 . (3.10)

Since (3.6) and the definition (3.9) show that w>0, we conclude from
(3.10) that t1�2w(0)�(c&1)2. That is, either the solution stops existing or
the inequality (3.8) is violated on (0, {) if {>2w(0)�(c&1)2.

Suppose now that t1 is the largest time for which (3.8) is valid, and that
there is a interval [t1 , t2] of [0, T] such that

min
x

u(t, x)�c&1 for t1�t�t2 . (3.11)

An easy computation shows that

(ln(u+1)&ln c)t

==(ln(u+1)&ln c)xx+=(ln(u+1)&ln c)2
x+uv(u&v)&$u�(u+1).

Since uv(u&v) is an odd function by (3.3), integration and the Neumann
boundary conditions show that

d
dt |

1

&1
(ln(u+1)&ln c) dx== |

1

&1
(ln(u+1)&ln c)2

x dx&$ |
1

&1
u�(u+1) dx.

(3.12)

Since u�(u+1)<1, the function

q(t)=|
1

&1
(ln(u+1)&ln c) dx&2$(T&t) (3.13)

is nondecreasing. An easy computation shows that

q(0)>2(ln c&$T ). (3.14)

We assume that c>e$T. Then q(t) is positive for all t.
We observe that by (3.11), the fundamental theorem of calculus, and

Schwarz's inequality

q(t)�|
1

&1
(ln(u+1)&ln c) dx�2[ln(max u(t, } )+1)&ln(min u(t, } )+1)]

�2 �2 |
1

&1
(ln(u+1)&ln c)2

x dx.
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We see from this together with (3.12) and the inequality u�(u+1)<1 that
the function q(t) satisfies the inequality

dq
dt

�{0
=q2�8

for 0�t�t1

for t1�t�t2 .

We conclude that

1
q(t)

�
1

q(0)
&=(t&t1)�8 for t1�t�t2 . (3.15)

Since q is nondecreasing, it remains positive. Therefore, if the solution
exists up to the time t2 , we must have t2&t1<8�(=q(0)).

We recall that the solution of (3.1), (3.2) is defined on the interval
[0, T]. We partition this interval into a (finite or infinite) partition 0=t0

<t1<t2< } } } �T with the property that

min
x

u(t, x){�c&1
�c&1

for t # [t2j , t2j+1]
for t # [t2j+1 , t2j+2 ].

(3.16)

The derivation of (3.15) leads to the inequality

1
q(t2j+2)

�
1

q(t2j)
&=(t2j+2&t2j+1)�8.

By adding these inequalities, we find that

1
q(t2j)

�
1

q(0)
&= :

j&1

k=0

(t2k+2&t2k+1)�8.

The positivity of the left-hand side then leads to the bound

: (t2k+2&t2k+1)�
8

=q(0)
(3.17)

for the measure of the subset of [0, T] where minx u�c&1.
To obtain a bound for the measure of the complement of this set, we

observe that the derivation of the inequality (3.10) leads to the inequality

w(t2j+1)�w(t2j)&(c&1)2(t2j+1&t2j)�2.
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We see from the equation (3.7) that the function w(t) e&[(=?2�4)+$] t is
nonincreasing in t. Therefore, we obtain the recursion

w(t2j+2)�e[(=? 2�4)+$](t2j+2&t2j+1 )w(t2j+1)

�e[(=? 2�4)+$](t2j+2&t2j+1 )[w(t2j)&(c&1)2 (t2j+1&t2j )�2].

The usual trick of introducing the new variable

rj=e&[(=?2�4)+$] � 0
j&1 (t2i+2&t2i+1 ) w(t2j)

leads to the recursion

rj+1�r j&e&[(=?2�4)+$] � 0
j&1 (t2i+2&t2i+1 ) (c&1)2 (t2j+1&t2j)�2.

The inequality (3.17) then yields the recursion

rj+1�r j&e&[2?2+8($�=)]�q(0)(c&1)2 (t2j+1&t2j)�2,

so that

rj+1�w(0)&e&[2? 2+8($�=)]�q(0) :
j+1

i=0

(c&1)2 (t2i+1&t2i)�2.

The fact that the rj are positive now leads to the bound

: (t2i+1&t2i)�2w(0) e[2?2+8($�=)]�q(0)�(c&1)2 (3.18)

for the measure of the subset of [0, T] where the first inequality in (3.16)
is valid.

A simple computation shows that w(0)=1�2. Since the interval [0, T] is
the union of the subsets where the two inequalities in (3.16) are valid, we
obtain a bound for T by adding the bounds (3.17) and (3.18) for the
measures of these two sets; that is,

T�8�(=q(0))+e[2? 2+8($�=)]�q(0)�(c&1)2. (3.19)

We see from the inequality (3.14) that the right-hand side converges to
0 as c approaches infinity. Therefore, when c is sufficiently large, the
inequality (3.19) is violated. We conclude that the solution must cease to
exist before the positive time T.

Since the system (3.1) is semilinear and parabolic, standard local exist-
ence and regularity theorems show that the solution can only cease to exist
when limt � t* max u( } , t)=� for some t*�T, which proves the theorem.

The above proof is easily adapted to yield the following statement for
fixed = and c and small $.
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Theorem 2. Let = be any positive number, and let c be a prescribed
number which satisfies the inequality (c&1)2>=?2�8. Then if T is any num-
ber greater than the value of the right-hand side of (3.19) at $=0, there is
a positive $0=$0(=, c, T ) with the property that if 0�$�$0 , the solution of
(3.1), (3.2) blows up at some t*�T.

We remind the reader that positive solutions of the system (3.1) are also
solutions of the system (1.3), which has the property that when ==0 and
$>0, the origin is a global attractor, so that the point at infinity is a
repeller. Theorems 1 and 2 show that equal diffusions produce a stable
manifold at this repeller.

The above theorems are easily extended to the higher-dimensional
problem in which the �2��x2 on the right of (3.1) is replaced by the Laplace
operator, the interval [&1, 1] is replaced by a domain which is symmetric
about x1=0, and the function sin(?x�2) in the initial conditions is replaced
by an eigenfunction of &2 with Neumann boundary conditions which
vanishes at x1=0 and is positive for x1>0.

Our proofs of the above theorems depend strongly on the symmetry of
the equations (3.1) and the initial conditions (3.2). These imply the sym-
metry (3.3), which, in turn, keeps the interface from moving away from
x=0. Numerical computation of the solution of (3.1) with ==1 and $=0.1
with the asymmetric initial data u(0, x)=10+2 sin(?x�2), v=10&sin(?x�2)
seems to indicate that in spite of the lack of symmetry the interface remains
at x=0, and that u (but not v) develops a peak which blows up in a finite
time. It would be interesting to find a proof of this more general result.
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