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Abstract

Denote by An the set of square (0, 1) matrices of order n. The set An, n � 8, is partitioned into
row/column permutation equivalence classes enabling derivation of various facts by simple counting. For
example, the number of regular (0, 1) matrices of order 8 is 10160459763342013440. Let Dn, Sn denote
the set of absolute determinant values and Smith normal forms of matrices from An. Denote by an the
smallest integer not in Dn. The sets D9 and S9 are obtained; especially, a9 = 103. The lower bounds for
an, 10 � n � 19 (exceeding the known lower bound an � 2fn−1, where fn is nth Fibonacci number) are
obtained. Row/permutation equivalence classes of An correspond to bipartite graphs with n black and n
white vertices, and so the other applications of the classification are possible.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let An denote the set of square (0, 1) matrices of order n. Hadamard maximum determinant
problem is: find the maximum determinant among the matrices in An. In this paper we consider
a slightly more general problem: determine the set Dn = {| det A||A ∈An}.

It is known [1] that determinants of (0, 1) matrices of order n are related to determinants of
±1 matrices of order n+ 1. If A is a (0, 1)-matrix of order n, let B = �(A) be a ±1-matrix of
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order n+ 1 obtained from A by replacing its 0 by−1, bordering with a row−1’s on the top, and
a column of 1’s on the right. Clearly, � is a one-to-one correspondence. By adding row 1 of B to
each of the other rows of B, we see that det B = 2n det A.

By the Hadamard inequality | det B| � √
(n+ 1)n+1, and therefore for all A ∈An | det A| �

2−n
√

(n+ 1)n+1. The equality is attained if B is an Hadamard matrix, i.e. if BBT = (n+ 1)In+1,
where T denotes transposition, and In is the unit matrix of order n; for n > 2 this implies n =
4k − 1. For upper bounds for determinants of A ∈An see for example [2].

Let dn denote the largest element in Dn, and let an be the smallest integer not in Dn. Craigen
[3] shows that the set Dn is the interval {1, 2, . . . , dn} for n � 6, but not for n = 7, because
a8 = 41 < d8 = 56; he suggests that a9 = 103.

Some interesting sequences, related to (0, 1) matrices are found in [4]: A003432 (the sequence
dn), A013588 (the sequence an), A051752 (cn, the number of matrices inAn with the determinant
dn) and A055165 (mn, the number of regular matrices in An). A few first members of these
sequences are given in the following table. The values of a9, c8, c9 and m8 seem to be new.

A003432 A013588 A051752 A055165
n dn an cn mn

1 1 2 1 1
2 1 2 3 6
3 2 3 3 174
4 3 4 60 22560
5 5 6 3600 12514320
6 9 10 529200 28836612000
7 32 19 75600 270345669985440
8 56 41 ∗195955200 ∗10160459763342013440
9 144 ∗103 ∗13716864000
10 320
11 1458
12 3645
13 9477

In this paper, which is a continuation of [5], the matrices in An, n � 8, are partitioned into
row/column permutation equivalence classes, enabling the classification by ADV, and more pre-
cisely—by SNF (see Section 2). Let Sn denote the set of SNF’s of matrices in An. In Section
3 the sets D9 and S9 are determined. In Section 4 the lower bounds for an, 10 � n � 19 are
obtained; cn, n � 9, are obtained in Section 5.

We introduce now some notation. IfA = [aij ] andB = [bij ] are matrices of the same dimension
m× n, we say that A < B if A is lexicographically less than B, i.e. if for some pair of indices
(i, j) the first i − 1 rows of A and B are equal, the first j − 1 elements in the ith row of A and B

are equal, and aij < bij . For example,[
1 0
1 0

]
<

[
1 0
1 1

]
.

The smallest matrix in a set A is the representative of A.
Denote by Pi,j the permutation matrix obtained from In by exchanging the ith and j th row.
The matrices A, B ∈An are equivalent [7], A ∼ B, if B is be obtained from A by a sequence

of elementary row/column operations of the following types: exchange of two rows/columns,
multiplication of a row/column by−1, and addition/subtraction of a row/column to/from another
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row/column. Let SNF(A) denote the SNF of A. It is known that A ∼ B is equivalent to SNF(A) =
SNF(B) (in [7] this statement is proved for polynomial matrices).

The SNF diag(d1, d2, . . . , dn) is written simply as a vector (d1, d2, . . . , dn). If diagonal
elements of SNF are repeated, we use the shortened exponential notation. For example,
(13, 2, 0) is short (1, 1, 1, 2, 0). If s ∈Sn, then we also say that the SNF-class s is the set {A ∈
A|SNF(A) = s}.

Let Jn denote the square matrix of order n with all elements equal to one.

2. Classification of (0, 1) matrices of order 8 or less

The set Dn could be obtained by computing determinants of all A ∈An. A better approach
is to group matrices with the same determinant, and then to compute the determinant of only one
matrix in each group. It is useful to classify An into subsets with constant absolute determinant
value(ADV), or into even smaller subsets with constant SNF. We now review some such partitions
of An.

Let �r denote the group of row permutations of matrices from An. Permutations from �r

preserve ADV.
The representative of the matrix A orbit is obtained from A by sorting its rows into a nondecreas-

ing sequence. Rows of A correspond to binary numbers less than N = 2n. Therefore, the number

of orbits of �r in An is equal to

(
N + n− 1

n− 1

)
, i.e. the number of nondecreasing sequences of

length n from {0, 1, . . . , N − 1}. Let � denote the group of row and column permutations; � also
preserves ADV. The group � induces an equivalence relation π over An. We say that matrices
A and B are permutationally equivalent, A ∼π B, if they are in the same orbit of �. Let Aπ

denote the representative of the matrix A equivalence class (π -class; we say shorter that Aπ is a
π -representative of A).

Example 1. The π -representative of
1 0 1

1 1 0
1 0 0




is the matrix
0 0 1

0 1 1
1 0 1


 ,

the smallest of all 36 permutationally equivalent matrices.

Let Aπ
n denote the set of π -representatives in An. In [8] it is shown that the number of

π -classes in An is given by

|Aπ
n | =

∑
i1+2i2+···+nin=n

∑
j1+2j2+···+njn=n

C(i)C(j) exp2

n∑
r,s=1

ir js2(r,s), (1)

where the summation is over all vectors i = (i1, i2, . . . , in), j = (j1, j2, . . . , jn), and

C(i) = n!/(1i1 i1! . . . nin in!)
is the number n-permutations with ir cycles of length r , r = 1, 2, . . . , n; (r, s) denotes GCD of
integers r , s. The values |Aπ

n | are listed in Table 1; they are easily computed for quite a large n
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Table 1
The number of permutationally nonequivalent matrices in An, n � 15

n (2n2
/n!2)/|Aπ

n | |Aπ
n |

1 1.00000 2
2 0.57143 7
3 0.39506 36
4 0.35892 317
5 0.41433 5624
6 0.52685 251610
7 0.65875 33642660
8 0.77266 14685630688
9 0.85533 21467043671008
10 0.91045 105735224248507784
11 0.94565 1764356230257807614296
12 0.96754 100455994644460412263071692
13 0.98088 19674097197480928600253198363072
14 0.98886 13363679231028322645152300040033513414
15 0.99358 31735555932041230032311939400670284689732948

using, for example, UBASIC [9]. It is seen that pn is close to 2n2
/(n!)2 for n � 15. An effective

algorithm to generate the representative Aπ of a given matrix A (Section 2.3) simplifies the
classification of matrices, because it enables to deal with the small subset Aπ

n of An.

2.1. Matrix extension

In order to classify matrices in An by ADV values, one has to select carefully the order by
which determinants are computed. It is natural to start from matrices of order n− 1, and then to
extend them by one row and one column of ones and zeros in each possible way. For an arbitrary
B ∈An−1, let bord(B) denote the subset of An, containing matrices with the upper left minor
equal to B. We say that the matrices in bord(B) are obtained by extending B; if A ∈ bord(B),
then A is an extension of B.

The calculation of determinants of all matrices in bord(B) is an easy task. If A ∈ bord(B),
then A is of the form

A =
[
B y

x b

]
, (2)

where x = [x1 x2 · · · xn−1] and y = [y1 y2 · · · yn−1]T. Then [1]

det A = b det B −
n−1∑
i=1

n−1∑
j=1

xiyj det Bij , (3)

where Bij is the cofactor of B, corresponding to aij .
Obviously,

An = {A|(B, x, y, b) ∈An−1 × {0, 1}n−1 × {0, 1}n−1 × {0, 1}}.
If we precompute cofactors Bij , then determinant of each matrix from bord(B) is computed

by only one addition: for the fixed x, the column y might traverse the set of possible values via
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a Gray code (so that in the sequence of y’s each two subsequent vectors differ in exactly one
position).

Williamson [1] noted that it is enough to let B cross the set of π -representatives in An−1. Let
bordπ (B) denote the set of π -representatives of matrices in bord(B).

Lemma 2. If B ∼π B ′ then bordπ (B) = bordπ (B ′).

Proof. Let A ∈ bordπ (B). If the row/column permutations, transforming B into B ′, are applied
to the first n− 1 rows/columns of A, then the matrix with the upper left minor equal to B ′ is
obtained. Therefore, the matrix permutationally equivalent to A is obtained by extending B ′,
meaning that A is permutationally equivalent to a matrix from bord(B ′), i.e. A ∈ bordπ (B ′).
Analogously, bordπ (B ′) ⊆ bordπ (B), and so bordπ (B ′) = bordπ (B). �

Not only determinants, but also SNF’s of matrices in bord(B) can be efficiently computed.
The preprocessing step is to compute D = SNF(B) = diag(d1, d2, . . . , dn), and the matrices P ,
Q, such that PBQ = D, | det P | = | det Q| = 1. In order to determine SNF(A) for an arbitrary
A ∈ bord(B) of the form (2), we use the identity[

P 0
0 1

] [
B y

x b

] [
Q 0
0 1

]
=
[

D Py

xQ b

]
. (4)

Denote xQ = [a1 a2 · · · an], Py = [c1 c2 · · · cn]T. Suppose d1 = d2 = · · · = dk = 1, for
some k, 1 � k � n. Transforming the matrix from the righthand side of (4) by subtracting the
row i multiplied by ci from the row n, 1 � i � k, and then subtracting the column i multiplied
by ci from the column n, 1 � i � k, we derive that A is equivalent to



1 · · · 0 0 · · · 0 0
...

. . .
...

...
...

...

0 · · · 1 0 · · · 0 0
0 · · · 0 dk+1 · · · 0 ck+1
...

...
...

. . .
...

...

0 · · · 0 0 · · · dn cn

0 · · · 0 ak+1 · · · an b −∑k
i=1 aici




. (5)

Hence, SNF(A) determination is reduced to determination of SNF of a matrix of order n− k.
The special cases when k � n− 1 are extremely simple, and they are not rare at all, because the
corresponding SNF-classes are among the largest ones (at least for n � 9). More generally, one
can reduce ai , ci modulo di , 1 � i � rank B.

2.2. �-extension

Following Williamson [1], the approach based on extending π -representatives only, can be
further improved.

For an arbitrary A ∈An let A′ = XiA denote the matrix with the ith row equal to the ith
row of A, and with the row j /= i equal to the coordinatewise modulo two sum of j th and
ith row of A. Equivalently, A′ = RAS, where R is the matrix obtained from In by subtracting
ith row from the others, and then by multiplying ith row by −1; S is the matrix obtained from
In by changing sign of columns corresponding to ones in the ith row of A. A third equivalent
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definition of Xi [1] can be stated as follows: in the±1 matrix B = �(A) of order n+ 1, the rows
1 and (i + 1) are exchanged, then the first row is “normalized” to all ones by changing signs of
appropriate columns. By applying �−1, the matrix A′ is obtained. Therefore, application of Xi to
A corresponds to a special row permutation in �(A) (followed by scaling). It is natural to denote
the identity transformation by X0, X0A = A.

The transformation Xi also preserves ADV. The composition of arbitrary two transformations
Xi , Xj is equivalent to only one:

Xi(XjA) =
{
Pi,j (XiA), if 1 � i, j � n if i /= j,

A, if 1 � i = j � n.

Let �r denote the set of (n+ 1)! transforms of the form PXi , 0 � i � n, where P is an
arbitrary permutation matrix.

Theorem 3. The set �r is a transformation group of An.

Proof. We have

XiPA = PXpi
A,

where pi is the index of the row of A, which is moved to the position i after the left multiplication
by P . Let P1 and P2 be the two permutation matrices and let pj be the position to which P1 moves
the row j after the left multiplication. Then

P2XjP1Xi = P2P1Xpj
Xi =

{
P2P1, pj = i

P2P1Ppj ,iXpj
, pj /= i

.

If P1 = P is an arbitrary permutation matrix, 1 � i � n, P2 = P−1, and pj = i, then

(PXi)
−1 = P−1Xj . �

Clearly, each orbit of �r contains at most n+ 1 orbits of �r .
The corresponding transformation AXj over the columns of A (coordinatewise addition mod-

ulo two of the column i to all other columns) is defined by AXj = (XjA
T)T. Let �c denote the

group generated by column permutations and column transformations (·)Xi .
Let � be the group generated by the elements of groups �r and �c; it also preserves ADV and

its size is (n+ 1)!2. Matrices A and A′ are said to be φ-equivalent, A ∼φ A′, if they belong to the
same orbit of �. Equivalently, A ∼φ A′ if and only if there exist row and column permutations
P , Q, and row and column transformations Xi , Xj , such that A = PXiA

′XjQ. For an arbitrary
A ∈An let Aφ denote the φ-representative of A; φ-class of A is the orbit of � containing A.

Let bordφ(B) denote the set of φ-representatives of matrices in bord(B). Williams [1] noted

that � and � have similar properties: in order to obtain the set Aφ
n of all φ-representatives in An,

it is enough to extend φ-representatives in An−1.

Lemma 4. If B ∼φ B ′, then bordφ(B) = bordφ(B ′).

Proof. If B and B ′ are φ-equivalent, then there exist g ∈ �, transforming B into B ′. Suppose A ∈
bordφ(B). Then there exists a matrix A′ ∈ bord(B), A′ ∼φ A. By applying g to upper left minor
of A, the matrix A′′ ∼φ A′, A′′ ∈ bord(B ′) is obtained. Therefore, A ∼φ A′′, and A ∈ bord(B ′).
Because A is a φ-representative, we obtain A ∈ bordφ(B ′), implying bordφ(B) ⊆ bordφ(B ′).
Analogously, bordφ(B ′) ⊆ bordφ(B), and hence bordφ(B) = bordφ(B ′). �
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2.3. Effective determination of π -representatives

The classification of matrices in An by extending matrices from A
φ
n−1 must be accompanied

by an effective procedure to determine Aπ and Aφ for an arbitrary A ∈An.
The matrix Aπ is the smallest among the family of at most n!matrices obtained by sorting rows

of all the column permutations of A. Search is performed more efficiently by a branch-and-bound
algorithm. If we know the first i rows ofAπ (i.e. the row and column permutationsP ,Q such that the
first i rows of PAQ are minimal), then the next row of Aπ is a smallest column permutation (only
permutations preserving the first i rows of PAQ are considered) of some of the remaining rows of
PAQ.

Algorithm 1. Branch-and-bound algorithm to determine Aπ given A ∈An.

Input: A ∈An

Output: Aπ ; the permutation matrices P , Q, such that PAQ = Aπ ;
count—the number of pairs (P, Q), such that PAQ = Aπ ;

P (0)← In; Q(0)← In; Aπ ← Jn;
i ← 0;
count ← 0;
Optimize(i);

{Continuation of the search for Aπ starting from the row i of P (i−1)AQ(i−1),}
{i.e. when the first i − 1 rows are already chosen and permuted}
Optimize(i)
Generate the minimal set of boundaries �(i) = (s

(i)
0 = 0, s

(i)
1 , . . . , s

(i)
ki
= n)

between adjacent columns of P (i−1)AQ(i−1), such that the (i − 1)-prefixes
of columns from s

(i)
j−1 + 1 to s

(i)
j are mutually equal, 1 � j � ki ;

for j = i to n do
vjl ←∑sl

r=sl−1+1

(
P (i−1)AQ(i−1)

)
j,r

, 1 � l � ki ; {the number of 1’s }

{in positions from s
(i)
j−1 + 1 to s

(i)
j in the j th row of P (i−1)AQ(i−1)}

L(i)← the list of indices of largest vectors vj = (vj1, vj2, . . . , vjki
), i � j � n;

for all j ∈ L(i) do { the candidates for the ith row of Aπ }
P (i)← Pi,jP

(i−1); { exchange the rows i and j}
compute Q(i) from Q(i−1), so that all 1’s in the part of the row i from

s
(i)
l−1 + 1 to s

(l)
i are moved to the right end of the part, 1 � l � ki ;

{hence preserving the first i − 1 rows of P (i)AQ(i)}
compare the ith row of P (i)AQ(i) to the ith row of Aπ :
if the ith row of P (i)AQ(i) is less then

copy the first i rows from P (i)AQ(i) into Aπ ;
fill with ones the rest of Aπ ;
if i = n then P ← P (i); Q← Q(i); count ← 1; else Optimize(i + 1);

else if the ith row of P (i)AQ(i) greater then
continue; {bound step: try the next row index from L(i)}

else
if i = n then count ← count + 1; else Optimize(i + 1);
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Fig. 1. An example of π -representative determination by Algorithm 1.

Example 5. Algorithm 1, applied to the matrix from Example 1, gives the same π -representative
as obtained by trivial algorithm, see Fig. 1.

Algorithm 1 is not efficient for extremely symmetric matrices, such as In: in that case bound step
does not ever occur, because all the remaining rows are always equally good. Hence, Algorithm 1
must be improved, in order to detect some symmetries, and to avoid some unnecessary repetitions.
Suppose that there remain l rows not included in Aπ , and that the column classes defined by
�(n−l−1) are such, that all column classes in the remaining rows are uniform (they contain either
all ones or all zeros), except for at most one column class, which in that case has l columns, with
the row and column sums both equal to l − 1 or 1. Then, because of the symmetry, it is enough to
put in L(n−l−1) only one of the l remaining rows. After the incorporation of this simple heuristic,
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the algorithm much more efficiently deals with the matrices such as In, the complement of In,
and the other highly symmetric matrices.

Using Algorithm 1, it is possible to determine Aφ for an arbitrary A ∈An: it is enough to find
π -representatives of all (n+ 1)2 matrices XiAXj , 0 � i, j � n, and then to choose the smallest
among them.

One of the outputs from Algorithm 1 is the number of the pairs of row/column permutations,
transforming A into Aπ . That number is used to determine the size of the π -class of AT, as it will
be demonstrated below.

Consider the problem of counting the matrices in the π -class of an arbitrary A ∈An. For an
arbitrary B ∈An let B0 denote the matrix obtained from B by sorting its rows. If A has ik groups
of k equal rows, 1 � k � n, then the number of matrices that could be obtained from A by row
permutations is

a = n!/
n∏

k=1

ik!

The representative of these a matrices is A0. An arbitrary matrix A′, obtained from A by a column
permutation, generates in the same manner a new set of a matrices if and only if A′0 /= A0. If
the number of different matrices A′0 is b, then the size of the π -class of A is ab. It is simpler to
obtain b by counting the number p of column permutations A′ of A satisfying A′0 = A0, because
b = n!/p. Note that p is preserved by row and column permutations of A.

Applying Algorithm 1 to (AT)π , p is obtained even more easily. Indeed, suppose that A

is already a π -representative, i.e. A = Aπ . Then Algorithm 1 counts the row permutations A′′
of A, such that there exists a column permutation A′′′ of A′′, equal to Aπ . Now we find A′ =
((AT)π )T and apply Algorithm 1 (again) to (A′)T. The matrix (A′)T is a π -representative, because
((A′)T)π = (A′)T. Algorithm 1 gives the number of row permutations (A′′)T of (A′)T, such that
there exists a column permutation (A′′′)T of (A′′)T, equal to (A′)T. In other words, we obtain the
number of column permutations A′′ of A′, such that there exists a row permutation A′′′ of A′′,
equal to A′—which is exactly p (count in Algorithm 1).

Example 6. Looking again at Example 5, we see that there are two pairs (P, Q) that minimize
PAQ. Therefore, there are 3!2/2 = 18 matrices in the π -class of AT.

The problem of counting the matrices in the SNF-class of an arbitrary A ∈An is much harder. It
is even harder is to enumerate the setsAn,k = {A ∈A|rank A = k}, 0 � k � n: (especially mn =
An,n) We now explicitly enumerate the sets An,1, An,2, using the following characterization of
matrices in An,2.

Lemma 7. If the matrix A ∈An,2 contains three different nonzero columns a, b, c, then one of
them is equal to the sum of the other two, for example c = a + b. Furthermore, the set of nonzero
rows of the matrix [a b] equals to {[0 1], [1 0]}. There cannot be four different nonzero columns
in A.

Proof. Suppose A ∈An,2. If two nonzero columns of A are linearly dependent, then they are
obviously equal. Suppose a, b, c are the three different nonzero linearly dependent columns, i.e.
αa + βb + γ c = 0 for some integers α, β, γ . The coefficients α, β, γ must be nonzero; otherwise,
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if for example α = 0, then βb + γ c = 0 implies b = c. Denote by U the set of nonzero rows of
the n× 3 matrix [a b c]. Then

• |U | > 1; otherwise it would be a = b = c.
• U ∩ {[1 0 0], [0 1 0], [0 0 1]} = ∅; if, for example [1 0 0] ∈ U , then α = 0.
• Therefore, U ⊆ {[1 1 1], [0 1 1], [1 0 1], [1 1 0]} and U /= {[1 1 1]}.
• [1 1 1] /∈ U ; if [1 1 1] ∈ U , and for example [0 1 1] ∈ U , then from α + β + γ = 0 and

β + γ = 0, it follows α = 0.
• U /= {[0 1 1], [1 0 1], [1 1 0]}; otherwise β + γ = 0, α + γ = 0, α + β = 0 implies α =

β = γ = 0.

Hence, there are three possibilities for U left: {[0 1 1], [1 0 1]}, or {[0 1 1], [1 1 0]}, or
{[1 0 1], [1 1 0]}. If U = {[0 1 1], [1 0 1]}, then β + γ = 0, α + γ = 0 implies (α, β, γ ) =
γ (−1,−1, 1), i.e. c = a + b; the set of nonzero rows of [a b] is {[0 1], [1 0]}. The two other
cases are symmetrical.

Suppose that A contains four different columns a, b, c, d. Then we must have for example
c = a + b and the set of nonzero rows of [a b] is {[0 1], [1 0]}.

Applying the first part of Lemma to a, b, d , we conclude that d = a + b or a = b + d or
b = a + d. But d = a − b and d = b + a are impossible, and d = a + b implies d = c. The
lemma is proved. �

Theorem 8

(a) For an arbitrary A ∈An the following three statements are equivalent:
(1) rank A = 1;
(2) SNF(A) = (1, 0n−1);
(3) A contains a column a /= 0, such that all nonzero columns of A are equal to a.

The number of matrices in An,1 equals

|An,1| = (2n − 1)2.

(b) For an arbitrary A ∈An the following three statements are equivalent:
(1) rank A = 2;
(2) SNF(A) = (1, 1, 0n−2);
(3)• A contains the two nonzero columns a /= b, such that all columns of A are in {0, a, b},

or
• A contains the two nonzero columns a /= b, such that the set of ]nonzero rows of [a b]

equals {[0 1], [1 0]}, and that the set of nonzero columns of A is {a, b, a + b}.

The number of matrices in An,2 equals

|An,2| = (3n − 2 · 2n + 1)(2 · 4n − 3 · 3n + 1)/2.

Proof. (a) If rank A = 1 then A contains nonzero column a, such that all nonzero columns of A

are equal to a. By subtracting one of nonzero columns from the others, we obtain an equivalent
matrix with exactly one nonzero column a. By the column permutation column a is moved to the
first position, and by the row permutation some 1 is moved to the upper left corner. By subtracting
the first row from the other nonzero rows, we obtain that SNF of A is (1, 0n−1). How many
matrices of rank 1 there are? The number of choices for nonzero column a is 2n − 1, and the
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number of matrices corresponding to the fixed a is 2n − 1: each its column is 0 or a, but at least
one of them has to be equal to a. Hence, |An,1| = (2n − 1)2.

(b) If rank A = 2 thenA contains two linearly independent columns, such that the other columns
are their linear combinations. The number of different nonzero columns in A is either two or it is
greater than two.

Case 1. Suppose there are exactly two different nonzero columns a, b in A. The number of such
matrices A is(

2n − 1
2

)
(3n − 2 · 2n + 1).

Indeed, the number of choices for a, b equals to the above binomial coefficient. Without loss of
generality we suppose that a < b. For fixed a, b, by the inclusion-exclusion principle the number
of matrices A is 3n − 2 · 2n + 1, because

• 3n is the number of matrices with the columns from the set {0, a, b},
• 2n is the number of matrices without a, and also the number of matrices without b,
• 1 is the number of matrices without a and b.

Case 2. If there are more than two different nonzero columns in A, then by Lemma 7 there are
two different nonzero columns a, b (a < b) in A, such that the set of nonzero columns in A

is {a, b, c = a + b}, and such that the row set of the matrix [a b] is {[0 1], [1 0]}. There are
(3n − 2 · 2n + 1)/2 choices for columns a, b satisfying these conditions. Indeed, consider all
matrices [a b], [b a]:

• 3n is the number of matrices with the row set {[0 0], [0 1], [1 0]},
• 2n is the number of matrices without the row [0 1], and also the number of matrices without

the row [1 0],
• 1 is the number of matrices without the rows [0 1], [1 0]).

The number of matrices [a b] is therefore (3n − 2 · 2n + 1)/2. The number 4n − 3 · 3n + 3 ·
2n − 1 of matrices with the set of nonzero columns {a, b, c} (where c = a + b) is also obtained
by the inclusion-exclusion principle:

• 4n is the number of matrices with all the columns 0, a, b, c;
• 3n is the number of matrices without the column a (and analogously without b, c);
• 2n is the number of matrices without columns a, b (and analogously without a, c; and without

b, c);
• 1 is the number of matrices without columns a, b, c.

Therefore, the number of matrices of the rank 2, with more than two different nonzero columns
equals

(3n − 2 · 2n + 1)(4n − 3 · 3n + 3 · 2n − 1)/2.

The total number of matrices in An,2 equals
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(
2

(
2n − 1

2

)
+ (4n − 3 · 3n + 3 · 2n − 1)

)
(3n − 2 · 2n + 1)/2

= (3n − 2 · 2n + 1)(2 · 4n − 3 · 3n + 1)/2.

In either case, in order to obtain SNF(A), the other nonzero columns are first transformed to 0
by subtracting a, b or a + b from them. Next, in [a b] there is a row [0 1], because a < b; using
that 1, the other elements of b are changed to 0. Finally, choosing some 1 in a, and subtracting
if necessary that row from the others, after permuting rows/columns, we obtain the SNF. Hence,
rank A = 2 implies SNF(A) = (1, 1, 0n−2). �

2.4. Iterative classification of (0, 1) matrices

According to Lemma 2 we have

Aπ
n+1 = ∪A∈Aπ

n
bordπ (A).

By changing the order of calculations, it is possible to simplify repeated determination of
π -representatives of matrices from bord(A) by Algorithm 1. Matrices B in bord(A) are of the
form (2). For each y the π -representatives of B’s corresponding to various inserted rows [x b]
are found spending smaller number of steps. The point is that the rows of the π -representative
preceding the row [x b] are already determined for some previous variants for that row.

Somewhat more detailed description follows. Determine first theπ -representative of the matrix,
corresponding to x = 0, b = 0; the inserted zero row [x b] is certainly the first row in the π -rep-
resentative. The corresponding row and column permutations P , Q are recorded. The remaining
pairs (x, b) are then considered in turn, lexicographically ordered. The question arises, to which
position l might [x b] be moved during the π -representative determination, skipping the deter-
mination of first l − 1 rows of the representative. The obvious lower bound for l is the smallest
among all positions where the previous rows w, obtained from [x b] by changing exactly one 1
into 0, have been moved (except if there was an alternative to w during that step, i.e. if L(i) had
more than one member at the moment when w arrived to its destination).

Instead of extending all A ∈Aπ
n , it is enough to extend the matrices from the set Aφ

n of

all φ-representatives in An. By extending all A ∈A
φ
n a subset of Aπ

n+1 is obtained; the set of

φ-representatives of matrices from that subset is exactly A
φ
n+1.

It is convenient to use a balanced tree to collect π -representatives in an ordered fashion. We
chose AVL tree [6]—the binary search tree satisfying the condition that, for every node, the
difference between the heights of its left and right subtrees is at most 1. For n = 8, in order to
save memory, a combination of AVL tree and the sorted array of matrices is used: from time
to time the content of the tree is merged into the array. After collecting all π -representatives,
the π -representatives set is reduced to the corresponding φ-representatives set. To determine the
set of φ-representatives, corresponding to a given set of π -representatives, the following simple
algorithm is used.

Algorithm 2. Reduction of a given set Lπ of π -representatives to the set Lφ of corresponding
φ-representatives.

{ T —auxiliary AVL tree used to collect π -representatives. }
while Lπ /= ∅
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while there is a space in T for at least (n+ 1)2 matrices
remove the first matrix A from Lπ ;
generate the set TA of π -representatives contained in the φ-class of A;
insert TA into T ;
insert Aφ into Lφ ;

remove from Lπ all the matrices contained in T ;
T ← ∅;

The classification of A8 lasted about a month in parallel on five PC’s. A huge number of
collected π -representatives of order n = 8 caused serious difficulties. The space requirement is
reduced by dividing π -representatives into subsets, according to their SNF. For each extended
matrix, its SNF is determined, and the π -representatives are classified into subsets with the same
SNF. These subsets are then independently processed. The hardest was the SNF-class (17, 0), with
5204144555 π -representatives contained in a number of non disjoint subsets. These subsets were
independently processed by Algorithm 2, producing the non disjoint sets of φ-representatives;
their union consists of 71348129 φ-representatives, approximately 1/3 of matrices in A

φ
8 .

In order to save the space, Lπ and Lφ are stored in a sorted, compressed form: one byte for
each matrix row; the group of consecutive matrices with the same first n− 2 rows is stored so
that the common n− 2 rows are stored only once. As a result, the average space for a matrix of
order 8 was little more than two bytes.

If somebody tries to extend φ-representatives of order 8, he could expect to process about
300 times more φ-representatives, each giving approximately 4 times more π -representatives.
Therefore, the classification of matrices of order 9 is expected to last 1000 times longer, requiring
huge memory.

2.5. Results of classification

We start with the simplest nontrivial case.

Example 9. The 16 matrices of order 2 are divided into 3 φ-classes, which are further subdivided
into 7 π -classes:{{[

0 0
0 0

]}}
,{{[

0 0
0 1

]
,

[
0 0
1 0

]
,

[
0 1
0 0

]
,

[
1 0
0 0

]}
,

{[
0 0
1 1

]
,

[
1 1
0 0

]}
,{[

0 1
0 1

]
,

[
1 0
1 0

]}
,

{[
1 1
1 1

]}}
,{{[

0 1
1 0

]
,

[
1 0
0 1

]}
,

{[
0 1
1 1

]
,

[
1 0
1 1

] [
1 1
0 1

]
,

[
1 1
1 0

]}}
.

In Table A.1, all the 36 π -representatives of order 3 are shown. The 5 SNF-classes are in
separate blocks, divided into compartments with φ-classes. The first matrix in each φ-class is the
smallest π -representative, i.e. the φ-representative. For each π - and SNF-class, their size is given.
The matrices are represented by hexadecimal vectors, each component representing a row of a
matrix. For example, the last vector (3, 5, 6) in Table A.1 represents the matrix
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Table 2
The numbers of equivalence classes in An

n ρn |Aφ
n | sn an |Dn| Dn

1 0.250 2 2 2 2 {0, 1}
2 0.148 3 3 2 2 {0, 1}
3 0.074 12 5 3 3 {0–2}
4 0.117 39 8 4 4 {0–3}
5 0.167 388 14 6 6 {0–5}
6 0.334 8102 26 10 10 {0–9}
7 0.528 656103 56 19 22 {0–18, 20, 24, 32}
8 0.701 199727714 129 41 46 {0–40, 42, 44, 45, 48, 56}
9 333 103 114 {0–102, 104, 105, 108, 110, 112,

116, 117, 120, 125, 128, 144}


0 1 1

1 0 1
1 1 0


 .

The matrix (1, 2, 5) is a π -representative of the matrix from Example 5.
In Table A.2, all the 39 φ-representatives of order 4 are shown, together with the sizes of their

φ-classes.
In Table 2, ρn, |Aφ

n |, sn, an, |Dn|, and the setDn are given for 1 � n � 8, where sn = |Sn| and
ρn = (2n2

/(n+ 1)!2)/|Aφ
n |. In the last row of Table 2 s9, |D9|, a9, D9 are given; the explanation

how they are obtained will be given in Section 3.
Denote by F(n) the following statement:

A ∈An, satisfying SNF (A) = d = (d1, d2, . . . , dn) exists if and only if

there exists A′ ∈An+1, satisfying SNF (A′) = d ′ = (d1, d2, . . . , dn, 0). (6)

Obviously, the first condition implies the second one. The implication in the opposite direction
is not obvious at all; it would follow from the following stronger statement:

H(n) : Let A′ ∈An+1, rank A′ = n, and SNF (A′) = d ′ = (d1, d2, . . . , dn, 0).

Then A′ has at least one minor A ∈An with SNF (A) = d = (d1, d2, . . . , dn).

But the following matrix F ∈A10 is a counterexample to H(10):

F =
[
A B

C D

]
=




0 0 1 1 1 0 1 0 0 1
0 1 1 0 0 1 0 1 0 1
1 1 0 0 0 1 1 0 1 0
1 0 0 1 1 0 0 1 1 0
0 0 1 1 0 0 0 1 1 1
1 1 0 0 0 0 1 1 1 0
1 0 1 0 0 1 1 1 0 0
0 1 0 1 1 1 1 0 0 0
0 1 1 0 1 1 0 0 0 1
1 0 0 1 1 0 0 0 1 1




.
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Table 3
The number of matrices of the rank k in An, n � 8

k n

1 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1 1
1 1 9 49 225 961 3969 16129 65025
2 6 288 6750 118800 1807806 25316928 336954750
3 174 36000 3159750 190071000 9271660734 397046059200
4 22560 17760600 5295204600 1001080231200 144998212423680
5 12514320 34395777360 32307576315840 17952208799918400
6 28836612000 259286329895040 720988662376725120
7 270345669985440 7547198043595392000
8 10160459763342013440

The matrix F consists of blocks A, B, C, D, having 2,3,2,3 ones in each row respectively, and
also having 2,2,3,3 ones in each column, respectively; F is singular, because the sums of rows of
[A B] and [C D] are equal. It can be verified that rank F = 9, SNF(F ) = (19, 0), but all minors
of F have SNF different from (19).

In Table A.3, the SNF-representatives of matrices in An, n � 8, are listed, accompanied
with the size measures of corresponding SNF-classes (the number of matrices, the number of
π -representatives and the number of φ-representatives in each SNF-class). The sizes of π -classes
are determined using Algorithm 1. The classes are ordered lexicographically by the SNF (with
zeros moved to the end of SNF).

One can verify this classification starting from the sorted list of all φ-representatives. For each
of them one has to check if it is indeed a φ-representative. The next step is to sum the numbers
of π -representatives in all φ-classes, and to compare the sum with the corresponding entry in
Table 1. One could also check that the sum of sizes of SNF-classes in An equals 2n2

for each
n � 8, see Table A.3. The sorted lists of φ-representatives for n � 8 can be downloaded from
http://www.matf.bg.ac.yu/ ezivkovm/01matrices.htm.

We now review some interesting facts, which are seen from Table A.3.
Let T (n, k) = |An,k|. In Table 3, the numbers T (n, k), 0 � k � n � 8, are shown (of course,

they are easily obtained from Table A.3). The part of Table 3 corresponding to n � 7 is the
same as in [10]; it is also an entry in [4, Sequence A064230]. Another interesting entry in [4,
Sequence A055165] is the sequence mn, where mn is the number of regular (0, 1) matrices
of order n—the diagonal of Table 3. The seemingly new member of that sequence is m8 =
10160459763342013440. If we suppose that all matrices in An are equiprobable, then the rank
probability distribution is shown in Table 4 for n � 8. Looking at Table 4, one could erroneously
conclude that large fraction of matrices in An is singular. In fact, the fraction of singular matrices
in An tends to 0 for n large [11].

It turns out that F(n) (6) is true for n � 7, i.e. the set of SNF’s of rank k is the same for all
n, k � n � 8. For example, the SNF-representative of the SNF-class (1, 1, 2, 0n−3) is the matrix
(0n−3, 3, 5, 6) for 3 � n � 8.

The smallest n for which there are two matrices in An with the same determinant, but with
different SNF’s is 5: SNF(3, C, 15, 16, 19) = (1, 1, 1, 4) and SNF(3, 5, 9, 11, 1E) = (1, 1, 2, 2).

In Table 5, the possible numbers of π -orbits inside φ-orbits are shown for 1 � n � 8. These
numbers are between 1 and (n+ 1)2; as it is seen, the value (n+ 1)2 is attained only if n � 5.
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Table 4
The probability that a random matrix in An has the rank k, 0 � k � n � 8

k n

1 2 3 4 5 6 7 8

0 0.5 0.0625 0.00195 0.00002 0.00000 0.00000 0.00000 0.00000
1 0.5 0.5625 0.09570 0.00343 0.00003 0.00000 0.00000 0.00000
2 0.3750 0.56250 0.10300 0.00354 0.00003 0.00000 0.00000
3 0.33984 0.54932 0.09417 0.00277 0.00002 0.00000
4 0.34424 0.52931 0.07706 0.00178 0.00001
5 0.37296 0.50052 0.05739 0.00097
6 0.41963 0.46059 0.03908
7 0.48023 0.40913
8 0.55080

Table 5
The possible numbers of π -orbits inside φ-orbits of An

n The set of φ-orbit sizes

1 {1}
2 {1, 2, 4}
3 {1, 2, 4, 5, 9}
4 {1–5, 7, 9–11, 13, 16, 17}
5 {1–18, 20, 21, 25, 26, 30, 36}
6 {1, 2, 4–27, 29–32, 35–37, 42, 49}
7 {1–38, 40, 42–44, 48–50, 56, 64}
8 {1–46, 48–51, 53, 54, 56–58, 63–65, 72, 81}

If A ∈An, A ∼ In and B ∈ bord(A), then SNF(B) contains at least n ones, see (5). The
question arises, what are the possible values of the last element of SNF(B), i.e. which values
can take | det B|? The largest possible values of | det B| under these assumptions, along with the
examples of matrices B for which these values are attained, are given in Table 6. In fact, the
matrices from Table 6 maximize | det B/ det A| for all regular A ∈A, n � 8.

More generally, it is interesting to describe the relationship of SNF(A) to SNF(A′) if A′ ∈
bord(A). During iterative classification, the sets

{SNF(B)|B ∈ bord(A), A ∈An, SNF(A) = s}
are recorded for all SNF-classes s ∈Sn. The results are represented by the incidence matrix Mn

of dimensions |Sn| × |Sn+1|, with entries

ms,s′ =
{

1, if there exist A ∈An and B ∈ bord(A), with SNF’s s and s′
0, otherwise

(7)
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Table 6
The maximal ADV’s of matrices from An+1, obtained by extending matrices equivalent to In

n | det A| A

3 3 3 5 9 E
4 5 3 5 E 16 19
5 9 3 D 15 1A 26 39
6 18 7 19 2A 34 4C 53 65
7 40 7 19 2A 56 65 9C B3 CB
8 105 7 39 5A AC D5 E3 136 14D 19B

Let G(n), denote the following statement:

G(n) : There exist matrices A ∈An, A
′ ∈ bord(A), such that

SNF(A) = (d1, d2, . . . , dn), SNF(A′) = (d ′1, d ′2, . . . , d ′n, d ′n+1) if and only if

there exist matrices B ∈An+1, B
′ ∈ bord(B), such that

SNF(B) = (d1, d2, . . . , dn, 0), SNF(B ′) = (d ′1, d ′2, . . . , d ′n, d ′n+1, 0). (8)

By exhaustive search it is verified that G(n) is true for n � 6, enabling to put all the transposed
incidence matrices Mn, n � 7 together into single Table A.4. The 1’s are represented by•; the 0’s
are represented by � if they are the consequence of the following Lemma (describing constraints
for SNF(A′) if A′ ∈ bord(A)); otherwise, they are represented by◦.

Lemma 10. For an arbitrary A ∈An, let A′ ∈ bord(A), and let SNF(A) = (d1, d2, . . . , dn),

SNF(A′) = (d ′1, d ′2, . . . , d ′n, d ′n+1). Then

(1) rank A � rank A′ � rank A+ 2;
(2) d ′1d ′2 . . . d ′i divides d1d2 . . . di for all i, 1 � i � rank A;
(3)

∏n−1
i=1 di divides det A′.

Proof

(1) The first inequality follows from the fact that the rank of a submatrix is a lower bound on
the rank of a matrix. The second inequality follows from the observation that A′ is an at
most rank 2 perturbation of A.

(2) This is a direct consequence of the fact that d ′1d ′2 . . . d ′i is the largest common divisor of all
minors of A′ of order i, see for example [7].

(3) Let P , Q be the matrices such that SNF(A) = PAQ = D = (d1, d2, . . . , dn), | det P | =
| det Q| = 1. Let

A′ =
[
A y

x b

]
.

The case det A′ = 0 is trivial; suppose det A′ /= 0. If xQ = [a1 a2 · · · an], Py =
[c1 c2 · · · cn]T, then from the identity[
P 0
0 1

] [
A y

x b

] [
Q 0
0 1

]
=
[

D Py

xQ b

]
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it follows (another way to express determinants of matrices obtained by extension, see (3))

det A′ = b

n∏
i=1

di −
n∑

i=1

aici

∏
1�j�n,

j /=i

dj . (9)

Since rank A′ = n+ 1, then we have rank A � n− 1. If rank A = n− 1, then dn = 0,
implying

det A′ = −ancn

n−1∏
i=1

di;

otherwise

det A′ =
(

bdn −
n∑

i=1

aicidn/di

)
n−1∏
i=1

di.

In both cases
∏n−1

i=1 di divides det A. �

Suppose A ∈An, A′ ∈ bord(A). From Table A.4, we see the following interesting facts:

• The first ◦ in some Mn corresponds to s = (1, 0), s′ = (1, 1, 2). It is equivalent to following
statement: if A ∈A2,1 then | det A′| < 2.
• if A ∈A3,2, then | det A′| < 3,
• if A ∈A4, SNF(A) = (1, 1, 1, 0), then | det A′| < 5,
• if A ∈A4, SNF(A) = (1, 1, 2, 0), then | det A′| < 4,
• if A ∈A5, SNF(A) = (1, 1, 1, 1, 0), then | det A′| /= 7,
• if A ∈A5, SNF(A) = (1, 1, 1, 2, 0), then | det A′| /= 6,
• if A ∈A5, SNF(A) = (1, 1, 1, 3, 0), then | det A′| /∈ {6, 9},
• if A ∈A5, SNF(A) = (1, 1, 1, 2, 2), then SNF(A′) /= (1, 1, 1, 1, 4, 0),
• if SNF(A) = (1n−1, dn) and SNF(A′) = (1n−1, d ′n, 0) then d ′n divides dn for all n � 7,
• if SNF(A) = s = (1n−1, dn) ∈Sn and SNF(A′) = s′ = (1n, d ′n+1) ∈Sn+1 then

– if n � 6, then ms,s′ = 1,
– if n = 7, then ms,s′ = 1 if and only if

(dn, d
′
n+1) /∈ {(17, 34), (7, 39), (13, 39), (1, 42),

(4, 42), (6, 42), (7, 42), (13, 42), (14, 42)},
– if n = 8, then there are more exceptions to ms,s′ = 1, but there is one exotic group of them: if

dn = 19 then d ′n+1 must be divisible by 19; 19 is the only integer satisfying such a condition.

3. Determinant and SNF sets of (0, 1) matrices of order 9

Determination of {| det(A′)||A′ ∈ bord(A)} is a simple operation, see the explanation following
(3). It was effectively performed for all 199727714 matrices in A

φ
8 ; merging these sets D9 is

obtained, see Table 2.
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Table 7
The number of partitions of r into at most n positive integers

n r

0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
2 1 1 2 2 3 3 4 4
3 1 1 2 3 4 5 7 8
4 1 1 2 3 5 6 9 11
5 1 1 2 3 5 7 10 13
6 1 1 2 3 5 7 11 14
7 1 1 2 3 5 7 11 15

The similar idea—determine ADV’s, and only if necessary, determine SNF’s of the results of
extension—is used to obtain S9. Suppose we know in advance the number fd of different SNF’s
inD9 corresponding to a given ADV d > 0. During the extension of matrices fromAn, the SNF’s
of extended matrices with the ADV d are determined only if the number of SNF’s with ADV d

is still less than fd . If we know only upper bound on fd , then the heuristic does not work—we
have to determine SNF’s of all matrices with the ADV d. Therefore, it is useful to determine fd

for at least some d > 0.
Denote by pn(r) the number of partitions of r into at most n positive integers. In order to

determine the upper bound for fd , suppose first that d is a prime power, d = pr . If A ∈An and
| det A| = d, then SNF(A) is of the form

(px1 , px2 , . . . , pxn), 0 � x1 � x2 � · · · � xn,

n∑
i=1

xi = r.

The number of different exponent vectors (x1, x2, . . . , xn) is equal to pn(r). The values pn(m)

are computed using the recurrence (see for example [12]) pn(0) = 1, n � 0, p0(r) = 0 for r � 1,
and pn(r) = pn−1(r)+ pn(r − n), see Table 7.

Example 11. If d = 8 = 23 and n = 6 we have p6(3) = 3; SNF(A) is one of (15, 8), (14, 2, 4)

and (13, 2, 2, 2). We see from Table A.3 that all these SNF do exist, i.e. for each of them there
exists some (0, 1) matrix. Another example d = 32, n = 6, shows that p6(2) = 2 is only an upper
bound: the SNF-class (14, 3, 3) is empty.

More generally, if d =∏m
i=1 p

αi

i , where pi are different primes, then the upper bound on the
number of different SNF’s with the ADV d is

∏m
i=1 pn(αi).

Example 12. Ifn = 8 andd = 36, then there arep8(2)p8(2) = 4 such SNF’s: (16, 2, 18), (17, 36),
(16, 3, 12), (16, 6, 6); all these SNF’s are found in Table A.3.

In order to obtain a tighter upper bound for the number of different SNF’s, we have to in-
clude somewhat more information. If we further suppose that A′ ∈ bord(A) and SNF(A) = s =
(d1, d2, . . . , dn), then by Lemma 10 for some s′ = (d ′1, d ′2, . . . , d ′n+1) the equality SNF(A′) = s is
impossible. For example, if s contains k ones, then s′ contains at least k ones and if rank A � k + 1
then d ′k+1 divides dk+1.
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Using these facts, the regular part of S9 was determined, see Table A.5. The φ-representatives
from the chosen SNF-class of A8 were extended computing determinants, and, if necessary,
determining SNF’s. The upper bounds for the number of different SNF’s, obtained by Lemma 10,
are rough for larger ADV values, but the consequences are not dangerous, because of the small
number of extended matrices with the large ADV: it is not hard to compute the SNF’s of all of
them.

To complete S9, it is necessary to determine the singular part of S9. If we would know
that F(8) is true, then the set of singular SNF’s of order 8 would be equal to S8 (with each
SNF extended by one zero, of course). Not knowing a simple proof of F(8), we proceed with a
shortened exhaustive proof.

The idea is to narrow the set of SNF-classes in S8, the extension of which can lead to a
new singular SNF of order 9. If SNF(A) = (d1, d2, . . . , d8, 0) for some A ∈A9, then (because
we know the set of SNF’s of lower orders) by Lemma 10 we can narrow the set SNF-clas-
ses, containing A. We obtain that the only new possible SNF’s are the following SNF’s of the
rank 8: (17, m, 0), m = 44, 45, 48, 56 and (16, 2, 28, 0); and the following SNF’s of the rank
7: (16, 20, 0, 0), (16, 24, 0, 0), (16, 32, 0, 0), (15, 2, 12, 0, 0), (15, 2, 16, 0, 0), (15, 4, 8, 0, 0),

(14, 2, 2, 8, 0, 0), (14, 2, 4, 4, 0, 0).
The extension of which matrices gives the matrices with such SNF’s? For example, we know

that the SNF (17, 44, 0) can be obtained only by the extension of a matrix in which 44 divides all
minors of order 8; therefore 44 also divides a nonsingular minor of order 8; hence the SNF of that
minor could be only (16, 2, 22). Considering analogously the rest of listed SNF’s of order 8, we
obtain that matrices from A9,8, with the SNF equal to some from the list above, can be obtained
only by the extension of matrices from A8 with the SNF (16, 2, 22), (16, 2, 24), (16, 3, 15),
(15, 2, 2, 12), or (15, 2, 2, 14).

Analogously, we obtain that matrices from A9,7 with one of the listed SNF’s, can be ob-
tained only by double extension of matrices from A7 with the SNF (15, 2, 10), (14, 2, 2, 6),
or (13, 2, 2, 2, 4). After the complete search through all matrices that can be obtained by the
extensions listed, it is found that there are no new singular SNF’s of order 9 i.e. that F(8) is also
true. That completes the determination of S9.

In Table A.6, the part of the incidence matrix M8 is shown, corresponding to regular matrices
in S9. The table was obtained by extending φ-representatives from A8,7 and A8,8; the singular
extended matrices were ignored.

4. The lower bounds for the first missing determinant, an

Denote by fn the nth Fibonacci number (f1 = f2 = 1 and fn = fn−1 + fn−2 for n � 3).
Paseman [13] shows that an � 2fn−1. We give the sketch of his proof, and then we give the
sharper lower bounds for an, n � 19.

Consider the so called Fibonacci matrices Fn ∈An with the (i, j) element equal to 1 if and
only if j − i = −1, 0, 2, 4, . . .; det Fn = fn. The cofactors corresponding to the first row of Fn

are fn−1, fn−2, −fn−3, −fn−4 . . . ,−f1. Consider the matrix U ∈ bord(Fn),

U =
[
Fn y

x b

]
,
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where x = [x1 x2 · · · xn−1], y = [y1 y2 · · · yn−1]T. Let y1 = 1, y2 = y3 = · · · = yn = 0 and
x1 = x2 = 0. Then from (3) we have

det U =
n−2∑
i=1

xn+1−ifi + bfn.

Therefore, each integer from [0, 2fn − 1] is determinant of some U ∈ bord(Fn), and an �
2fn−1.

In order to prove that an � m, one can give a list of matrices fromAn−1, such that determinants
of their extensions cover [1, m− 1]. The proof verification then includes the procedure of finding
determinants of all extensions of a given matrix. Still, such a list is essentially more compact than
the list of matrices from An, with determinants covering [1, m− 1].

Denote by aA the minimal integer not in ∪{| det B||B ∈ bord(A)}, the “extension spectrum”
of A ∈An. In this context, the matrices A with high aA are of special interest. If aA > 1 and
SNF(A) = (d1, d2, . . . , dn), then d1 = d2 = · · · = dn−1 = 1, because determinants of all exten-
sions of A are divisible by dn−1, see (9).

In order to find lower bounds for some an, one can start from a well chosen set Bn−1 ⊂An−1,
and then to find ADV’s of all extended matrices. If m is the smallest number not equal to some of
these ADV’s, then an � m. Afterwards, some subset of extended matrices with different SNF’s
is taken to be the set Bn, and the next iteration can be started.

The starting setB9 was constructed in the following way. From each SNF-class inA8 a number
of matrices is taken, with different numbers of π representatives in their φ-classes. Extending
these matrices, a set of matrices with different SNF’s is obtained, but without any matrix with
the SNF (18, 97). By adding one such matrix, the set B9 is completed. The sets B10, B11 and
B12 are generated iteratively, as explained above. At the end, the ADV’s of all matrices obtained
by extending the matrices in B12 are determined. The resulting lower bounds are a10 � 259,
a11 � 739, a12 � 2107, a13 � 6157.

For n > 13 we used an alternative heuristic, described by Algorithm 3.

Algorithm 3. Heuristic to find lower bound for an+1.

Input: Ln ⊂An, list of matrices to be extended.
Output: lower bound for an+1, and list Ln+1 ⊂An+1

of “promising” matrices for the following iteration.
{ Initialization: }
first0← 1; { the first integer not “covered” by ADV’s }
dmax← 1; { the largest ADV found until now }
Ln+1 ← ∅; { output list }
for all A ∈Ln do{

Consider the extensions A′ =
[
A y

x b

]}
Compute det A and B = [Bij ] = adjA; {transposed cofactor matrix of A}
for all y ∈ {0, 1}n do

{ the next linear combination of rows of B }
determine the coefficients of the linear combination

−b det A+∑n
i=1 xi

(∑n
j=1 yjBij

)
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and the sums s+, s− of its positive and negative members;
if max{−s−, s+} � first0 then {“poor” linear combinations are skipped}

for all (x, b) ∈ {0, 1}n+1 do
compute det A′; { by one addition only, using Gray code }
if | det A′| = first0 then

update f irst0;
if | det A′| > dmax then

dmax ← | det A′|;
if | det A′| > 0.9dmax then

append A′ to Ln+1;

Elimination of “poor” linear combinations is a powerful heuristics if the matrices with the
high extension spectra are placed in the beginning of Ln. The major part of linear combinations
is skipped after only a few first matrices in Ln, reducing the extension complexity roughly to
O(n2n) (instead of O(4n)). In Table A.7, for 10 � n � 19 we give

• lower bound for an,
• |Ln−1|, the number of extended matrices,
• a matrix An−1 with the highest extension spectrum found in |An−1|,
• extension spectrum and determinant of An−1.

Complete lists of matrices, whose extension determinants prove these lower bounds, can be
fount at http://www.matf.bg.ac.yu/ ezivkovm/01matrices.htm.

5. Counting (0, 1) matrices with the maximum determinant

Using the classification ofAn, it is not hard to compute the number cn [4, Sequences A051752]
of matrices in An with the maximal determinant dn (i.e. 1/2 of the number of matrices with the
ADV dn) for n � 9.

The first 8 members of the sequence cn are found in Table A.3; the number c8 = 195955200
is new.

In order to determine c9, from Table we see that the matrix from A9 with the ADV 144 could
be obtained only by extending matrices from A8 with the SNF (15, 2, 2, 6) or (15, 2, 2, 12). After
the extension of these two SNF-classes, it turned out that there is a unique φ-class with the ADV
144— the class with the representative (F,33,C3,FC,155,15A,166,196,1A9). Half of the number
of matrices in that φ-class is c9 = 13716864000. It is interesting that for all n � 9 there is a
unique φ-class with the maximal ADV.
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Appendix A. Large tables

Table A.1
π -representatives of (0, 1) matrices of order 3

Table A.2
φ-representatives of (0, 1) matrices of order 4
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Table A.3
The representatives and the sizes of SNF-classes in An, n � 8

(continued on next page)
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Table A.3 (continued)
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Table A.3 (continued)

(continued on next page)
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Table A.3 (continued)
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Table A.3 (continued)

(continued on next page)



338 M. Živković / Linear Algebra and its Applications 414 (2006) 310–346

Table A.3 (continued)
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Table A.3 (continued)



340 M. Živković / Linear Algebra and its Applications 414 (2006) 310–346

Table A.4
Transposed incidence matrix M7 containing all Mn, 1 � n ≤ 7. Symbol at position (s′, s) carries information about
ms,s′ (7): •, �, ◦ denotes respectively 1, 0 explained by Lemma 10, and 0 not explained by Lemma 10
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Table A.4 (continued)
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Table A.5
The part of S9 corresponding to nonsingular part of A9

det SNF

1–106 m 1 1 1 1 1 1 1 1 m m ∈ {1–98, 100, 101, 102}
∪{104, 105, 108, 110, 120}

107–135 4m 1 1 1 1 1 1 1 2 2m m ∈ {1–29}
136–148 9m 1 1 1 1 1 1 1 3 3m m ∈ {1–13}
149–155 16m 1 1 1 1 1 1 1 4 4m m ∈ {1–7}
156–159 25m 1 1 1 1 1 1 1 5 5m m ∈ {1–3, 5}

160 36 1 1 1 1 1 1 1 6 6
161 72 1 1 1 1 1 1 1 6 12
162 108 1 1 1 1 1 1 1 6 18
163 49 1 1 1 1 1 1 1 7 7
164 98 1 1 1 1 1 1 1 7 14
165 64 1 1 1 1 1 1 1 8 8
166 128 1 1 1 1 1 1 1 8 16
167 81 1 1 1 1 1 1 1 9 9
168 100 1 1 1 1 1 1 1 10 10

169–182 8m 1 1 1 1 1 1 2 2 2m m ∈ {1–13, 15}
183 32 1 1 1 1 1 1 2 4 4
184 64 1 1 1 1 1 1 2 4 8
185 96 1 1 1 1 1 1 2 4 12
186 72 1 1 1 1 1 1 2 6 6
187 128 1 1 1 1 1 1 2 8 8
188 27 1 1 1 1 1 1 3 3 3
189 54 1 1 1 1 1 1 3 3 6
190 81 1 1 1 1 1 1 3 3 9
191 108 1 1 1 1 1 1 3 3 12
192 64 1 1 1 1 1 1 4 4 4
193 128 1 1 1 1 1 1 4 4 8
194 16 1 1 1 1 1 2 2 2 2
195 32 1 1 1 1 1 2 2 2 4
196 48 1 1 1 1 1 2 2 2 6
197 64 1 1 1 1 1 2 2 2 8
198 80 1 1 1 1 1 2 2 2 10
199 96 1 1 1 1 1 2 2 2 12
200 64 1 1 1 1 1 2 2 4 4
201 144 1 1 1 1 1 2 2 6 6
202 81 1 1 1 1 1 3 3 3 3
203 32 1 1 1 1 2 2 2 2 2
204 64 1 1 1 1 2 2 2 2 4
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Table A.7
Lower bounds for an and matrices with high extension spectra, 10 � n � 19

n an � |Ln−1| det An−1 aAn−1 An−1

10 259 2 110 257 [7, 39, 5A, 9C, E1, 149, 174, 193, 1AA]
11 739 6 291 679 [F, 71, B6, 13A, 1C3, 1DC, 256, 299, 2EC, 325]
12 2107 19 779 1894 [F, 73, 195, 1EA, 2A6, 35C, 4D6, 53E, 565,

6B9, 703]
13 6157 18 2201 5618 [1F, E3, 17C, 3A5, 649, 6D6, 732, A6E, AB8,

B53, C35, D8E]
14 19073 40 6731 16821 [3F, 1C7, 2D9, 76A, C4D, CF2, F94, 1575,

168E, 195A, 19A9, 1A64, 1E13]
15 58741 46 23288 53117 [7D, 38F, 5B2, ED5, 189B, 19E4, 1F29, 2AEA,

2D1C, 32B4, 3353, 34C9, 3C27, 164E]
16 185693 190 67832 161599 [FD, 71F, BE3, 1D29, 324F, 36B2, 3995, 5370,

55C6, 5A9A, 61AB, 6C53, 6E24, 27C8, 297E]
17 610187 480 213175 517794 [1FB, E3E, 17C6, 3A53, 649F, 6D64, 732B,

A6E2, AB8D, B535, C356, D8A7, DC49, 4F91,
72FC, F99A]

18 2039033 697 709503 1719277 [3F9, 1C7E, 2D95, 76AC, C4D2, CF27, F949,
15755, 168E5, 195A3, 19A9C, 1A64B, 1E13E,
14D8A, 17A33, 33C6, 1AF70]

19 6478579 54 2331887 4663774 [7E9, 38F7, 5F13, E95D, 19277, 1B599, 1CCAF,
29B8E, 2AE31, 2D4C5, 30D56, 3629F, 37125,
13E4C, 1EBC2, 358F8, 2F46A, E7B4]
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