Classification of small $(0,1)$ matrices ${ }^{\text {st }}$

Miodrag Živković
Marka Čelebonovića 61/15, 11000 Beograd, Serbia and Montenegro
Received 17 February 2004; accepted 6 October 2005
Available online 9 December 2005
Submitted by B.L. Shader

Abstract

Denote by \mathscr{A}_{n} the set of square $(0,1)$ matrices of order n. The set $\mathscr{A}_{n}, n \leqslant 8$, is partitioned into row/column permutation equivalence classes enabling derivation of various facts by simple counting. For example, the number of regular $(0,1)$ matrices of order 8 is 10160459763342013440 . Let $\mathscr{D}_{n}, \mathscr{S}_{n}$ denote the set of absolute determinant values and Smith normal forms of matrices from \mathscr{A}_{n}. Denote by a_{n} the smallest integer not in \mathscr{D}_{n}. The sets \mathscr{D}_{9} and \mathscr{S}_{9} are obtained; especially, $a_{9}=103$. The lower bounds for $a_{n}, 10 \leqslant n \leqslant 19$ (exceeding the known lower bound $a_{n} \geqslant 2 f_{n-1}$, where f_{n} is nth Fibonacci number) are obtained. Row/permutation equivalence classes of \mathscr{A}_{n} correspond to bipartite graphs with n black and n white vertices, and so the other applications of the classification are possible. © 2005 Elsevier Inc. All rights reserved.

AMS classification: 15A21; 15A36; 11Y55
Keywords: $(0,1)$ matrices; Smith normal form; Permutation equivalence; Determinant range; Classification

1. Introduction

Let \mathscr{A}_{n} denote the set of square $(0,1)$ matrices of order n. Hadamard maximum determinant problem is: find the maximum determinant among the matrices in \mathscr{A}_{n}. In this paper we consider a slightly more general problem: determine the set $\mathscr{D}_{n}=\left\{\mid \operatorname{det} A \| A \in \mathscr{A}_{n}\right\}$.

It is known [1] that determinants of $(0,1)$ matrices of order n are related to determinants of ± 1 matrices of order $n+1$. If A is a $(0,1)$-matrix of order n, let $B=\Psi(A)$ be a ± 1-matrix of

[^0]order $n+1$ obtained from A by replacing its 0 by -1 , bordering with a row -1 's on the top, and a column of 1's on the right. Clearly, Ψ is a one-to-one correspondence. By adding row 1 of B to each of the other rows of B, we see that $\operatorname{det} B=2^{n} \operatorname{det} A$.

By the Hadamard inequality $|\operatorname{det} B| \leqslant \sqrt{(n+1)^{n+1}}$, and therefore for all $A \in \mathscr{A}_{n}|\operatorname{det} A| \leqslant$ $2^{-n} \sqrt{(n+1)^{n+1}}$. The equality is attained if B is an Hadamard matrix, i.e. if $B B^{\mathrm{T}}=(n+1) I_{n+1}$, where T denotes transposition, and I_{n} is the unit matrix of order n; for $n>2$ this implies $n=$ $4 k-1$. For upper bounds for determinants of $A \in \mathscr{A}_{n}$ see for example [2].

Let d_{n} denote the largest element in \mathscr{D}_{n}, and let a_{n} be the smallest integer not in \mathscr{D}_{n}. Craigen [3] shows that the set \mathscr{D}_{n} is the interval $\left\{1,2, \ldots, d_{n}\right\}$ for $n \leqslant 6$, but not for $n=7$, because $a_{8}=41<d_{8}=56$; he suggests that $a_{9}=103$.

Some interesting sequences, related to $(0,1)$ matrices are found in [4]: A003432 (the sequence d_{n}), A013588 (the sequence a_{n}), A051752 (c_{n}, the number of matrices in \mathscr{A}_{n} with the determinant d_{n}) and A055165 (m_{n}, the number of regular matrices in \mathscr{A}_{n}). A few first members of these sequences are given in the following table. The values of a_{9}, c_{8}, c_{9} and m_{8} seem to be new.

	A 003432	A 013588	A 051752	A 055165
n	d_{n}	a_{n}	c_{n}	m_{n}
1	1	2	1	1
2	1	2	3	6
3	2	3	3	174
4	3	4	60	22560
5	5	6	3600	12514320
6	32	10	529200	28836612000
7	56	19	75600	270345669985440
8	144	41	$* 195955200$	$* 10160459763342013440$
9	320			
10	1458			
11	3645			
12	9477			
13				

In this paper, which is a continuation of [5], the matrices in $\mathscr{A}_{n}, n \leqslant 8$, are partitioned into row/column permutation equivalence classes, enabling the classification by ADV, and more pre-cisely-by SNF (see Section 2). Let \mathscr{S}_{n} denote the set of SNF's of matrices in \mathscr{A}_{n}. In Section 3 the sets \mathscr{D}_{9} and \mathscr{S}_{9} are determined. In Section 4 the lower bounds for $a_{n}, 10 \leqslant n \leqslant 19$ are obtained; $c_{n}, n \leqslant 9$, are obtained in Section 5.

We introduce now some notation. If $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are matrices of the same dimension $m \times n$, we say that $A<B$ if A is lexicographically less than B, i.e. if for some pair of indices (i, j) the first $i-1$ rows of A and B are equal, the first $j-1$ elements in the i th row of A and B are equal, and $a_{i j}<b_{i j}$. For example,

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]<\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

The smallest matrix in a set \mathscr{A} is the representative of \mathscr{A}.
Denote by $P_{i, j}$ the permutation matrix obtained from I_{n} by exchanging the i th and j th row.
The matrices $A, B \in \mathscr{A}_{n}$ are equivalent [7], $A \sim B$, if B is be obtained from A by a sequence of elementary row/column operations of the following types: exchange of two rows/columns, multiplication of a row/column by -1 , and addition/subtraction of a row/column to/from another
row/column. Let $\operatorname{SNF}(A)$ denote the SNF of A. It is known that $A \sim B$ is equivalent to $\operatorname{SNF}(A)=$ $\operatorname{SNF}(B)$ (in [7] this statement is proved for polynomial matrices).

The $\operatorname{SNF} \operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is written simply as a vector $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$. If diagonal elements of SNF are repeated, we use the shortened exponential notation. For example, $\left(1^{3}, 2,0\right)$ is short $(1,1,1,2,0)$. If $s \in \mathscr{S}_{n}$, then we also say that the SNF-class s is the set $\{A \in$ $\mathscr{A} \mid \operatorname{SNF}(A)=s\}$.

Let J_{n} denote the square matrix of order n with all elements equal to one.

2. Classification of $(\mathbf{0}, 1)$ matrices of order 8 or less

The set \mathscr{D}_{n} could be obtained by computing determinants of all $A \in \mathscr{A}_{n}$. A better approach is to group matrices with the same determinant, and then to compute the determinant of only one matrix in each group. It is useful to classify \mathscr{A}_{n} into subsets with constant absolute determinant value(ADV), or into even smaller subsets with constant SNF. We now review some such partitions of \mathscr{A}_{n}.

Let Π_{r} denote the group of row permutations of matrices from \mathscr{A}_{n}. Permutations from Π_{r} preserve ADV.

The representative of the matrix A orbit is obtained from A by sorting its rows into a nondecreasing sequence. Rows of A correspond to binary numbers less than $N=2^{n}$. Therefore, the number of orbits of Π_{r} in \mathscr{A}_{n} is equal to $\binom{N+n-1}{n-1}$, i.e. the number of nondecreasing sequences of length n from $\{0,1, \ldots, N-1\}$. Let Π denote the group of row and column permutations; Π also preserves ADV. The group Π induces an equivalence relation π over \mathscr{A}_{n}. We say that matrices A and B are permutationally equivalent, $A \sim_{\pi} B$, if they are in the same orbit of Π. Let A_{π} denote the representative of the matrix A equivalence class (π-class; we say shorter that A_{π} is a π-representative of A).

Example 1. The π-representative of

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

is the matrix

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right],
$$

the smallest of all 36 permutationally equivalent matrices.
Let \mathscr{A}_{n}^{π} denote the set of π-representatives in \mathscr{A}_{n}. In [8] it is shown that the number of π-classes in \mathscr{A}_{n} is given by

$$
\begin{equation*}
\left|\mathscr{A}_{n}^{\pi}\right|=\sum_{i_{1}+2 i_{2}+\cdots+n i_{n}=n} \sum_{j_{1}+2 j_{2}+\cdots+n j_{n}=n} C(i) C(j) \exp _{2} \sum_{r, s=1}^{n} i_{r} j_{s} 2^{(r, s)} \tag{1}
\end{equation*}
$$

where the summation is over all vectors $i=\left(i_{1}, i_{2}, \ldots, i_{n}\right), j=\left(j_{1}, j_{2}, \ldots, j_{n}\right)$, and

$$
C(i)=n!/\left(1^{i_{1}} i_{1}!\ldots n^{i_{n}} i_{n}!\right)
$$

is the number n-permutations with i_{r} cycles of length $r, r=1,2, \ldots, n ;(r, s)$ denotes GCD of integers r, s. The values $\left|\mathscr{A}_{n}^{\pi}\right|$ are listed in Table 1 ; they are easily computed for quite a large n

Table 1
The number of permutationally nonequivalent matrices in $\mathscr{A}_{n}, n \leqslant 15$

n	$\left(2^{n^{2}} / n!^{2}\right) /\left\|\mathscr{A}_{n}^{\pi}\right\|$	$\left\|\mathscr{A}_{n}^{\pi}\right\|$
1	1.00000	2
2	0.57143	7
3	0.39506	36
4	0.35892	317
5	0.41433	5624
6	0.52685	251610
7	0.65875	33642660
8	0.77266	14685630688
9	0.85533	21467043671008
10	0.91045	105735224248507784
11	0.94565	1764356230257807614296
12	0.96754	100455994644460412263071692
13	0.98088	19674097197480928600253198363072
14	0.98886	13363679231028322645152300040033513414
15	0.99358	31735555932041230032311939400670284689732948

using, for example, UBASIC [9]. It is seen that p_{n} is close to $2^{n^{2}} /(n!)^{2}$ for $n \leqslant 15$. An effective algorithm to generate the representative A_{π} of a given matrix A (Section 2.3) simplifies the classification of matrices, because it enables to deal with the small subset \mathscr{A}_{n}^{π} of \mathscr{A}_{n}.

2.1. Matrix extension

In order to classify matrices in \mathscr{A}_{n} by ADV values, one has to select carefully the order by which determinants are computed. It is natural to start from matrices of order $n-1$, and then to extend them by one row and one column of ones and zeros in each possible way. For an arbitrary $B \in \mathscr{A}_{n-1}$, let bord (B) denote the subset of \mathscr{A}_{n}, containing matrices with the upper left minor equal to B. We say that the matrices in bord (B) are obtained by extending B; if $A \in \operatorname{bord}(B)$, then A is an extension of B.

The calculation of determinants of all matrices in $\operatorname{bord}(B)$ is an easy task. If $A \in \operatorname{bord}(B)$, then A is of the form

$$
A=\left[\begin{array}{ll}
B & y \tag{2}\\
x & b
\end{array}\right],
$$

where $x=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n-1}\end{array}\right]$ and $y=\left[\begin{array}{llll}y_{1} & y_{2} & \cdots & y_{n-1}\end{array}\right]^{\mathrm{T}}$. Then [1]

$$
\begin{equation*}
\operatorname{det} A=b \operatorname{det} B-\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_{i} y_{j} \operatorname{det} B_{i j} \tag{3}
\end{equation*}
$$

where $B_{i j}$ is the cofactor of B, corresponding to $a_{i j}$.
Obviously,

$$
\mathscr{A}_{n}=\left\{A \mid(B, x, y, b) \in \mathscr{A}_{n-1} \times\{0,1\}^{n-1} \times\{0,1\}^{n-1} \times\{0,1\}\right\} .
$$

If we precompute cofactors $B_{i j}$, then determinant of each matrix from $\operatorname{bord}(B)$ is computed by only one addition: for the fixed x, the column y might traverse the set of possible values via
a Gray code (so that in the sequence of y 's each two subsequent vectors differ in exactly one position).

Williamson [1] noted that it is enough to let B cross the set of π-representatives in \mathscr{A}_{n-1}. Let $\operatorname{bord}_{\pi}(B)$ denote the set of π-representatives of matrices in $\operatorname{bord}(B)$.

Lemma 2. If $B \sim_{\pi} B^{\prime}$ then $\operatorname{bord}_{\pi}(B)=\operatorname{bord}_{\pi}\left(B^{\prime}\right)$.
Proof. Let $A \in \operatorname{bord}_{\pi}(B)$. If the row/column permutations, transforming B into B^{\prime}, are applied to the first $n-1$ rows/columns of A, then the matrix with the upper left minor equal to B^{\prime} is obtained. Therefore, the matrix permutationally equivalent to A is obtained by extending B^{\prime}, meaning that A is permutationally equivalent to a matrix from $\operatorname{bord}\left(B^{\prime}\right)$, i.e. $A \in \operatorname{bord}_{\pi}\left(B^{\prime}\right)$. Analogously, $\operatorname{bord}_{\pi}\left(B^{\prime}\right) \subseteq \operatorname{bord}_{\pi}(B)$, and so $\operatorname{bord}_{\pi}\left(B^{\prime}\right)=\operatorname{bord}_{\pi}(B)$.

Not only determinants, but also SNF's of matrices in bord (B) can be efficiently computed. The preprocessing step is to compute $D=\operatorname{SNF}(B)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, and the matrices P, Q, such that $P B Q=D$, $|\operatorname{det} P|=|\operatorname{det} Q|=1$. In order to determine $\operatorname{SNF}(A)$ for an arbitrary $A \in \operatorname{bord}(B)$ of the form (2), we use the identity

$$
\left[\begin{array}{ll}
P & 0 \tag{4}\\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
B & y \\
x & b
\end{array}\right]\left[\begin{array}{ll}
Q & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
D & P y \\
x Q & b
\end{array}\right] .
$$

Denote $x Q=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n}\end{array}\right], P y=\left[\begin{array}{llll}c_{1} & c_{2} & \cdots & c_{n}\end{array}\right]^{\mathrm{T}}$. Suppose $d_{1}=d_{2}=\cdots=d_{k}=1$, for some $k, 1 \leqslant k \leqslant n$. Transforming the matrix from the righthand side of (4) by subtracting the row i multiplied by c_{i} from the row $n, 1 \leqslant i \leqslant k$, and then subtracting the column i multiplied by c_{i} from the column $n, 1 \leqslant i \leqslant k$, we derive that A is equivalent to

$$
\left[\begin{array}{ccc|ccc|c}
1 & \cdots & 0 & 0 & \cdots & 0 & 0 \tag{5}\\
\vdots & \ddots & \vdots & \vdots & & \vdots & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 & 0 \\
\hline 0 & \cdots & 0 & d_{k+1} & \cdots & 0 & c_{k+1} \\
\vdots & & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & d_{n} & c_{n} \\
\hline 0 & \cdots & 0 & a_{k+1} & \cdots & a_{n} & b-\sum_{i=1}^{k} a_{i} c_{i}
\end{array}\right] .
$$

Hence, $\operatorname{SNF}(A)$ determination is reduced to determination of SNF of a matrix of order $n-k$. The special cases when $k \geqslant n-1$ are extremely simple, and they are not rare at all, because the corresponding SNF-classes are among the largest ones (at least for $n \leqslant 9$). More generally, one can reduce a_{i}, c_{i} modulo $d_{i}, 1 \leqslant i \leqslant \operatorname{rank} B$.

2.2. Φ-extension

Following Williamson [1], the approach based on extending π-representatives only, can be further improved.

For an arbitrary $A \in \mathscr{A}_{n}$ let $A^{\prime}=X_{i} A$ denote the matrix with the i th row equal to the i th row of A, and with the row $j \neq i$ equal to the coordinatewise modulo two sum of j th and i th row of A. Equivalently, $A^{\prime}=R A S$, where R is the matrix obtained from I_{n} by subtracting i th row from the others, and then by multiplying i th row by $-1 ; S$ is the matrix obtained from I_{n} by changing sign of columns corresponding to ones in the i th row of A. A third equivalent
definition of X_{i} [1] can be stated as follows: in the ± 1 matrix $B=\Psi(A)$ of order $n+1$, the rows 1 and $(i+1)$ are exchanged, then the first row is "normalized" to all ones by changing signs of appropriate columns. By applying Ψ^{-1}, the matrix A^{\prime} is obtained. Therefore, application of X_{i} to A corresponds to a special row permutation in $\Psi(A)$ (followed by scaling). It is natural to denote the identity transformation by $X_{0}, X_{0} A=A$.

The transformation X_{i} also preserves ADV. The composition of arbitrary two transformations X_{i}, X_{j} is equivalent to only one:

$$
X_{i}\left(X_{j} A\right)= \begin{cases}P_{i, j}\left(X_{i} A\right), & \text { if } 1 \leqslant i, j \leqslant n \text { if } i \neq j, \\ A, & \text { if } 1 \leqslant i=j \leqslant n\end{cases}
$$

Let Φ_{r} denote the set of $(n+1)$! transforms of the form $P X_{i}, 0 \leqslant i \leqslant n$, where P is an arbitrary permutation matrix.

Theorem 3. The set Φ_{r} is a transformation group of \mathscr{A}_{n}.
Proof. We have

$$
X_{i} P A=P X_{p_{i}} A,
$$

where p_{i} is the index of the row of A, which is moved to the position i after the left multiplication by P. Let P_{1} and P_{2} be the two permutation matrices and let p_{j} be the position to which P_{1} moves the row j after the left multiplication. Then

$$
P_{2} X_{j} P_{1} X_{i}=P_{2} P_{1} X_{p_{j}} X_{i}=\left\{\begin{array}{ll}
P_{2} P_{1}, & p_{j}=i \\
P_{2} P_{1} P_{p_{j}, i} X_{p_{j}}, & p_{j} \neq i
\end{array} .\right.
$$

If $P_{1}=P$ is an arbitrary permutation matrix, $1 \leqslant i \leqslant n, P_{2}=P^{-1}$, and $p_{j}=i$, then

$$
\left(P X_{i}\right)^{-1}=P^{-1} X_{j}
$$

Clearly, each orbit of Φ_{r} contains at most $n+1$ orbits of Π_{r}.
The corresponding transformation $A X_{j}$ over the columns of A (coordinatewise addition modulo two of the column i to all other columns) is defined by $A X_{j}=\left(X_{j} A^{\mathrm{T}}\right)^{\mathrm{T}}$. Let Φ_{c} denote the group generated by column permutations and column transformations (•) X_{i}.

Let Φ be the group generated by the elements of groups Φ_{r} and Φ_{c}; it also preserves ADV and its size is $(n+1)!^{2}$. Matrices A and A^{\prime} are said to be ϕ-equivalent, $A \sim_{\phi} A^{\prime}$, if they belong to the same orbit of Φ. Equivalently, $A \sim_{\phi} A^{\prime}$ if and only if there exist row and column permutations P, Q, and row and column transformations X_{i}, X_{j}, such that $A=P X_{i} A^{\prime} X_{j} Q$. For an arbitrary $A \in \mathscr{A}_{n}$ let A_{ϕ} denote the ϕ-representative of $A ; \phi$-class of A is the orbit of Φ containing A.

Let $\operatorname{bord}_{\phi}(B)$ denote the set of ϕ-representatives of matrices in $\operatorname{bord}(B)$. Williams [1] noted that Φ and Π have similar properties: in order to obtain the set \mathscr{A}_{n}^{ϕ} of all ϕ-representatives in \mathscr{A}_{n}, it is enough to extend ϕ-representatives in \mathscr{A}_{n-1}.

Lemma 4. If $B \sim_{\phi} B^{\prime}$, then $\operatorname{bord}_{\phi}(B)=\operatorname{bord}_{\phi}\left(B^{\prime}\right)$.
Proof. If B and B^{\prime} are ϕ-equivalent, then there exist $g \in \Phi$, transforming B into B^{\prime}. Suppose $A \in$ $\operatorname{bord}_{\phi}(B)$. Then there exists a matrix $A^{\prime} \in \operatorname{bord}(B), A^{\prime} \sim_{\phi} A$. By applying g to upper left minor of A, the matrix $A^{\prime \prime} \sim_{\phi} A^{\prime}, A^{\prime \prime} \in \operatorname{bord}\left(B^{\prime}\right)$ is obtained. Therefore, $A \sim_{\phi} A^{\prime \prime}$, and $A \in \operatorname{bord}\left(B^{\prime}\right)$. Because A is a ϕ-representative, we obtain $A \in \operatorname{bord}_{\phi}\left(B^{\prime}\right)$, implying $\operatorname{bord}_{\phi}(B) \subseteq \operatorname{bord}_{\phi}\left(B^{\prime}\right)$. Analogously, $\operatorname{bord}_{\phi}\left(B^{\prime}\right) \subseteq \operatorname{bord}_{\phi}(B)$, and hence $\operatorname{bord}_{\phi}(B)=\operatorname{bord}_{\phi}\left(B^{\prime}\right)$.

2.3. Effective determination of π-representatives

The classification of matrices in \mathscr{A}_{n} by extending matrices from \mathscr{A}_{n-1}^{ϕ} must be accompanied by an effective procedure to determine A_{π} and A_{ϕ} for an arbitrary $A \in \mathscr{A}_{n}$.

The matrix A_{π} is the smallest among the family of at most $n!$ matrices obtained by sorting rows of all the column permutations of A. Search is performed more efficiently by a branch-and-bound algorithm. If we know the first i rows of A_{π} (i.e. the row and column permutations P, Q such that the first i rows of $P A Q$ are minimal), then the next row of A_{π} is a smallest column permutation (only permutations preserving the first i rows of $P A Q$ are considered) of some of the remaining rows of $P A Q$.

Algorithm 1. Branch-and-bound algorithm to determine A_{π} given $A \in \mathscr{A}_{n}$.
Input: $A \in \mathscr{A}_{n}$
Output: A_{π}; the permutation matrices P, Q, such that $P A Q=A_{\pi}$;
count-the number of pairs (P, Q), such that $P A Q=A_{\pi}$;
$P^{(0)} \leftarrow I_{n} ; Q^{(0)} \leftarrow I_{n} ; A_{\pi} \leftarrow J_{n} ;$
$i \leftarrow 0$;
count $\leftarrow 0$;
Optimize(i);
\{Continuation of the search for A_{π} starting from the row i of $P^{(i-1)} A Q^{(i-1)}$,\}
\{i.e. when the first $i-1$ rows are already chosen and permuted \}
Optimize (i)
Generate the minimal set of boundaries $\Sigma^{(i)}=\left(s_{0}^{(i)}=0, s_{1}^{(i)}, \ldots, s_{k_{i}}^{(i)}=n\right)$
between adjacent columns of $P^{(i-1)} A Q^{(i-1)}$, such that the $(i-1)$-prefixes
of columns from $s_{j-1}^{(i)}+1$ to $s_{j}^{(i)}$ are mutually equal, $1 \leqslant j \leqslant k_{i}$;
for $j=i$ to n do
$v_{j l} \leftarrow \sum_{r=s_{l-1}+1}^{s_{l}}\left(P^{(i-1)} A Q^{(i-1)}\right)_{j, r}, 1 \leqslant l \leqslant k_{i} ;\{$ the number of 1 's \}
$\left\{\right.$ in positions from $s_{j-1}^{(i)}+1$ to $s_{j}^{(i)}$ in the j th row of $\left.P^{(i-1)} A Q^{(i-1)}\right\}$
$L^{(i)} \leftarrow$ the list of indices of largest vectors $v_{j}=\left(v_{j 1}, v_{j 2}, \ldots, v_{j k_{i}}\right), i \leqslant j \leqslant n ;$
for all $j \in L^{(i)}$ do $\left\{\right.$ the candidates for the i th row of $\left.A_{\pi}\right\}$
$P^{(i)} \leftarrow P_{i, j} P^{(i-1)} ;\{$ exchange the rows i and $j\}$
compute $Q^{(i)}$ from $Q^{(i-1)}$, so that all 1's in the part of the row i from $s_{l-1}^{(i)}+1$ to $s_{i}^{(l)}$ are moved to the right end of the part, $1 \leqslant l \leqslant k_{i}$; \{hence preserving the first $i-1$ rows of $P^{(i)} A Q^{(i)}$ \}
compare the i th row of $P^{(i)} A Q^{(i)}$ to the i th row of A_{π} :
if the i th row of $P^{(i)} A Q^{(i)}$ is less then
copy the first i rows from $P^{(i)} A Q^{(i)}$ into A_{π};
fill with ones the rest of A_{π};
if $i=n$ then $P \leftarrow P^{(i)} ; Q \leftarrow Q^{(i)} ;$ count $\leftarrow 1$; else Optimize $(i+1)$;
else if the i th row of $P^{(i)} A Q^{(i)}$ greater then
continue; \{bound step: try the next row index from $L^{(i)}$ \}
else
if $i=n$ then count \leftarrow count +1 ; else $\operatorname{Optimize}(i+1)$;

Fig. 1. An example of π-representative determination by Algorithm 1.

Example 5. Algorithm 1, applied to the matrix from Example 1, gives the same π-representative as obtained by trivial algorithm, see Fig. 1.

Algorithm 1 is not efficient for extremely symmetric matrices, such as I_{n} : in that case bound step does not ever occur, because all the remaining rows are always equally good. Hence, Algorithm 1 must be improved, in order to detect some symmetries, and to avoid some unnecessary repetitions. Suppose that there remain l rows not included in A_{π}, and that the column classes defined by $\Sigma^{(n-l-1)}$ are such, that all column classes in the remaining rows are uniform (they contain either all ones or all zeros), except for at most one column class, which in that case has l columns, with the row and column sums both equal to $l-1$ or 1 . Then, because of the symmetry, it is enough to put in $L^{(n-l-1)}$ only one of the l remaining rows. After the incorporation of this simple heuristic,
the algorithm much more efficiently deals with the matrices such as I_{n}, the complement of I_{n}, and the other highly symmetric matrices.

Using Algorithm 1, it is possible to determine A_{ϕ} for an arbitrary $A \in \mathscr{A}_{n}$: it is enough to find π-representatives of all $(n+1)^{2}$ matrices $X_{i} A X_{j}, 0 \leqslant i, j \leqslant n$, and then to choose the smallest among them.

One of the outputs from Algorithm 1 is the number of the pairs of row/column permutations, transforming A into A_{π}. That number is used to determine the size of the π-class of A^{T}, as it will be demonstrated below.

Consider the problem of counting the matrices in the π-class of an arbitrary $A \in \mathscr{A}_{n}$. For an arbitrary $B \in \mathscr{A}_{n}$ let B_{0} denote the matrix obtained from B by sorting its rows. If A has i_{k} groups of k equal rows, $1 \leqslant k \leqslant n$, then the number of matrices that could be obtained from A by row permutations is

$$
a=n!/ \prod_{k=1}^{n} i_{k}!
$$

The representative of these a matrices is A_{0}. An arbitrary matrix A^{\prime}, obtained from A by a column permutation, generates in the same manner a new set of a matrices if and only if $A_{0}^{\prime} \neq A_{0}$. If the number of different matrices A_{0}^{\prime} is b, then the size of the π-class of A is $a b$. It is simpler to obtain b by counting the number p of column permutations A^{\prime} of A satisfying $A_{0}^{\prime}=A_{0}$, because $b=n!/ p$. Note that p is preserved by row and column permutations of A.

Applying Algorithm 1 to $\left(A^{\mathrm{T}}\right)_{\pi}, p$ is obtained even more easily. Indeed, suppose that A is already a π-representative, i.e. $A=A_{\pi}$. Then Algorithm 1 counts the row permutations $A^{\prime \prime}$ of A, such that there exists a column permutation $A^{\prime \prime \prime}$ of $A^{\prime \prime}$, equal to A_{π}. Now we find $A^{\prime}=$ $\left(\left(A^{\mathrm{T}}\right)_{\pi}\right)^{\mathrm{T}}$ and apply Algorithm 1 (again) to $\left(A^{\prime}\right)^{\mathrm{T}}$. The matrix $\left(A^{\prime}\right)^{\mathrm{T}}$ is a π-representative, because $\left(\left(A^{\prime}\right)^{\mathrm{T}}\right)_{\pi}=\left(A^{\prime}\right)^{\mathrm{T}}$. Algorithm 1 gives the number of row permutations $\left(A^{\prime \prime}\right)^{\mathrm{T}}$ of $\left(A^{\prime}\right)^{\mathrm{T}}$, such that there exists a column permutation $\left(A^{\prime \prime \prime}\right)^{\mathrm{T}}$ of $\left(A^{\prime \prime}\right)^{\mathrm{T}}$, equal to $\left(A^{\prime}\right)^{\mathrm{T}}$. In other words, we obtain the number of column permutations $A^{\prime \prime}$ of A^{\prime}, such that there exists a row permutation $A^{\prime \prime \prime}$ of $A^{\prime \prime}$, equal to A^{\prime}-which is exactly p (count in Algorithm 1).

Example 6. Looking again at Example 5, we see that there are two pairs (P, Q) that minimize $P A Q$. Therefore, there are $3!^{2} / 2=18$ matrices in the π-class of A^{T}.

The problem of counting the matrices in the SNF-class of an arbitrary $A \in \mathscr{A}_{n}$ is much harder. It is even harder is to enumerate the sets $\mathscr{A}_{n, k}=\{A \in \mathscr{A} \mid \operatorname{rank} A=k\}, 0 \leqslant k \leqslant n$: (especially $m_{n}=$ $\left.\mathscr{A}_{n, n}\right)$ We now explicitly enumerate the sets $\mathscr{A}_{n, 1}, \mathscr{A}_{n, 2}$, using the following characterization of matrices in $\mathscr{A}_{n, 2}$.

Lemma 7. If the matrix $A \in \mathscr{A}_{n, 2}$ contains three different nonzero columns a, b, c, then one of them is equal to the sum of the other two, for example $c=a+b$. Furthermore, the set of nonzero rows of the matrix $\left[\begin{array}{ll}a & b\end{array}\right]$ equals to $\left\{\left[\begin{array}{ll}0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0\end{array}\right]\right\}$. There cannot be four different nonzero columns in A.

Proof. Suppose $A \in \mathscr{A}_{n, 2}$. If two nonzero columns of A are linearly dependent, then they are obviously equal. Suppose a, b, c are the three different nonzero linearly dependent columns, i.e. $\alpha a+\beta b+\gamma c=0$ for some integers α, β, γ. The coefficients α, β, γ must be nonzero; otherwise,
if for example $\alpha=0$, then $\beta b+\gamma c=0$ implies $b=c$. Denote by U the set of nonzero rows of the $n \times 3$ matrix $\left[\begin{array}{lll}a & b & c\end{array}\right]$. Then

- $|U|>1$; otherwise it would be $a=b=c$.
- $U \cap\left\{\left[\begin{array}{lll}1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\right\}=\emptyset$; if, for example $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right] \in U$, then $\alpha=0$.
- Therefore, $U \subseteq\left\{\left[\begin{array}{lll}1 & 1 & 1\end{array}\right],\left[\begin{array}{lll}0 & 1 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\right\}$ and $U \neq\left\{\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\right\}$.
- $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] \notin U$; if $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] \in U$, and for example $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right] \in U$, then from $\alpha+\beta+\gamma=0$ and $\beta+\gamma=0$, it follows $\alpha=0$.
- $U \neq\left\{\left[\begin{array}{lll}0 & 1 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\right\}$; otherwise $\beta+\gamma=0, \alpha+\gamma=0, \alpha+\beta=0$ implies $\alpha=$ $\beta=\gamma=0$.

Hence, there are three possibilities for U left: $\left\{\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\right.$, $\left.\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\right\}$, or $\left\{\left[\begin{array}{lll}0 & 1 & 1\end{array}\right],\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\right\}$, or $\left\{\left[\begin{array}{lll}1 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\right\}$. If $U=\left\{\left[\begin{array}{lll}0 & 1 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\right\}$, then $\beta+\gamma=0, \alpha+\gamma=0$ implies $(\alpha, \beta, \gamma)=$ $\gamma(-1,-1,1)$, i.e. $c=a+b$; the set of nonzero rows of $\left[\begin{array}{ll}a & b\end{array}\right]$ is $\left\{\left[\begin{array}{ll}0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0\end{array}\right]\right\}$. The two other cases are symmetrical.

Suppose that A contains four different columns a, b, c, d. Then we must have for example $c=a+b$ and the set of nonzero rows of $\left[\begin{array}{ll}a & b\end{array}\right]$ is $\left\{\left[\begin{array}{ll}0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0\end{array}\right]\right\}$.

Applying the first part of Lemma to a, b, d, we conclude that $d=a+b$ or $a=b+d$ or $b=a+d$. But $d=a-b$ and $d=b+a$ are impossible, and $d=a+b$ implies $d=c$. The lemma is proved.

Theorem 8

(a) For an arbitrary $A \in \mathscr{A}_{n}$ the following three statements are equivalent:
(1) $\operatorname{rank} A=1$;
(2) $\operatorname{SNF}(A)=\left(1,0^{n-1}\right)$;
(3) A contains a column $a \neq 0$, such that all nonzero columns of A are equal to a.

The number of matrices in $\mathscr{A}_{n, 1}$ equals
$\left|\mathscr{A}_{n, 1}\right|=\left(2^{n}-1\right)^{2}$.
(b) For an arbitrary $A \in \mathscr{A}_{n}$ the following three statements are equivalent:
(1) $\operatorname{rank} A=2$;
(2) $\operatorname{SNF}(A)=\left(1,1,0^{n-2}\right)$;
(3) - A contains the two nonzero columns $a \neq b$, such that all columns of A are in $\{0, a, b\}$, or

- A contains the two nonzero columns $a \neq b$, such that the set of]nonzero rows of $\left[\begin{array}{ll}a & b\end{array}\right]$ equals $\left\{\left[\begin{array}{ll}0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0\end{array}\right]\right\}$, and that the set of nonzero columns of A is $\{a, b, a+b\}$.

The number of matrices in $\mathscr{A}_{n, 2}$ equals

$$
\left|\mathscr{A}_{n, 2}\right|=\left(3^{n}-2 \cdot 2^{n}+1\right)\left(2 \cdot 4^{n}-3 \cdot 3^{n}+1\right) / 2
$$

Proof. (a) If $\operatorname{rank} A=1$ then A contains nonzero column a, such that all nonzero columns of A are equal to a. By subtracting one of nonzero columns from the others, we obtain an equivalent matrix with exactly one nonzero column a. By the column permutation column a is moved to the first position, and by the row permutation some 1 is moved to the upper left corner. By subtracting the first row from the other nonzero rows, we obtain that SNF of A is $\left(1,0^{n-1}\right)$. How many matrices of rank 1 there are? The number of choices for nonzero column a is $2^{n}-1$, and the
number of matrices corresponding to the fixed a is $2^{n}-1$: each its column is 0 or a, but at least one of them has to be equal to a. Hence, $\left|\mathscr{A}_{n, 1}\right|=\left(2^{n}-1\right)^{2}$.
(b) If rank $A=2$ then A contains two linearly independent columns, such that the other columns are their linear combinations. The number of different nonzero columns in A is either two or it is greater than two.

Case 1. Suppose there are exactly two different nonzero columns a, b in A. The number of such matrices A is

$$
\binom{2^{n}-1}{2}\left(3^{n}-2 \cdot 2^{n}+1\right)
$$

Indeed, the number of choices for a, b equals to the above binomial coefficient. Without loss of generality we suppose that $a<b$. For fixed a, b, by the inclusion-exclusion principle the number of matrices A is $3^{n}-2 \cdot 2^{n}+1$, because

- 3^{n} is the number of matrices with the columns from the set $\{0, a, b\}$,
- 2^{n} is the number of matrices without a, and also the number of matrices without b,
- 1 is the number of matrices without a and b.

Case 2. If there are more than two different nonzero columns in A, then by Lemma 7 there are two different nonzero columns $a, b(a<b)$ in A, such that the set of nonzero columns in A is $\{a, b, c=a+b\}$, and such that the row set of the matrix $\left[\begin{array}{ll}a & b\end{array}\right]$ is $\left\{\left[\begin{array}{ll}0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0\end{array}\right]\right\}$. There are $\left(3^{n}-2 \cdot 2^{n}+1\right) / 2$ choices for columns a, b satisfying these conditions. Indeed, consider all matrices $\left[\begin{array}{ll}a & b\end{array}\right],\left[\begin{array}{ll}b & a\end{array}\right]$:

- 3^{n} is the number of matrices with the row set $\left\{\left[\begin{array}{lll}0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0\end{array}\right]\right\}$,
- 2^{n} is the number of matrices without the row [01] , and also the number of matrices without the row [10],
- 1 is the number of matrices without the rows [$\left[\begin{array}{ll}0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0\end{array}\right]$).

The number of matrices $\left[\begin{array}{ll}a & b\end{array}\right]$ is therefore $\left(3^{n}-2 \cdot 2^{n}+1\right) / 2$. The number $4^{n}-3 \cdot 3^{n}+3$. $2^{n}-1$ of matrices with the set of nonzero columns $\{a, b, c\}$ (where $c=a+b$) is also obtained by the inclusion-exclusion principle:

- 4^{n} is the number of matrices with all the columns $0, a, b, c$;
- 3^{n} is the number of matrices without the column a (and analogously without b, c);
- 2^{n} is the number of matrices without columns a, b (and analogously without a, c; and without b, c);
- 1 is the number of matrices without columns a, b, c.

Therefore, the number of matrices of the rank 2, with more than two different nonzero columns equals

$$
\left(3^{n}-2 \cdot 2^{n}+1\right)\left(4^{n}-3 \cdot 3^{n}+3 \cdot 2^{n}-1\right) / 2
$$

The total number of matrices in $\mathscr{A}_{n, 2}$ equals

$$
\begin{aligned}
& \left(2\binom{2^{n}-1}{2}+\left(4^{n}-3 \cdot 3^{n}+3 \cdot 2^{n}-1\right)\right)\left(3^{n}-2 \cdot 2^{n}+1\right) / 2 \\
& =\left(3^{n}-2 \cdot 2^{n}+1\right)\left(2 \cdot 4^{n}-3 \cdot 3^{n}+1\right) / 2
\end{aligned}
$$

In either case, in order to obtain $\operatorname{SNF}(A)$, the other nonzero columns are first transformed to 0 by subtracting a, b or $a+b$ from them. Next, in $\left[\begin{array}{ll}a & b\end{array}\right]$ there is a row [0 1] , because $a<b$; using that 1 , the other elements of b are changed to 0 . Finally, choosing some 1 in a, and subtracting if necessary that row from the others, after permuting rows/columns, we obtain the SNF. Hence, $\operatorname{rank} A=2$ implies $\operatorname{SNF}(A)=\left(1,1,0^{n-2}\right)$.

2.4. Iterative classification of $(0,1)$ matrices

According to Lemma 2 we have

$$
\mathscr{A}_{n+1}^{\pi}=\cup_{A \in \mathscr{A}_{n}^{\pi}} \operatorname{bord}_{\pi}(A)
$$

By changing the order of calculations, it is possible to simplify repeated determination of π-representatives of matrices from $\operatorname{bord}(A)$ by Algorithm 1. Matrices B in $\operatorname{bord}(A)$ are of the form (2). For each y the π-representatives of B 's corresponding to various inserted rows $\left[\begin{array}{ll}x & b\end{array}\right]$ are found spending smaller number of steps. The point is that the rows of the π-representative preceding the row $\left[\begin{array}{ll}x & b\end{array}\right]$ are already determined for some previous variants for that row.

Somewhat more detailed description follows. Determine first the π-representative of the matrix, corresponding to $x=0, b=0$; the inserted zero row $\left[\begin{array}{ll}x & b\end{array}\right]$ is certainly the first row in the π-representative. The corresponding row and column permutations P, Q are recorded. The remaining pairs (x, b) are then considered in turn, lexicographically ordered. The question arises, to which position l might $\left[\begin{array}{ll}x & b\end{array}\right]$ be moved during the π-representative determination, skipping the determination of first $l-1$ rows of the representative. The obvious lower bound for l is the smallest among all positions where the previous rows w, obtained from $\left[\begin{array}{ll}x & b\end{array}\right]$ by changing exactly one 1 into 0 , have been moved (except if there was an alternative to w during that step, i.e. if $L^{(i)}$ had more than one member at the moment when w arrived to its destination).

Instead of extending all $A \in \mathscr{A}_{n}^{\pi}$, it is enough to extend the matrices from the set \mathscr{A}_{n}^{ϕ} of all ϕ-representatives in \mathscr{A}_{n}. By extending all $A \in \mathscr{A}_{n}^{\phi}$ a subset of \mathscr{A}_{n+1}^{π} is obtained; the set of ϕ-representatives of matrices from that subset is exactly \mathscr{A}_{n+1}^{ϕ}.

It is convenient to use a balanced tree to collect π-representatives in an ordered fashion. We chose AVL tree [6]-the binary search tree satisfying the condition that, for every node, the difference between the heights of its left and right subtrees is at most 1 . For $n=8$, in order to save memory, a combination of AVL tree and the sorted array of matrices is used: from time to time the content of the tree is merged into the array. After collecting all π-representatives, the π-representatives set is reduced to the corresponding ϕ-representatives set. To determine the set of ϕ-representatives, corresponding to a given set of π-representatives, the following simple algorithm is used.

Algorithm 2. Reduction of a given set L_{π} of π-representatives to the set L_{ϕ} of corresponding ϕ-representatives.
\{ T-auxiliary AVL tree used to collect π-representatives. \}
while $L_{\pi} \neq \emptyset$
while there is a space in T for at least $(n+1)^{2}$ matrices
remove the first matrix A from L_{π};
generate the set T_{A} of π-representatives contained in the ϕ-class of A;
insert T_{A} into T;
insert A_{ϕ} into L_{ϕ};
remove from L_{π} all the matrices contained in T;
$T \leftarrow \emptyset ;$
The classification of \mathscr{A}_{8} lasted about a month in parallel on five PC's. A huge number of collected π-representatives of order $n=8$ caused serious difficulties. The space requirement is reduced by dividing π-representatives into subsets, according to their SNF. For each extended matrix, its SNF is determined, and the π-representatives are classified into subsets with the same SNF. These subsets are then independently processed. The hardest was the SNF-class ($1^{7}, 0$), with 5204144555π-representatives contained in a number of non disjoint subsets. These subsets were independently processed by Algorithm 2, producing the non disjoint sets of ϕ-representatives; their union consists of 71348129ϕ-representatives, approximately $1 / 3$ of matrices in \mathscr{A}_{8}^{ϕ}.

In order to save the space, L_{π} and L_{ϕ} are stored in a sorted, compressed form: one byte for each matrix row; the group of consecutive matrices with the same first $n-2$ rows is stored so that the common $n-2$ rows are stored only once. As a result, the average space for a matrix of order 8 was little more than two bytes.

If somebody tries to extend ϕ-representatives of order 8 , he could expect to process about 300 times more ϕ-representatives, each giving approximately 4 times more π-representatives. Therefore, the classification of matrices of order 9 is expected to last 1000 times longer, requiring huge memory.

2.5. Results of classification

We start with the simplest nontrivial case.
Example 9. The 16 matrices of order 2 are divided into 3ϕ-classes, which are further subdivided into 7π-classes:

$$
\begin{aligned}
& \left\{\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right\}\right\}, \\
& \left\{\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right\},\left\{\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\right\}\right. \\
& \left.\left\{\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\right\},\left\{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right\}\right\}, \\
& \left\{\left\{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right\},\left\{\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\right\}\right\}
\end{aligned}
$$

In Table A.1, all the 36π-representatives of order 3 are shown. The 5 SNF-classes are in separate blocks, divided into compartments with ϕ-classes. The first matrix in each ϕ-class is the smallest π-representative, i.e. the ϕ-representative. For each π - and SNF-class, their size is given. The matrices are represented by hexadecimal vectors, each component representing a row of a matrix. For example, the last vector $(3,5,6)$ in Table A. 1 represents the matrix

Table 2
The numbers of equivalence classes in \mathscr{A}_{n}

n	ρ_{n}	$\left\|\mathscr{A}_{n}^{\phi}\right\|$	s_{n}	a_{n}	$\left\|\mathscr{D}_{n}\right\|$	\mathscr{D}_{n}
1	0.250	2	2	2	2	$\{0,1\}$
2	0.148	3	3	2	2	$\{0,1\}$
3	0.074	12	5	3	3	$\{0-2\}$
4	0.117	39	8	4	4	$\{0-3\}$
5	0.167	388	14	6	6	$\{0-5\}$
6	0.334	8102	26	10	10	$\{0-9\}$
7	0.528	656103	56	19	22	$\{0-18,20,24,32\}$
8	0.701	199727714	129	41	46	$\{0-40,42,44,45,48,56\}$
9			333	103	114	$\{0-102,104,105,108,110,112$,
						$116,117,120,125,128,144\}$

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] .
$$

The matrix $(1,2,5)$ is a π-representative of the matrix from Example 5 .
In Table A.2, all the 39ϕ-representatives of order 4 are shown, together with the sizes of their ϕ-classes.

In Table 2, $\rho_{n},\left|\mathscr{A}_{n}^{\phi}\right|, s_{n}, a_{n},\left|\mathscr{D}_{n}\right|$, and the set \mathscr{D}_{n} are given for $1 \leqslant n \leqslant 8$, where $s_{n}=\left|\mathscr{S}_{n}\right|$ and $\rho_{n}=\left(2^{n^{2}} /(n+1)!^{2}\right) /\left|\mathscr{A}_{n}^{\phi}\right|$. In the last row of Table $2 s_{9},\left|\mathscr{D}_{9}\right|, a_{9}, \mathscr{D}_{9}$ are given; the explanation how they are obtained will be given in Section 3.

Denote by $F(n)$ the following statement:

$$
\begin{equation*}
A \in \mathscr{A}_{n}, \text { satisfying } \operatorname{SNF}(A)=d=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \text { exists if and only if } \tag{6}
\end{equation*}
$$ there exists $A^{\prime} \in \mathscr{A}_{n+1}$, satisfying $\operatorname{SNF}\left(A^{\prime}\right)=d^{\prime}=\left(d_{1}, d_{2}, \ldots, d_{n}, 0\right)$.

Obviously, the first condition implies the second one. The implication in the opposite direction is not obvious at all; it would follow from the following stronger statement:
$H(n):$ Let $A^{\prime} \in \mathscr{A}_{n+1}, \operatorname{rank} A^{\prime}=n$, and $\operatorname{SNF}\left(A^{\prime}\right)=d^{\prime}=\left(d_{1}, d_{2}, \ldots, d_{n}, 0\right)$.
Then A^{\prime} has at least one minor $A \in \mathscr{A}_{n}$ with $\operatorname{SNF}(A)=d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
But the following matrix $F \in \mathscr{A}_{10}$ is a counterexample to $H(10)$:

$$
F=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{llll|llllll}
0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
\hline 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}\right] .
$$

Table 3
The number of matrices of the rank k in $\mathscr{A}_{n}, n \leqslant 8$

k	n							
	1	2	3	4	5	6	7	8
0	1	1	1	1	1	1	1	1
1	1	9	49	225	961	3969	16129	65025
2		6	288	6750	118800	1807806	25316928	336954750
3			174	36000	3159750	190071000	9271660734	397046059200
4				22560	17760600	5295204600	1001080231200	144998212423680
5					12514320	34395777360	32307576315840	1795208799918400
6						28836612000	259286329895040	720988662376725120
7							270345669985440	7547198043595392000
8							10160459763342013440	

The matrix F consists of blocks A, B, C, D, having $2,3,2,3$ ones in each row respectively, and also having 2,2,3,3 ones in each column, respectively; F is singular, because the sums of rows of $\left[\begin{array}{ll}A & B\end{array}\right]$ and $\left[\begin{array}{ll}C & D\end{array}\right]$ are equal. It can be verified that $\operatorname{rank} F=9, \operatorname{SNF}(F)=\left(1^{9}, 0\right)$, but all minors of F have SNF different from (1^{9}).

In Table A.3, the SNF-representatives of matrices in $\mathscr{A}_{n}, n \leqslant 8$, are listed, accompanied with the size measures of corresponding SNF-classes (the number of matrices, the number of π-representatives and the number of ϕ-representatives in each SNF-class). The sizes of π-classes are determined using Algorithm 1. The classes are ordered lexicographically by the SNF (with zeros moved to the end of SNF).

One can verify this classification starting from the sorted list of all ϕ-representatives. For each of them one has to check if it is indeed a ϕ-representative. The next step is to sum the numbers of π-representatives in all ϕ-classes, and to compare the sum with the corresponding entry in Table 1. One could also check that the sum of sizes of SNF-classes in \mathscr{A}_{n} equals $2^{n^{2}}$ for each $n \leqslant 8$, see Table A.3. The sorted lists of ϕ-representatives for $n \leqslant 8$ can be downloaded from http://www.matf.bg.ac.yu/ ezivkovm/01matrices.htm.

We now review some interesting facts, which are seen from Table A.3.
Let $T(n, k)=\left|\mathscr{A}_{n, k}\right|$. In Table 3, the numbers $T(n, k), 0 \leqslant k \leqslant n \leqslant 8$, are shown (of course, they are easily obtained from Table A.3). The part of Table 3 corresponding to $n \leqslant 7$ is the same as in [10]; it is also an entry in [4, Sequence A064230]. Another interesting entry in [4, Sequence A055165] is the sequence m_{n}, where m_{n} is the number of regular $(0,1)$ matrices of order n-the diagonal of Table 3. The seemingly new member of that sequence is $m_{8}=$ 10160459763342013440. If we suppose that all matrices in \mathscr{A}_{n} are equiprobable, then the rank probability distribution is shown in Table 4 for $n \leqslant 8$. Looking at Table 4, one could erroneously conclude that large fraction of matrices in \mathscr{A}_{n} is singular. In fact, the fraction of singular matrices in \mathscr{A}_{n} tends to 0 for n large [11].

It turns out that $F(n)(6)$ is true for $n \leqslant 7$, i.e. the set of SNF's of rank k is the same for all $n, k \leqslant n \leqslant 8$. For example, the SNF-representative of the SNF-class $\left(1,1,2,0^{n-3}\right)$ is the matrix ($0^{n-3}, 3,5,6$) for $3 \leqslant n \leqslant 8$.

The smallest n for which there are two matrices in \mathscr{A}_{n} with the same determinant, but with different SNF 's is $5: \operatorname{SNF}(3, \mathrm{C}, 15,16,19)=(1,1,1,4)$ and $\operatorname{SNF}(3,5,9,11,1 \mathrm{E})=(1,1,2,2)$.

In Table 5 , the possible numbers of π-orbits inside ϕ-orbits are shown for $1 \leqslant n \leqslant 8$. These numbers are between 1 and $(n+1)^{2}$; as it is seen, the value $(n+1)^{2}$ is attained only if $n \geqslant 5$.

Table 4
The probability that a random matrix in \mathscr{A}_{n} has the rank $k, 0 \leqslant k \leqslant n \leqslant 8$

k	n				4	5	6	7
	1	2	3	4		8		
0	0.5	0.0625	0.00195	0.00002	0.00000	0.00000	0.00000	0.00000
1	0.5	0.5625	0.09570	0.00343	0.00003	0.00000	0.00000	0.00000
2		0.3750	0.56250	0.10300	0.00354	0.00003	0.00000	0.00000
3			0.33984	0.54932	0.09417	0.00277	0.00002	0.00000
4				0.34424	0.52931	0.07706	0.00178	0.00001
5					0.37296	0.50052	0.05739	0.00097
6					0.41963	0.46059	0.03908	
7						0.48023	0.40913	
8							0.55080	

Table 5
The possible numbers of π-orbits inside ϕ-orbits of \mathscr{A}_{n}

n	The set of ϕ-orbit sizes
1	$\{1\}$
2	$\{1,2,4\}$
3	$\{1,2,4,5,9\}$
4	$\{1-5,7,9-11,13,16,17\}$
5	$\{1-18,20,21,25,26,30,36\}$
6	$\{1,2,4-27,29-32,35-37,42,49\}$
7	$\{1-38,40,42-44,48-50,56,64\}$
8	$\{1-46,48-51,53,54,56-58,63-65,72,81\}$

If $A \in \mathscr{A}_{n}, A \sim I_{n}$ and $B \in \operatorname{bord}(A)$, then $\operatorname{SNF}(B)$ contains at least n ones, see (5). The question arises, what are the possible values of the last element of $\operatorname{SNF}(B)$, i.e. which values can take $|\operatorname{det} B|$? The largest possible values of $|\operatorname{det} B|$ under these assumptions, along with the examples of matrices B for which these values are attained, are given in Table 6. In fact, the matrices from Table 6 maximize $|\operatorname{det} B / \operatorname{det} A|$ for all regular $A \in \mathscr{A}, n \leqslant 8$.

More generally, it is interesting to describe the relationship of $\operatorname{SNF}(A)$ to $\operatorname{SNF}\left(A^{\prime}\right)$ if $A^{\prime} \in$ $\operatorname{bord}(A)$. During iterative classification, the sets

$$
\left\{\operatorname{SNF}(B) \mid B \in \operatorname{bord}(A), A \in \mathscr{A}_{n}, \operatorname{SNF}(A)=s\right\}
$$

are recorded for all SNF-classes $s \in \mathscr{S}_{n}$. The results are represented by the incidence matrix M_{n} of dimensions $\left|\mathscr{S}_{n}\right| \times\left|\mathscr{S}_{n+1}\right|$, with entries

$$
m_{s, s^{\prime}}= \begin{cases}1, & \text { if there exist } A \in \mathscr{A}_{n} \text { and } B \in \operatorname{bord}(A), \text { with SNF's } s \text { and } s^{\prime} \tag{7}\\ 0, & \text { otherwise }\end{cases}
$$

Table 6
The maximal ADV's of matrices from \mathscr{A}_{n+1}, obtained by extending matrices equivalent to I_{n}

n	$\|\operatorname{det} A\|$	A								
3	3	3	5	9	E					
4	5	3	5	E	16	19				
5	9	3	D	15	1 A	26	39			
6	18	7	19	2 A	34	4 C	53	65		
7	40	7	19	2 A	56	65	9 C	B 3	CB	
8	105	7	39	5 A	AC	D 5	E3	136	14 D	19 B

Let $G(n)$, denote the following statement:
$G(n)$: There exist matrices $A \in \mathscr{A}_{n}, A^{\prime} \in \operatorname{bord}(A)$, such that
$\operatorname{SNF}(A)=\left(d_{1}, d_{2}, \ldots, d_{n}\right), \operatorname{SNF}\left(A^{\prime}\right)=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n}^{\prime}, d_{n+1}^{\prime}\right)$ if and only if
there exist matrices $B \in \mathscr{A}_{n+1}, B^{\prime} \in \operatorname{bord}(B)$, such that
$\operatorname{SNF}(B)=\left(d_{1}, d_{2}, \ldots, d_{n}, 0\right), \operatorname{SNF}\left(B^{\prime}\right)=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n}^{\prime}, d_{n+1}^{\prime}, 0\right)$.
By exhaustive search it is verified that $G(n)$ is true for $n \leqslant 6$, enabling to put all the transposed incidence matrices $M_{n}, n \leqslant 7$ together into single Table A.4. The 1 's are represented by ; the 0 's are represented by \star if they are the consequence of the following Lemma (describing constraints for $\operatorname{SNF}\left(A^{\prime}\right)$ if $A^{\prime} \in \operatorname{bord}(A)$); otherwise, they are represented by O .

Lemma 10. For an arbitrary $A \in \mathscr{A}_{n}$, let $A^{\prime} \in \operatorname{bord}(A)$, and let $\operatorname{SNF}(A)=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, $\operatorname{SNF}\left(A^{\prime}\right)=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n}^{\prime}, d_{n+1}^{\prime}\right)$. Then
(1) $\operatorname{rank} A \leqslant \operatorname{rank} A^{\prime} \leqslant \operatorname{rank} A+2$;
(2) $d_{1}^{\prime} d_{2}^{\prime} \ldots d_{i}^{\prime}$ divides $d_{1} d_{2} \ldots d_{i}$ for all $i, 1 \leqslant i \leqslant \operatorname{rank} A$;
(3) $\prod_{i=1}^{n-1} d_{i}$ divides $\operatorname{det} A^{\prime}$.

Proof

(1) The first inequality follows from the fact that the rank of a submatrix is a lower bound on the rank of a matrix. The second inequality follows from the observation that A^{\prime} is an at most rank 2 perturbation of A.
(2) This is a direct consequence of the fact that $d_{1}^{\prime} d_{2}^{\prime} \ldots d_{i}^{\prime}$ is the largest common divisor of all minors of A^{\prime} of order i, see for example [7].
(3) Let P, Q be the matrices such that $\operatorname{SNF}(A)=P A Q=D=\left(d_{1}, d_{2}, \ldots, d_{n}\right),|\operatorname{det} P|=$ $|\operatorname{det} Q|=1$. Let
$A^{\prime}=\left[\begin{array}{ll}A & y \\ x & b\end{array}\right]$.
The case $\operatorname{det} A^{\prime}=0$ is trivial; suppose $\operatorname{det} A^{\prime} \neq 0$. If $x Q=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n}\end{array}\right], P y=$ $\left[\begin{array}{cccc}c_{1} & c_{2} & \cdots & c_{n}\end{array}\right]^{\mathrm{T}}$, then from the identity

$$
\left[\begin{array}{ll}
P & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
A & y \\
x & b
\end{array}\right]\left[\begin{array}{ll}
Q & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
D & P y \\
x Q & b
\end{array}\right]
$$

it follows (another way to express determinants of matrices obtained by extension, see (3))

$$
\begin{equation*}
\operatorname{det} A^{\prime}=b \prod_{i=1}^{n} d_{i}-\sum_{i=1}^{n} a_{i} c_{i} \prod_{\substack{1 \leqslant j \leqslant n, j \neq i}} d_{j} \tag{9}
\end{equation*}
$$

Since $\operatorname{rank} A^{\prime}=n+1$, then we have $\operatorname{rank} A \geqslant n-1$. If $\operatorname{rank} A=n-1$, then $d_{n}=0$, implying
$\operatorname{det} A^{\prime}=-a_{n} c_{n} \prod_{i=1}^{n-1} d_{i} ;$
otherwise
$\operatorname{det} A^{\prime}=\left(b d_{n}-\sum_{i=1}^{n} a_{i} c_{i} d_{n} / d_{i}\right) \prod_{i=1}^{n-1} d_{i}$.
In both cases $\prod_{i=1}^{n-1} d_{i}$ divides $\operatorname{det} A$.

Suppose $A \in \mathscr{A}_{n}, A^{\prime} \in \operatorname{bord}(A)$. From Table A.4, we see the following interesting facts:

- The first \circ in some M_{n} corresponds to $s=(1,0), s^{\prime}=(1,1,2)$. It is equivalent to following statement: if $A \in \mathscr{A}_{2,1}$ then $\left|\operatorname{det} A^{\prime}\right|<2$.
- if $A \in \mathscr{A}_{3,2}$, then $\left|\operatorname{det} A^{\prime}\right|<3$,
- if $A \in \mathscr{A}_{4}, \operatorname{SNF}(A)=(1,1,1,0)$, then $\left|\operatorname{det} A^{\prime}\right|<5$,
- if $A \in \mathscr{A}_{4}, \operatorname{SNF}(A)=(1,1,2,0)$, then $\left|\operatorname{det} A^{\prime}\right|<4$,
- if $A \in \mathscr{A}_{5}, \operatorname{SNF}(A)=(1,1,1,1,0)$, then $\left|\operatorname{det} A^{\prime}\right| \neq 7$,
- if $A \in \mathscr{A}_{5}, \operatorname{SNF}(A)=(1,1,1,2,0)$, then $\left|\operatorname{det} A^{\prime}\right| \neq 6$,
- if $A \in \mathscr{A}_{5}, \operatorname{SNF}(A)=(1,1,1,3,0)$, then $\left|\operatorname{det} A^{\prime}\right| \notin\{6,9\}$,
- if $A \in \mathscr{A}_{5}, \operatorname{SNF}(A)=(1,1,1,2,2)$, then $\operatorname{SNF}\left(A^{\prime}\right) \neq(1,1,1,1,4,0)$,
- if $\operatorname{SNF}(A)=\left(1^{n-1}, d_{n}\right)$ and $\operatorname{SNF}\left(A^{\prime}\right)=\left(1^{n-1}, d_{n}^{\prime}, 0\right)$ then d_{n}^{\prime} divides d_{n} for all $n \leqslant 7$,
- if $\operatorname{SNF}(A)=s=\left(1^{n-1}, d_{n}\right) \in \mathscr{S}_{n}$ and $\operatorname{SNF}\left(A^{\prime}\right)=s^{\prime}=\left(1^{n}, d_{n+1}^{\prime}\right) \in \mathscr{S}_{n+1}$ then
- if $n \leqslant 6$, then $m_{s, s^{\prime}}=1$,
- if $n=7$, then $m_{s, s^{\prime}}=1$ if and only if

$$
\begin{aligned}
& \left(d_{n}, d_{n+1}^{\prime}\right) \notin\{(17,34),(7,39),(13,39),(1,42) \text {, } \\
& (4,42),(6,42),(7,42),(13,42),(14,42)\},
\end{aligned}
$$

- if $n=8$, then there are more exceptions to $m_{s, s^{\prime}}=1$, but there is one exotic group of them: if $d_{n}=19$ then d_{n+1}^{\prime} must be divisible by $19 ; 19$ is the only integer satisfying such a condition.

3. Determinant and SNF sets of $(0,1)$ matrices of order 9

Determination of $\left\{\mid \operatorname{det}\left(A^{\prime}\right) \| A^{\prime} \in \operatorname{bord}(A)\right\}$ is a simple operation, see the explanation following (3). It was effectively performed for all 199727714 matrices in \mathscr{A}_{8}^{ϕ}; merging these sets \mathscr{D}_{9} is obtained, see Table 2.

Table 7
The number of partitions of r into at most n positive integers

n	r							
	0	1	2	3	4	5	6	7
0	1	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	1	1	2	2	3	3	4	4
3	1	1	2	3	4	5	7	8
4	1	1	2	3	5	6	9	11
5	1	1	2	3	5	7	10	13
6	1	1	2	3	5	7	11	14
7	1	1	2	3	5	7	11	15

The similar idea-determine ADV's, and only if necessary, determine SNF's of the results of extension-is used to obtain \mathscr{S}_{9}. Suppose we know in advance the number f_{d} of different SNF's in \mathscr{D}_{9} corresponding to a given ADV $d>0$. During the extension of matrices from \mathscr{A}_{n}, the SNF's of extended matrices with the $\mathrm{ADV} d$ are determined only if the number of SNF's with ADV d is still less than f_{d}. If we know only upper bound on f_{d}, then the heuristic does not work-we have to determine SNF's of all matrices with the $\operatorname{ADV} d$. Therefore, it is useful to determine f_{d} for at least some $d>0$.

Denote by $p_{n}(r)$ the number of partitions of r into at most n positive integers. In order to determine the upper bound for f_{d}, suppose first that d is a prime power, $d=p^{r}$. If $A \in \mathscr{A}_{n}$ and $|\operatorname{det} A|=d$, then $\operatorname{SNF}(A)$ is of the form

$$
\left(p^{x_{1}}, p^{x_{2}}, \ldots, p^{x_{n}}\right), \quad 0 \leqslant x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{n}, \quad \sum_{i=1}^{n} x_{i}=r .
$$

The number of different exponent vectors $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is equal to $p_{n}(r)$. The values $p_{n}(m)$ are computed using the recurrence (see for example [12]) $p_{n}(0)=1, n \geqslant 0, p_{0}(r)=0$ for $r \geqslant 1$, and $p_{n}(r)=p_{n-1}(r)+p_{n}(r-n)$, see Table 7 .

Example 11. If $d=8=2^{3}$ and $n=6$ we have $p_{6}(3)=3$; $\operatorname{SNF}(A)$ is one of $\left(1^{5}, 8\right),\left(1^{4}, 2,4\right)$ and ($1^{3}, 2,2,2$). We see from Table A. 3 that all these SNF do exist, i.e. for each of them there exists some $(0,1)$ matrix. Another example $d=3^{2}, n=6$, shows that $p_{6}(2)=2$ is only an upper bound: the SNF-class $\left(1^{4}, 3,3\right)$ is empty.

More generally, if $d=\prod_{i=1}^{m} p_{i}^{\alpha_{i}}$, where p_{i} are different primes, then the upper bound on the number of different SNF's with the ADV d is $\prod_{i=1}^{m} p_{n}\left(\alpha_{i}\right)$.

Example 12. If $n=8$ and $d=36$, then there are $p_{8}(2) p_{8}(2)=4 \operatorname{such} \operatorname{SNF}$: $\left(1^{6}, 2,18\right),\left(1^{7}, 36\right)$, $\left(1^{6}, 3,12\right),\left(1^{6}, 6,6\right)$; all these SNF's are found in Table A.3.

In order to obtain a tighter upper bound for the number of different SNF's, we have to include somewhat more information. If we further suppose that $A^{\prime} \in \operatorname{bord}(A)$ and $\operatorname{SNF}(A)=s=$ $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, then by Lemma 10 for some $s^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n+1}^{\prime}\right)$ the equality $\operatorname{SNF}\left(A^{\prime}\right)=s$ is impossible. For example, if s contains k ones, then s^{\prime} contains at least k ones and if rank $A \geqslant k+1$ then d_{k+1}^{\prime} divides d_{k+1}.

Using these facts, the regular part of \mathscr{S}_{9} was determined, see Table A.5. The ϕ-representatives from the chosen SNF-class of \mathscr{A}_{8} were extended computing determinants, and, if necessary, determining SNF's. The upper bounds for the number of different SNF's, obtained by Lemma 10, are rough for larger ADV values, but the consequences are not dangerous, because of the small number of extended matrices with the large ADV: it is not hard to compute the SNF's of all of them.

To complete \mathscr{S}_{9}, it is necessary to determine the singular part of \mathscr{S}_{9}. If we would know that $F(8)$ is true, then the set of singular SNF's of order 8 would be equal to \mathscr{S}_{8} (with each SNF extended by one zero, of course). Not knowing a simple proof of $F(8)$, we proceed with a shortened exhaustive proof.

The idea is to narrow the set of SNF-classes in \mathscr{S}_{8}, the extension of which can lead to a new singular SNF of order 9 . If $\operatorname{SNF}(A)=\left(d_{1}, d_{2}, \ldots, d_{8}, 0\right)$ for some $A \in \mathscr{A}_{9}$, then (because we know the set of SNF's of lower orders) by Lemma 10 we can narrow the set SNF-classes, containing A. We obtain that the only new possible SNF's are the following SNF's of the rank 8: $\left(1^{7}, m, 0\right), m=44,45,48,56$ and $\left(1^{6}, 2,28,0\right)$; and the following SNF's of the rank 7: $\left(1^{6}, 20,0,0\right),\left(1^{6}, 24,0,0\right),\left(1^{6}, 32,0,0\right),\left(1^{5}, 2,12,0,0\right),\left(1^{5}, 2,16,0,0\right),\left(1^{5}, 4,8,0,0\right)$, $\left(1^{4}, 2,2,8,0,0\right),\left(1^{4}, 2,4,4,0,0\right)$.

The extension of which matrices gives the matrices with such SNF's? For example, we know that the $\operatorname{SNF}\left(1^{7}, 44,0\right)$ can be obtained only by the extension of a matrix in which 44 divides all minors of order 8 ; therefore 44 also divides a nonsingular minor of order 8 ; hence the SNF of that minor could be only $\left(1^{6}, 2,22\right)$. Considering analogously the rest of listed SNF's of order 8 , we obtain that matrices from $\mathscr{A}_{9,8}$, with the SNF equal to some from the list above, can be obtained only by the extension of matrices from \mathscr{A}_{8} with the $\operatorname{SNF}\left(1^{6}, 2,22\right),\left(1^{6}, 2,24\right),\left(1^{6}, 3,15\right)$, $\left(1^{5}, 2,2,12\right)$, or ($1^{5}, 2,2,14$).

Analogously, we obtain that matrices from $\mathscr{A}_{9,7}$ with one of the listed SNF's, can be obtained only by double extension of matrices from \mathscr{A}_{7} with the $\operatorname{SNF}\left(1^{5}, 2,10\right),\left(1^{4}, 2,2,6\right)$, or $\left(1^{3}, 2,2,2,4\right)$. After the complete search through all matrices that can be obtained by the extensions listed, it is found that there are no new singular SNF's of order 9 i.e. that $F(8)$ is also true. That completes the determination of \mathscr{S}_{9}.

In Table A.6, the part of the incidence matrix M_{8} is shown, corresponding to regular matrices in \mathscr{S}_{9}. The table was obtained by extending ϕ-representatives from $\mathscr{A}_{8,7}$ and $\mathscr{A}_{8,8}$; the singular extended matrices were ignored.

4. The lower bounds for the first missing determinant, a_{n}

Denote by f_{n} the nth Fibonacci number ($f_{1}=f_{2}=1$ and $f_{n}=f_{n-1}+f_{n-2}$ for $n \geqslant 3$). Paseman [13] shows that $a_{n} \geqslant 2 f_{n-1}$. We give the sketch of his proof, and then we give the sharper lower bounds for $a_{n}, n \leqslant 19$.

Consider the so called Fibonacci matrices $F_{n} \in \mathscr{A}_{n}$ with the (i, j) element equal to 1 if and only if $j-i=-1,0,2,4, \ldots$; det $F_{n}=f_{n}$. The cofactors corresponding to the first row of F_{n} are $f_{n-1}, f_{n-2},-f_{n-3},-f_{n-4} \ldots,-f_{1}$. Consider the matrix $U \in \operatorname{bord}\left(F_{n}\right)$,

$$
U=\left[\begin{array}{ll}
F_{n} & y \\
x & b
\end{array}\right]
$$

where $x=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n-1}\end{array}\right], y=\left[\begin{array}{llll}y_{1} & y_{2} & \cdots & y_{n-1}\end{array}\right]^{\mathrm{T}}$. Let $y_{1}=1, y_{2}=y_{3}=\cdots=y_{n}=0$ and $x_{1}=x_{2}=0$. Then from (3) we have

$$
\operatorname{det} U=\sum_{i=1}^{n-2} x_{n+1-i} f_{i}+b f_{n}
$$

Therefore, each integer from $\left[0,2 f_{n}-1\right]$ is determinant of some $U \in \operatorname{bord}\left(F_{n}\right)$, and $a_{n} \geqslant$ $2 f_{n-1}$.

In order to prove that $a_{n} \geqslant m$, one can give a list of matrices from \mathscr{A}_{n-1}, such that determinants of their extensions cover $[1, m-1]$. The proof verification then includes the procedure of finding determinants of all extensions of a given matrix. Still, such a list is essentially more compact than the list of matrices from \mathscr{A}_{n}, with determinants covering [1, $m-1$].

Denote by a_{A} the minimal integer not in $\cup\{\mid \operatorname{det} B \| B \in \operatorname{bord}(A)\}$, the "extension spectrum" of $A \in \mathscr{A}_{n}$. In this context, the matrices A with high a_{A} are of special interest. If $a_{A}>1$ and $\operatorname{SNF}(A)=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, then $d_{1}=d_{2}=\cdots=d_{n-1}=1$, because determinants of all extensions of A are divisible by d_{n-1}, see (9).

In order to find lower bounds for some a_{n}, one can start from a well chosen set $\mathscr{B}_{n-1} \subset \mathscr{A}_{n-1}$, and then to find ADV's of all extended matrices. If m is the smallest number not equal to some of these ADV's, then $a_{n} \geqslant m$. Afterwards, some subset of extended matrices with different SNF's is taken to be the set \mathscr{B}_{n}, and the next iteration can be started.

The starting set \mathscr{B}_{9} was constructed in the following way. From each SNF-class in \mathscr{A}_{8} a number of matrices is taken, with different numbers of π representatives in their ϕ-classes. Extending these matrices, a set of matrices with different SNF's is obtained, but without any matrix with the SNF $\left(1^{8}, 97\right)$. By adding one such matrix, the set \mathscr{B}_{9} is completed. The sets $\mathscr{B}_{10}, \mathscr{B}_{11}$ and \mathscr{B}_{12} are generated iteratively, as explained above. At the end, the ADV's of all matrices obtained by extending the matrices in \mathscr{B}_{12} are determined. The resulting lower bounds are $a_{10} \geqslant 259$, $a_{11} \geqslant 739, a_{12} \geqslant 2107, a_{13} \geqslant 6157$.

For $n>13$ we used an alternative heuristic, described by Algorithm 3.
Algorithm 3. Heuristic to find lower bound for a_{n+1}.
Input: $\mathscr{L}_{n} \subset \mathscr{A}_{n}$, list of matrices to be extended.
Output: lower bound for a_{n+1}, and list $\mathscr{L}_{n+1} \subset \mathscr{A}_{n+1}$
of "promising" matrices for the following iteration.
\{ Initialization: \}
first $0 \leftarrow 1$; \{ the first integer not "covered" by ADV's \}
$d \max \leftarrow 1 ;\{$ the largest ADV found until now \}
$\mathscr{L}_{n+1} \leftarrow \emptyset ;\{$ output list $\}$
for all $A \in \mathscr{L}_{n}$ do
$\left\{\right.$ Consider the extensions $\left.A^{\prime}=\left[\begin{array}{ll}A & y \\ x & b\end{array}\right]\right\}$
Compute $\operatorname{det} A$ and $B=\left[B_{i j}\right]=\operatorname{adj} A ;\{$ transposed cofactor matrix of $A\}$
for all $y \in\{0,1\}^{n}$ do
\{ the next linear combination of rows of B \}
determine the coefficients of the linear combination

$$
-b \operatorname{det} A+\sum_{i=1}^{n} x_{i}\left(\sum_{j=1}^{n} y_{j} B_{i j}\right)
$$

and the sums s^{+}, s^{-}of its positive and negative members;
if $\max \left\{-s^{-}, s^{+}\right\} \geqslant$first 0 then $\{$ "poor" linear combinations are skipped \}
for all $(x, b) \in\{0,1\}^{n+1}$ do
compute det $A^{\prime} ;\{$ by one addition only, using Gray code \}
if $\left|\operatorname{det} A^{\prime}\right|=$ first 0 then
update first 0 ;
if $\left|\operatorname{det} A^{\prime}\right|>d \max$ then
$d \max \leftarrow\left|\operatorname{det} A^{\prime}\right|$;
if $\left|\operatorname{det} A^{\prime}\right|>0.9 d \max$ then
append A^{\prime} to \mathscr{L}_{n+1};

Elimination of "poor" linear combinations is a powerful heuristics if the matrices with the high extension spectra are placed in the beginning of \mathscr{L}_{n}. The major part of linear combinations is skipped after only a few first matrices in \mathscr{L}_{n}, reducing the extension complexity roughly to $O\left(n 2^{n}\right)$ (instead of $O\left(4^{n}\right)$). In Table A.7, for $10 \leqslant n \leqslant 19$ we give

- lower bound for a_{n},
- $\left|\mathscr{L}_{n-1}\right|$, the number of extended matrices,
- a matrix A_{n-1} with the highest extension spectrum found in $\left|\mathscr{A}_{n-1}\right|$,
- extension spectrum and determinant of A_{n-1}.

Complete lists of matrices, whose extension determinants prove these lower bounds, can be fount at http://www.matf.bg.ac.yu/ ezivkovm/01matrices.htm.

5. Counting $(0,1)$ matrices with the maximum determinant

Using the classification of \mathscr{A}_{n}, it is not hard to compute the number c_{n} [4, Sequences A051752] of matrices in \mathscr{A}_{n} with the maximal determinant d_{n} (i.e. $1 / 2$ of the number of matrices with the $\operatorname{ADV} d_{n}$) for $n \leqslant 9$.

The first 8 members of the sequence c_{n} are found in Table A.3; the number $c_{8}=195955200$ is new.

In order to determine c_{9}, from Table we see that the matrix from \mathscr{A}_{9} with the ADV 144 could be obtained only by extending matrices from \mathscr{A}_{8} with the $\operatorname{SNF}\left(1^{5}, 2,2,6\right)$ or $\left(1^{5}, 2,2,12\right)$. After the extension of these two SNF-classes, it turned out that there is a unique ϕ-class with the ADV 144 - the class with the representative (F,33,C3,FC,155,15A,166,196,1A9). Half of the number of matrices in that ϕ-class is $c_{9}=13716864000$. It is interesting that for all $n \leqslant 9$ there is a unique ϕ-class with the maximal ADV.

Acknowledgment

I am greatly indebted to the anonymous referee whose comments helped to improve the exposition.

Appendix A. Large tables

Table A. 1
π-representatives of $(0,1)$ matrices of order 3

SNF			size
	0	0	1
	0	0	1

SNF			size
1	1	0	288
0	1	2	18
0	1	7	18
1	1	3	18
1	1	6	9
3	7	7	9
0	1	3	36
0	1	6	18
0	3	7	18
1	1	2	18
1	3	3	18
1	1	7	9
3	3	7	9
1	6	6	9
1	7	7	9
0	3	5	18
3	3	5	18
1	2	3	18
1	6	7	18

SNF			size
1	1	1	168
1	2	4	6
1	2	7	18
1	3	5	18
1	3	6	36
3	5	7	18
1	2	5	36
1	3	7	36

SNF			size
1	0	0	49
0	0	1	9
0	0	7	3
1	1	1	3
7	7	7	1
0	0	3	9
3	3	3	3
0	1	1	9
0	7	7	3
0	3	3	9

$$
\begin{array}{||ll|l|}
1 & 6 & 7 \\
\hline \hline
\end{array}
$$

SNF			size
	1	2	6
	5	6	6

Table A. 2
ϕ-representatives of $(0,1)$ matrices of order 4

	SNF			
0	0	0	0	1
0	0	0	0	1
	SNF		size	
1	0	0	0	225
0	0	0	1	25
0	0	0	3	50
0	0	1	1	50
0	0	3	3	100
	SNF		size	
1	1	0	0	6750
0	0	1	2	200
0	0	1	3	400
0	0	1	6	600
0	0	3	5	600
0	0	3	7	300
0	1	1	2	600
0	1	1	6	450
0	1	2	3	600
0	1	3	3	300
0	1	6	6	900
0	1	6	7	900
0	3	3	5	900

Table A. 3
The representatives and the sizes of SNF-classes in $\mathscr{A}_{n}, n \leqslant 8$

\mathcal{A}_{1}			The number of			The SNF-class representative
	det	SNF	matrices	π-classes	ϕ-classes	
0	0	0	1	1	1	0
1	1	1	1	1	1	1
Total:			2	2	2	

\mathcal{A}_{2}		The number of			The SNF-class representative	
	det SNF	matrices	$\mid \pi$-classes \mid	ϕ-classes		
0	000	1	1	1	0	0
1	001	9	4	1	0	1
2	111	6	2	1	1	2
	Total:	16	7	3		

\mathcal{A}_{3}			The number matrices π-classes		of ϕ-classes	The SNF-class representative	
	det	SNF					
0	0	000	1	1	1	00	0
1	0	001	49	9	4	00	1
2	0	011	288	18	4	01	2
3	1	111	168	7	2	12	4
4	2	112	6	1	1	35	6
Total:			512	36	12		

Table A. 3 (continued)

\mathcal{A}_{5}			The number of			The SNF-class representative
	det	SNF	matrices	\| π-classes	ϕ-classes	
0	0	00000	1	1	1	00000
1	0	00001	961	25	9	$0 \begin{array}{llll}0 & 0 & 0\end{array}$
2	0	00011	118800	260	37	$0 \begin{array}{llll}0 & 0 & 0 & 1\end{array}$
3	0	00111	3134400	1346	113	$\begin{array}{lllll}0 & 0 & 1 & 2\end{array}$
4	0	00112	25350	25	5	$\begin{array}{lllll}0 & 0 & 3 & 5\end{array}$
5	0	01111	16853400	2589	141	0 1 2 4 8
6		01112	880200	210	17	$\begin{array}{lllll}0 & 1 & 6 & \text { A }\end{array}$
7	0	01113	27000	15	2	$\begin{array}{llllll}0 & 3 & 5 & 9 & \mathrm{E}\end{array}$
8	1	11111	9702720	831	39	$\begin{array}{llllll}1 & 2 & 4 & 8 & 10\end{array}$
9	2	11112	2427840	254	15	$\begin{array}{lllll}1 & 2 & \text { C } 14 & 18\end{array}$
10	3	11113	289440	51	5	$16 \mathrm{Al2} 12 \mathrm{C}$
11	4	411114	65520	12	2	$\begin{array}{lllllll}3 & 5 & 9 & 11 & 1 \mathrm{E}\end{array}$
12	5	511115	7200	3	1	$\begin{array}{llllll}3 & 5 & \mathrm{E} & 16 & 19\end{array}$
13	4	411122	21600	2	1	3 C 151619
		otal:	33554432	5624	388	

\mathcal{A}_{6}			The number of matrices $\mid \pi$-classes		ϕ-classes	The SNF-class representative
	det	SNF				
0		000000		1	1	$\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$
1		000001	3969	36	9	0
2		000011	1807806	660	76	$\begin{array}{lllllll}0 & 0 & 0 & 0 & 1 & 2\end{array}$
3		000111	189336000	7586	472	$\begin{array}{lllllll}0 & 0 & 0 & 1 & 2 & 4\end{array}$
4		000112	735000	86	10	$\begin{array}{llllll}0 & 0 & 0 & 3 & 5 & 6\end{array}$
5		001111	5168108400	47605	1913	$\begin{array}{lllllll}0 & 0 & 1 & 2 & 4 & 8\end{array}$
6		001112	124744200	2120	115	$\begin{array}{llllll}0 & 0 & 1 & 6 & \text { A C }\end{array}$
7		001113	2352000	91	9	$\begin{array}{lllllll}0 & 0 & 3 & 5 & 9 & \mathrm{E}\end{array}$
8		011111	30991962960	112080	3262	$\begin{array}{lllllll}0 & 1 & 2 & 4 & 8 & 10\end{array}$
9		011112	3122915040	14986	511	$\begin{array}{lllllllll}0 & 1 & 2 & \text { C } 14 & 18\end{array}$
10	0	011113	226603440	1618	75	0 1 6 A 121C
11		011114	38419920	307	16	$\begin{array}{llllll}0 & 3 & 5 & 9 & 111 \mathrm{E}\end{array}$
12	0	011115	3175200	46	3	$\begin{array}{llllllll}0 & 3 & 5 & \text { E } 1619\end{array}$
13		011122	12700800	78	4	$\begin{array}{lllllllllll}0 & 3 & \text { C } & 15 & 1619\end{array}$
14		111111	18480102480	39637	952	$\begin{array}{llllllll}1 & 2 & 4 & 8 & 10 & 20\end{array}$
15		111112	7737327360	17642	442	1 2 4 18
16	3	111113	1537446960	4079	128	122 C 142438
17	4	111114	628548480	1685	52	16 A 12223 C
18		111115	127224720	429	18	16 A 1C 2C 32
19		111116	93139200	263	9	$3 \quad 5 \quad 9 \quad 162 \mathrm{E} 31$
20		111117	12877200	54	3	$3 \quad 5 \quad 91 \mathrm{E} 2 \mathrm{E} 31$
21	8	111118	6703200	27	2	$3 \quad 5$ E 192936
22	9	111119	1058400	,	1	3 D 151A 2639
23	4	111122	208857600	473	17	16182 A 2 C 32
24	8	111124	3175200	12	1	3 C 151A 2629
25	8	111222	151200	2	1	719 1E 2A 2D 33
		Total:	68719476736	251610	8102	

Table A. 3 (continued)

\mathcal{A}_{7}			The number of matrices π-classes		ϕ-classes	The SNF-class representative	
	det	SNF					
0	0	0000000	1	1	11	0	$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$
1	0	0000001	16129	49	16	0	$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1\end{array}$
2	0	0000011	25316928	1428	170	0	$\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 2\end{array}$
3	0	0000111	9254300328	31994	1908		$\begin{array}{llllll}0 & 0 & 0 & 1 & 2 & 4\end{array}$
4	0	000011	17360406	246	34	0	$\begin{array}{llllll}0 & 0 & 0 & 3 & 5 & 6\end{array}$
5	0	0001111	989588124000	501563	17596		$\begin{array}{llllll}0 & 0 & 1 & 2 & 4 & 8\end{array}$
6	0	0001112	11359807200	13645	694		$\begin{array}{llllll}0 & 0 & 1 & 6 & \text { A C }\end{array}$
7	0	0001113	132300000	400	30		$\begin{array}{llllll}0 & 0 & 3 & 5 & 9 & \mathrm{E}\end{array}$
8	0	0011111	30826279895040	4358421	105808	0	$\begin{array}{llllll}0 & 1 & 2 & 4 & 8 & 10\end{array}$
9	0	0011112	1405763634240	316904	9295		
10	0	0011113	64153434240	22902	853		016 A 121C
11	0	0011114	8175222720	3714	168		$0 \quad 3 \quad 5 \quad 9111 \mathrm{E}$
12	0	0011115	509443200	413	23		$\begin{array}{llllll}0 & 3 & 5 & \text { E } 1619\end{array}$
13	0	0011122	2694686400	1032	58	0	$0 \begin{array}{llllllllll} \\ 0 & 3 & \text { C } & 1619\end{array}$
14	0	0111111	219225571810560	13834240	261882	0	$\begin{array}{lllllll}1 & 2 & 4 & 8 & 10 & 20\end{array}$
15	0	0111112	34159997168640	2624469	53874		$1 \begin{array}{lllllllllll}1 & 2 & 4 & 18 & 30\end{array}$
16	0	0111113	4018162256640	376699	8633	0	$1 \quad 2 \mathrm{C} 142438$
17	0	0111114	1176364465920	123510	3024	0	16 A 12223 C
18	0	0111115	182858215680	23489	633	0	16 A 1C 2C 32
19	0	0111116	110954188800	13823	361	0	
20	0	0111117	12940704000	2133	64		$3 \quad 5 \quad 91 \mathrm{E} 2 \mathrm{E} 31$
21	0	0111118	5966553600	1006	33		$3 \quad 5 \quad$ E 192936
22	0	0111119	829785600	189	7	0	3 D 151A 2639
23	0	0111122	389700057600	37489	927		16182 A 2 C 32
24	0	0111124	2857680000	415	19		3 C 151A 2629
25	0	0111222	127008000	29	4	0	719 1E2A2D 33
26	1	1111111	135491563468800	5593528	91764		$2 \begin{array}{llll}2 & 4 & 810 & 20\end{array}$
27	2	1111112	83220427382400	3493129	58179		$2 \begin{array}{llllllllll}2 & 4 & 8 & 30 & 50\end{array}$
28	3	1111113	23436399974400	1020752	17707		2418284870
29	4	1111114	13285672243200	581948	10189		2 C 14244478
30	5	1111115	3754520017920	172714	3169	1	2 C 14385864
31	6	1111116	4201407745920	185688	3320		6 A 12 2C 5C 62
32	7	1111117	813250851840	39068	749		6 A 123 C 5 C 62
33	8	1111118	693389168640	32490	645		6 A 1C 32526 C
34	9	1111119	257766405120	12609	253		61 A 2 A 344 C 72
35	10	11111110	215881142400	10094	199		$5 \quad 9$ 1E 2E 4E 71
36	11	11111111	49798425600	2598	55		5 91E 31516 E
37	12	11111112	67511808000	3263	71		5 E 16395966
38	13	11111113	12283084800	686	17		5 E 19365669
39	14	11111114	12260505600	615	12		$3 \quad 51929364 \mathrm{E} 71$
40	15	11111115	4064256000	215	6	3	D 1526385 E 61

Table A. 3 (continued)

Table A. 3 (continued)

Table A. 3 (continued)

Table A. 3 (continued)

\mathcal{A}_{8}	The number of			The SNF-class representative
det SNF	matrices	π-classes	ϕ-classes	
10120111111210	300128743756800	194974	2641	1 E 32546898 A4 C6
10224111111212	119718045619200	80651	1172	$3 \quad 51860$ A9 B6 CE D1
10328111111214	14388990336000	9935	157	3 C 153A 65 A5 D6 D9
10432111111216	4180900147200	3259	65	3 C 3156 6A 9A A6 C1
10536111111218	1360712908800	1103	23	3 D 31546 A 9 A A6 C1
10640111111220	271593907200	232	5	3 D 3559 6E 9E A9 C5
10744111111222	76814438400	74	2	31 D 2 E 56 79 9A B5CD
10848111111224	16460236800	28	1	719 3E 61 AB B5 CC D2
1098911111133	5728974559056000	3662516	47056	$16 \mathrm{~A} 30 \quad 50929 \mathrm{C}$ E2
1101811111136	292630089830400	187420	2455	$1 \quad 63 \mathrm{~A} 5 \mathrm{~A}$ 6C 749 C E2
	6466129689600	4234	71	3 C 3154 7A 9A A6 C9
11236111111312	285310771200	219	7	31 C 656 A A6 B1 C9 D2
11345111111315	2743372800	6	1	7395 A 6 C 9 C AB B6 D1
	282699080294400	186028	2556	$1 \quad 6186 \mathrm{~A}$ 74AA CC D2
1153211111148	724250419200	713	21	3 C 353 A 566969 A6
116 25 1111115 5	2339411155200	1497	22	
1173611111166	142655385600	136	4	7 192A 4B 74 8C D2 E1
1188811111222	2260349894476800	1421783	18397	$1 \quad 21 \mathrm{C} 6478 \mathrm{~A} 8 \mathrm{~B} 4 \mathrm{CC}$
	136245037824000	90153	1346	161860 AA B4 CC D2
1202411111226	6530011084800	5175	114	1 E 32546898 A4 C2
1213211111228	625488998400	578	15	3 D $31556 \mathrm{~A} 9 \mathrm{~A} \mathrm{A6} \mathrm{C1}$
12240111112210	54867456000	96	5	3 D 3156 6A 9A A6 C1
12348111112212	16460236800	49	3	31 C 657 A A9 B6 CE D1
12456111112214	391910400	6	1	31 D 657 A A9 B6 CE D1
1253211111244	98761420800	134	4	31 C 6478 A9 B2 CA D1
1262711111333	101504793600	96	6	7192 A 4 B 74 8D B1 D6
	1082717798400	754	17	31 C 6478 A9 AA B5CD
	28217548800	74	4	$11 \mathrm{E} 6678 \mathrm{AA} \mathrm{B4} \mathrm{CC} \mathrm{D2}$
Total:	18446744073709551616	14685630688	199727714	

Table A. 4
Transposed incidence matrix M_{7} containing all $M_{n}, 1 \leqslant n \leq 7$. Symbol at position (s^{\prime}, s) carries information about $m_{s, s^{\prime}}(7): \bullet, \star$, o denotes respectively 1,0 explained by Lemma 10 , and 0 not explained by Lemma 10

Table A. 4 (continued)

Table A. 5
The part of \mathscr{S}_{9} corresponding to nonsingular part of \mathscr{A}_{9}

Table A. 6
The part of the transposed incidence matrix M_{8}, corresponding to the regular part of \mathscr{S}_{9}. Symbol at position $\left(s^{\prime}, s\right)$ carries information about
$m_{s, s^{\prime}}(7): \bullet, \star$, o denotes respectively 1,0 explained by Lemma 10 , and 0 not explained by Lemma 10

Table A. 6 (continued)

Table A. 6 (continued)

Table A. 7
Lower bounds for a_{n} and matrices with high extension spectra, $10 \leqslant n \leqslant 19$

n	$a_{n} \geqslant$	$\left\|\mathscr{L}_{n-1}\right\|$	$\operatorname{det} A_{n-1}$	$a_{A_{n-1}}$	A_{n-1}
10	259	2	110	257	$[7,39,5 A, 9 C, E 1,149,174,193,1 A A]$
11	739	6	291	679	[F, 71, B6, 13A, 1C3, 1DC, 256, 299, 2EC, 325]
12	2107	19	779	1894	$\begin{aligned} & {[F, 73,195,1 E A, 2 A 6,35 C, 4 D 6,53 E, 565 \text {, }} \\ & 6 B 9,703] \end{aligned}$
13	6157	18	2201	5618	$\begin{aligned} & {[1 F, E 3,17 C, 3 A 5,649,6 D 6,732, A 6 E, A B 8,} \\ & B 53, C 35, D 8 E] \end{aligned}$
14	19073	40	6731	16821	$\begin{aligned} & {[3 F, 1 C 7,2 D 9,76 A, C 4 D, C F 2, F 94,1575,} \\ & 168 E, 195 A, 19 A 9,1 A 64,1 E 13] \end{aligned}$
15	58741	46	23288	53117	$[7 D, 38 F, 5 B 2, E D 5,189 B, 19 E 4,1 F 29,2 A E A$, 2D1C, 32B4, 3353, 34C9, 3C27, 164E]
16	185693	190	67832	161599	$\begin{aligned} & {[F D, 71 F, B E 3,1 D 29,324 F, 36 B 2,3995,5370,} \\ & 55 C 6,5 A 9 A, 61 A B, 6 C 53,6 E 24,27 C 8,297 E] \end{aligned}$
17	610187	480	213175	517794	$\begin{aligned} & {[1 F B, E 3 E, 17 C 6,3 A 53,649 F, 6 D 64,732 B \text {, }} \\ & A 6 E 2, A B 8 D, B 535, C 356, D 8 A 7, D C 49,4 F 91, \\ & 72 F C, F 99 A] \end{aligned}$
18	2039033	697	709503	1719277	$\begin{aligned} & {[3 F 9,1 C 7 E, 2 D 95,76 A C, C 4 D 2, C F 27, F 949 \text {, }} \\ & 15755,168 E 5,195 A 3,19 A 9 C, 1 A 64 B, 1 E 13 E \text {, } \\ & 14 D 8 A, 17 A 33,33 C 6,1 A F 70] \end{aligned}$
19	6478579	54	2331887	4663774	$\begin{aligned} & {[7 E 9,38 F 7,5 F 13, E 95 D, 19277,1 B 599,1 C C A F,} \\ & 29 B 8 E, 2 A E 31,2 D 4 C 5,30 D 56,3629 F, 37125, \\ & 13 E 4 C, 1 E B C 2,358 F 8,2 F 46 A, E 7 B 4] \end{aligned}$

References

[1] J. Williamson, Determinants whose elements are 0 and 1, Amer. Math. Monthly 53 (1946) 427-434.
[2] M.G. Neubauer, A.J. Radcliffe, The maximum determinant ± 1 matrices, Linear Algebra Appl. 257 (1997) 289-306.
[3] R. Craigen, The range of the determinant function on the set of $n \times n(0,1)$-matrices, J. Combin. Math. Combin. Comput. 8 (1990) 161-171.
[4] N.J.A. Sloane, An on-line version of the encyclopedia of integer sequences. Available from: <http://www. research.att.com/njas/sequences/eisonline.html>.
[5] M. Živković, Massive computation as a problem solving tool, in: Proceedings of the 10th Congress of Yugoslav Mathematicians, Belgrade, 2001, pp. 113-128.
[6] G.M. Adel'son-Vel'skii, Y.M. Landis, An algorithm for the organization of information, Soviet Math. Dokl. 3 (1962) 1259-1262.
[7] F.R. Gantmacher, Teoriya Matric, Nauka, Moskva, 1988.
[8] F. Harary, E.M. Palmer, Graphical Enumeration, Academic Press, New York, 1973.
[9] Y. Kida, UBASIC, version 8.74, 1994.
[10] G.M. Ziegler, Lectures on 0/1 polytopes, Graduate Texts in Mathematics, vol. 152, Springer, Berlin, 1995 (Revised ed. 1998).
[11] J. Komlós, On the determinant of (0, 1) matrices, Studia Sci. Math. Hungarica 2 (1967) 7-21.
[12] V.K. Balakrishnan, Combinatorics, McGraw-Hill, New York, 1995.
[13] G.R. Paseman, A Different Approach To Hadamard's Maximum Determinant Problem, ICM 1998 Berlin. Available from: http://grpmath.prado.com/detspec.html.

[^0]: ${ }^{4}$ Supported by Ministry of Science and Environment Protection, Grant 144030.
 E-mail address: ezivkovm@matf.bg.ac.yu

