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The extreme N-terminal region of human apolipoprotein A-I has a strong
propensity to form amyloid fibrils
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The N-terminal 1–83 residues of apolipoprotein A-I (apoA-I) have a strong propensity to form amy-
loid fibrils, in which the 46–59 segment was reported to aggregate to form amyloid-like fibrils. In
this study, we demonstrated that a fragment peptide comprising the extreme N-terminal 1–43 res-
idues strongly forms amyloid fibrils with a transition to b-sheet-rich structure, and that the G26R
point mutation enhances the fibril formation of this segment. Our results suggest that in addition
to the 46–59 segment, the extreme N-terminal region plays a crucial role in the development of
amyloid fibrils by the N-terminal fragment of amyloidogenic apoA-I variants.

Structured summary of protein interactions:
apoA-I and apoA-I bind by fluorescence technology (1, 2, 3)
apoA-I and apoA-I bind by atomic force microscopy (View interaction)
apoA-I and apoA-I bind by dynamic light scattering (1, 2)
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1. Introduction

Apolipoprotein A-I (apoA-I) is the major protein component of
plasma high-density lipoprotein (HDL) and plays a central role in
reverse cholesterol transport [1,2]. Naturally occurring mutations
in human apoA-I are known to affect its functionality mainly in
two ways: mutations in the N terminus of residues 1–90 are asso-
ciated with hereditary amyloidosis, whereas those within the cen-
tral region of residues 140–170 are mostly associated with
defective activation of lecithin-cholesterol acyltransferase [3,4].
In addition to the 1–90 region, a number of amyloidogenic variants
are also found in residues 170–180 [5,6]. In most hereditary amy-
loidogenic mutations, the N-terminal fragment of mutated apoA-I
is the predominant form of protein found in amyloid fibril deposits
[7,8], suggesting that the N-terminal region is critical to the amy-
loid fibril formation of apoA-I [9]. Consistent with this, we recently
found that the N-terminal 1–83 fragment of apoA-I has a strong
propensity to form amyloid fibrils at neutral pH, and that the
G26R point mutation, the first amyloidogenic mutation found in
apoA-I [10], greatly enhances the amyloid fibril formation of this
N-terminal fragment [11].

Non-hereditary forms of wild-type apoA-I are also commonly
observed to be deposited as amyloid fibrils in atherosclerotic
plaques [12], suggesting that mutations in the protein are not
essential for its conversion into amyloid [13]. Prediction of the b-
aggregation propensity of the N-terminal region in apoA-I based
on amino acid sequence [14] indicates that residues 14–22 and
49–57 are the most aggregation prone segments [9]. In fact, a
peptide comprising residues 46–59 of apoA-I was shown to form
amyloid fibrils with cross-b structure [15], consistent with the pos-
sibility that segment 44–55 can provide a template for the forma-
tion of an intermolecular b-sheet in fibrils [16].

In the present study, we examined the aggregation propensity
of three regions of the N-terminal 1–83 fragment, residues 1–43,
44–65, and 66–83 using synthetic fragment peptides. Residues
1–43 which are encoded by exon 3 were shown to contribute to
the lipid-free conformation and lipid interaction of apoA-I
[17,18]. Residues 44–65 are the first amphipathic a-helical repeat
which has high lipid affinity [19] and contain the reported amyloid
fibril-forming region of residues 46–59 [15]. The results
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Fig. 1. Amyloid fibril formation of apoA-I peptides. (A) Fibril formation was
monitored by ThT fluorescence for apoA-I 1–43 (h), 44–65 (d), and 66–83 (4)
peptides incubated at pH 7.4. The inset shows an enlarged view. Peptide and ThT
concentrations were 0.1 mg/ml and 10 lM, respectively. (B) Effect of peptide
concentration on ThT fluorescence of apoA-I 1–43 peptide. N, 0.05 mg/ml; h,
0.1 mg/ml; d, 0.15 mg/ml. (C) Change in ANS fluorescence for apoA-I 1–43 (h), 44–
65 (d), and 66–83 (4) peptides over incubation time at pH 7.4. Peptide and ANS
concentrations were 0.1 mg/ml and 10 lM, respectively.
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demonstrated that in addition to the 46–59 segment, the extreme
N-terminal 1–43 segment has a strong ability to form amyloid fi-
brils with a transition to b-sheet-rich structure, and that the
G26R point mutation enhances the fibril formation of this segment.

2. Materials and methods

2.1. Peptide synthesis

ApoA-I peptides were synthesized on a 0.2 mmol scale using
Fmoc chemistry. The N- and the C termini were capped with an
acetyl group and an amide group, respectively. Peptides were
cleaved from the resin using standard trifluoroacetic acid methods
and purified by high-performance liquid chromatography and
mass spectrometry. In all experiments, peptides were freshly
dialyzed from 6 M guanidine hydrochloride solution into the
appropriate buffer before use.

2.2. Fluorescence measurements

Kinetics of protein aggregation and fibril formation were
monitored using fluorescent dyes, thioflavinT (ThT) and
8-anilino-1-naphthalenesulfonic acid (ANS). ApoA-I peptides
(0.05–0.3 mg/ml) in 10 mM Tris buffer (150 mM NaCl, 0.02%
NaN3, pH 7.4) were incubated at 37 �C with agitation in the pres-
ence of 10 lM ThT or 10 lM ANS. The fluorescence of ThT or ANS
was recorded by using an fmax fluorescence plate reader (Molecu-
lar Devices) with excitation and emission wavelengths of 445 and
485 nm for ThT or 395 and 495 nm for ANS, respectively. Trp fluo-
rescence measurements were carried out with a Hitachi F-4500
fluorescence spectrophotometer. To assess the local environment
of apoA-I peptides, Trp emission fluorescence was recorded from
300 to 420 nm using a 290 nm excitation wavelength to avoid
tyrosine fluorescence. In quenching experiments of Trp fluores-
cence, Trp emission spectra of peptides were recorded at increas-
ing concentrations of KI (0–0.56 M) using a 5 M stock solution
containing 1 mM NaS2O3 to prevent the formation of iodine. After
correction for dilution, the integrated fluorescence intensities
were plotted according to the Stern–Volmer equation, F0/
F = 1 + Ksv [KI], where F0 and F are the fluorescence intensities
in the absence and presence of quencher, respectively, and Ksv

is the Stern–Volmer constant.

2.3. Atomic force microscopy (AFM)

For analysis by AFM, 10 ll of each peptide solution (0.1 mg/ml)
in 10 mM Tris buffer was deposited on freshly cleaved mica (The
Nilaco Corp., Tokyo, Japan). After washing the mica with distilled
water (20 ll), samples were imaged under ambient conditions at
room temperature using a NanoScope� IIIa tapping mode AFM
(Veeco, Plainview, NY) and microcantilever OMCLAC160TS-R3
(Olympus, Tokyo, Japan).

2.4. Attenuated total reflection-Fourier transform infrared (ATR-FTIR)
spectroscopy

ATR-FTIR spectra were recorded on a Jasco FTIR spectrometer
FT/IR-6200 equipped with an ATR PRO610P-S reflectance acces-
sory. An aliquot of peptide sample (0.1 mg/ml) in 10 mM Tris buf-
fer (pH 7.4) was spread on the germanium waveguide, and the
excess water was removed under nitrogen flow. ATR-FTIR spectra
were recorded over the wave number range of 1000–3500 cm�1

at a resolution of 2 cm�1 and 256 accumulations under continuous
nitrogen purge. To evaluate secondary structure, the amide I area
(1600–1700 cm�1) in the spectra was deconvoluted using a Spectra
Manager Software (Jasco, Tokyo, Japan).
3. Results

3.1. Aggregation propensity of apoA-I N-terminal peptides

We first investigated the fibril-forming propensity of apoA-I 1–
43, 44–65, and 66–83 peptides by monitoring the increase in ThT
fluorescence, which is highly characteristic of amyloid fibril struc-
ture [20]. As shown in Fig. 1A, the 1–43 peptide exhibited large in-
creases in ThT fluorescence on incubation at physiological
conditions (pH 7.4 and 37 �C). The 44–65 peptide showed a
relatively small but significant increase in ThT fluorescence, while
almost no change in ThT fluorescence was observed for the 66–83
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Fig. 2. AFM images of apoA-I 1–43 (A), 44–65 (B), and 66–83 (C) peptides after
144 h incubation at pH 7.4. Control image without peptide (D) is also shown for
comparison. Scale bars represent 1 lm.
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peptide. With increasing peptide concentration, the development
of ThT fluorescence was significantly accelerated in apoA-I 1–43
(Fig. 1B) and 44–65 (Supplementary Fig. S1) peptides, indicating
the strong fibrillogenic potential of both peptides. We also
Fig. 3. Trp fluorescence of apoA-I peptides. (A) Trp fluorescence spectra of apoA-I 44–65 p
7.4. (B) Change in WMF of apoA-I peptides by the incubation. (C) Stern–Volmer plots for K
pH 7.4. (D) Change in the quenching ratio at 0.56 M KI as a parameter of solvent access
performed ANS binding studies to the apoA-I peptides to examine
the aggregated state over incubation time because this dye binds to
the fibrillar or prefibrillar aggregate states of proteins [21,22]. As
shown in Fig. 1C, the 1–43 peptide exhibited significant increases
in ANS fluorescence with similar kinetics to the increase in ThT
fluorescence. Interestingly, much faster and larger increase in
ANS fluorescence was observed for the 44–65 peptide, indicating
the strong tendency to aggregate to form fibrils of this peptide. It
should be noted that such a rapid increase in ANS fluorescence of
this peptide is unlikely due to its helix formation because the tran-
sition to b-structure was observed even at early period (6 h or
12 h). In contrast, no significant increase in ANS fluorescence was
detected for the 66–83 peptide.

Fig. 2 shows typical AFM images of the apoA-I peptides after incu-
bation (more AFM images are shown in Supplementary Fig. S2), con-
firming that the 1–43 peptide formed large amounts of straight fibrils
(Fig. 2A). In contrast, the 44–65 and 66–83 peptides did not show
apparent fibril formation, but small spherical aggregates or short rods
were observed especially for the 44–65 peptide (Fig. 2B and C). Dy-
namic light scattering measurements demonstrated that the 1–43
and 44–65 peptides form large aggregates with an average diameter
of over 1 lm after incubation whereas the 66–83 does not (Supple-
mentary Fig. S3). These results indicate that in addition to the 44–
65 peptide which contains the amyloidogenic core region of apoA-I
[15], the 1–43 peptide has a strong propensity to form amyloid fibrils.
In contrast, the 66–83 peptide does not have a propensity to form
fibrils at physiological pH.

3.2. Trp fluorescence of apoA-I N-terminal peptides

Taking advantage of the fact that each apoA-I peptide contains
one intrinsic Trp residue (Trp-8, Trp-50, or Trp-72 for the 1–43,
eptide (50 lg/ml) before (solid line) and after (dashed line) incubation for 144 h at pH
I quenching of apoA-I 1–43 peptide before (j) and after (h) incubation for 144 h at

ibility for apoA-I peptides by the incubation.



Fig. 4. ATR-FTIR spectra of apoA-I 1–43 (A), 44–65 (B), and 66–83 (C) peptides
before (solid line) and after (dashed line) incubation for 144 h at pH 7.4.
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44–65, or 66–83 peptides, respectively), we estimated the changes
in local environment of the peptides along the aggregation
time-courses using Trp fluorescence. Fig. 3A shows the Trp fluores-
cence emission spectra of the 44–65 peptide before and after incu-
bation. A significant blue shift in wavelength of maximum
fluorescence (WMF) after incubation indicates the transfer of
Trp-50 into a more hydrophobic environment, reflecting a confor-
mational transition of the 44–65 peptide with aggregation. Com-
parison of WMF among three apoA-I peptides (Fig. 3B) indicates
that the 1–43 peptide underwent a similar change in conformation
during aggregation, whereas the 66–83 peptide did not change
conformation.

We also examined Trp quenching behavior of the three apoA-I
peptides when exposed to the aqueous quencher KI before and
after incubation. Stern–Volmer plots for the 1–43 peptide
(Fig. 3C) indicate a great reduction of the solvent accessibility of
Trp-8 after incubation, consistent with fibril formation of this pep-
tide. Fig. 3D compares the quenching ratio at 0.56 M KI as a param-
eter of solvent accessibility for the three apoA-I peptides. Again,
the 1–43 and 44–65 peptides exhibited a large reduction of the sol-
vent accessibility after incubation, whereas no change was ob-
served for the 66–83 peptide. These results are consistent with
the notion that both the 1–43 and 44–65 segments contain aggre-
gation core regions to form amyloid fibrils in their sequences
whereas residues 66–83 do not.

3.3. Structural transition of apoA-I N-terminal peptides

To examine the secondary structural change in the apoA-I pep-
tides, ATR-FTIR measurements were performed on the samples be-
fore and after incubation. Before incubation, the component at
�1655 cm�1 was dominant in FTIR spectra for all three peptides
(Fig. 4), implying the presence of a-helix or random-coil secondary
structures [9]. After incubation, FTIR spectra of the 1–43 and 44–65
peptides showed that bands at �1630 cm�1 became evident
(Fig. 4A and B), indicating the transition of these peptides to
b-sheet structures [23]. In contrast, there was no change in FTIR
spectra of the 66–83 peptide before and after incubation
(Fig. 4C), consistent with residues 66–83 not undergoing the
structural transition (Fig. 3B and D).

3.4. Effects of the G26R mutation on amyloid fibril formation of apoA-I
1–43 peptide

We next examined the effects of the G26R mutation on the fi-
bril-forming propensity of the 1–43 peptide. As shown in Fig. 5A,
the 1–43/G26R peptide exhibited much faster kinetics but lower fi-
nal intensity for the development of ThT fluorescence compared to
that of the 1–43 peptide, consistent with the finding that the G26R
mutation enhances the fibrillation kinetics of the N-terminal 1–83
fragment [11]. Comparison of ANS binding showed a more rapid
increase in ANS fluorescence for the 1–43/G26R peptide than that
of the 1–43 peptide, indicating that the G26R mutation also en-
hances aggregation of the 1–43 segment (Fig. 5B). Much greater
intensity reduction and more blue shift of WMF of Trp fluorescence
for the 1–43/G26R peptide after incubation (Supplementary
Fig. S4) suggest that the 1–43 and 1–43/G26R peptides differ in
their tertiary/quaternary aggregate structure, possibly resulting
in a different interaction of ThT. An AFM image of the 1–43/G26R
peptide after incubation demonstrated the formation of straight fi-
brils resembling the morphology of fibrils by the 1–43 peptide
(Fig. 5C). FTIR spectra of the 1–43/G26R peptide revealed the struc-
tural change to b-sheet structure after incubation similarly to the
1–43 peptide (Fig. 5D). These results indicate that the G26R muta-
tion greatly facilitates the aggregation and fibril formation of the
1–43 segment.
4. Discussion

Our previous study demonstrated that the N-terminal 1–83
fragment of apoA-I has a strong propensity to form amyloid fibrils
at physiological pH [11]. Theoretical prediction of the b-aggrega-
tion propensity of the N-terminal region in apoA-I indicates that
residues 14–22 and 49–57 are the highly aggregation prone seg-
ments [9]. The X-ray crystal structure of a C-terminal truncated
apoA-I variant [24] shows residues 44–55 being in an extended
conformation, possibly providing a template for the intermolecular
cross-b-sheet conformation [16]. Consistent with this, a peptide
comprising residues 46–59 of apoA-I was shown to form amy-
loid-like fibrils, suggesting that this segment is responsible for
the aggregation of apoA-I into amyloid fibrils [15].



Fig. 5. Amyloid fibril formation of apoA-I 1–43/G26R peptide. ThT (A) and ANS (B) fluorescence of apoA-I 1–43/G26R (j, solid line) peptide over incubation time at pH 7.4.
The results for apoA-I 1–43 peptide (h, dashed line) from Fig. 1 are also shown for comparison. (C) AFM image of apoA-I 1–43/G26R peptide after 144 h incubation at pH 7.4.
Scale bar represents 1 lm. (D) ATR-FTIR spectrum of apoA-I 1–43/G26R peptide after incubation for 144 h at pH 7.4 (dashed line). The result for apoA-I 1–43 peptide (dotted
line) from Fig. 4A is also shown for comparison.
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In the present study, we demonstrated for the first time that the
extreme N-terminal 1–43 segment has a strong propensity to form
amyloid fibrils by using apoA-I fragment peptides corresponding to
the N-terminal residues 1–43, 44–65 and 66–83. The 1–43
segment contains the first part of the most b-aggregation-prone re-
gions (residues 14–22) in apoA-I, and indeed formed b-sheet-rich
fibrils (Figs. 2A and 4A) with a great increase in ThT fluorescence
(Fig. 1A) upon incubation. The fluorescence behavior of Trp-8 in
the 1–43 peptide further demonstrates the conformational transi-
tion to the less solvent-exposed fibril structure (Fig. 3). The 44–65
peptide which contains the second part of the most b-aggregation-
prone regions (residues 49–57) was also shown to have a propen-
sity to form amyloid-like aggregates with the conformational
transition to b-sheet structure (Figs. 1 and 4B), consistent with
the previous report of the 46–59 peptide demonstrating the forma-
tion of amyloid-like fibrils that bind to ThT and contain cross-b
structure [15]. The 66–83 peptide did not exhibit any ThT binding
and conformational change at pH 7.4 (Figs. 1 and 4C) although it
contains the predicted amyloid-forming sequence (residues
67–72) at acidic pH [25].

The first amyloidogenic segment (residues 14–22) in the N-ter-
minal region contains very hydrophobic amino acids (LATVYVDVL),
overlapping with the hydrophobic helix-forming region upon lipid
binding of apoA-I [26,27]. The deletion of the extreme N-terminal
residues 1–43 was shown to destabilize the N-terminal helix bun-
dle structure and induce a large reduction in the enthalpy of lipid
binding of full-length apoA-I [17,28], indicating critical roles of the
1–43 segment in the lipid-free conformation and lipid interaction
of apoA-I. Taking into account the fact that the 1–43 peptide has
a greater ability to bind to lipids than the 44–65 peptide [29], it
is plausible that hydrophobic interactions play a role not only in
lipid binding but also in fibril formation of the apoA-I peptides.
To support this idea, substitution of Tyr-18 located at the center
of the most hydrophobic region in residues 1–43 with a proline
residue caused not only impaired lipid binding [29] but also strong
inhibition of fibril formation of the 1–43 peptide (Supplementary
Fig. S5).

Our previous study also demonstrated that the G26R point
mutation greatly enhances the fibril formation of the N-termi-
nal 1–83 fragment of apoA-I [11]. Similar to the case of the
1–83 fragment, the G26R mutation facilitates the aggregation
and fibril formation kinetics of the 1–43 peptide (Fig. 5A and
B), implying that the enhancing effect of the G26R mutation
on the fibril formation comes from the local effect on the first
amyloidogenic core region in apoA-I. Indeed, an electron para-
magnetic resonance study indicated that the effect of the
G26R mutation is likely to arise from the combination of losing
the contribution of the native Gly residue in terminating b-
strand propagation and the promotion of structural transition
to a mixture of random coil and b-strand secondary structures
by the substitution to an Arg residue [30].

In summary, the present results indicate that the 1–43 segment
is highly amyloidogenic region within the N-terminal 1–83 resi-
dues of apoA-I, and that the G26R point mutation greatly enhances
the fibril formation of this segment. Since the G26R mutation
destabilizes the N-terminal helix bundle structure of apoA-I [11],
it would expose the b-aggregation-prone region in residues 1–43
to facilitate protein aggregation. Thus, in addition to the proposed
role of residues 46–59 in initiating aggregation and conversion into
b-structure of apoA-I, the extreme N-terminal 1–43 residues ap-
pear to play a critical role in the development of amyloid fibrils
by the N-terminal fragment of amyloidogenic apoA-I variants.
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