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SUMMARY

Peptide YY (PYY) is released following food intake
and regulates intestinal function and glucose homeo-
stasis, but the mechanisms underpinning these
processes are unclear. Enteroendocrine L cells
contain PYY and express the acylethanolamine
receptor, Gpr119. Here, we show that Gpr119 activa-
tion inhibited epithelial electrolyte secretion in human
and mouse colon in a glucose-sensitive manner.
Endogenous PYY selectively mediated these effects,
since PYY�/� mice showed no Gpr119 response,
but responses were observed in NPY�/�mice. Impor-
tantly, Gpr119 responses in wild-type (WT) mouse
tissue and human colon were abolished by Y1

receptor antagonism, but were not enhanced by
dipeptidylpeptidase IV blockade, indicating that
PYY processing to PYY(3-36) was not important. In
addition, Gpr119 agonism reduced glycemic excur-
sions after oral glucose delivery to WT mice but not
PYY�/� mice. Taken together, these data demon-
strate a previously unrecognized role of PYY in medi-
ating intestinal Gpr119 activity and an associated
function in controlling glucose tolerance.

INTRODUCTION

One of the major roles for intestine-derived peptides is the coor-

dination of digestion with nutrient and electrolyte absorption.

In addition, several of these peptides, such as glucagon-like

peptide (GLP)-1 and GLP-2, act as incretins, mediating effects

on nutrient uptake via augmented insulin release from pancreatic

b cells (Drucker, 2005). Furthermore, gut peptides, including

peptide YY (PYY), pancreatic polypeptide (PP), and GLP-1,

signal satiety to the brain (Gardiner et al., 2008). Enteroendocrine

L cells located predominantly in the distal ileum and colon of

human and rodent intestine (Böttcher et al., 1984; Arantes and
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Nogueira, 1997) are the primary source of PYY, which is

coreleased following food intake with proglucagon products,

GLP-1 and GLP-2 (Gardiner et al., 2008).

Gastrointestinal (GI) function is regulated by enteric nerves,

and neuropeptide Y (NPY) is an inhibitory neurotransmitter

expressed in secretomotor neurons of the submucosal plexi

(Mongardi Fantaguzzi et al., 2009). Together with PP and the

dipeptidylpeptidase IV (DPP-IV)-cleaved products NPY(3-36)

and PYY(3-36) (Mentlein et al., 1993), NPY and PYY exert a

range of inhibitory activities, such as slowing gastric emptying,

reducing intestinal anion and electrolyte secretion (Playford

et al., 1990; Cox and Tough, 2002), and slowing intestinal

motility, which collectively promote nutrient absorption. Modula-

tion of GI functions also has important effects on food intake,

energy expenditure, and glucose homeostasis by influencing

the delivery of nutrients and gut hormones to the circulation.

PYY, PYY(3-36), NPY, and NPY(3-36) are prominent intestinal

peptides that exert their inhibitory actions via different Y recep-

tors. Notably, the antisecretory mucosal mechanisms by which

these peptides exert their effects are the same in human and

mouse colon, with Y1 receptor-mediated responses being solely

epithelial, while Y2-mediated effects are neuronal in origin (Cox

and Tough, 2002; Hyland et al., 2003; Cox, 2007). Anatomical

and functional studies have shown that Y1 receptors are targeted

to basolateral epithelial membranes (Mannon et al., 1999; Cox

and Tough, 2002) and would therefore be activated by endoge-

nous PYY or NPY released into the subepithelial area. Use of

selective Y1 and Y2 receptor antagonists together with peptide

null mice have allowed us to link endogenous PYY and NPY

with their cognate receptors. We have shown that Y1-activated

intestinal antisecretory effects are predominantly PYY mediated,

while NPY preferentially stimulates neuronal Y2-mediated muco-

sal responses (Hyland et al., 2003; Tough et al., 2006; Cox,

2008).

PYY and proglucagon-derived peptides are copackaged in

enteroendocrine L cells (Böttcher et al., 1984) that can be acti-

vated by a range of lumenal nutrients such as fatty acids of

different lengths (Anini et al., 1999; Hirasawa et al., 2005);

however, the mechanisms that underpin these processes have

not been characterized in native tissues. Recently, it has been
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suggested that GI chemosensation is mediated by several unre-

lated G protein-coupled receptors (GPCRs), including Gpr119,

Gpr120, and Gpr40 (Engelstoft et al., 2008). In particular, the

expression pattern of Gpr119 is very similar to that of PYY/

GLP-1 containing L cells (Chu et al., 2008), suggesting that

Gpr119 stimulation could cause significant PYY-related

responses as well as GLP-1-mediated effects in the colon and

elsewhere. The endogenous Gpr119 ligand, oleoylethanolamide

(OEA), has been shown to reduce food intake and weight gain

(Overton et al., 2006) and to increase GLP-1 release from L cells

in vitro and in vivo (Ahrén et al., 2004; Reimann et al., 2008).

Additionally, Gpr119 agonism has been shown to improve

glucose tolerance in association with enhanced glucose-

induced circulating insulin concentrations (Overton et al.,

2008). Since GLP-1 and PYY are copackaged (Böttcher et al.,

1984) and coreleased from L cells and both peptides have

effects on intestinal function and glucose homeostasis (Boey

et al., 2007; Overton et al., 2008), it is likely that PYY is also

important in mediating Gpr119 responses.

The primary aims of this study were therefore to identify the

mechanisms by which endogenous PYY mediated Gpr119

activity in intact colonic tissue and if so, whether these altered

epithelial electrolyte secretion and glucose tolerance. To achieve

these aims, we utilized selective Y receptor antagonists together

with specific transgenic mouse models and human colon

mucosa. A further aim was to establish whether DPP-IV inhibition

altered Gpr119-activated colonic responses. DPP-IV inhibitors

are clinically proven antidiabetics that elevate plasma GLP-1

concentrations by prolonging the half-life of this and other

peptides. In turn, this improves glycemia in type 2 diabetes

(Ahrén et al., 2004), in part by prolonging insulin release (Demuth

et al., 2005) and increasing insulin sensitivity together with

a beneficial glucagon-lowering capacity (Ahrén, 2009). However,

the broad substrate specificity of DPP-IV could also reduce the

conversion rate of PYY to PYY(3-36) and particularly of NPY to

NPY(3-36) (Mentlein et al., 1993; Lambeir et al., 2008), which

could have adverse effects on other physiological functions. In

fact, GI disturbance has been described as a side effect of

current antidiabetic therapy based on DPP-IV inhibition (sitaglip-

tin), while constipation is noted in some patients taking another

DPP-IV inhibitor, vildagliptin (Lauster et al., 2007). It was there-

fore of interest to determine whether selective DPP-IV inhibition

amplified Gpr119-activated colonic responses by prolonging the

functional half-life of endogenous PYY and/or NPY.

RESULTS

In order to compare responses from the different null mice and

human tissue, we first established the basal electrophysiological

parameters of colonic mucosae from mice of each genotype

used in this study. The results for wild-type (WT), PYY�/�,

NPY�/�, and double knockout (NPYPYY�/�) colonic mucosae

were similar, while human colonic data were in accord with previ-

ously published data (Cox and Tough, 2002; Tough et al., 2006)

(Table S1). Epithelial vasoactive intestinal polypeptide (VIP)

secretory responses are a consequence of Gas-coupled VPAC

receptor stimulation that results in lumenally directed Cl� secre-

tion, and this anion movement is measured as an increase in

short-circuit current (Isc). Reductions in Isc, termed antisecretory
C

responses here, result for example from PYY or NPY stimulating

epithelial Gai-coupled Y1 receptors, reducing cAMP-mediated

Cl� secretion and attenuating Isc levels as a consequence (Cox

et al., 1988). Such antisecretory effects were measured to three

Y receptor agonists (chosen to preferentially stimulate Y1, Y2, or

Y4 receptors), and the response sizes were the same in WT,

single, and double peptide knockout colon (Figure S1). Of the

genotypes used, only PYY�/� mice showed increased body

weight, as seen previously with the same knockout (Boey

et al., 2006) and a different PYY�/� mouse (Wortley et al.,

2007) (Table S1). Thus, the ablation of PYY, NPY, or both

peptides did not alter the sensitivity of colonic preparations to

VIP or to subsequent Y agonists, and epithelial secretory and

antisecretory pathways were unaltered.

PYY Expression Is Unchanged in NPY�/� Tissue
Compared with WT Colon
To establish whether deletion of the NPY or PYY gene altered the

expression pattern of the remaining peptide gene, colonic tissue

was analyzed by immunohistochemistry. As shown in Figure 1A,

PYY-positive L cells were observed throughout the colonic

mucosa with the same frequency in WT (55.0 ± 4.6 cells/section)

and NPY�/� descending colon (56.7 ± 6.8 cells/section), and as

expected, they were absent from PYY�/� or NPYPYY�/� tissues.

In the descending colon, chromogranin-positive L cells were

present with a similar frequency in each genotype (data not

shown). The frequency and extent of intramural nerve PGP9.5

labeling was also similar across the genotypes (for example,

WT and NPYPYY�/� labeling, Figure S2). As expected, NPY-

positive innervation was absent from NPYPYY�/� (Figure S2)

and NPY�/� intestine (data not shown). Taken together with the

consistent Y agonist sensitivities observed across the geno-

types, these predicted patterns of immunolabeling confirm the

lack of significant compensatory changes in peptide null colon,

making them appropriate models for functional investigations.

Apical and Basolateral Activation of Gpr119 Reduces Isc

in WT Mouse Tissue
Direct stimulation of enteroendocrine cells by nutrients provides

a general sensing mechanism that depends crucially on the

presence of different GPCRs (Engelstoft et al., 2008). Prominent

among these is Gpr119, which is stimulated preferentially by lipid

amides such as endogenous OEA (Overton et al., 2006). As the

expression pattern of Gpr119 in the GI tract closely resembles

that of PYY-expressing L cells, we chose to activate Gpr119

receptors using the small molecule agonist, PSN632408, which

is less lipophilic and more selective for Gpr119 than OEA. Over-

ton et al. (2006) showed that PSN632408 (at 10 mM), when tested

against a panel of 107 GPCRs, channels, and transporters

including peroxisome proliferator-activated receptor (PPAR)a

and transient receptor potential cation channel V1 (TRPV1),

inhibited %30% of binding or function. In WT and NPY�/� colon

mucosa, PSN632408 and OEA (10 mM) responses were insensi-

tive to pretreatment with the PPARa antagonist, GW6471 (1 mM),

and the TRPV1-desensitizing stimulus, capsaicin (2 mM) (Figures

S3A–S3C).

In WT colonic mucosa, PSN632408 mimicked the antisecre-

tory effects of PYY, causing long-lasting reductions in Isc

(Figure 1B). As Y1 receptors are trafficked selectively to epithelial
ell Metabolism 11, 532–542, June 9, 2010 ª2010 Elsevier Inc. 533



Figure 1. PYY-Positive L Cells in WT and NPY�/� Mouse Colon and Gpr119 Responses in WT Mouse Intestinal Mucosa

(A) Immunohistochemical localization showing distinct PYY-containing L cells in WT and NPY�/�mucosae, but not in PYY�/� or NPYPYY�/�mouse descending

colon. Scale bar, 20 mm throughout.

(B) Example Gpr119 responses to apical (Ap) or basolateral (Bl) PSN632408 (10 mM). The basal Isc levels are shown to the left of each trace, and mucosal area was

0.14 cm2.

(C) Tissue sensitivity to apical PSN632408 (10 mM) in mouse mucosae from duodenum (D), jejunum (J), mid and terminal ileum (MI, TI), and ascending (AC) and

descending colon (DC). Data are the mean � SEM from 3–14 observations. Background information, including basal electrophysiological parameters, is pre-

sented in Table S1. The pharmacology of selected Y agonist responses in WT versus null mouse colon mucosae are compared in Figure S1, with the patterns

of NPY immunoreactivity in WT and null tissues presented in Figure S2.
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basolateral domains (Mannon et al., 1999; Cox and Tough,

2002), we set out to establish whether Gpr119 responses were

also polarized. As clearly shown in Figure 1B, they were not;

PSN632408 addition to apical or basolateral colonic surfaces

reduced the Isc to similar levels and within a similar time frame.

Importantly, these antisecretory responses were essentially

identical to those of exogenous PYY and NPY in the same tissue

(Cox et al., 2001; Hyland et al., 2003), suggesting a common

pathway. A clear regional variation in Gpr119 sensitivity was

also observed in WT mouse GI tract (Figure 1C), with apical

PSN632408 responses being greatest in the descending colon

and least in duodenal mucosa. This regional Gpr119 sensitivity

correlates with the expression levels of Gpr119 mRNA (Chu

et al., 2008) and L cell distribution, both of which are lowest in

the proximal small intestine and highest in the descending colon

of the mouse (Arantes and Nogueira, 1997) and human GI tract

(Böttcher et al., 1984). A similar increasing sensitivity to exoge-

nous PYY and NPY has also been described from the small

to the large intestine of the mouse (Cox et al., 2001). It is impor-

tant to note that PSN632408 (10 mM) had no effect on colonic

smooth muscle activity in WT colon, nor were there alterations

in contractile activity to PYY, PYY(3-36), NPY, or PP in the

knockout models compared with WT tissue (data not shown),

and thus we investigated mucosal functions further.
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Gpr119 Stimulation with PSN632408 Leads to Y1

Receptor Activation in Mouse Colon
To establish the link between Gpr119 and endogenous PYY or

NPY function in colon mucosa, we tested PSN632408 in the

absence or presence of selective Y receptor antagonists. First,

however, we determined the potency of apical PSN632408.

The consequent sustained reductions in Isc exhibited an EC50

of 5.7 mM (2.2–14.6 mM) (Figure 2A) in WT mouse colon, consis-

tent with a previous measure of potency at mouse Gpr119 recep-

tors (7.9 ± 0.7 mM) (Overton et al., 2006). The agonist-response

profile was likely to be bell shaped, because 100 mM apical

PSN632408 reduced Isc by only �7.9 mA/cm2, indicating desen-

sitization. The proposed endogenous Gpr119 ligand, OEA, and

another small molecule agonist, PSN375963 (Overton et al.,

2006), reduced Isc levels to the same degree as PSN632408 in

WT colon (Figure 2A), and this observation was in line with their

published potencies at the murine Gpr119 receptor (Overton

et al., 2006). Using apical PSN632408 (10 mM) as the stimulus

of choice, we then established that the reductions in Isc to

Gpr119 activation were unaltered by pretreatment with the

DPP-IV inhibitor (compound 3) (Lankas et al., 2005), which has

been shown to selectively amplify Y2 receptor- but not Y1-medi-

ated antisecretory effects (Cox, 2008). Colonic PSN632408

responses were, however, inhibited significantly by the Y1



Figure 2. Colonic Responses to Gpr119

Agonists Are Y1 Receptor Mediated in

Mouse and Human Colon Mucosae

(A) Concentration response curve for apical

PSN632408 (632, n = 3–14), with two concentra-

tion data points only for apical PSN375963 (375,

n = 4–5) and OEA (n = 4–5) in WT mouse colon

mucosa. Values are the mean ±SEM throughout.

(B) Apical PSN632408 (10 mM) responses after

pretreatment with either compound 3 (+Cpd 3,

1 mM) or the Y1 antagonist, BIBO3304 (+BIBO,

300 nM), or Y2 antagonism with BIIE0246 (+BIIE,

1 mM) alone or together with BIBO3304 (+Both).

Data groups (mean � SEM) are compared with

control PSN632408 responses (Con). **p % 0.01.

(C) Three different agonists (all apical, 10 mM) stim-

ulate Gpr119 responses in WT colon (n = 5 or 14)

and NPY�/� (n = 3–4), but not PYY�/� colon (n =

3–4) or NPYPYY�/� colon (n = 4). Dashed lines

show the mean vehicle control values (n = 3–4).

Agonist responses in peptide knockouts are com-

pared with WT responses. *p % 0.05, ***p % 0.001.

(D) Representative Gpr119 responses in human

colon mucosa to apical (Ap) or basolateral (Bl)

addition of PSN632408 (10 mM). Basal Isc values

are shown to the left of each trace, and the

mucosal area was 0.64 cm2.

(E) PSN632408 (10 mM) sensitivity to pretreat-

ments with the DPP-IV inhibitor, compound 3

(+Cpd3, 1 mM), GLP-1 antagonist exendin(9-39)

(+9-39, 1 mM), Y1 receptor antagonist BIBO3304

(+BIBO, 300 nM), Y2 antagonist BIIE0246 alone

(+BIIE, 1 mM), Y2 antagonist BIIE0246 together

with BIBO3304 (+Both), and BIIE0246 together

with BIBO3304 and exendin(9-39) (+9-39 Both,

n = 3–5). Comparisons are made with control

PSN632408 responses (Con). *p % 0.05, ***p %

0.001.

(F) Single concentration (10 mM) effects of apical

PSN632408 (632), PSN375963 (375), or OEA (all

n = 4) with the mean vehicle controls (dashed

line) in normal human colon mucosa. Table S1

includes basal electrophysiological parameters

for mouse and human colon mucosal preparations

used in this study. Figures S3A–S3C show that

PSN632408 and OEA responses are insensitive

to blockade of PPARa receptors and TRPV1

desensitization by capsaicin in WT and NPY�/�

colon.
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receptor antagonist (BIBO3304; as were OEA responses)

(Figure S3B), but they were not affected by Y2 antagonism with

BIIE0246 (Figure 2B). Thus, Gpr119 responses in WT colon are

Y1 receptor mediated and are insensitive to DPP-IV blockade.

Next, we set out to establish whether neural NPY was

necessary for Gpr119 activity. To do this, we first investigated

whether WT PSN632408 responses were sensitive to pretreat-

ment with tetrodotoxin (TTX, 100 nM) and found that they were
Cell Metabolism 11, 532–
not (�12.4 ± 2.9 mA/cm2, n = 4 com-

pared with controls in Figure 2B). We

then compared mucosal responses to

PSN632408, PSN375963, or OEA (at

10 mM) in WT colon with those from
NPY�/�, PYY�/�, and NPYPYY�/� colon (Figures 2C, S3B, and

S3C). Apical responses to the three agonists were unchanged

(compared to WT responses) in NPY�/� mucosae, but all

three were significantly inhibited in colon from PYY�/� and

NPYPYY�/� mice. The residual apical PSN632408 responses in

the latter two null tissues were the same as vehicle controls

(2.0 ± 1.4 mA/cm2, dashed lines). Apical OEA responses were

also not significantly different in NPY�/� compared to WT colon,
542, June 9, 2010 ª2010 Elsevier Inc. 535



Figure 3. Murine Gpr119 Responses Are Not Sided or Dependent on

GLP-1, and Plasma GLP-1 Levels Are Similar across the Genotypes

(A–C) PSN632408 (10 mM) responses after apical (Ap) or basolateral (Bl) addi-

tion ± pretreatment with exendin(9-39) (1 mM) in WT colon (n = 4) (A), in PYY�/�

colon (n = 5) (B), or in NPY�/� colon mucosae (n = 4) (C). Significant differences

between PYY�/� and WT PSN632408 responses are shown (*p % 0.05,

**p % 0.01, ***p % 0.001), and values are the mean ±SEM throughout.

(D) Plasma levels of GLP-1 in each knockout are not significantly different from

WT levels. Values are the mean + SEM (n = 3).
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and they were abolished by Y1 antagonism in tissue from both

genotypes (Figures S3B and S3C). Basolateral PSN632408

responses were also inhibited significantly in PYY�/� (2.0 ±

0.9 mA/cm2, n = 4) and NPYPYY�/� tissue (2.0 ± 0.8 mA/cm2,

n = 4, with vehicle controls of 3.0 ± 3.3 mA/cm2, n = 4) com-

pared with WT basolateral PSN632408 responses (�11.9 ±

3.5 mA/cm2, n = 4). This demonstrates that ablation of PYY or

selective blockade of epithelial Y1 receptors (Figure 2B) renders

colonic mucosa insensitive to Gpr119 activation, confirming

the functional requirement of Gpr119 mucosal signaling for

endogenous PYY.

Taken together, these findings indicate that apical or basolat-

eral activation of Gpr119 results in a PYY-mediated, Y1 receptor-

specific epithelial response that is observed along the length of

the intestine and is greatest in the descending colon. Mucosal

responses to Gpr119 agonists do not involve enteric nerves (or

NPY) and are not amplified by blockade of DPP-IV activity.

Gpr119 Agonist Responses in Human Colon Mucosa
Since Gpr119 expression is also significant in human colon (Chu

et al., 2008), we set out to establish whether mucosal Gpr119

activities were similar in normal human colonic mucosa. Apical

PSN632408 (10 mM) (Figure 2D) responses closely resembled

those of WT mouse colon (Figure 1B), although basolateral

responses in human colon mucosa were slower in onset, prob-

ably due to the barrier effect of basolateral connective tissue.

Also consistent with our mouse tissue studies, Gpr119

responses in human colon were only blocked by the Y1 receptor

antagonist, BIBO3304 (Figure 2E). Gpr119 responses in

human colon were unaffected by pretreatment with the GLP-1

antagonist exendin(9-39) alone (Figure 2E), which abolished

exendin 4 (100 nM) responses (6.2 ± 2.2 mA/cm2 versus �1.9 ±

0.5 mA/cm2, n = 4, p < 0.05). These results are consistent with

our finding that DPP-IV inhibition, which prolongs GLP-1 action,

did not affect the mucosal Gpr119 responses in mouse colon.

Furthermore, neither Y2 antagonism with BIIE0246 nor DPP-IV

inhibition had any effect on Gpr119 responses in human colon

(Figure 2E), again, as observed in WT mouse colon. However,

in the presence of both Y1 and Y2 antagonists, a small but signif-

icant increase in Isc was observed following apical PSN632408

addition to human colon. This response was abolished by the

GLP-1 receptor antagonist exendin(9-39) (Figure 2E), indicating

that corelease of endogenous GLP-1 with PYY occurs in

human colon mucosa following Gpr119 stimulation. Only when

the Y1 and Y2 receptors were blocked was the small GLP-1

secretory (presumably Gas-coupled) signal revealed in human

tissue. As seen in mouse mucosae, PSN375963 and OEA (at

10 mM) also reduced Isc to levels similar to those observed

with PSN632408 in human colon (Figure 2F). Additionally,

PSN632408 responses were unaffected by nerve block with

TTX, resulting in reductions in Isc (�10.4 ± 1.4 mA/cm2, n = 3)

that were not significantly different from controls (Figure 2F).

Taken together, these data suggest that in human colon, PYY

mediates the predominant antisecretory effects following

Gpr119 stimulation and that this mechanism is epithelial in origin

and exclusively Y1 receptor mediated. Endogenous GLP-1 (and

GLP-2) meanwhile exert minor exendin(9-39)-sensitive electro-

genic responses that are only observed when Y1 and Y2 recep-

tors are blocked.
536 Cell Metabolism 11, 532–542, June 9, 2010 ª2010 Elsevier Inc.
Endogenous GLP-1 Does Not Mediate Gpr119
Responses, and Plasma GLP-1 Levels Are Unaltered
in Null Mice
In WT mouse colon mucosa, neither apical nor basolateral

PSN632408 responses were significantly affected by the

GLP-1 receptor antagonist exendin(9-39) (Figure 3A). Gpr119

responses were absent from PYY�/� colon, and here too exen-

din(9-39) had no effect on either apical or the residual basolateral

responses (Figure 3B). Notably, Gpr119 responses were unal-

tered in NPY�/� colon, and again these mucosal responses

were insensitive to exendin(9-39) (Figure 3C). Thus, the Gpr119

mucosal responses in the mouse colon are not dependent on

GLP-1. In addition, we observed small apical PSN632408

responses (�3.0 ± 1.7 mA/cm2, n = 4) in WT jejunum mucosa

that were absent in PYY�/� jejunum (0.0 ± 0.0 mA/cm2, n = 4).

To confirm that exendin(9-39) (1 mM) blocked mucosal GLP-1

receptors, we first monitored (in WT mouse colon) small

increases in Isc to basolateral addition of the GLP-1 agonist

exendin 4 (100 nM, 4.4 ± 1.2 mA/cm2, n = 10). Pretreatment

with exendin(9-39) (1 mM) inhibited these responses (0.8 ±

0.8 mA/cm2, n = 5, p = 0.07) and significantly reduced exendin

4 responses in PYY�/� colon (controls, 6.6 ± 1.3 mA/cm2; after

exendin(9-39), 0.7 ± 0.7 mA/cm2; both n = 3, p % 0.01). Thus,

a small secretory GLP-1 response was revealed using exendin

4 in WT colon mucosa, and this was unchanged in PYY�/� tissue.



Figure 4. Mouse and Human Colon Apical and Basolateral PSN632408 Responses Are Glucose Sensitive

(A) Glucose sensitivity of apical (Ap, n = 7 throughout) or basolateral (Bl, n = 6 throughout) PSN632408 (10 mM) responses in mouse colon mucosa in the presence

of glucose on both sides (11.1 mM, Control) or following mannitol replacement (11.1 mM, + mann) on either side. PYY (10 nM, added basolaterally only) and

phloridzin (Phlor, 50 mM, apical only) responses are also shown. Statistical comparisons are made between agonist or phloridzin responses obtained from tissue

bathed with glucose on both sides (Control) and single-sided mannitol replacement. *p % 0.05, **p % 0.01.

(B) Apical (Ap, n = 3) and basolateral (Bl, n = 3) responses to PSN632408 (10 mM) in human colon mucosa, either in the presence of glucose (black bars) or after

mannitol (11.1 mM, + mann, gray bars) replacement on either side. Values are the mean � SEM throughout. *p % 0.05.
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Therefore, Gpr119 mucosal sensitivity depends primarily on

PYY in both the small and large bowel of the mouse, with endog-

enous GLP-1 playing no significant acute role in the colonic

Gpr119 response. It should also be noted that the plasma

GLP-1 levels of null mice were not significantly different from

those of their WT counterparts (Figure 3D).

Gpr119 Responses Are Glucose Sensitive in Mouse
and Human Colon Mucosae
Glucose modulates the activity of isolated L cells (Reimann et al.,

2008). In order to establish the glucose-sensitivity of L cells in

intact tissue, the response to Gpr119 activation was analyzed

in mucosal preparations from mouse and human colon. When

glucose was replaced with mannitol in either reservoir (coinci-

dent with the side of PSN632408 addition), the Gpr119

responses were significantly reduced in mouse (Figure 4A) and

human colon mucosa (Figure 4B). In contrast, PYY responses

per se were not glucose sensitive, nor were the antisecretory

effects of the a2-adrenoceptor agonist, UK14,304 (data not

shown). The sodium/glucose cotransport inhibitor, phloridzin

(added apically throughout), was only effective when glucose

was present apically in both preparations (Figures 4A and 4B,

upper graphs). Basolateral mannitol replacement predictably

had no effect on the small phloridzin reductions in Isc (Figures

4A and 4B, lower plots) because the glucose transporter

SGLT1 is targeted apically. Thus, apical and basolateral Gpr119

receptors can be activated by PSN632408 in a glucose-sensitive

manner to cause consequent reductions in Isc from mouse and

human colonic L cells.
C

To test whether KATP channels, known to be involved in

glucose sensing in isolated L cells (Reimann et al., 2008), were

involved in basal or Gpr119-activated responses, the KATP

channel blocker tolbutamide was used (at 1 mM throughout)

in the presence of glucose. First, apical tolbutamide per se

reduced Isc by �17.1 ± 1.5 mA/cm2 (n = 5) in WT tissue, and

the blocker was significantly less effective in PYY�/� colon

(�5.3 ± 1.3 mA/cm2, n = 3, p % 0.01) and in Y1 antagonist-pre-

treated WT tissue (�8.9 ± 2.4 mA/cm2, n = 4, p % 0.05 compared

with controls). Basolateral tolbutamide exerted an effect similar

to apical addition in WT tissue, but the reductions in Isc were

more variable (data not shown). PYY was released from WT

colonic mucosa treated with tolbutamide, but not from vehicle

controls, and WT tissue total PYY levels were not altered signif-

icantly (Figure S3D). In WT colon mucosa exposed to apical

tolbutamide, subsequent apical PSN632408 responses were

reduced (from �10.9 ± 1.7 mA/cm2, n = 6 to �6.6 ± 1.3 mA/cm2,

n = 3), but this did not reach statistical significance. We conclude

that blockade of KATP channels is more efficacious in WT than in

PYY�/� mucosa, and we suggest that the larger tolbutamide

responses observed in WT tissue could be a consequence of

enhanced PYY release and Y1 receptor activation. In the pres-

ence of glucose and endogenous PYY, apical Gpr119 activation

was partially inhibited by KATP channel blockade.

PYY Mediates the Gpr119 Agonist-Induced
Improvement in Glucose Tolerance
As Gpr119 agonism with PSN632408 induces effects on intes-

tinal function via PYY, we sought to determine whether PYY
ell Metabolism 11, 532–542, June 9, 2010 ª2010 Elsevier Inc. 537
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mediated other physiological functions of Gpr119 agonism, such

as glucose tolerance. The Gpr119 agonist AR231453 has been

shown previously to suppress glycemic excursions after oral or

intraperitoneal (i.p.) glucose administration, particularly when

glucose was administered orally (Chu et al., 2007). We chose

the oral route of administration for both PSN632408 and glucose

to maximize effects via the intestine (Chu et al., 2007). Our data

show that Gpr119 agonism with orally administered PSN632408

significantly reduced glycemic excursions after oral glucose

ingestion in WT mice (Figures 5A and 5B) and resulted in a signif-

icant decrease in the area under the curve during the first 60 min

after glucose ingestion (Figure 5C). This effect of PSN632408 on

glucose tolerance was associated with a significantly greater

plasma insulin response to oral glucose, indicated by a longer-

lasting elevation of serum insulin concentrations after glucose

ingestion and a significant increase in the area under the resul-

tant curve (Figures 5D, 5E, and 5F, respectively). Interestingly,

these PSN632408 effects were abolished in PYY�/� mice

(Figures 5G–5L), demonstrating that PYY is required for

Gpr119-induced improvement in glucose tolerance and stimula-

tion of circulating insulin levels.

DISCUSSION

Our study demonstrates that glucose-sensitive Gpr119 activa-

tion causes electrolyte antisecretory effects that are most likely

due to an increase in endogenous PYY release subsequently

activating epithelial Y1 receptors (Figure 6) together with

improved oral glucose tolerance. Importantly, the antisecretory

effects following Gpr119 activation are absent from PYY�/�

and NPYPYY�/� but not from NPY�/�mouse GI tissues, consis-

tent with mediation of this process by PYY rather than NPY.

Our results also demonstrate that L cell-derived PYY and

GLP-1 differentially mediate Gpr119 mucosal responses in

human colon and that in mouse colon, the Gpr119-induced,

PYY-mediated antisecretory response is partially dependent

on KATP channel activity. This L cell mechanism is similar to

that described recently for GLP-1 release from isolated L cells

(Lauffer et al., 2009; Tolhurst et al., 2009), with the notable differ-

ence being that Gpr119 receptors are present within both apical

and basolateral membranes of intact tissue where epithelial

polarity is maintained. In addition to PYY’s ability to slow gastric

emptying and regulate satiety and glucose homeostasis, it also

mediates mucosal responses to Gpr119 stimulation in the small

intestine, where efficacy is predictably reduced, correlating with

the lower L cell frequency in this region relative to the distal

bowel (Arantes and Nogueira, 1997; Sundler et al., 1993). Thus,

we conclude that intramural and lumenal fatty acid amides

have the potential to activate L cells from either a blood-borne

or lumenal direction to cause PYY/GLP-1 corelease (Figure 6),

and this can occur along the length of the GI tract. While local

GLP-1 and PYY activities differ, e.g., the former modulating

epithelial barrier function rather than modulating epithelial anion

secretion, the repertoire of GLP-1 and PYY hormonal activities

match more closely, e.g., both reduce gastric emptying, inhibit

intestinal motility, and modulate vagal afferent output (Drucker,

2005; Dockray, 2009). Mucosal Gpr119 responses were not

amplified by DPP-IV inhibition, indicating that degradation of

full-length PYY to PYY(3-36) is not significant following Gpr119
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activation in human or mouse colon mucosa. We therefore

conclude that antidiabetic DPP-IV inhibitors such as vildagliptin

may cause constipation, as has been observed clinically (Lauster

et al., 2007), but that this is unlikely to involve increased stability

of PYY.

Results from our mechanistic investigations corroborate recent

studies utilizing purified and single-mouse L cells (Reimann et al.,

2008) and signaling studies utilizing endocrine L cell-containing

lines (Chu et al., 2008; Lauffer et al., 2009). However, our study

also demonstrates that PYY is required for the effect of oral

Gpr119 agonism with PSN632408 to improve oral glucose

tolerance and stimulate circulating insulin levels. As Gpr119 is

expressed in L cells that contain GLP-1, it has been hypothesized

that Gpr119 agonism may improve glucose tolerance via stimula-

tion of GLP-1 release, as recently reviewed (Overton et al., 2008).

However, PYY is copackaged with GLPs in L cells (Böttcher et al.,

1984) and has been shown to stimulate insulin sensitivity and

improve glucose disposal after acute (van den Hoek et al.,

2004) or chronic (Pittner et al., 2004; van den Hoek et al., 2007)

administration to rodents. Our finding that oral PSN632408

improved oral glucose tolerance and enhanced glucose-induced

increases in circulating insulin levels in WT but not in PYY�/�mice

is consistent with the possibility that orally administered

PSN632408 can improve oral glucose tolerance by L cell

Gpr119 agonism with subsequent PYY-mediated effects.

Taken together, these data suggest that Gpr119 has signifi-

cant effects upon intestinal mucosal function, as well as other

physiological outcomes such as glucose tolerance, and PYY is

critical for these effects. Establishing the full repertoire of

Gpr119-activated intestinal mechanisms that enhance not only

GLP-1 but also PYY-mediated responses with consequent anti-

hyperglycemic effects now provides an optimal platform for

a high-affinity Gpr119 agonist to treat diabetes and obesity.
EXPERIMENTAL PROCEDURES

Targeted Deletion of PYY and NPY

PYY�/� and NPY�/� mice were generated by homologous recombination in

embryonic stem cells, as described previously (Boey et al., 2006; Karl et al.,

2008). NPY�/� and PYY�/� mice were crossed to generate double heterozy-

gotes and subsequent double knockout NPYPYY�/� mice, which was

confirmed by Southern blot analysis and immunohistochemistry (Doyle

et al., 2008). All mice were on the same C57BL/6-129/SvJ background and

had free access to standard chow and water ad libitum. Where possible, WT

littermates were used as controls. Importantly, there was no difference

between the WT littermates derived from heterozygous breeding compared

to WT mice bred separately out of these lines, in any of the parameters inves-

tigated here or in others not shown here. Mice were killed by a Schedule 1

method and tissues were excised for in vitro experimentation.

Immunohistochemistry

Lengths (2–3 cm) of mouse descending colon were washed in Krebs-Henseleit

(KH) buffer, immersed in PFA (4%) for a minimum of 24 hr, washed in PBS, and

cryoprotected in 30% sucrose in PBS for 48 hr before embedding in optimal

cutting temperature (OCT) compound and storage at�80�C. Sections (15 mm)

were cut, rehydrated in PBS, and blocked in 10% normal goat serum in PBS for

2 hr before incubating overnight in either polyclonal anti-PYY antibody (1:1000)

to visualize PYY-containing endocrine cells or in chromogranin A (1:400) to

label all endocrine cells. Longer incubation times (3–4 days) were used to

enable anti-NPY labeling (1:400) or protein gene product (PGP) 9.5 (1:400)

labeling of all enteric neurons. Primary antibodies were visualized with goat

anti-rabbit F(ab’)2 secondary antibodies conjugated to either FITC or TRITC



Figure 5. Oral PSN632408 Improves Oral Glucose Tolerance in WT but Not PYY�/� Mice

(A–L) Absolute levels of serum glucose (A and G) and percent of serum glucose values at time 0 min (B and H) are shown with the areas under the resultant glucose

curves (0–60 min) (C and I). The dashed line (B) denotes a significant difference between vehicle and treated groups during 0–60 min by repeated measures.

Serum insulin levels (D and J) are also expressed as a percent of values at time 0 (E and K), with the areas under the resultant insulin curves (0–120 min)

(F and L) in 24 hr fasted WT (A–F) and PYY�/� (G–L) mice after voluntary oral consumption of glucose (3 g/kg body weight). At 30 min prior to glucose consumption,

mice had voluntarily consumed a paste containing PSN632408 (+632) at a dose of 100 mg/kg or a vehicle control paste (+veh). Data are means + SEM from

7–8 mice per group. *p % 0.05 and **p % 0.01 versus vehicle-treated control mice of the same genotype at specific times.

Cell Metabolism

PYY Mediates Gpr119 Effects

Cell Metabolism 11, 532–542, June 9, 2010 ª2010 Elsevier Inc. 539



Figure 6. The Proposed Paracrine Effects of Gpr119 Activation in

Human and Mouse Colon Mucosa

Stimulation of L cell Gpr119 (a Gas-coupled mechanism) results in degranula-

tion and release of PYY and GLPs (GLP-1 and GLP-2). PYY inhibits epithelial

ion secretion via basolateral Y1 receptor (Gai-coupled) inhibition of cAMP-

dependent Cl� secretion, a process initially activated, for example, via VIP

released from intramural submucosal neurons, resulting in VPAC receptor

(Gas-coupled) activation to increase intraepithelial cAMP and Cl� secretion

(solid arrow). PYY-mediated inhibition of this process (denoted by dotted

arrows in lumen) results following epithelial Y1 receptor activation. GLP-1

has limited Gas-coupled activity in human epithelia. Additionally, PYY and

GLPs enter the bloodstream, exerting their hormonal influences on peripheral

and central targets, i.e., regulating insulin action, inducing satiety, and control-

ling vagal activity.
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(1:200, 2 hr at room temperature), and nuclei were visualized with DAPI (1:1000

in PBS for 2 min). Sections were washed in PBS, mounted in FluorSave, and

viewed with a Provis microscope fitted with appropriate filters and AxioVision

software. The numbers of endocrine cells were counted per section by an

unbiased observer.

Electrophysiology

Colonic mucosa from clinical specimens or from WT or knockout male mice

(>15 weeks old) was voltage clamped at 0 mV in Ussing chambers, as

described previously (Cox and Tough, 2002; Cox et al., 2001). Vectorial ion

transport was measured continuously as Isc (mA/cm2), and all peptide additions

were basolateral, as receptors are targeted to the basolateral epithelial

domains. Gpr119 agonist (PSN632408, PSN375963, or OEA) additions were

made to either the apical or basolateral reservoirs 15–20 min following VIP

(10 nM). This is approximately the EC50 concentration of VIP in mouse mucosa

(Cox et al., 2001) and an optimal secretory pretreatment for revealing subse-

quent Gai-coupled epithelial responses in mouse mucosae.

Once stable Isc levels were achieved, mucosae were treated with the DPP-IV

inhibitor (1 mM compound 3) (Lankas et al., 2005), neuronal activity was

abolished with TTX (100 nM), or endogenous GLP-1 responses were inhibited

with exendin(9-39) (1 mM). Treatment periods were 20–30 min prior to addition

of the Y1 receptor antagonist BIBO3304 (BIBO; 300 nM) or the Y2 selective

antagonist BIIE0246 (BIIE; 1 mM). A concentration of 10 mM PSN632408 was

chosen as the Gpr119 stimulus, as it resulted in near maximal responses in

mouse colon mucosa. Control experiments with Y agonists utilized concentra-
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tions that preferentially stimulated either Y1 receptors (10 nM Pro34PYY), Y2

receptors (30 nM PYY(3-36)), or Y4 receptors (30 nM rPP), as optimized in

previous studies (Cox et al., 2001; Tough et al., 2006). Y agonist-induced

reductions in Isc in epithelia are a result of Gai-coupled attenuation of cAMP

levels with consequent long-lasting decreases in Cl� ion secretion (Cox

et al., 1988). For TRPV1 desensitization, two 1 mM additions of capsaicin (to

both sides) were made, followed by VIP (10 nM) and then either apical

PSN632408 or OEA (10 mM) at 10 min intervals.

In glucose sensitivity studies, tissues were bathed with KH buffer containing

glucose (11.1 mM) on one side and mannitol (11.1 mM) in place of glucose on

the other. Tolbutamide (1 mM) was used to block apical KATP channels, and

changes in basal Isc levels and subsequent Gpr119 responses were recorded.

Peptide Levels and PYY Release

Plasma GLP-1 was measured in duplicate by an established in-house radioim-

munoassay (Kreymann et al., 1987). The antibody cross-reacted 100% with all

amidated forms of GLP-1 but did not cross-react with glycine-extended forms

(GLP-1(1-37) and GLP-1(7-37)) or any other GI peptides.

For PYY release, mucosae were incubated in 2 ml KH buffer at 37�C with

either vehicle (1% DMSO) or tolbutamide (1 mM) for 90 min. PYY-like immuno-

reactivity was measured by an established radioimmunoassay (Adrian et al.,

1985) using antiserum Y21 (at a final dilution of 1:50,000) that cross-reacted

with all biologically active forms of PYY, but not NPY, PP, or other peptides.

The assay was performed in 0.7 ml KH containing 0.3% BSA and was incu-

bated for 3 days at 4�C before separation of free and antibody-bound label.

Oral Glucose Tolerance Test

Male WT and PYY�/�mice at 19–24 weeks of age were used. The oral route of

administration of both PSN632408 and glucose was chosen because GI

effects contribute to effects of Gpr119 agonism. Notably, the effectiveness

of the Gpr119 agonist AR231453 to improve glucose tolerance was reduced

by almost 50% when glucose was given i.p. compared to oral delivery, sug-

gesting incretin involvement in this effect (Chu et al., 2007). Because stress

is known to mask physiological responses to gut hormones (Abbott et al.,

2006), we trained mice to voluntarily eat a vehicle paste followed 30 min later

by a vehicle jelly that would contain PSN632408 and glucose, respectively, on

the day of experimentation, thereby avoiding the stress of oral drug and

glucose administration by gavage. Training and vehicle jelly preparation

were as described previously (Zhang et al., 2010).

Mice were fasted for 24 hr and were then given either vehicle paste or paste

containing 13.5 mg/ml PSN632408 (100 mg/kg) in 24% Gelucire 44/14 and

76% aqueous solution. PSN632408 (25 mg) was first suspended at 65�C in

450 ml preheated Gelucire 44/14. Aqueous solution (1.4 ml) containing

22.1% wt/vol Splenda low calorie sweetener and 7.1% vol/vol imitation straw-

berry flavoring essence was then added to the Gelucire 44/14 and mixed to

form a paste. At 30 min after mice had consumed the entire PSN632408 or

vehicle paste, an oral glucose bolus (3 g/kg) was delivered as a glucose jelly.

To this end, glucose (0.52 g/ml) was incorporated into a jelly containing 4.9%

wt/vol gelatin and 7.5% imitation strawberry flavoring essence. Tail vein

blood was collected at 0, 5, 15, 30, 60, and 120 min after the mouse had

finished eating the glucose jelly, and serum was produced for the determina-

tion of glucose and insulin levels using a glucose oxidase assay and ELISA,

respectively.

Glucose tolerance curves for serum glucose and insulin are presented as

absolute values, as well as percent serum glucose or insulin concentrations

prior to glucose ingestion. Additionally, absolute areas under the serum

glucose or insulin concentration curves were calculated (after subtracting

glucose or insulin concentrations prior to glucose ingestion) between 0 and

60 min (for glucose) or 0 and 120 min (for insulin) after glucose ingestion and

are referred to as area under the curve.

Data Analysis

Functional data from GI tissues measuring the maximal changes in Isc are

expressed as the mean ±SEM per unit area (cm2). Single comparisons were

performed using Student’s unpaired t test, whereas multiple comparisons

utilized one-way ANOVA with Dunnett’s post hoc test. Changes in PYY release

were compared using Student’s paired t test, and in all cases p % 0.05 was

considered significantly different. Data from in vivo analyses are expressed
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as means ±SEM. Differences among groups of mice were assessed by

repeated-measures ANOVA with genotype and treatment as main effects

(Statistical Package for the Social Sciences, SPSS Inc., version 17.0). Statis-

tical significance was defined as p % 0.05.

Materials

BIBO3304 and BIIE0246 were gifts from Boehringer-Ingelheim Pharma KG

(Biberach an der Riss, Germany), and stock solutions were dissolved in 10%

DMSO (at 1 mM) and stored at �20�C until required. All peptides were from

Bachem Laboratories (St. Helens, UK). Stocks were dissolved in water, and

aliquots were stored at �20�C, undergoing a single freeze-thaw cycle. The

DPP-IV inhibitor compound 3 was from R. Roy (Merck, Rahway, NJ) (Lankas

et al., 2005). PSN632408, PSN375963, and OEA were purchased from

Cayman Chemical (Ann Arbor, MI) and GW6471 from Tocris Bioscience

(Bristol, UK). Anti-PYY (from E. Ekblad, University of Lund, Sweden), anti-

NPY antibodies (Affiniti Research Products Limited, Exeter, UK), goat anti-

rabbit FITC- or TRITC-conjugated secondary antibodies (Chemicon, Harrow,

UK), DAPI (Sigma-Aldrich, Poole, UK), PGP9.5 (Ultraclone Ltd., Isle of Wight,

UK), and chromogranin A (DAKO A/S, Glostrup, Denmark) were reconstituted

and stored as recommended by each supplier. OCT and polysine-coated

slides were from VWR International (Lutterworth, UK) and FluorSave from

Calbiochem (Nottingham, UK). Materials used for in vivo experimentation

were: Splenda Low-Calorie Sweetener (Johnson & Johnson Pacific Pty Ltd,

Ultimo, Australia), Gelucire 44/14 (Gattefossé, Saint Priest, France, a gift

from J. Pinder, Trapeze Associates Pty Ltd, Bella Vista, New South Wales,

Australia), imitation strawberry flavoring essence (Queen Fine Foods Pty Ltd,

Alderley, Queensland, Australia), glucose (Sigma, St. Louis), gelatin (Gelita

Australia Pty Ltd, Botany, New South Wales, Australia), glucose oxidase assay

kit (Trace Scientific, Noble Park, Victoria, Australia), and insulin ELISA kit

(Crystal Chem, Downers Grove, IL). All other compounds were of analytical

grade from Sigma-Aldrich (Poole, UK).
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