Smoking and Plasma Fibrinogen, Lipoprotein (a) and Serotonin are Markers for Postoperative Infrainguinal Graft Stenosis

N. J. W. Cheshire1*, J. H. N. Wolfe1, M. A. Barradas2, A. W. Chambler1 and D. P. Mikhailidis2

1Regional Vascular Unit, St Mary's Hospital, Paddington, London W2 1NY and 2The Department of Chemical Pathology & Human Metabolism, The Royal Free Hospital School of Medicine, Hampstead, London NW3 2QG, U.K.

Objectives: A number of systemic variables are associated with infrainguinal graft failure and also with experimental smooth muscle hyperplasia. Stenosis is the most common cause of infrainguinal graft thrombosis but it is not known if systemic variables are associated with stenosis.

Design, materials and methods: In this study, clinical and serological factors were measured and correlated with stenosis development in 81 infrainguinal bypass grafts (52 vein, 29 PTFE; 28 with stenosis) in prospective (n = 46) and retrospective (n = 35) groups. Pre-existing stenosis was excluded by perioperative graft assessment.

Results: There was a significantly greater proportion of smokers in the patients who developed stenosis (11/18; 61%) compared with those who did not (6/28; 21%, p = 0.006; ~2). Patients who developed stenosis also had significantly (Mann Whitney U-tests), higher circulating levels of [median (interquartile range)] fibrinogen (412.5 (356-484.5) vs. 339 (300-397.7) mg/100ml, p=0.003), Lipoprotein (a) (0.20 (0.05-0.45) vs. 0.085 (0.05-0.23) g/l, p=0.03) and 5-hydroxytryptamine (14.1 (6.6-45) vs. 4.41 (3-8.39) nmol/l, p = 0.005), than those without stenosis.

By logistic regression, these associations were independent of graft material and whether grafts were studied prospectively or retrospectively.

Conclusions: Smoking and plasma fibrinogen, Lp(a) and 5-hydroxytryptamine are markers for postoperative infrainguinal graft stenosis.

Key Words: Intimal hyperplasia; Smoking; Lipoprotein (a); Fibrinogen; Serotonin; Graft Stenosis.

Introduction

A number of patient related variables, notably smoking, hyperfibrinogenaemia and hyperlipidaemia have been shown to be associated with reduced patency after arterial reconstruction.1-4

In vitro and animal studies of intimal hyperplasia and atherogenesis have demonstrated the potential of tobacco smoke derivatives,5-8 coagulation cascade proteins,9-12 cholesterol and apolipoproteins13-15 and platelet releasates16-18 to stimulate proliferation of smooth muscle cells. Migration and proliferation of medially derived smooth muscle cells produces vessel wall thickening after arterial reconstruction19,20 and results in localised stenosis in approximately 25% of infrainguinal bypass grafts.21,22 The adverse haemodynamic consequences of stenosis are believed to cause up to 80% of infrainguinal graft thromboses.21,22,23 Thus, clinical and serological variables may influence graft stenosis development.

Methods

Ethical committee approval was granted for this study.

Patients

Clinical and serological variables were measured in 81 patients undergoing infrainguinal bypass grafting under the care of a single surgeon. Autologous vein
conduits were used in 52 bypasses and the remaining 29 were 6mm expanded polytetrafluoroethylene (PTFE) grafts (Impra U.K.). There were 53 femoropopliteal grafts and 28 femorocrural grafts. A distal vein collar was used with prosthetic grafts to crural vessels.

Patients were recruited in two groups. The prospectively followed group consists of 46 consecutive patients (30 autologous vein and 16 PTFE grafts) who underwent arterial reconstruction during the study period. Variables were measured immediately prior to arterial reconstruction in all cases. Median follow-up is 17.5 months with a minimum follow up of 12 months.

The retrospective study group consists of 35 patients (22 autologous vein and 13 PTFE grafts) in whom risk factors were measured a mean of 10 months (standard deviation +/- 5) after reconstruction. These patients were recruited randomly from those attending for graft follow up during the study period. All had undergone infrainguinal reconstruction by the same surgeon and had standardised Duplex surveillance data recorded. Entry criteria included periproductive assessment, a patent graft which had not undergone thrombectomy or thrombolysis and completion of at least 1 year of surveillance (described below).

Exclusion of non-hyperplastic graft stenoses

All patients included in this study underwent intraoperative Doppler studies predischarge Duplex scanning to exclude fixed, non hyperplastic causes of graft stenosis such as retained valve cusps, intramural venous disease or anastomatic technical error. Stenoses identified intraoperatively were corrected during primary reconstruction and results confirmed with arteriography.

Graft surveillance and stenosis detection

Following discharge, patients underwent Duplex scanning at 6 weeks, and 3, 6, 9 and 12 months post-reconstruction using the V2:V1 technique. Severe stenoses (V2:V1 > 2 on Duplex), confirmed by angiography were corrected by percutaneous balloon dilatation, patch angioplasty or jump grafting.

For the purposes of this study graft stenosis is defined as a new stenosis detected within the first postoperative year, requiring correction. Non-stenosed grafts are those which remained patent and have undergone regular surveillance for at least 1 postoperative year, during which no stenosis was detected.

### Table 1. Risk factors studied

<table>
<thead>
<tr>
<th>Clinical factors</th>
<th>Smoking (breath CO analysis), hypertension, diabetes mellitus (types I and II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipids/lipoproteins</td>
<td>Total triglycerides and cholesterol</td>
</tr>
<tr>
<td>Serum</td>
<td>High/low density lipoproteins, cholesterol</td>
</tr>
<tr>
<td>Platelet activation marker</td>
<td>Apolipoproteins A, B and lipoprotein (a)</td>
</tr>
<tr>
<td>Coagulation/fibrinolysis</td>
<td>Serotonin (5-HT)</td>
</tr>
<tr>
<td>Plasma</td>
<td>Fibrinogen</td>
</tr>
<tr>
<td>Coagulation/fibrinolysis</td>
<td>Factor VII and VIII activity</td>
</tr>
<tr>
<td>Plasma</td>
<td>Plasminogen</td>
</tr>
<tr>
<td>Coagulation/fibrinolysis</td>
<td>Tissue plasminogen activator (tPA)</td>
</tr>
<tr>
<td>Plasma</td>
<td>Plasminogen activator inhibitor (PAI-1)</td>
</tr>
</tbody>
</table>

Risk factor measurement

The clinical and serological variables measured in this study have all been shown to be associated either with increased risk of failure after arterial reconstruction or experimental proliferation of smooth muscle cells and are shown in Table 1.

It was not possible to measure all risk factors in all patients; assessment of smoking and hypertension relevant to the time of stenosis development was only possible in the prospectively group. In addition to blood samples invalidated for technical reasons, patients were required to travel between two hospitals (St Mary’s and The Royal Free) for laboratory analysis. Although this policy minimised error caused by in vitro changes due to delay in analysis, inevitably some patients were unable to attend both hospitals. It is appreciated that these losses may increase the likelihood of statistical error, but the selection of patients was not subject to influence by the authors. The numbers of patients studied in each group is shown in the relevant results section.

**Clinical risk factors** Smoking was assessed by direct questioning and validated by measurement of breath Carbon Monoxide (CO) concentration using the Microsmokalyser (Bedfont Scientific, Upchurch, Kent, U.K.). Readings above 10 ppm expired CO were considered indicative of current smoking as recommended by the manufacturer.

Hypertension was defined as current use of one or
Postoperative Inguinal Graft Stenosis

more anti-hypertensive agents to maintain normal blood pressure and diabetes mellitus as current diet, oral or insulin therapy for control of serum glucose.

Lipids and lipoproteins Whole blood was collected from an antecubital vein after a minimum 12 h fast and stored in plain tubes. Serum was prepared by centrifugation at 3000 × g.

Serum cholesterol and triglycerides were determined enzymatically using a Centrifichem centrifugal analyser (Baker Instruments, Windsor, U.K.). Low density lipoprotein (LDL) cholesterol was calculated by the Friedwald equation. High density lipoprotein (HDL) was isolated by the dextran sulphate-Mg Cl₂ method and the cholesterol measurement performed as above. Apolipoproteins were measured using immunonephelometry (Beckman Auto Immuno- Chemical Systems, Beckman Instruments, High Wycombe, U.K.).

Platelet function Blood was taken from an antecubital vein with minimal stasis. For aggregation studies, nine parts of blood were added to one part of 3.8% w/v trisodium citrate (BDH, Poole, Dorset, U.K.). For measurement of platelet release substances, citrated blood containing indomethacin (20 mg/l), theophylline (3 mmol/l) and adenosine (1 mmol/l) was prepared.

Plasma was prepared by centrifuging blood for 20 min at 1500 × g at 4°C. The supernatant was collected and spun again as above and kept frozen at -40°C.

Platelet rich plasma (PRP) was prepared using the technique described by Hardisty et al. Nine volumes of venous blood were collected in a polystyrene syringe and mixed with one part 3.8% trisodium citrate in a polystyrene tube. PRP was prepared by centrifuging blood at 160 × g for 15 min at room temperature.

Platelet counts were performed using a Coulter T-890 blood counter (Coulter Electronics, Luton, U.K.). Following counting, the PRP was centrifuged at 1000 × g for 10 min to prepare platelet pellets. The pellets were washed with Isoton II (Coulter Electronics, Luton, U.K.) and stored at -40°C until analysis. Whole blood aggregation was evaluated by a free platelet count method using a blood cell counter (Coulter T-890; see above).

Plasms Platelet Serotonin and β-thromboglobulin assay Platelet pellets were resuspended in physiological saline (0.9% w/v) and platelets lysed using the MSE-Soniprep sonicator (MSE, Sussex, U.K.). Plasma serotonin (5-hydroxytryptamine; 5-HT) concentrations were estimated using a radioimmunoassay (Biogenesis Ltd., Bournemouth, U.K.).

Coagulation and fibrinolytic activity Blood was collected from an antecubital vein with minimal stasis and anticoagulated with 3.8% trisodium citrate in proportions of 9:1, respectively, in precooled tubes. Samples were centrifuged at 3000 × g for 15 min at 4°C and plasma was stored at -70°C until analysis.

Levels of plasma fibrinogen and plasminogen and activity of factors VII and VIII (percentage activity relative to standardised plasma) were assayed using an automated coagulation analyser (ACL 300 Research; Instrumentation Laboratory Ltd, Warrington, Cheshire, U.K.).

For the quantitative determination of tissue plasminogen activator (t-PA) citrated blood was collected in concentrations of nine parts blood to one part 3.8% trisodium citrate as described above. Samples were processed as recommended by Chandler et al. For the quantitative determination of plasminogen activator inhibitor (PAI-1) concentration, blood was collected into citrate as already described, supplemented with the following anti-platelet agents: indomethacin (20 mg/l final concentration F.C.), theophylline (F.C. 3 mmol/l) and adenosine (F.C. 1 mmol/l). t-PA and PAI-1 antigen were quantitated using Enzymoimmunoassay Kits (Kabi Diagnostica, Sweden).

Statistical analysis

The data was analysed with help from Mrs. Jane Wadsworth in the Academic Department of Public Health at St.Mary’s Hospital Medical School.

This study compares a number of variables between patients who developed graft stenosis and those who did not; it was considered important to include the influence of study groups (retrospective or prospective) and graft type (vein or PTFE) on the comparison. A two part analysis was therefore used; primary examination of all data by univariate analysis, followed by logistic regression of those factors associated with stenosis also including the effects of prospective and retrospective groups and vein and PTFE grafts.

The Chi-square and Mann-Whitney U tests were used for univariate analysis. Results are presented as median and interquartile range with individual data points shown on figures.
Table 2. Clinical risk factor profiles in prospectively studied patients (n=46)

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Stenosed grafts</th>
<th>Non-stenosed grafts</th>
<th>p-value (χ² test + Yates' Correction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes mellitus</td>
<td>3/18</td>
<td>5/28</td>
<td>0.91</td>
</tr>
<tr>
<td>Hypertension</td>
<td>8/18</td>
<td>13/28</td>
<td>0.89</td>
</tr>
<tr>
<td>Smoking</td>
<td>11/18</td>
<td>6/28</td>
<td>0.016</td>
</tr>
<tr>
<td>Female sex</td>
<td>6/18</td>
<td>7/28</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Results

Stenosis rates and histological assessment

During follow-up in the prospective group of patients, graft stenoses requiring intervention were detected in 12/30 vein grafts (40%) and 6/16 PTFE grafts (37.5%). Twenty-eight grafts remained stenosis free during a minimum of 1 year surveillance.

In the retrospective group, 10 patients (five each vein grafts and PTFE grafts) had developed graft stenosis requiring correction during the first post-operative year and 25 patients were stenosis free.

Tissue from stenoses was obtained from 12 patients treated by excision or patch angioplasty (other cases were corrected by percutaneous angioplasty or jump grafting). Histology confirmed intimal thickening due to smooth muscle hyperplasia in all cases.

Clinical variables

Comparison of clinical variables between patients who did and did not develop stenosis was only undertaken on the prospective group to reflect circumstances at the time of stenosis development. Table 2 compares the clinical risk factor profiles of prospectively studied patients who did and did not develop stenosis.

By univariate analysis, a significantly greater proportion of patients who developed stenosis continued to smoke after reconstruction; stenosis group 11/18 (61%) compared with 6/28 (21%) in the non-stenosis, p = 0.006, χ² test (p = 0.016 after Yates Correction) see Fig. 1.

Regression analysis showed that smoking differences between the two groups were independent of the graft material (maximum likelihood estimates; smokers vs. non-smokers, -2.507 p = 0.0007; vein vs. PTFE, 0.286 p = 0.707).

Clotting and fibrinolysis studies

Results of coagulation / fibrinolysis analysis were available for 53 patients (21 stenosed and 32 non-stenosed grafts). The plasma concentration of fibrinogen was significantly higher in patients with grafts which developed stenosis (413 (356–4845) vs. 339 (300–398) mg/100ml, p = 0.003, Mann Whitney U test, Fig. 2). By regression analysis, these differences were independent of graft material or study group (maximum likelihood estimates: fibrinogen, -0.0163 p = 0.0013; vein vs. PTFE, 0.2053 p = 0.7; prospective vs. retrospective, -1.239 p = 0.08).

There were no significant differences in activity of factors VII or VIII, tPA or PAI-1 or plasminogen concentration between stenosed and non-stenosed grafts (results not shown).

Eur J Vasc Endovasc Surg Vol 11, May 1996
Postoperative Inguinal Graft Stenosis

Lipids and lipoproteins

Results of lipid/lipoprotein analysis were available for fifty patients (20 stenosed and 30 non-stenosed grafts). Median serum concentration of lipoprotein (a) was higher in patients whose grafts developed stenosis than those who did not (0.20 (0.05–0.45) vs. 0.085 (0.05–0.23) g/l, \( p = 0.03 \) Mann Whitney test, Fig. 3). By regression analysis, these differences were independent of graft material or study group (maximum likelihood estimates: Lp(a) -1.518 \( p =0.04 \), vein vs. PTFE 0.128 \( p = 0.8 \), prospective vs. retrospective 0.335 \( p = 0.6 \)).

There were no significant differences in levels of triglycerides, cholesterol, HDL, LDL or apolipoproteins A or B between the two groups (results not shown).

Plasma serotonin and platelet function studies

Results of platelet function analysis were available for 47 patients (20 stenosed and 27 non-stenosed grafts). Plasma 5-HT concentration was higher in patients who developed stenosis compared with those who did not (14.1 (6.6–45) vs. 4.4 (3–8.3) nmol/l \( p = 0.005 \), Mann Whitney test, Fig. 4). By regression analysis, these differences were independent of graft material or study group (maximum likelihood estimates: 5HT 1.822 \( p = 0.018 \), vein vs. PTFE 0.099 \( p = 0.8 \), prospective vs. retrospective 0.691 \( p = 0.3 \)).

By univariate analysis, there were differences in platelet aggregation between stenosed and non-stenosed grafts when adrenalin was used as an agonist but these failed to remain significant when the effects of graft material and study group were included in the regression analysis. There were no other significant differences in platelet aggregation or plasma and intraplatelet levels of releasates between those patients who developed stenosis and those who did not.

Discussion

Haemodynamically significant stenoses develop in approximately 25% of infrainguinal bypass grafts, usually within the first 12 months after surgery \(^{21}\) and may be associated with up to 80% of postoperative graft thromboses \(^{23}\). This has led to the establishment of stenosis surveillance and correction programmes in many vascular surgical centres. Reported stenosis rates are often higher from centres with an interest in graft surveillance and this is borne out by the prospective finding of stenoses in 37.5% of PTFE and 40% of autologous vein grafts in the current series. Histological examination of stenoses from both vein and prosthetic grafts reveals similar pathology; a localised, subintimal proliferation of smooth muscle cells with a surrounding matrix of proteoglycan and collagen \(^{32}\). Although the sequence of events leading to this intimal hyperplasia is now understood \(^{18,33,34}\), the stimuli responsible for smooth muscle cell migration to the subintima and their subsequent proliferation, remain unclear.

A number of recent publications have identified clinical and serological variables associated with
vascular effects of hyperfibrinogenaemia are mediated
through a hypercoaguable state or at the vessel wall
is still unclear whether the observed adverse cardio-
mitogenic to smooth muscle cells. 11"12'49 Despite this, it
that fibrinogen and its derivatives are chemotactic and
levels of circulating fibrinogen are associated with
accelerated development of atheroma and coronary
events in man. ' Cell culture studies have shown
accelerated development of atheroma. 46 This could explain the observations in the
present study and suggests a possible causal
mechanism of action is unknown; circulating Lp(a) may affect the
vessel in similar ways to those proposed for other
atherogenic lipoproteins (increasing endothelial permeability to lipids or by oxidisation and direct
stimulation of smooth muscle mitosis). However,
apo(a) also has structural similarity to plasminogen 52 and can compete with plasminogen and t-PA for
fibrinogen binding in vitro. 53,54 and may thus possess
pro-coagulant properties. Our observation that there
were no differences in plasminogen or t-PA activity
between stenosed and non stenosed groups of patients
suggests that the association between Lp(a) and
infrainguinal graft stenosis is independent of coagula-
tion effects but interpretation of these results is
difficult as fibrinogen levels also varied between
patient groups.

Tobacco smoking is one of the major risk factors for
atheroma development in man since it accelerates
atherosclerosis in both the peripheral and coronary
circulation. 40,41 The mechanism of action is unknown,
but hypothetical mechanisms include vessel injury
through vasospasm, hypoxia or endothelial cell
loss. 7,42,43 and platelet activation. 44,45 Smoking-related
endothelial injury in an infrainguinal graft and the
perianastomotic vessels (perhaps exacerbated by oper-
ative trauma) could expose medial smooth muscle
cells to a variety of mitogens both in the plasma and in
platelets (perhaps activated by smoking), resulting in
the development of a localised proliferative lesion in a
similar manner to that proposed in the early genesis of
atheroma. 46 This could explain the observations in the
current study and suggests a possible causal
relationship.

Fibrinogen is the soluble precursor of fibrin. Epide-
miological studies have demonstrated that elevated
levels of circulating fibrinogen are associated with
accelerated development of atheroma and coronary
events in man. 47,48 Cell culture studies have shown that fibrinogen and its derivatives are chemotactic and
mitogenic to smooth muscle cells. 11,12,49 Despite this, it
is still unclear whether the observed adverse cardio-
vascular effects of hyperfibrinogenaemia are mediated
through a hypercoaguable state or at the vessel wall
level. The present findings show fibrinogen to be
associated with infrainguinal graft disease in the
absence of overt thrombosis. Additionally, there were
no differences in plasma levels of other coagulation or
fibrinolytic factors between patients with and without
stenosis and this suggests that in infrainguinal bypass
grafts, fibrinogen acts via a mechanism independent
of the coagulation cascade.

Lipoprotein (a) is a protein-lipid complex, similar in
composition to LDL but containing apolipoprotein (a).
Attention has been focused on this molecule since it
was shown to be an independent predictive factor for
the development of atheroma in man. 50,54 Its mecha-
nism of action is unclear; circulating Lp(a) may affect
the vessel in similar ways to those proposed for other
atherogenic lipoproteins (increasing endothelial permeability to lipids or by oxidisation and direct
stimulation of smooth muscle mitosis). However,
apo(a) also has structural similarity to plasminogen 52 and can compete with plasminogen and t-PA for
fibrinogen binding in vitro. 53,54 and may thus possess
pro-coagulant properties. Our observation that there
were no differences in plasminogen or t-PA activity
between stenosed and non stenosed groups of patients
suggests that the association between Lp(a) and
infrainguinal graft stenosis is independent of coagula-
tion effects but interpretation of these results is
difficult as fibrinogen levels also varied between
patient groups.

Platelets are excellent candidates as initiators of
intimal hyperplasia as they are known to contain at
least two mitogens for vascular smooth muscle cells
— platelet derived growth factor (PDGF) 16 and epi-
dermal growth factor (EGF) 55 — both of which are
released during activation. As well as being mitogenic,
PDGF is also a chemotactic agent for smooth muscle
cells 56 and at least in theory, could induce both smooth
muscle cell migration from the media and subsequent
subintimal proliferation. Epidemiological evidence
suggests an association between platelet activation
and the development of atherosclerosis 57-61 and ani-
mal studies have demonstrated increased intimal
thickening in bypass grafts with high levels of labelled
platelet adherence 39 as well as the protective effects of
anti-platelet therapy 62,63 In excess of 99% of whole
blood 5-HT is contained within the dense granules of
platelets in humans and a number of studies have
demonstrated that platelet degranulation is associated
with elevation of the plasma 5-HT level 64-66 5-HT has
also been shown to possess mitogenic properties and
to significantly enhance the mitogenic properties of
PDGF 57 The data presented above may demonstrate
an association between platelet activation and the
development of graft stenosis. However, other sources
of SHT (most importantly endothelial cells) may contribute to circulating levels making interpretation of plasma results difficult. Because we were unable to demonstrate other evidence of platelet activation in association with graft stenosis we believe that the current data is insufficient to show a conclusive association between platelet activation and infrainguinal graft stenosis.

The present study demonstrates that cigarette smoking, plasma fibrinogen, Lp(a) and S-HT are markers for the postoperative development of stenosis in infrainguinal bypass grafts. These variables are known to be associated with the proliferation of smooth muscle cells in experimental models and have been indirectly associated with increased rates of failure after arterial reconstruction suggesting that they may be associated with increased smooth muscle cell mitosis in the graft wall. A randomised study of the effects of perioperative correction of these ‘risk’ factors on the incidence of graft stenosis may be justified.

Acknowledgement

We would like to thank Lipha UK (platelet function studies) and Impra UK (surgical research fellow) for their support during this project.

References


Eur J Vasc Endovasc Surg Vol II, May 1996