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Abstract

The decomposition method is currently one of the major methods for solving the convex quadratic optimization problems
being associated with Support Vector Machines (SVM-optimization). A key issue in this approach is the policy for working set
selection. We would like to find policies that realize (as well as possible) three goals simultaneously: “(fast) convergence to an
optimal solution”, “efficient procedures for working set selection”, and “a high degree of generality” (including typical variants
of SVM-optimization as special cases). In this paper, we study a general policy for working set selection that has been proposed
in [Nikolas List, Hans Ulrich Simon, A general convergence theorem for the decomposition method, in: Proceedings of the 17th
Annual Conference on Computational Learning Theory, 2004, pp. 363–377] and further analyzed in [Nikolas List, Hans Ulrich
Simon, General polynomial time decomposition algorithms, in: Proceedings of the 17th Annual Conference on Computational
Learning Theory, 2005, pp. 308–322]. It is known that it efficiently approaches feasible solutions with minimum cost for any
convex quadratic optimization problem. Here, we investigate its computational complexity when it is used for SVM-optimization.
It turns out that, for a variable size of the working set, the general policy poses an NP-hard working set selection problem. But a
slight variation of it (sharing the convergence properties with the original policy) can be solved in polynomial time. For working
sets of fixed size 2, the situation is even better. In this case, the general policy coincides with the “rate certifying pair approach”
(introduced by Hush and Scovel). We show that maximum rate certifying pairs can be found in linear time, which leads to a quite
efficient decomposition method with a polynomial convergence rate for SVM-optimization.
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1. Introduction

We begin with some remarks that clarify why the decomposition method is used for the purpose of SVM-
optimization. Although (more or less) the same remarks are found in other papers that deal with the decomposition
method (like [25] for example), we repeat them here for sake of convenience.

Support vector machines (SVMs), as introduced by Vapnik and co-workers [1,34], are a promising technique for
classification, function approximation, and other key problems in statistical learning theory. In this paper, we consider
the optimization problems that are induced by SVMs, which are special cases of convex quadratic optimization.
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The difficulty of solving problems of this kind comes from the density of the matrix that represents the “quadratic
part” of the cost function. Thus, a prohibitive amount of memory is required to store the matrix, and traditional
optimization algorithms (such as Newton, for example) cannot be directly applied. Several authors have proposed
(different variants of) a decomposition method to overcome this difficulty [30,11,31,32,27,28,3,14,20,4,29,15,13,21,
22,17,7,18,9,25,24,5,6]. This method keeps track of a current feasible solution, which is iteratively improved. In each
iteration, the variable indices are split into a “working set” I ⊆ {1, . . . , m} and its complement J = {1, . . . , m} \ I .
Then, the subproblem with variables xi , i ∈ I , is solved, thereby leaving the values for the remaining variables x j ,
j ∈ J , unchanged. The success of the method depends in a quite sensitive manner on the policy for the selection
of the working set I (whose size is typically much smaller than m). Ideally, the selection procedure should be
computationally efficient and, at the same time, effective in the sense that the resulting sequence of feasible solutions
converges (with high speed) to an optimal limit point. Clearly, these goals are conflicting in general, and trade-offs
are to be expected.

1.1. Our results

We study a general policy for working set selection that has been proposed in [25] and further analyzed in [26].
It is known that it efficiently approaches feasible solutions with minimum cost for any convex quadratic optimization
problem. Here, we investigate its computational complexity when it is used for SVM-optimization. As a “test-case”,
we discuss one of the most popular and well-studied SVM-optimization problems.1

It turns out that, for variable size of the working set, the general policy poses an NP-hard working set selection
problem (see Section 4). But a slight variation of it (replacing in some sense “Exact Working Set Selection” by
“Approximate Working Set Selection”) allows for a convergence proof (valid for convex quadratic optimization
in general; see Section 3) while posing a polynomially approximable working set selection problem as far as
SVM-optimization is concerned (see Section 5). In particular, we show that any approximation algorithm with
performance ratio c for the well-known “Knapsack Problem” can be converted (without much loss of efficiency)
into an approximation algorithm with performance ratio 2c for “Approximate Working Set Selection”. If we start, for
instance, with the greedy heuristic with performance ratio 2 for “Knapsack”, we obtain a heuristic with performance
ratio 4 for “Approximate Working Set Selection”. Furthermore, we design a full polynomial time approximation
scheme (FPTAS) for “Approximate Working Set Selection”.2

For working sets of fixed size 2, the situation is even better. In this case, the general policy coincides with the “rate
certifying pair approach” (introduced by Hush and Scovel [9]). In Section 6, we design a new algorithm that finds
“maximum rate certifying pairs” in linear time (thereby improving on a previous algorithm by Hush and Scovel by
factor log m), which leads to a quite efficient decomposition method with a polynomial convergence rate as far as
SVM-optimization is concerned.

An extended abstract with (some of) the results of this paper is found in [33].

1.2. Related work on decomposition algorithms

One of the most interesting debates concerning decomposition algorithms in connection with SVM-optimization
deals with the question how the “rate certifying pair approach” compares to the “violating pair approach”. The latter is
perhaps the most prominent one. It is based on the selection of the maximally KKT-violating pairs as implemented, for
example, in SVMlight [11] or LIBSVM [4]. A paper by Lin [19] seems to imply the following quite strong result for
SVM-optimization (although not stating it explicitly): decomposition algorithms following the approach of maximally
KKT-violating pairs are within ε of optimality after only O(log 1/ε) iterations.3 The analysis has to assume the strict
convexity of the objective function and some non-degeneracy conditions. The convergence rate is only given in terms
of the distance, ε, to the optimal value, whereas the dependence on other problem parameters (like, for example, the

1 The dual problem to maximum margin classification with the 1-norm soft margin criterion.
2 Although the time bound for the FPTAS is not satisfactory for practical purposes, this result might be of some interest in its own right, because

the problem does not fit into the framework of “independence schemes” introduced by Korte and Schrader [16]. Thus, one cannot design the FPTAS
in the style of the well-known FPTAS for “Knapsack”. We come back to this discussion in Section 5.

3 See [5] for a generalization of this result to similar but more general policies for working set selection.
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number of variables) is not clarified. Recent work [9,26] on the “rate certifying pair approach” (including this paper)
provides theoretical guarantees that look at least as good as the best known theoretical guarantees for the “violating
pair approach”. Since the latter approach is empirically quite successful, this might, however, merely indicate that the
“violating pair approach” is not yet fully understood from a theoretical point of view.

2. Preliminaries

In the subsequent sections, we shall study a policy for working set selection that was suggested in [25]. For this
reason, we introduce in this section some notations that are borrowed from [25].

Throughout this paper,

f (x) =
1
2

x>Qx − w>x =
1
2

m∑
i=1

m∑
j=1

Qi, j xi x j −

m∑
i=1

wi xi (1)

denotes a convex cost function, where Q ∈ Rm×m is a positive semi-definite matrix over the reals. We are interested
in optimization problems of the following general form P:

min
x

f (x) s.t. Ax = b, l ≤ x ≤ r. (2)

Here, A ∈ Rk×m , b ∈ Rk , l, r ∈ Rm , and l ≤ x ≤ r is the short-notation for the “box constraints”

∀i = 1, . . . , m : li ≤ xi ≤ ri .

In the sequel,

R(P) = {x ∈ Rm
| Ax = b, l ≤ x ≤ r}

denotes the set of feasible points forP . Note that f is bounded on R(P) because f is continuous and R(P) is compact.
We briefly note that any bounded4 optimization problem with cost function f (x) and linear equality- and

inequality-constraints can be brought into the form (2), because we may convert the linear inequalities into linear
equations by introducing non-negative slack variables. By the compactness of the region of feasible points, we may
also put a suitable upper bound on each slack variable such that finally all linear inequalities take the form of box
constraints.

Example 1. A popular (and actually possibly the most well studied) variant of Support Vector Machines leads to an
optimization problem of the following form P0:

min
x

f (x) s.t. y>x = 0 , l ≤ x ≤ r. (3)

Here, y ∈ {−1, 1}
m is a vector whose components represent binary classification labels. Note that we may “normalize”

P0 by substituting yi xi for xi . This leads to a problem of the same form as P0, but with y = 1̄, where 1̄ denotes the
“all-ones” vector. (An analogous notational convention is used for any other constant.) The main difference between
P0 and the general problem P is that P0 has only the single equality constraint y>x = 0.5

The decomposition method with working sets of size at most q proceeds iteratively as follows: given a feasible
solution x ∈ R(P) (chosen arbitrarily in the beginning), a so-called working set I ⊆ {1, . . . , m} of size at most q is
selected. Then x is updated by the optimal solution for the subproblem with variables xi , i ∈ I (leaving the values
x j with j /∈ I unchanged). The policy for working set selection is a critical issue that we briefly discuss in the next
section.

4 Here, “bounded” means that the region of feasible points is compact (or can be made compact without changing the smallest possible cost).
5 As far as the SVM-application is concerned, we could also set w = 1̄, l = 0̄, and r = C̄ for some constant C > 0. Since these settings do not

substantially simplify the problem, we prefer the more general notation.
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3. Working set selection and convergence

Consider the situation where we attack a problemP of the general form (2) by means of the decomposition method.
As explained below, the selection of a working set I ⊆ {1, . . . , m} of size at most q can be guided by a function family
C I (x). For instance, the following family (with h ranging over Rk) was considered in [25]:

C I (x) := inf
h

(∑
i∈I

(xi − li ) max{0, (∇ f (x))i − A>

i h} + (ri − xi ) max{0, A>

i h − (∇ f (x))i }

)
. (4)

Here, Ai denotes the i’th column of A and A>

i its transpose.
The following results, being valid for any optimization problem P of the form (2), were shown in [25]:

• The function family C I (x) defined in (4) satisfies the following conditions:
(C1) For each I ⊆ {1, . . . , m} such that |I | ≤ q , C I (x) is continuous on R(P).
(C2) If |I | ≤ q and x ′ is an optimal solution for the subproblem induced by the current feasible solution x and

working set I , then C I (x ′) = 0.
(C3) If x is not an optimal solution for P , then there exists an I ⊆ {1, . . . , m} such that |I | ≤ q and C I (x) > 0

provided that q ≥ k + 1.
• Let q ≥ k + 1 (where k is the number of equality constraints in P). Assume that Q ∈ Rm×m (the matrix from

the definition of the cost function in (1)) has positive definite sub-matrices Q I,I for all subsets I ⊆ {1, . . . , m} of
size at most q .6 Let C I (x) be a family of functions7 that satisfies conditions (C1), (C2), (C3). Let a decomposition
method induced by C I (x) be an algorithm that, given the current feasible solution x , always chooses a working set
I ⊆ {1, . . . , m} of size at most q that maximizes C I (x). Then this method leads to a feasible solution of smallest
cost in the limit.

Remark 2. It is interesting to note that the decomposition method induced by the family C I (x) from (4) coincides
with the decomposition method that follows the “rate certifying set approach” (a generalization of the “rate certifying
pair approach”) that was discussed and analysed in [26]. We will come back to this issue at the end of Section 6.

We will show in Section 4 that the decomposition method induced by the family C I (x) from (4) leads to an
NP-hard (variable size) working set selection problem already for the (comparatively simple) case of SVM-
optimization. On the other hand, we will design a polynomially time-bounded algorithm that, given the current feasible
solution x , always finds a working set I ⊆ {1, . . . , m} of size at most q that maximizes C I (x) up to factor 4. This
raises the question of whether convergence can still be granted when the selection of a working set that maximizes
C I (x) (referred to as “Exact Working Set Selection”) is replaced by the selection of a working set that maximizes
C I (x) only up to a constant factor (referred to as “Approximate Working Set Selection”). It turns out, fortunately, that
this is true:

Theorem 3. Let P be the optimization problem given by (2) and (1), and let q ≥ k + 1. Assume that Q ∈ Rm×m

is a matrix with positive definite sub-matrices Q I,I for all subsets I ⊆ {1, . . . , m} of size at most q. Let C I (x) be a
family of functions that satisfies conditions (C1), (C2), (C3). Let an approximate decomposition method induced by
C I (x) be an algorithm that, given the current feasible solution x, always chooses a working set I ⊆ {1, . . . , m} of
size at most q that maximizes C I (x) up to a constant factor c ≥ 1. Then this method computes a sequence of feasible
solutions whose costs approach the cost of an optimal solution in the limit.

Proof. The proof is similar to the proof of the main theorem in [25] (although we have to cope here with the weaker
assumption of “Approximate Working Set Selection”).
The first part of the proof applies to every policy for working set selection. Let I n denote the working set chosen
in iteration n of the decomposition method, and xn the optimal feasible solution for the corresponding subproblem.

6 This assumption does not follow automatically from the positive semi-definiteness of Q (though it would follow from positive definiteness of
Q). It is however (at least for SVM-applications) often satisfied. For some kernels like, for example, the RBF-kernel, it is certainly true; for other
kernels it is typically satisfied provided that q is sufficiently small. See also the discussion of this point in [20].

7 Not necessarily identical to the family defined in (4).
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Since f is bounded on R(P) and f (xn) is decreasing with n, it converges to a limit even if xn does not converge to a
limit point. However, since R(P) is compact, there exists an infinite set S of non-negative integers such that (x s)s∈S
converges to a feasible limit point x∞. Clearly, f (x∞) = limn→∞ f (xn). In [25], it is shown that, for every δ > 0,
there exists s0 ≥ 1 such that

‖x∞
− x s

‖ < δ and ‖x∞
− x s+1

‖ < δ

holds for all s ∈ S provided that s ≥ s0.8 Thanks to condition (C1), we can proceed with a continuity argument and
conclude that, for every ε > 0, there exists s0 ≥ 1 such that

|C I (x∞) − C I (x s)| < ε and |C I (x∞) − C I (x s+1)| < ε (5)

holds for every working set I ⊆ {1, . . . , m} of size at most q and for all s ∈ S, provided that s ≥ s0.
The final part of the proof is tailored to the particular policy of the approximate decomposition method induced by
C I (x). Assume for sake of contradiction that x∞ is not an optimal solution for P . According to (C3), there exists a
working set I ⊆ {1, . . . , m} such that |I | ≤ q and

ε0 := C I (x∞) > 0.

In the sequel, we will apply (5) several times with ε := ε0/(3c) ≤ ε0/3, respectively. Assume that s ∈ S is sufficiently
large such that, according to (5),

C I (x s) >
2ε0

3
.

Thus, the working set I s+1 returned by the decomposition method in iteration s + 1 satisfies

C I s+1(x s) >
2ε0

3c
.

Another application of (5) leads to

C I s+1(x∞) >
ε0

3c
.

Again from (5), we get

C I s+1(x s+1) > 0.

Since x s+1 is an optimal solution for the subproblem induced by I s+1, we may however infer from (C2) that

C I s+1(x s+1) = 0.

We arrived at a contradiction. �

Theorem 3 provides a justification to pass from the “Exact Working Set Selection” to the “Approximate Working
Set Selection”.

4. Complexity of the exact working set selection

The function family C I (x) from (4) can be expressed in a simpler fashion when we consider the special
optimization problem P0 from (3) in its “normalized version” (with y = 1̄):

C I (x) = inf
t∈R

(∑
i∈I

(xi − li ) max{0, (∇ f (x))i − t} + (ri − xi ) max{0, t − (∇ f (x))i }

)
.

8 The proof in [25] is easily seen to be valid for every policy for working set selection.
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Fig. 1. Illustration of the game induced by the parameters in (6).

We will cast the problem of working set selection in the following (more abstract) purely combinatorial form9:
Exact Working Set Selection (EWSS): Given numbers a1 ≤ · · · ≤ am , non-negative weight parameters
w1, w

′

1, . . . , wm, w′
m and a non-negative number q , find a “working set” I ⊆ {1, . . . , m} of size at most q that

maximizes the “gain”

G I := inf
t∈R


=:G I (t)︷ ︸︸ ︷∑

i∈I :ai <t

w′

i (t − ai ) +

∑
i∈I :ai >t

wi (ai − t)

 .

When we consider EWSS as a decision problem, we assume that the input contains an additional bound B. The
question is whether there exists a working set that achieves a gain of at least B.
Conventions:

(1) We set a0 := −∞ and am+1 := ∞ such that R partitions into intervals of the form [ai , ai+1] for i = 0, . . . , m.
(2) We assume that the following conditions are satisfied10:

(a) At least one of the parameters w1, . . . , wm is strictly positive.
(b) At least one of the parameters w′

1, . . . , w
′
m is strictly positive.

(c) For every i ∈ {1, . . . , m}, at least one of the parameters wi , w
′

i is strictly positive.

We may think of a1, . . . , am as points on the real line that are ordered from left to right. EWSS corresponds to a
game between two players:

(1) Player 1 selects q ′
≤ q points. Intuitively, this means that she commits herself to a working set I ⊆ {1, . . . , m} of

size q ′.
(2) Player 2 selects a threshold t and pays an amount of

∑
i∈I :ai <t w′

i (t − ai ) +
∑

i∈I :ai >t wi (ai − t) to player 1.

Example 4. Consider the following sequence ai of numbers and the corresponding weight parameters wi , w
′

i :

ai −1 1.5 2 3 4 6
wi 0 8 6 4 3 2
w′

i 12 4 6 8 9 10
(6)

Let q = 4. The game between two players is visualized in Fig. 1, where the numbers ai appear as points on the
real line being marked by wi (top marking) and w′

i (bottom marking). As indicated in the figure by the bold points,
player 1 selects the q ′

= q = 4 numbers −1, 2, 3, 6 and player 2 chooses threshold t = 0. The gain achieved by
player 1 evaluates to

(0 − (−1)) · 12 + (2 − 0) · 6 + (3 − 0) · 4 + (6 − 0) · 2 = 48.

After this illustrative example, we continue with the general discussion. Given I (the move of player 1), the optimal
move of player 2 is easy to determine because the following holds:

(1) G I (t) is a continuous function.

9 The correspondence is as follows. Assume that (∇ f (x))1 ≤ · · · ≤ (∇ f (x))m (after re-indexing if necessary). Now, ai represents (∇ f (x))i ,
wi represents xi − li , w′

i represents ri − xi .
10 Instances that violate one of the following conditions are either trivial or can be simplified.
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(2) G I (t) is a piecewise linear function that is linear in the interval from a j to a j+1 for every j ∈ {0, . . . , m}.
Moreover,

∀a j < t < a j+1 : G ′

I (t) =

∑
i∈I :i≤ j

w′

j −

∑
i∈I :i≥ j+1

wi .

In particular:
(a) G ′

I (t) = −
∑

i∈I wi < 0 for a0 < t < a1.
(b) G ′

I (t) = +
∑

i∈I w′

i > 0 for am < t < am+1.
(c) G ′

I (t) < G ′

I (t) + w j + w′

j = G I (t ′) for a j−1 < t < a j < t ′ < a j+1.

From these observations, we immediately obtain the following result:

Lemma 5. Let j ′ ∈ {1, . . . , m} be minimal such that G ′

I (t) ≥ 0 on interval (a j ′ , a j ′+1). Then the following holds:

(1) If G ′

I (t) > 0 on interval (a j ′ , a j ′+1), then t = a j ′ is the unique optimal move for player 2.
(2) If G ′

I (t) = 0 on interval (a j ′ , a j ′+1), then the set of optimal moves for player 2 equals the closed interval
[a j ′ , a j ′+1].

Moreover, t is an optimal move of player 2 iff it satisfies

−

∑
i∈I :ai =t

w′

i ≤

∑
i∈I :ai <t

w′

i −

∑
i∈I :ai >t

wi ≤

∑
i∈I :ai =t

wi . (7)

For ease of later reference, we say that threshold t is in a balanced position if it satisfies (7). If t /∈ {a1, . . . , am},
then (7) collapses to

∑
i∈I :ai <t w′

i −
∑

i∈I :ai >t wi = 0. It is easy to check that, in the setting illustrated in Fig. 1,
threshold t = 0 is in a balanced position.

Clearly, Lemma 5 implies the following

Corollary 6. Given I , a threshold t ∈ {a1, . . . , am} in a balanced position is found in linear time.

We now turn to the problem of finding a best move for player 1. Let S > 0. We say that t is an S-unifier if, for
i = 1, . . . , m, the following holds:

ai < t ⇒ S = w′

i (t − ai ) and ai > t ⇒ S = wi (ai − t).

It is easy to see that, in the setting illustrated in Fig. 1, threshold t = 0 is a 12-unifier.

Lemma 7. If there exists an S-unifier, say t0, then

max
I⊆{1,...,m}:|I |≤q

inf
t∈R

( ∑
i∈I :ai <t

w′

i (t − ai ) +

∑
i∈I :ai >t

wi (ai − t)

)
≤ q S

with equality iff there exists a working set I of size q that puts t0 in a balanced position.

Proof. If player 2 chooses threshold t0, then the gain for player 1 is |I |S ≤ q S (no matter which working set I was
chosen). Thus, q S is the largest gain player 1 can hope for. If she finds a working set I of size q that puts t0 in a
balanced position, the gain q S is achieved (since player 2 will find no threshold superior to t0). If not, player 2 can
reduce the gain from q S to a strictly smaller value by shifting threshold t away from t0 in the direction of the “heavier”
side. �

Recall that “Subset Sum” is the following NP-complete problem:
Given non-negative integers s1 ≤ · · · ≤ sm ≤ S, decide whether there exists an I ⊆ {1, . . . , m} such that

∑
i∈I si = S.

We consider here a variant of “Subset Sum” where the input contains an additional parameter q ≤ m, and the
question is whether there exists an I ⊆ {1, . . . , m} such that |I | = q and

∑
i∈I si = S. We refer to this problem as

“Exact Cardinality Constrained Subset Sum”.

Lemma 8. “Exact Cardinality Constrained Subset Sum” is NP-complete.
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Proof. The problem clearly belongs to NP. NP-hardness with respect to Turing-reductions is obvious because of the
straightforward Turing-reduction from “Subset Sum” to “Exact Cardinality Constrained Subset Sum”. �

We briefly note that the problem is also NP-hard with respect to the usual many-one reductions, which can be proven
by slightly modifying Karp’s [12] polynomial reduction from “3-dimensional Matching” to “Partition”. Since the
required modifications are quite straightforward, we omit the details.

Theorem 9. “Exact Working Set Selection” (viewed as a decision problem) is NP-complete.

Proof. Since the optimal threshold t for a given working set I can be found efficiently (and the appropriate working
set can be guessed), the problem clearly belongs to NP. We complete the proof by presenting a polynomial reduction
from “Exact Cardinality Constrained Subset Sum” to EWSS. From the input parameters s1 ≤ · · · ≤ sm ≤ S and q of
“Exact Cardinality Constrained Subset Sum”, we derive the following input parameters of EWSS:

• a0 = −1 and ai = S/si for i = 1, . . . , m.
• (w0, w

′

0) = (0, S) and (wi , w
′

i ) = (si , S − si ) for i = 1, . . . , m.
• Parameter q ′

= q + 1 is considered as the bound on the size of the working set and B = q ′S.

Fig. 1 illustrates this construction. It shows the input instance of EWSS that results from the input instance

(s5, . . . , s1) = (2, 3, 4, 6, 8) , S = 12 , q = 3

of “Exact Cardinality Constrained Subset Sum”.
Note that threshold t = 0 is an S-unifier. Thus, the largest possible gain for player 1 is B = q ′S. This gain
can be achieved iff there exists a working set I of size q ′ that puts threshold 0 in a balanced position. Since
0 /∈ {a0, a1, . . . , am}, 0 is in a balanced position iff∑

i∈I :ai <0

w′

i =

∑
i∈I :ai >0

wi . (8)

According to the choice of the input parameters for EWSS, condition (8) implies that
∑

i∈I :ai <0 w′

i = w′

0 = S and∑
i∈I :ai >0 wi =

∑
i∈I :ai >0 si , where the latter sum contains q terms.

This discussion can be summarized as follows: player 1 can achieve a gain of at least B = q ′S iff there exist q terms
from s1, . . . , sn that sum-up to S. This shows that “Exact Cardinality Constrained Subset Sum” can be polynomially
reduced to EWSS. �

5. Complexity of approximate working set selection

Recall that “Knapsack” is the following NP-complete problem:
Given a finite set M of items, a “weight” w(i) > 0 and a “value” v(i) > 0 for each i ∈ M, a “weight bound” W > 0
and a “value goal” V > 0, decide whether there exists a subset I ⊆ M such that

WI :=

∑
i∈I

w(i) ≤ W and VI :=

∑
i∈I

v(i) ≥ V .

In order to view “Knapsack” as optimization problem, we may drop the value constraint VI ≥ V , and ask for a subset
I that leads to the largest possible total value VI subject to the weight constraint WI ≤ W .

We consider here the problem “Cardinality Constrained Knapsack”. It is a variant of “Knapsack” where the input
contains an additional parameter q ≤ n and the constraint |I| ≤ q is put on top of the weight constraint. Since this
problem contains “Knapsack” as a special case (where q = |M |), it is clearly NP-hard. The following is known about
this problem:

Lemma 10 ([2]). (1) There exists an algorithm for “Cardinality Constrained Knapsack” that runs in time O(|M |)

and outputs a solution whose total value is within a factor 2 of optimality.
(2) “Cardinality Constrained Knapsack” can be solved by a full polynomial time approximation scheme within

O(|M | + kq2) steps, i.e., there exists an algorithm that, on input (M, w, v, W, q, k), runs for O(|M | + kq2)

steps and outputs a (feasible) solution I whose total value VI is within factor 1 + 1/k of optimality.
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The main result of this section is as follows:

Theorem 11. Any algorithm that solves “Cardinality Constrained Knapsack” within T (|M |, q) steps and outputs a
solution whose total value is within factor c of optimality can be converted into an algorithm that solves “Approximate
Working Set Selection” within O(qmT (m, q)) steps and outputs a solution that is within factor 2c of optimality.

Proof. Let I∗ denote a working set that leads to the largest possible gain, say g∗, for player 1 and t∗ the corresponding
threshold (being in a balanced position w.r.t. I∗). According to Lemma 5, we may assume without loss of generality
that t∗ ∈ {a1, . . . , am}. Define

M = {1, . . . , m}, M=
∗ = {i ∈ M | ai = t∗},

M ′
∗ = {i ∈ M | ai < t∗}, M ′′

∗ = {i ∈ M | ai > t∗},

and

I =
∗ = M=

∗ ∩ I∗, I ′
∗ = M ′

∗ ∩ I∗, I ′′
∗ = M ′′

∗ ∩ I∗.

Note that g∗ = g′
∗ + g′′

∗ where

g′
∗ =

∑
i∈I ′

∗

w′

i (t∗ − ai ) and g′′
∗ =

∑
i∈I ′′

∗

wi (ai − t∗).

Consider the following non-deterministic11 algorithm:

(1) Guess j ∈ M such that t∗ = a j , compute the partition of M into M=
∗ , M ′

∗, M ′′
∗ (assuming that a j can play the role

of t∗), guess whether g′
∗ ≥ g′′

∗ , and guess 0 ≤ q ′
≤ q.12

(2) If g′′
∗ ≥ g′

∗, then proceed as follows:
(a) Pick a set I ′

⊆ M ′
∗∪ M=

∗ of size q ′ such that the parameters w′

i with i ∈ I ′ are the q ′ largest weight parameters
in (w′

i )i∈M ′
∗∪M=

∗
. Compute the total weight W ′

=
∑

i∈I ′ w′

i .
(b) For every i ∈ M ′′

∗ , set vi = wi (ai − t∗). Intuitively, vi represents the gain that results from putting i into
the working set. Apply the given algorithm, say A, for “Cardinality Constrained Knapsack” to the following
problem instance:
- M ′′

∗ is the set of items.
- wi is the weight and vi the value of item i ∈ M ′′

∗ .
- W ′ is the weight bound, and q ′′

= q − q ′ is the bound on the number of items.
Let I ′′ be the set of indices that is returned by A.

(3) If g′′
∗ < g′

∗, then apply the analogous procedure.
(4) Output working set I = I ′

∪ I ′′.

Let’s see how to remove the initial non-deterministic guesses. In a deterministic implementation, the algorithm
performs an exhaustive search instead of guessing: it loops through all j ∈ M and q ′

∈ {0, . . . , q}, and it explores
both possible values (TRUE and FALSE) of the Boolean expression g′′

∗ ≥ g′
∗. Clearly, all but one runs through these

loops are based on “wrong guesses” (including the possibly wrong computation of M=
∗ , M ′

∗, M ′′
∗ when the algorithm

uses an a j 6= t∗ in the role of t∗). A wrong guess may even lead to an inconsistency. (For example, there might be less
than q ′ elements in M ′

∗ ∪ M=
∗ .) Whenever such an inconsistency is detected, the algorithm aborts the current iteration

and proceeds with the next. Each non-aborted iteration (including the iteration with the correct guesses) leads to a
candidate working set. A candidate set leading to the highest gain for player 1 is finally chosen.
Observe now that I ′′

∗ is a feasible solution for the knapsack Problem, since it is a subset of M ′′ of size at most
q ′′

= q − q ′ and∑
i∈I ′′

∗

wi ≤

∑
i∈I ′

∗∪I =
∗

w′

i ≤ W ′.

11 We will later remove non-determinism by means of an exhaustive search.
12 If g′′

∗ ≥ g′
∗, then we should intuitively identify q ′ with |I=

∗ + I ′
∗|.
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The first inequality holds because t∗ is in a balanced position; the second-one holds because W ′ is the total weight of
the q ′ “heaviest” points from M ′

∗ ∪ M=
∗ . Let’s now argue that the solution I = I ′

∪ I ′′ obtained in the iteration with
the correct guesses leads to a gain g ≥ g∗/(2c). Let g′ and g′′ denote the gains represented by I ′ and I ′′, respectively
(such that g = g′

+ g′′). For reasons of symmetry, we may assume that g′′
∗ ≥ g′

∗. Then, the following holds:

g ≥ g′′
≥

1
c

max

{∑
i∈I

vi

∣∣∣∣∣ I ⊆ M ′′, |I| ≤ q ′′,
∑
i∈I

wi ≤ W ′

}

≥
1
c

∑
i∈I ′′

∗

vi =
g′′
∗

c
≥

g∗

2c
.

Note that, within the max-expression, I runs through all feasible solutions for the knapsack problem instance. The
second inequality holds for the following reasons:

• By assumption, A has performance ratio c.
• Although I = I ′

∪ I ′′ does not necessarily put t = a j in a balanced position, only the left side might perhaps be
“too heavy”.13 Thus vi = wi (ai − t∗) underestimates the true gain values contributing to g′′ (or, at least, does not
overestimate them).

The third inequality holds because I ′′
∗ is a feasible solution for the knapsack problem instance. The final inequality is

valid since g′′
∗ ≥ g′

∗.
The time bound O(qmT (m, q)) is obvious, since there are basically O(qm) calls of the given algorithm A with time
bound T . �

Combining the first statement in Lemma 10 with Theorem 11, we get

Corollary 12. There exists an algorithm for “Approximate Working Set Selection” that runs in time O(qm2) and
finds a working set whose gain is within factor 4 of optimality.

Although a time bound O(qm2) is a polynomial of small degree, it is still not satisfactory for practical purposes. It
would be interesting to know whether there are faster approximation algorithms that avoid this detour through the
knapsack problem.

For a large class of maximization problems (dealing with so-called “independence systems”), Korte and
Schrader [16] characterized all problems that admit a full polynomial time approximation scheme (FPTAS). It turns
out that, for any such problem with an FPTAS, one can apply a variant of the algorithm by Ibarra and Kim [10] that
was originally designed for “Knapsack”. The problem “Approximate Working Set Selection” does however not fit
into the framework of independence systems. The following result is therefore not implied by the results of Korte and
Schrader, and the FPTAS that we design for “Approximate Working Set Selection” is not a variant of Ibarra and Kim’s
algorithm (although it is also based on “rounding and scaling”):

Theorem 13. (1) There exists a pseudo-polynomial algorithm for “Working Set Selection” that finds an optimal
solution in O(q3m2w2

max) steps where wmax := max{w1, w
′

1 . . . , wm, w′
m}.

(2) There exists a full polynomial time approximation scheme for “Approximate Working Set Selection” which runs
for O(k2q7m3) steps and outputs a solution that is optimal up to factor 1 − 1/k.

The proof of Theorem 13 is technically involved, and therefore it is postponed to the Appendix A.

6. Linear time construction of a rate certifying pair

Throughout this section, we restrict ourselves to the optimization problem P0 from (3).

13 This follows from the greedy selection of the q ′ indices that are included in I ′.
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Let x ∈ R(P0) be a feasible solution and x∗ ∈ R(P0) an optimal feasible solution. Define

σ(x) := sup
x ′∈R(P0)

(
(∇ f (x))>(x − x ′)

)
(9)

σ(x |i1, i2) := sup
x ′∈R(P0):x ′

i =xi for i 6=i1,i2

(
(∇ f (x))>(x − x ′)

)
. (10)

As already noted by Hush and Scovel [9], the following holds14:

f (x) − f (x∗) ≤ (∇ f (x))>(x − x∗) ≤ σ(x). (11)

(i1, i2) is called an α-rate certifying pair for x if

σ(x |i1, i2) ≥ α( f (x) − f (x∗)). (12)

An α-rate certifying algorithm is a decomposition algorithm for P0 that always includes an α-rate certifying pair for
the current feasible solution in the working set. Hush and Scovel [9] have shown that any α-rate certifying algorithm
has a polynomial rate of convergence. Furthermore, they have provided a decomposition algorithm that finds an
(1/m2)-rate certifying pair for the current feasible solution within O(m log m) steps.

In this section, we describe how to retrieve an α-rate certifying pair for the current feasible solution in linear time,
where α is always as large as possible (at least 1/m2).

To this end, we introduce the following notions:

• A pair (i1, i2) that maximizes σ(x |i1, i2) is called a maximum-rate certifying pair for x .
• Let DS(x) denote the data structure (associated with the current feasible solution x) that consists of the following

two sorted lists of length m, respectively:
. The first list contains the items (i, xi − li ) for i = 1, . . . , m.
. The second list contains the items (i, ui − xi ) for i = 1, . . . , m.

Both lists are sorted non-increasingly according to the second component of their items.

Note that data structure DS(x) can be updated in O(m) steps, because two subsequent feasible solutions differ in only
constantly many components (assuming constant size of the working set). The main result of this section reads as
follows:

Theorem 14. Given x, ∇ f (x), and DS(x), a maximum-rate certifying pair can be computed in O(m) steps.

Proof. There are only m possible values for the quantities

µ+

i := xi − li and µ−

i := ri − xi ,

respectively (because i ranges from 1 to m). The key to the proof is the observation that the inspection of m2 candidate
pairs (i1, i2) can be circumvented by considering all possible

µ ∈ M := {xi − li , ri − xi | i = 1, . . . , m},

one at a time, and by efficiently retrieving a kind of “conditioned maximum-rate certifying pair” (i1, i2) subject to
µ+

i1
≥ µ and µ−

i2
≥ µ. Details follow.

Without loss of generality, we may assume that P0 is normalized, i.e., y in (3) is the all-ones vector. It is not hard to
see that the following holds:

Claim 1. If (∇ f (x))i1 ≥ (∇ f (x))i2 then

σ(x |i1, i2) =
(
(∇ f (x))i1 − (∇ f (x))i2

)
min{µ+

i1
, µ−

i2
}.

14 The first inequality in (11) is equivalent to f (x)+(∇ f (x))>(x∗−x) ≤ f (x∗), which is satisfied by all convex functions. The second inequality
in (11) is trivial.
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Proof of Claim 1. According to (10), we may choose x ′ such that 1̄>x ′
= 0, l ≤ x ′

≤ r , x ′

i = xi for every i 6= i1, i2,
and

σ(x |i1, i2) = (∇ f (x))i1(xi1 − x ′

i1
) + (∇ f (x))i2(xi2 − x ′

i2
).

Recall that x (as a member of R(P0)) also satisfies 1̄>x = 0 and l ≤ x ≤ r . Thus,

0 = 1̄>(x − x ′) = (xi1 − x ′

i1
) + (xi2 − x ′

i2
),

which implies that

d := xi1 − x ′

i1
= x ′

i2
− xi2 (13)

and

σ(x |i1, i2) = d ·
(
(∇ f (x))i1 − (∇ f (x))i2

)
.

Since, by assumption, (∇ f (x))i1 − (∇ f (x))i2 ≥ 0, it follows that x ′ was chosen so as to maximize d from (13)
without violating the box-constraints. The largest possible value for d is obviously

d = min{xi1 − li1 , ri2 − xi2} = min{µ+

i1
, µ−

i2
},

which concludes the proof of Claim 1.

Claim 2. For µ ∈ M = {xi − li , ri − xi | i = 1, . . . , m}, define

σµ(x) =

 max
i1:µ

+

i1
≥µ

(∇ f (x))i1 − min
i2:µ

−

i2
≥µ

(∇ f (x))i2

µ.

Then, the following holds:

max
i1,i2

σ(x |i1, i2) = max
µ

σµ(x).

Proof of Claim 2. We first show that

max
i1,i2

σ(x |i1, i2) ≤ max
µ

σµ(x).

According to Claim 1, we may choose i∗1 , i∗2 such that

0 ≤ max
i1,i2

σ(x |i1, i2) =

(
(∇ f (x))i∗1

− (∇ f (x))i∗2

)
min{µ+

i∗1
, µ−

i∗2
}.

Setting

µ∗
:= min{µ+

i∗1
, µ−

i∗2
},

we may proceed as follows:

max
i1,i2

σ(x |i1, i2) =

(
(∇ f (x))i∗1

− (∇ f (x))i∗2

)
µ∗

≤ max
µ

 max
i1:µ

+

i1
≥µ

(∇ f (x))i1 − min
i2:µ

−

i2
≥µ

(∇ f (x))i2

 .

The last inequality is valid because µ := µ∗ and i1 := i∗1 , i2 := i∗2 is among the possible choices for µ, i1, i2.
The reverse inequality

max
µ

σµ(x) ≤ max
i1,i2

σ(x |i1, i2)
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can be shown is a similar fashion. Choose µ∗ and i∗1 , i∗2 such that

µ+

i∗1
≥ µ∗ and µ−

i∗2
≥ µ∗

and

max
µ

σµ(x) =

(
(∇ f (x))i∗1

− (∇ f (x))i∗2

)
µ∗

≤

(
(∇ f (x))i∗1

− (∇ f (x))i∗2

)
min{µ+

i∗1
, µ−

i∗2
}

≤ max
i1,i2

σ(x |i1, i2).

This concludes the proof of Claim 2.
In order to compute the pair (i1, i2) that maximizes σ(x |i1, i2), we may apply Claim 2 and proceed as follows:

Consider the values µ ∈ M in decreasing order, thereby keeping track of the index i1(µ) that maximizes (∇ f (x))i1

subject to µ+

i1
≥ µ, and of the index i2(µ) that minimizes (∇ f (x))i2 subject to µ−

i2
≥ µ. Finally, pick the value µ∗ that

maximizes
(
(∇ f (x))i1(µ) − (∇ f (x))i2(µ)

)
µ and output (i1(µ∗), i2(µ∗)). Clearly, this procedure can be implemented

within O(m) steps by means of DS(x). �

In the final two remarks, we would like to point the reader’s attention to some new results that are connected to the
results in this paper (and that were found during the review period):

Remark 15. As for SVM-optimization, there always exists a 1/m-rate certifying pair [26] or (the latest improvement)
even a 1/(m − 1)-rate certifying pair [8]. In [8], the interested reader will also find further discussion of (and
experiments with) our linear time procedure for the retrieval of a maximum-rate certifying pair (in combination with
procedures that follow the “violating-pair approach”).

Remark 16. List and Simon [26] have generalized the “rate certifying pair approach” such that it becomes applicable
to arbitrary convex quadratic optimization problems (not just SVM-optimization). To this end, they have defined a
function σ(x |I ), where I denotes a working set of size at most q. This function plays the same role for arbitrarily
large working sets that function σ(x |i1, i2) is playing for working sets of size 2. Furthermore, List [23] has shown that
the function C I (x) from Eq. (4) in this paper coincides with a function σ(x |I ) from [26]. Looking back, it follows
that Theorems 14 and 9 (about SVM-optimization) nicely complement each-other:

• Finding a maximum-rate certifying pair can be done in linear time.
• Finding a maximum-rate certifying set (of variable size) is NP-hard.

7. Future research

A central object of our future research is the design of policies that lead to a fast convergence to the optimum and,
at the same time, can be efficiently implemented for a wide range of optimization problems. Furthermore we would
like to gain a better theoretical understanding of the good empirical performance of SVM-optimization algorithms
that follow the “violating pair approach”.
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Appendix A. Proof of Theorem 13

The first statement of the theorem is proven in Section A.1, and the second one in Section A.2.



H.U. Simon / Theoretical Computer Science 382 (2007) 262–279 275

A.1. A pseudo-polynomial algorithm for “Working Set Selection”

For technical reasons, we consider a slightly more general problem where an input instance is augmented by “gain
values” v1, . . . , vm, v′

1, . . . , v
′
m (which may be functions of a threshold t ∈ {a1, . . . , am} chosen by player 2).15 It will

still be the case that player 1 obtains gain vi if ai > t , gain v′

i if ai < t and no gain if ai = t .16 For any 1 ≤ j ≤ m,
consider a 4-dimensional table

G j [m′, q ′, l, r ] = max
I

 ∑
i∈I :ai <a j

v′

i +

∑
i∈I :ai >a j

vi

 (A.1)

subject to I ⊆ {1, . . . , m′
}, |I | ≤ q ′, and

l −

∑
i∈I :ai =a j

w′

i ≤

∑
i∈I :ai <a j

w′

i −

∑
i∈I :ai >a j

wi ≤ r +

∑
i∈I :ai =a j

wi .

A set I leading to the maximum in (A.1) and satisfying the subsequent constraints is called a “witness” for “gain”
G j [m′, q ′, l, r ]. From the tables G j , we can infer the largest possible gain for player 1:

• G j [m, q, 0, 0] is the largest gain for player 1 subject to the condition that she selects a set I ⊆ {1, . . . , m} of size
at most q that puts threshold t = a j in a balanced position (such that player 2 is forced to select threshold t = a j ).

• max1≤ j≤m G j [m, q, 0, 0] represents the largest possible gain for player 1.

Assuming

1 ≤ m′
≤ m, 1 ≤ q ′

≤ q, −qwmax ≤ l, r ≤ qwmax,

table G j is of size q3mw2
max. We adopt the convention that G j evaluates to −∞ when one of the parameters m′, q ′, l, r

is outside its range. For m′
= 1, the entries of G j are computed according to

G j [1, q ′, l, r ] =

v′

1 if a1 < a j and l ≤ +w′

1 ≤ r
v1 if a1 > a j and l ≤ −w1 ≤ r
0 otherwise.

It is easy to see that, for m′
≥ 2, the following holds:

• If am′ < a j , then G j [m′, q ′, l, r ] equals

max{G j [m′
− 1, q ′, l, r ] , v′

m′ + G j [m′
− 1, q ′

− 1, l − w′

m′ , r − w′

m′ ]}.

• If am′ > a j , then G j [m′, q ′, l, r ] equals

max{G j [m′
− 1, q ′, l, r ] , vm′ + G j [m′

− 1, q ′
− 1, l + wm′ , r + wm′ ]}.

• If am′ = a j , then G j [m′, q ′, l, r ] equals

max{G j [m′
− 1, q ′, l, r ] , G j [m′

− 1, q ′
− 1, l − w′

m′ , r + wm′ ]}.

It is furthermore easy to see that, without introducing much additional overhead, we can maintain a data structure
that allows us to efficiently retrieve (on demand) a witness I for an entry of a table. Thus, we can first compute the
largest possible gain for player 1 and then the index set I ⊆ {1, . . . , m} representing the best move of player 1. Since
there are m tables of size q3mw2

max, we arrive at a pseudo-polynomial algorithm with time bound O(q3m2w2
max). This

completes the proof of the first statement in Theorem 13. �

15 It is precisely this functional dependence that makes our problem not fit into the framework of independence systems.
16 Thus, the special setting vi = wi (ai − t) and v′

i = w′
i (t − ai ) leads us back to our original problem.
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A.2. An FPTAS for “Approximate Working Set Selection”

“Rounding and scaling” is a standard technique that often allows one to convert a pseudo-polynomial algorithm into
a full polynomial time approximation scheme (FPTAS). As we will show below, this is also the case for “Approximate
Working Set Selection”. The basic idea is to apply the pseudo-polynomial algorithm from the previous subsection
with gain values vi = wi (ai − t), v′

i = w′

i (t − ai ) and with weight parameters w̃i , w̃
′

i obtained from wi , w
′

i by
means of rounding and scaling. We will, however, land into a difficulty that does not exist for problems fitting into
the framework of independence systems: since we are not dealing with the true weight parameters, we will not be
able to check whether a selection of I ⊆ {1, . . . , m} puts a threshold t = a j into a balanced position. Instead, we
can guarantee only that the position is “almost balanced”. The total gain value that we associate with the selection
of I may therefore be too optimistic. Player 2 can make use of the (slight) unbalance, shift his threshold away from
a j and destroy some fraction of the “quasi-gain” that would result from t = a j . We will, however, be able to show
that a fraction 1 − 1/k − 1/k2 of the quasi-gain can be saved. To this end, the scaling factor used to bring the weight
parameters into a smaller range must be carefully chosen. We cannot simply make it proportional to wmax, because
the resulting rounding error would give player 2 too much flexibility for choosing his threshold. In fact, we will be
forced to exhaustively search through a collection of possible scaling factors which will result in a larger collection of
tables. We will, furthermore, distinguish between non-degenerate and degenerate solutions, show how to approximate
the best non-degenerate solution, and discuss the case of degenerate solutions separately. Details follow.
We start with the definition of degenerate and non-degenerate index sets. For any I ⊆ {1, . . . , m} and any 1 ≤ j ≤ m,
define

w+(I, j) = max{wi , w
′

i | i, i ′ ∈ I, ai < a j , ai ′ > a j },

w=
+(I, j) = max{wi , w

′

i | i, i ′ ∈ I, ai = ai ′ = a j }.

Let I ⊆ {1, . . . , m}, |I | ≤ q , be an index set that puts threshold t = a j be in a balanced position. We say that I is
non-degenerate if w=

+(I, j) ≤ qw+(I, j). Let Gmax
j denote the maximal gain for player 1 provided that she selects a

non-degenerate index set that puts threshold t = a j into a balanced position, and let Gmax
:= max1≤ j≤m Gmax

j . In the
sequel, we show how to approximate Gmax in polynomial time. Thereafter, we briefly sketch how to approximate the
best degenerate solution.
For any i+, j ∈ {1, . . . , m} such that ai+ 6= a j and for

w+ :=

{
w′

i+ if ai+ < a j

wi+ if ai+ > a j ,
(A.2)

consider the 4-dimensional table of “quasi-gains”

Gi+, j [m′, q ′, l, r ] = max
I

 ∑
i∈I :ai <a j

v′

i +

∑
i∈I :ai >a j

vi

 (A.3)

subject to i+ /∈ I , I ⊆ {1, . . . , m′
}, |I | ≤ q ′,

w+(I, j) ≤ w+ , w=
+(I, j) ≤ qw+ (A.4)

and

l −

∑
i∈I :ai =a j

w̃′

i ≤

∑
i∈I :ai <a j

w̃′

i −

∑
i∈I :ai >a j

w̃i ≤ r +

∑
i∈I :ai =a j

w̃i

where

w̃i :=

⌊
2qkwi

w+

⌋
and w̃′

i :=

⌊
2qkw′

i
w+

⌋
.

A set I leading to the maximum in (A.3) and satisfying the subsequent constraints is called a “witness” for “quasi-
gain” Gi+, j [m′, q ′, l, r ]. The role of the parameter i+ will be clarified later.
In order to compute table Gi+, j , we proceed as in the pseudo-polynomial algorithm, except that index i+ and indices
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leading to a violation of (A.4) are out of the game. Note that condition (A.4) makes sure that the parameters w̃i and
w̃′

i ′ , i, i ′ ∈ I, ai ′ ≤ a j , ai ≥ a j , do not exceed 2q2k. Substituting 2q2k for wmax in the time bound of the pseudo-
polynomial algorithm and taking into account that we have m-times as many tables as before, we conclude that all
tables can be computed within O(k2q7m3) steps (even when an entry of our choice is provided with a witness).
We move on and show how Gmax can be efficiently approximated by means of the tables Gi+, j . To this end, we
consider “special entries” of the form

Ĝi+, j :=

Gi+, j [m, q − 1,

=l︷ ︸︸ ︷
−w̃+ − q,

=r︷ ︸︸ ︷
−w̃+ + q] if ai+ < a j

Gi+, j [m, q − 1, w̃+ − q︸ ︷︷ ︸
=l

, w̃+ + q︸ ︷︷ ︸
=r

] if ai+ > a j .

Given a special entry (quasi-gain) Ĝi+, j and a corresponding witness I , we should intuitively think of I+ := I ∪ {i+}

as the set chosen by player 1. This explains why we have chosen parameter q − 1 instead of q, and why we find “set-
offs” ±w̃+ in the specification of the parameters l and r , respectively. The additional set-off-terms ±q will account
for rounding errors.
Let

G̃i+, j :=

{
v′

i+ + Ĝi+, j if ai+ < a j

vi+ + Ĝi+, j if ai+ > a j ,

G̃ j := maxi+ 6= j G̃i+, j and G̃∗ := max1≤ j≤m G̃ j .

Claim 1. G̃ j ≥ Gmax
j and (therefore) G̃∗ ≥ Gmax

∗ .
Proof of the Claim. Let I+ be a non-degenerate index-set that puts threshold t = a j in a balanced position and leads
to gain Gmax

j for player 1. Let w+ := w+(I, j). Choose i+ such that w+, i+ satisfy (A.2). In the sequel, we focus on
the case ai+ < a j (and note that the case ai+ > a j can be treated analogously). Finally, let I := I+ \ {i+}. Since I+
puts threshold t = a j in a balanced position, we know that

−

∑
i∈I+:ai =a j

w′

i ≤

∑
i∈I+:ai <a j

w′

i −

∑
i∈I+:ai >a j

wi ≤

∑
i∈I+:ai =a j

wi .

Since scaling and rounding are applied to at most q terms, we obtain

−q −

∑
i∈I+:ai =a j

w̃′

i ≤

∑
i∈I+:ai <a j

w̃′

i −

∑
i∈I+:ai >a j

w̃i ≤ q +

∑
i∈I+:ai =a j

w̃i , (A.5)

which, since ai+ < a j , can be rewritten as

−w̃+ − q −

∑
i∈I :ai =a j

w̃′

i ≤

∑
i∈I :ai <a j

w̃′

i −

∑
i∈I :ai >a j

w̃i ≤ −w̃+ + q +

∑
i∈I :ai =a j

w̃i . (A.6)

Index set I witnesses that

Ĝi+, j = Gi+, j [m, q − 1, −w̃+ − q, −w̃+ + q] ≥ Gmax
j − v′

i+ .

Thus G̃ j ≥ G̃i+, j = v′

i+ + Ĝi+, j ≥ Gmax
j . �

Let j ∈ {1, . . . , m} be arbitrary but fixed. Choose i+ such that G̃ j = G̃i+, j . Let I be a witness of the special entry
Ĝi+, j . We can view G̃ j = G̃i+, j as the gain for player 1 provided that she selects I+ := I ∪ {i+}, and provided that
player 2 chooses the (perhaps suboptimal) threshold t = a j . The crucial question is how much this gain is diminished
when player 2 chooses an optimal threshold. Here is an answer to this question:

Claim 2: If player 1 chooses I+ and player 2 chooses an optimal threshold, the resulting gain for player 1 is not
smaller than (1 − 1/k − 1/k2)G̃ j .

Proof of the Claim: Again, we focus on the case ai+ < a j (and note that the case ai+ > a j can be treated
analogously). Since I is a witness for table entry Ĝi+, j = Gi+, j [m, q − 1, −w̃+ − q, −w̃+ + q], we know
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that (A.5) holds. Rescaling (dividing by 2qk/w+) and taking into account the rounding errors, we get (after some
straightforward algebraic manipulations)∑

i∈I+:ai =a j

w′

i −
w+

k
≤

∑
i∈I+:ai <a j

w′

i −

∑
i∈I+:ai >a j

wi ≤

∑
i∈I+:ai =a j

wi +
w+

k
. (A.7)

If player 2 shifts the threshold d units away from a j (such that it comes into a balanced position), he can diminish the
gain at most by dw+/k. On the other hand,

min

 ∑
i∈I+:ai =a j

w′

i +

∑
i∈I+:ai <a j

w′

i ,
∑

i∈I+:ai =a j

wi +

∑
i∈I+:ai >a j

wi

 ≥

(
1 −

1
k

)
w+,

because, term w+ occurs in
∑

i∈I+:ai <a j
w′

i and (A.7) implies that∑
i∈I+:ai =a j

wi +

∑
i∈I+:ai >a j

wi ≥

∑
i∈I+:ai <a j

w′

i −
w+

k
≥ w+ −

w+

k
.

Thus, no matter which direction the threshold is shifted to, the remaining gain is at least d(1 − 1/k)w+. It follows
that player 2 can diminish the quasi-gain G̃ j at most by fraction (1 − (1/k))/k = 1/k − 1/k2. Thus, the resulting
gain for player 1 is at least (1 − 1/k − 1/k2)G̃ j . �

It is now easy to describe how Gmax can be approximated. First, choose indices i∗, j∗ as maximizers for G̃i+, j .
Then choose a witness I for the special table entry Ĝi∗, j∗ . Finally let player 1 choose I∗ := I ∪ {i∗}. According to
Claim 2, the resulting gain is not smaller than (1 − 1/k − 1/k2)G̃∗. According to Claim 1, this is not smaller than
(1 − 1/k − 1/k2)Gmax

∗ .
Of course, the best non-degenerate solution could be much worse than the best degenerate solution. Therefore, we
have to finally describe how to approximate the best gain for player 1, provided that she selects a degenerate index set
I . This approximation can be performed in an even simpler manner for the following reasons:

• We can distinguish between three types of degeneracies:
(1) maxi∈I :ai =a j w′

i > qw+(I, j) but maxi∈I :ai =a j wi ≤ qw+(I, j).
(2) maxi∈I :ai =a j wi > qw+(I, j) but maxi∈I :ai =a j w′

i ≤ qw+(I, j).
(3) maxi∈I :ai =a j w′

i > qw+(I, j) and maxi∈I :ai =a j wi > qw+(I, j).
• Each type of degeneracy leads to a simplified dynamic programming scheme. Consider, for instance, the

degeneracy of the first type. In this case, we will replace condition w=
+(I, j) ≤ qw+ in (A.4) by maxi∈I :ai =a j w′

i >

qw+ and maxi∈I :ai =a j wi ≤ qw+. Thus, I automatically satisfies the balance condition (7). Consequently,
parameter l of the 4-dimensional table now becomes superfluous. Similar modifications (basically simplifications,
since the table becomes lower-dimensional) take place for degeneracies of the second or third type.

We omit the straightforward but tedious details. �
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