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Abstract 

In this paper, we show how to extend well-known discrete orthogonality results for complete 
sigma-pi neural networks on bipolar coded information in presence of dilation and translation 
of the signals. The approach leads to a whole family of functions being able to implement 
any given Boolean function. Unfortunately, the complexity of such complete higher order neural 
network realizations increases exponentially with the dimension of the signal space. Therefore, 
in practise one often only considers incomplete situations accepting that not all but hopefully 
the most relevant information or Boolean functions can be realized. At this point, the introduced 
dilation and translation parameters play an essential r81e because they can be tuned appropriately 
in order to fit the concrete representation problem as best as possible without any significant 
increase of complexity. In detail, we explain our approach in context of Hopfield-type neural 
networks including the presentation of a new learning algorithm for such generalized networks. 
0 1998 Elsevier Science B.V. All rights rescrvcd. 
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1. Introduction 

One of the most classical problems in discrete information processing is to efficiently 

implement a given Boolean function p : { - 1, 1 }” ---f { - 1,l)“. Since p can be written as 

a function vector p=(p1,p2,...,pnl) consisting of functions p,:{-l,l}“+{-l,l}, 

1 <,j <m, it is sufficient to consider the case m = 1. A standard situation of the above 

kind is the following: assume that a number of bipolar coded (n, I)-tuples are 

given, 

(X(.QP)E{-l,l}n x {-l,l}, I <s<t, (1.1) 
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where we require that the vectors x (‘), 1 <s 6 t, are pairwise distinct. The problem is 

to construct a function p : { - 1 , 1 }” + { - I, 1) satisfying 

p(x@)) = p, 1 <s -=c t 1. 

As it is well known, a possible solution of this problem connected 

Walsh function can be obtained as follows. Define the so-called 2” 

or sigma-pi coefficients by 

wR:=2-“c+n $‘, Rc{1,2 ,..., n}, 
s=l kER 

(1.2) 

with the keyword 

Walsh coefficients 

(1.3) 

(with the usual convention to identify a product over the empty set with 1) and 

p:{-l,l}“+{-l,O,l} by 

p(x):= c WRn xk. (1.4) 

R C{ l,...,n} kER 

Then, it is easily checked that p satisfies the interpolation conditions (1.2). The con- 

struction of p is based on the so-called sigma-pi orthogonality of bipolar coded vectors, 

namely, 

RC{l,...,n} PER 

(1.5) 

or - in other words - the discrete orthogonality of the Walsh functions (see [3, 5, 71) 

for the general theory and [l, 2, 81 for special applications in neural network context). 

The problem in view of solution (1.4) is that in general one has to deal with 2” terms 

in the sum defining p, a complexity which is unacceptable in practice. Therefore, 

a number of modifications and simplifications are discussed in literature, especially 

in connection with neural network and associative memory design. The first essential 

simplification is to restrict the sum appearing in (1.4) to run only over a “small” set 

r of subsets of { 1,. . ,n} instead of summing over all subsets of { 1,. . . ,n}, 

p(x) := c WR n xk. (1.6) 

RET kER 

Of course, any such restriction of the sum will probably violate some or even all 

interpolation conditions (1.2). To compensate this simplification, at least in part, a 

second modification is usually introduced. Using the so-called Signum-type transfer 

function Ts:R+{-l,l}, 

(1.7) 

definition (1.6) is changed to 

(1.8) 
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This kind of ultimate definition can be justified because p should always yield 1 or - 1 

which is obviously no longer guaranteed when simply cutting the sum as in (1.6). The 

new definition (1 .S), however, makes sure that p(x) is either 1 or - 1 and reduces the 

task of (1.6) to indicate the right sign, only. The drawback of this approach is that in 

many concrete applications the number of remaining weights WR, R E r, to be tuned in 

order to satisfy all conditions (1.2) are not sufficient; besides the problem to figure out 

which set I- should be used (see [2] for a discussion of such pruning strategies) the 

chosen set of sigma-pi weights is often too restricted to settle all specific tasks even 

in case that they are closely related. Precisely at this point our ideas enter the field. 

We will use dilation and translation parameters as already introduced in [6] in order 

to increase the flexibility of our Boolean representation functions without losing the 

nice property of discrete orthogonality, the basis of the classical approach. In the next 

section we will explain this dilation and translation idea in detail and give the theoretical 

justification. In Section 3 we will apply our approach in the special case of incomplete 

sigma-pi Hopfield neural networks, we will propose a new learning algorithm based 

on dilation and translation, and show and discuss the results of a concrete example. In 

the final section we briefly summarize our main conclusions. 

2. Linking discrete orthogonality with dilation and translation 

In the following, we take a look at a generalization of (1.8) by introducing dilation 

and translation. In detail, we consider functions of type p : { - 1 , 1 }” 4 { - 1, 1 }, 

p(x>:=Ts ~WRI-p~kXk4dk) 
RET kER 

(2.1) 

with r a set of subsets of {l,..., n}, WR E [w, R E r, the so-called sigma-pi weights 

and c(k E [w, %k > 0, and dk E [w, 1 d k <n, some dilation and translation parameters. The 

general question we should keep in mind is how to choose the weights and parameters 

in order to make p satisfy certain interpolation conditions like (1.2) under the constraint 

of a reasonable small set r to control complexity. For theoretical reasons we start with 

a result dealing with the so-called complete case where I- coincides with the set of all 

subsets of { 1,. . . , n}. First of all, we have the following orthogonality result. 

Theorem 2.1. Let n E N, x(‘),x(*) E{-l,l}’ and dk E [w, I <kdn, be given arbi- 

truril}~. Then, for uk E Iw, 1 <k <n, d&ned us 

%k := d 1 +d;, 16k6n, 

the ,following discrete orthogonulity result holds: 

(2.2) 

CrI (%@:” - d&x:2’ - dk) 
= () 

’ 
x(l) # xw 

R c{~.....II} LER 
> 1, xtl)=x(*). (2.3) 
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Proof. Let n E N and dk E [w, 1 <k 6 n, be given arbitrarily and & E [w, 16k <n, be 

defined by (2.2). Moreover, we use the fact that for arbitrary pk E R, 1 6 k 6n, the 

identity 

c n fik= fi(l+pk) 

Rc{l,...,n} kER k=l 

(2.4) 

holds which may be easily proved by induction. Now, for XC’), xc2) E { - 1,l)” given 

arbitrarily the above identity implies 

c n (&x;‘) - d&X/$ - dk) 
R C{ I,...,n,} kER 

= II ’ (1 + a$~)$) - r*kdkX;’ - GQd&’ + di). (2.5) 
k=l 

Case 1: (x(l) # d2)). In this case there exists at least one index k E { 1,. . . , FZ} with 
(I)= _ 

‘k ~$2’. Therefore, the kth factor of the right-hand side of (2.5) reduces to 

2 (1) (2) 
1 + akxk xk - 

(1) 
akdkxk - akdkxk (2) + d; = 1 - ctf + d;. (2.6) 

However, because of (2.2) we have 

1 - U; + d; = 0. (2.7) 

Summing up, one factor of the right-hand side of (2.5) is zero, which implies that the 

whole product is zero and therefore yields 

c n(6k~~‘-dk)(Uk~~‘--dk)=O. 
RC{l,...,n} kER 

(2.8) 

Case 2: (x(i) = ~(~1). In this case the right-hand side of (2.5) reduces to 

n 

II 2 (1) (2) (1 +$x, $ - (1) C(kdkXk - XkdkXk (2) + d;) 
k=l 

n 

=n( 1 + M; - 2ClkdkX:') + d;) 
k=l 

n 

= II (1 + (‘%x:” - &j2) 
k=l 

=n(l +(dl +dixi”-dk)2)31, 
k=l 

(2.9) 
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which implies 

CrI (QXI;‘) - dk)(3kXk (*) - dk)> 1. n 

~c{l,....n}k~R 

(2.10) 

Remark. For dk = 0, 1 dk 6 n, the above result reduces to the well known sigma-pi 

orthogonality of bipolar coded vectors, or - in other words - the orthogonality property 

of Walsh functions (see [3, 5, 71). 

With the above theorem we are prepared to prove the following basic result. 

Theorem 2.2. Let n, t E N, dk E aB, 1 <k 6n, und 

(x(S),y(“))E (-1, l}” x (-1, l}, 1 Bsbt, (2.11) 

with x(‘) # _x(,‘) for r # s be given arbitrarily. Then, with xk E iw, 1 <k 6 n, and wR E iw, 

Rc{l,..., n}, defined as 

(2.12) 

s=l kER 

and TS as in (1.7), thefunction p:{-l,l}“+{-l,l}, 

p(x) := r, c WR n (EkXk - dk) 3 

R c{l,....n} kER 

(2.13) 

(2.14) 

sati$es the interpolution conditions 

p(x(s)) =_ VCy) 
. 3 1 <s<t. (2.15) 

Proof. Let s E { 1,. , t} be given arbitrarily and c(k E R, 1 f k <n, and wR E 58, 

Rc {l,..., n}, be defined by (2.12) and (2.13), respectively. Then, by means of (2.14) 

we have 

p(X’“‘) = Ts c WR n (a/$ - dk) 
RC{l,...,n} kER 

= Ts 2 y(‘) n (C&x;) - dk) n @k$) - dk) 

r=l kER kER 

c n (&X;) - dk)(X,# - dk) . (2.16) 
R C{ I,....n} kER 
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Applying Theorem 2.1 and using the fact that ~(‘1 # x(‘) for Y # s we finally obtain 

zz Ts(ycs)) = y(‘). 0 (2.17) 

In view of the above theorem the free translation parameters dk, 1 <k <n, (implying 

the dilation parameters &, 1 <k 6 n, and the sigma-pi weights WR, R C { 1,. . . , n}, via 

(2.12) and (2.13) respectively) obviously play a crucial role. For any choice of these 

parameters the function p defined by (2.14) will interpolate the given data. One idea 

for using the freedom of choosing the translation parameters in a clever way could 

be the following: Choose the translation parameters dk, 1 <k Gn, in such a way that 

as much sigma-pi weights WR as possible become zero or close to zero so that they 

may be dropped without violating any of the interpolaton conditions (2.15). This kind 

of strategy would probably reduce the complexity of p which is our general aim. 

Unfortunately, at the moment we do not have any simple technique to figure out in 

advance how to choose the translation parameters dk, 1 d k Gn, in order to make as 

much sigma-pi weights superfluous as possible. Therefore, in the following section we 

will proceed in a way which is the standard one in the literature. We will assume that 

the set of interpolation points (2.11) has been analyzed in advance and a fixed set r of 

subsets of { 1,. . . , rz} has been found to be quite well suited to realize the interpolation 

function p. With r a fixed set of subsets of { 1,. . . , n} we now still have the freedom 

to choose the translation parameters dk, 1 <k <n, therefore increasing the likelihood 

of still being able to fit the interpolation conditions by the reduced set of sigma-pi 

weights. In detail, we will now discuss this approach in context of sigma-pi Hopfield 

neural networks. 

3. Application to incomplete sigma-pi Hopfield neural networks 

We assume that the reader is quite familiar with usual higher order networks of 

Hopfield-type (see [4, Ch. 51, for a detailed introduction). These networks are used in 

order to store a set of t different bipolar coded vectors 

x(1),J(~),x(3) ,...,X(‘)E{-1 l}” > (3.1) 

and reconstruct them even in case of slightly disturbed input information. More pre- 

cisely, in case that one of the stored vectors xc’) or a damaged version of it is entered 

into the network it should be able to generate the correct output xtS) using a kind of 

Gaub-Seidel iteration. In neural network theory this reconstruction iteration is usually 

called recall mode. In the following, we give the general definition of the recall mode 
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of sigma-pi Hopfield neural networks including dilation and translation, where # al- 

ways stands for the number of elements of the respective set under consideration (see 

[6] for a more gentle introduction to these special kind of generalized Hopfield-type 

networks). 

Definition 3.1 (Recall mode). Let n E N and r be a non-empty collection of subsets 

of { 1,. , n}. The generalized sigma-pi Hopfield neural network may have n neurons, 

#r sigma-pi weights WR E [w, R E r, and n dilation and translation weights %k, dk E Iw, 

xk > 0, k E { 1,. , n}, which we assume to be generated by means of any reasonable 

learning algorithm. Now, in case that an input vector is entered, 

x=:X’“‘=(~~‘,X~‘,...,X~~~)e{-l,l}’~, (3.2) 

the generalized sigma-pi Hopfield network generates a sequence of vectors (x[~]),, E No 

via 

[u+ll ._ x, .- 

(3.3) 

(3.4) 

for 1 <j <n and u E No. As the output vector the so-defined recall mode yields the 

vector xtL.] E { - 1, I}“, which for the first time satisfies 

x[c = &+11 (3.5) 

for some v E No. The sigma-pi network is called complete of order Y, r E { 1,2,. . . , 

n - l}, in case that I- coincides with the set of all subsets of { 1,. . . , n} with at most 

Y + 1 elements; if no such r exists, we say that it is incomplete. 

There are at least two additional remarks which should be added in connection with 

the above definition. First of all, the above definition implicitly states that the recall 

mode terminates, i.e., that there exists a natural number v E PUo satisfying 

x[d = x[I.+c (3.6) 

which immediately implies 

xlc[I.l = xIl~+4 ) UEN. (3.7) 

This has been proved in [6]. Secondly, as defined above the dilation, translation and 

sigma-pi weights (parameters) are not yet tuned in order to store the bipolar vectors 

given by (3.1). This is explicitly done in a so-called learning mode which we define 

as follows. 

Definition 3.2 (Learning mode). Let n E RJ and r be a non-empty collection of subsets 

of {l,... , n}. The generalized sigma-pi Hopfield neural network may have n neurons, 
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#r sigma-pi weights WR E [w, R E r, and n dilation and translation weights uk,dk E [w, 

c(k>O, kE{l,..., n}. Now, in case that t bipolar coded vectors 

xu),xwx(3) ,...,X(f)E{-l,l}~ (3.8) 

are entered into the network in order to be stored, then the algorithm which sets 

16k<n, (3.9) 

1 dk<n, (3.10) 

, 

WR := m-I (i&f’ -d/c)> Rcr, (3.11) 
.s=l AER 

with 230 a free learning parameter, is called generalized Hebb learning scheme. 

Note that the generalized Hebb learning scheme defined above reduces to the usual 

Hebb learning scheme for sigma-pi Hopfield neural networks in case that /z = 0 or 

dk = 0, 1 <k <II (see [4, Ch. 5, Section 5.1.21). However, for dk > 0 (dk ~0) the 

corresponding activation factor (%j& - dk ) lies between 0 and 1 (- 1 and 0) for Xk = 1 

(xk = - 1) while it is less than - 1 (greater than 1) for Xk = - 1 (xk = 1). Since the sign 

of dk indicates whether there are more 1 (dk >0) or more - 1 (dk <0) entries in the 

kth component of all training patterns the proposed learning scheme makes an xk-value 

with low probability enter the network in a moderately overemphasized way, therefore 

increasing the probability of suitable changes in network activity. On the other hand, 

a quite likely xk-value is moderately damped by dilation and translation indicating the 

network that no dramatic changes in network state are necessary. 

Let us discuss the special choice of dk, 1 bk dn, as fixed in (3.9) also from another 

point of view. As it is well known each state vector x E { - 1, l}” of the Hopfield neural 

network can be associated with a so-called energy value, namely, 

E(x) := - c WR n (ukxk - dk). 

REI kER 

(3.12) 

The general design strategy of Hopfield neural networks is to choose the network 

parameters WR, %k and dk in such a way that the vectors (3.8) to be stored become 

local minima of the energy function E (see [ 1, 4, 6, 81 for details). Now, let us check 

the implication of this general attempt in case that we fix tlk and WR by (3.10) and 

(3.11) according to our orthogonality argument and only allow to vary the dk. For 

simplicity, let us further only consider the case that r coincides with the set of all 
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subsets of { 1,2,. . ,n} and let r E { 1,2,. . ,t} be given arbitrarily. We obtain 

R c{ I. ..A} s=l AER 

s=l k=l 

=-fi(l+(j/&&!‘-dk)2), 
k=l 

(3.13) 

where we have to apply the same arguments as used in proving Theorem 2.1. Now, 

depending on the choice of dk, 1 <k 6 n, the following different situations can appear: 

(1) dk=O for all kg {1,2,... ,n}: This is the classical choice which implies that 

each factor in the final representation of E(x(‘)) given by (3.13) becomes equal to 2. 

Therefore. 

E(x”‘) =: - 2”, 1 <Y <t, (3.14) 

i.e. each training pattern has the same energy. Especially, this choice does not make 

any difference between easy-to-store and difficult-to-store training patterns. 

(2) dk#O for some kE{1,2,..., n}: This choice implies that for a fixed given train- 

ing pattern x@) the kth factor 

(1 +(,/I +d;x;)-dk)2) (3.15) 

appearing in the final representation of E(x(‘)) given by (3.13) becomes less than 2 

for dkxf’>O and greater than 2 for dkx:’ ~0. The total effect on the energy E(x(“) is 

that it increases for dkxr) >0 (decreasing the probability of obtaining a local minimum 

in xc’)) while it decreases for dkxk (r) < 0 (increasing the probability of obtaining a local 

minimum in xc’)). If we now can manage to fix the parameter dk in such a way that 

dk-x:’ >0 indicates that the kth component of xc’) . is easy to store while dkx:’ < 0 is a 

hint for a difficult-to-store kth component our translation strategy should work. Indeed, 

in case that 

dk:=ikxf’#O, ).>O, 
s= I 

(3.16) 

is defined as in (3.9) and different from zero, dkx:) >O implies that xy’ has the same 

value as most kth components of the whole set of training patterns (easy-to-store) 

while dkxr) ~0 indicates that xt’ has a quite rare sign in comparison with all other 

kth components of the training patterns (difficult-to-store). Summing up, a proper signed 

dk with moderate absolute value (role of A) as fixed in (3.16) fits the job: It slightly 

decreases the energy of difficult-to-store patterns with rare sign distributions of the 

components while it cautiously increases the energy of easy-to-store patterns hopefully 

without destroying their local minima properties. 
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Of course, all the above arguments are only a heuristic attempt to motivate definition 

(3.9), where 220 is still a free learning parameter to be chosen appropriately (what- 

ever that means). In contrast, definitions (3.10) and (3.11) are not of this experimental 

type since they are the precise counterparts of definition (2.12) and (2.13) in the Hop- 

field setting. In other words, while definition (3.9) may perhaps not be the best way 

to fix the translation parameters, definitions (3.10) and (3.11) for the dilation param- 

eters and the sigma-pi weights are tuned best possible in the spirit of having discrete 

orthogonality in the background. In the following, we will underline the power of our 

new learning scheme by applying our generalized sigma-pi Hopfield neural networks to 

some test problems. The problems consist in learning a number of different patterns of 

(4 x 5)-dimension (n = 20) composed of “.” (to be identified with -1 ) and “x” (to 

be identified with 1 ). The patterns are either simple realizations of capital and small 

letters or randomly generated. In case of randomly generated patterns the ratio of the 

total number of “.” against the total number of “x” can be chosen in order to obtain 

highly correlated and therefore difficult to store situations. For a number of different 

values of A the program learns the respective weights (3.9)-(3.1 l), then successively 

starts the recall mode (3.3) and (3.4) for all learning patterns and, simultaneously, 

calculates the total error produced by the respective network on the whole training set. 

In detail, total error calculation means that each mismatched component on a train- 

ing pattern increases the error by one. In view of the definitions given previously we 

finally only have to choose the set r which determines the set of active sigma-pi 

weights. Here, we choose r to consist of all subsets of { 1,2,. . . ,20} with precisely 

three elements, 

r={{1,2,3},{1,2,4},{l,2,~},...,{l8,l9,2O~~. (3.17) 

This means that we generate an incomplete situation and the introduction of dilation 

and translation weights especially makes sense (see [6] for a detailed argument to focus 

on incomplete situations in presence of dilation and translation parameters). Now, let 

us take a look at three typical program runs to be discussed afterwards. 

1. Learning letters: 

xxxxx x. ..x xxxxx .x... x...x x...x 

X . . . . xxxxx x.... .x... .x.x. .x.x. 

X . . . . x...x x.... .x... ..x.. ..x.. 

X . . . . x.,.x xxxxx .xxx. .x.x. ..x.. 

. . X . . .x... . . . . . ..x.. . . . . . . . . . . 

xxxxx .x.. . . .xx. . .x.. .x.x. .x.x. 

..x.. .xxx. .x... ..x.. ..x.. ..x.. 

X . . .x.x. ..xx. ..x.. .x.x. .x.. 

lambda: 0.000 0.004 0.008 0.012 0.016 0.020 0.024 0.028 0.032 0.036 0.040 0.044 

total error: 15 11 7 3 1 1 3 3 3 3 3 7 
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2. Learning correlated random patterns: 

xxx.x .xx.x xxxxx x.xxx x..x. xxxxx xxxxx 

xxxxx xxxx . xxxx .xxxx x.xxx xx.xx ..x.. 

x.xxx xxx.. xxxxx xxxxx xx... .x.xx xxxxx 

xxxx x.xx. .xxxx xxx.x xxxxx xxxx. xxxxx 

x.xxx x.xx. xx.xx xxxxx x.xxx xxxxx xxxxx 

.xxx. xxxx . xxxxx xxxxx xxxxx xxxxx .xxx. 

xx..x xxxxx xxxx. .xxxx xx.xx x..xx xx.x. 

xxxxx xxxxx xxx. x .xxx. .x.xx xxxxx . ..x. 

total number of <.>-marks: 58 

total number of <X>-marks: 222 

lambda: 0.000 0.004 0.008 0.012 0.016 0.020 0.024 0.028 0.032 0.036 0.040 0.044 

total error: 36 36 36 25 19 4 4 0 0 0 6 6 

3. Learning uncorrelated random patterns: 

xx.x. xx.x. xx.xx x.,.x xxx.x xx.x. .x. .x X.X.. xxxx .x.xx 

x.xxx xx... xxxx. . .x. xxxx .x.x. x . . . . . . . . . .x.x. xxxx . 

xx.. .x.xx .xxx. x.x.x .xx.x xx.. x.xx. x. .x. xxx.x x.xx. 

X.X.. .xx. xxx.x xx... . ..x. x.x.x . . ..x .xxxx x...x x.xxx 

x.x.x .x.,x . . .x. xx... .x.xx x.x.x xx..x x.... .x.xx . . ..x 

.x.. xxxxx x.x.x X.X.. . . . . . . xxxx . xxxx .xX.. .x.x. .x.x. 

.x. .x xx. .x .x.xx xx... x. .x. x.. .x xxxxx .xx.x x.x.x xxxx. 

.xx.. .xxxx . . .x. x. .x. x..xx xxxx. . ..xx x..xx . xxxx .x. .x 

total number of <.>-marks: 190 

total number of <X>-marks: 210 

lambda: 0.000 0.004 0.008 0,012 0.016 0.020 0.024 0.028 0.032 0.036 0.040 0.044 

total error: 0 0 0 0 0 0 5 5 6 6 6 12 

The first and, especially, the second example (and, of course, further non-reported 

experiments) show that for a specific set of positive parameters j* the total recall error 

on training sets of (highly) correlated patterns is in general significantly smaller than for 

the classical choice i = 0. Only in the easy-to-handle situation of uncorrelated patterns 

(da M 0, 1 <k <n) there is essentially no difference between choosing jU identically 

zero or close to zero. However, such completely uncorrelated situations are not very 

typical in practise. Moreover, similar results are obtained when r is replaced by any 

other set of subsets of { 1,2,. . ,20} generating a so-called incomplete situation. Finally, 

let us note that quite recently some studies have been started in order to investigate the 

behaviour of our dilation and translation networks in case of synchronous recall updates 

instead of asynchronous ones. Detailed results on this topic may appear elsewhere. 
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4. Concluding remarks 

In this paper, we again considered dilation and translation parameters for sigma-pi 

Hopfield neural networks in order to increase their flexibility while keeping the number 

of allowed sigma-pi weights fixed. In order to find a reasonable strategy to fix the free 

additional parameters we proved a new discrete orthogonality condition for Walsh- 

type functions with dilation and translation. Based on the restrictions of dilation and 

translation parameters implying this new kind of discrete orthogonality we proposed a 

new learning algorithm for so-called generalized sigma-pi Hopfield neural networks and 

studied its power by considering some concrete applications. The basic conclusion from 

these (and other) experiments was that at least in case of highly correlated information 

our choice of dilation and translation parameters significantly increases the capacity of 

the networks while leaving their complexity almost unaffected. 
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