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1. INTRODUCTION 

The purpose of this paper is to study existence, uniqueness, and continuous 
dependence on parameters for solutions of the following system of integro- 
differential equations: 

e(t, x) = e, + a(O) O(t, x) + j:m a’(t - T) I~(T, x) dT, 

4(t, X) = --k(O) Ve(t, x) - jt k’(t - T) VH(T, x) d7, -cc (1) 

e’(t, 4 = -V . q(t, X) + r(t, x), 

where 0 < t < co, x is a vector in a real n-dimensional set B, prime denotes 
differentiation with respect to the time variable t, V is the gradient operator with 
respect to x, and V * V = d is the Laplacian. 

For K(O) = 0 these equations represent the linearized theory for heat flow in 
a rigid, isotropic, homogeneous material as proposed by Gurtin and Pipkin [12]. 
For k(0) > 0 the equations represent an alternate linearized theory proposed by 
Coleman and Gurtin [l]; see also Gurtin [13]. Nunziato [22, 231, Finn and 
Wheeler [6], and Nachlinger and Wheeler [21] h ave studied certain aspects of the 
general nonlinear theory as well as the problem of uniqueness and wave propaga- 
tion for the linearized problem. Grabmueller [lo] gave a very general uniqueness 
proof for generalized solutions in a Sobelev space and proved existence theorems 
in certain special situations. Kremer [16] proved existence and uniqueness 
theorems for generalized distribution solutions. Grabmueller [ 1 l] also studied an 
inverse problem for (1). 

The purpose of this note is to show in Section 2 that the appropriate history 
value problem of form (1) always has a generalized distribution solution which 
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is not only unique but also depends continuously on the initial history and on 
the function r(t, .x). From this continuity it follows that the solutions obtained 
in [IO, Theorem 2.1.21 are the natural Hilbert space approximations of the general 
distribution solutions. The results in Section 2 are used to motivate the analysis 
in the rest of the paper. Section 3 isconcernedwith stability results. Conditions(S) 
and (E) when k(O) > 0 and (S’) when K(0) = 0 g ive necessary conditions on k(t) in 
order that (1) determine a stable model of the heat problem for all configuration&. 
Such necessary conditions for K(t) have not previously been noted. In Theorem 6 
it is shown that stability of e(t, X) can be established by establishing stability 
for each mode separately. Some general consequences of stability are proved in 
Corollary 7 and Theorem 8. The results in Sections 4 and 5 show that for large 
classes of smooth r(t, X) and of smooth initial histories the generalized distribu- 
tion solutions of (I) will actually be classical solutions. The transformation 
developed in Section 5 can be used to discuss the hyperbolic character of (1) 
when k(O) = 0 in a more satisfactory way than the earlier analysis in [2, 3,201. 

We shall need some standard background material on existence, uniqueness 
and solution forms for Volterra integral equations on the real line. This material 
can be found collected in [17]. B ac kg round material for semigroups, Sobelev 
spaces, and functional analysis can be found in Krein [ 151, Pazy [24], or especially 
in Friedman [8]. 

2. RESULTS FOR DISTRIBUTION SOLUTIONS 

The purpose of this section is to transform system (1) into an equivalent 
Volterra integrodifferential equation in Hilbert space. Background material and 
assumptions are given as needed. An existence, uniqueness, and continuity 
theorem is stated in this abstract setting. This continuity result is used to prove 
an approximation result, Theorem 2, which is the main result of this section. 

Equations (1) are linearized about some nominal constant temperature 0, 
which will be taken to be zero. The rigid body will occupy a fixed open region B 
in n-dimensional space Rn (normally n = 1,2, or 3) and have boundary aB. 
The energy-temperature relation function a(t) and the heat conduction relation 
h(t) are both assumed continuous, to have a certain number of continuous 
derivatives, and to satisfy the following assumptions: 

(HI) or(O) > 0 and either K(0) > 0, J : 2 or k(0) = 0, K’(0) > 0, J = 3. 

U-W OL E C?r[O, co) and K E CJIO, CO). 

W3) c#E,?(O, co)forl <j< JandNELl(O, oo)forl <j < J- I. 

Assumption (H3) is stronger than needed for many of the results in the sequel. 
However, the full force of this assumption is used in returning from (3) or (4) 
below to system (1) above. 
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The appropriate history value problem for (I), which we will consider here, is 
to give a function e(t, x) on {- 00 < t < 0, x E B} such that VO and .4B make 
sense and the following integrals are defined: 

h(t, X) = 1” k’(t - T) ve(,, X) dT 
--J) 

g (t, X) = 1” d(t - T) e(T, X) dT, 
--cc 

(2) 

v * h(t, a?) = 1” k’(t - T) &(T, X) dT. 
-cc 

From (1) and (2) it follows that 

e(t) = e, + 40) d(t) + it ~‘(t - T) O(T) dT + g(t), 

v - q(t) = -k(o) de(t) - 1” k’(t - T) do(T) dr + v * h(t), 
0 

and so 

Here the dependence on x has been supressed. We have proved the following 
result. 

LEMMA 1. Let k(0) > 0. If an initial history 0 is given on - 03 < t < 0 
such that functions (2) make sense, then the temperature function e(t) must satisfy 
the problem 

e’(t) = f (t) f CAB(t) - a(O) e(t) + It [Cb(t - T) de(~) - a’(- t T) O(T)] dT 
0 

(3’) 
for all t 3 0 with 8(O) = B. given (from the initial history). Here 

and 

C = W)b(O), 44 = 4W(O>, b(t) = W/W, 

f (4 = [r(t) + V . h(t) - ~Wll40)- 
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The reader should note that the initialhistoryproblem (1) has been reformulated 
as an initiuE value problem (3’). The initial history e(t), -CC < t .< 0 and the 
given function r(t) have been used to determine initial conditions B0 and f(t) in 
the manner specified above. If r(t) were zero, it would be simplier to retain the 
initial history formulation. Since we wish to allow r(f) not zero, we think that (3’) 
will often be a more convenient form. 

If k(0) = 0, then one can take another derivative in (3) to obtain the equation 

a(0) qt, x) 
= -a’(O) V(t) - a”(0) O(t) + k’(0) m(t) (4 

+ 6 [k”(t - T) &(T) - a”(t - T) e(T)] dT + [r’(t) + v * h’(t) - g”(t)]. 

The analog of Lemma 1 is the following result. 

LEMMA 2. If k(0) = 0 and if th e initial history 8 is given on - ccj < t < 0 
in such a manner that the functions g, g’, g”, h, V . h, and V * h’ make sense, then 9(t) 
must satisfy 

d”(t) = f (t) + C,Af?(t) - a(0) e’(t) - a’(0) e(t) 

+ f: [C,b,(t - T) D(T) - a”(t - T) O(T)] d7 

for all t > 0 with e(O) = 0, and 0’(O) = v,, given. Here 

(4’) 

and 

C, = k’(O)/‘a(O), b,(t) = k”(t)/k’(O), 

f(t) = [r’(t) + V . h’(t) - g”(t>l/44~ 

As before, the initial history problem has been replaced by an initial valueproblem. 
This time the appropriate initial conditions are the quantities 0, , Q , and f(t). 

We shall study a class of distribution solutions for (3) or for (4) under boundary 
conditions of the form 

u(t, x) = 0 (O<t<co,xEaB) (5) 

or of the form 

b,(x) g (4 4 + b,(x) u(t, 4 = 0 (O<t<m,xEaB), (6) 

where Y is the outward normal on aB, b,(x) and b,(x) are continuously differen- 
tiable on aB, and b,(x) f 0 for all x E 3B. 
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We use the Hilbert space X, = L2(B) of Lebesgue measurable functions $ on 
B such that 

The space P(B) will be the set of all 4 E X1 such that $ has distribution partial 
derivatives through order K and these derivatives are all in L2(B). Let B = 
BU aB be the closure of the open set B, let C,,(B) be all P-smooth functions 4 
with the compact support in B, and let H,,k(B) be the closure in H”(B) of C,,(B). 
Define X, = H:(B) and X, = X2 x X, . 

If B is a bounded set and if the boundary aB is a P-smooth surface, then it is 
well known (see, e.g., [8, Chap. I, Sect. 191 that the operator d can be considered 
as a closed, linear operator on Xi whose domain is the closure of the set of all 
functions 4 E Ca(B) such that + satisfies boundary condition (5) or alternately 
boundary condition (6). The operator A = (R(O)/ol(O))d - (a’(O)/a(O))l will 
satisfy the following two conditions: 

(H4) A generates a C,-semigroup on X, . 

(H5) For h sufficiently large, U - A has a compact inverse on X1 . 
Moreover there exist simple eigenvalues h,(L+, < h,) and corresponding 
eigenfunctions & E C=(B) such that $m satisfies the given boundary conditions 
and A& = &,&. Th e set (&} is a complete, orthonormal set. 

Assume that (Hl)-(H4) are true with K(0) > 0, J = 2. Let 6, andf(t) be given 
as in Lemma 1 with f : [0, co) + X1 continuous. The notion of “solution of (3’) 
satisfying the given initial and boundary conditions” has several possible inter- 
pretations. We could mean a ckzssical sohtion, that is that 0(t, z) is continuous 
on t > 0, x E B, 6’ satisfies the initial-boundary conditions at all relevant points 
(t, x), all requisite partial derivatives of 8 w.r.t. t and x exist and are continuous 
and (3’) is true for all (t, x) in (0, co) x B. In order to obtain existence and, in 
particular, continuity w.r.t. parameters it will be necessary to weaken this notion 
of solution considerably. By a distribution solution of (3’) satisfying initial 
condition 8, we shall mean a function 8: [0, co) -+ D(A), where D(A) is the 
domain of A in X, , such that e(t) and Ad(t) are continuous as maps from [0, co) 
to X, , e(O) = 8, and (3’) is true for all t E R +. By a generalized distribution 
solution satisfying initial condition 0, we shall mean a continuous function 
8: [0, co) --f Xi such that e(O) = 0, and such that there is a sequence ok of distri- 
bution solutions such that 

with the limit existing uniformly on compact subsets of the interval 
O<t<co. 

The following result is a special case of Theorem 7.3 in [18]. 
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THEOREM 1. If (HI)-(H4) are true with k[O) >> 0 and J m:~: 2, then the 
following results are true: 

(a) For each 8, E D(d) and each P-function f :[O, co) + -71, there is a 
unique distribution solution 0(t, 0, , f) of (3’) satisfying 0(0, B0 , f) = 8, . 

(b) For each B,, E X, and each continuous function f: [0, 00) + Xl there is 
a unique generalized distribution solution 0(t, Bu , f) satisfying 0(0, 8, , f) = B. . 

(c) 6(t, 8, ,f) vurys ContinuousZy with (t, B0 ,fJ. That is, given T > 0, 
there exists K 3 0 such that 

II e(t, 4 ,f Iii G K(ll 4 ii + oy;> Ilf (09 for all t E [0, T]. 
,. 

The uniqueness part of Theorem 1 has already been proved by many authors. 
The most general uniqueness theorem is in [lo]. Kremer [16] has proved 
existence of generalized distribution solutions. The continuity result (c) is new 
(in the sense that it has not earlier been pointed out that the work in [ 181 could 
be applied to (1)). We remark that the constant K in (c) depends on T and of 
course on the fixed parameters C, a(t), and b(t). The value of K is independent 
of B,, and f (t). Since the existence of K follows from an application of the closed 
graph theorem, it is not possible to estimate its magnitude. (Similar remarks 
apply to Theorem 3 below.) 

The continuity result (c) can be used to good advantage to justify an approx- 
imation scheme suggested by the work of Grabmueller [lo]. Indeed, the following 
result is true. 

THEOREM 2. Suppose (Hl)-(H5) are true with k(0) > 0 and J = 2. Let 6, 
andf(t) be$xed with 6, E X, and f : [0, a) + X, continuous. If {A,} and (I&} are 
the sequences given in (H5) and ( , ) denotes the inner product in Xl define 

Yk = (4 ,+r>, grw = <f(t) 4kh 

4lm = 2 Yk4k 1 fm(t) = 2 g?S(t) A 7 
k=l k=l 

and 

hdt) = f Yk(t)+k , 
k=l 

where yk is the unique solution of the scalar problem 

Y;(t) = gk@) + EAkC - @)I Yk@) + j( [hkCb(t - T) - a’(t - T)] Yk(d d7, 

do) = Yk . WA 

Then 0,(t) = 0(t, 0,, ,fna) is the distribution solution of (3’) corresponding to 
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initial conditions 19,~~ and fm(t). M oreover on any jinite interval [0, T] the limit 

;i qt, 4lln 7 fm) = w> 4l ,f) 

exists unzformly in t E [0, T]. 

Proof. It was shown in [lo] that e,(t) is a distribution solution of (3’) for 
initial condition 8srn and function fm(t). Since the sequence {+nz} is a complete 
oithonormal set, then 

Moreover, for each fixed t > 0, 

f(t) = 2 <f(t), AC> hi = $_mm fdt). 
k=l 

The convergence in (7) is uniform over any closed bounded set 0 < t & T. 
To see this, note that 

iif (t)ii2 = f i(f@), +k)i2 
k=l 

(8) 

converges pointwise on 0 < t < co. Each term in series (8) is positive and 
continuous. The sum 11 f (t)112 is also continuous. By a well-known result of Dini 
(see, for example [25, pp. 447-448]), th e convergence in (8) must be uniform on 
[0, T]. This is the same as uniform convergence in (7). Part (c) of Theorem 1 
can now be applied to complete the proof of Theorem 2. Q.E.D. 

One might paraphase Theorem 2 by saying that the series solutions obtained 
by separation of variables always converge. Note that since all of the yk(t) are 
continuously differentiable and since the eigenvectors +k are in Cm(B), then the 
approximations 19~ are actually classical solutions of (3’). These classical solutions 
are dense among all generalized distribution solutions. 

In Theorem 2 the functions 0, will be called model approximations. The 
function yk(t) determines the model modulation for the kth mode A, . 

For Eq. (4) under boundary conditions (5) one can prove similar results as 
follows. If we define v = 8’ + (a(0)/2)8, u = 0, then (4’) becomes 

40) u’(t) = - - 2 44 + v(t), 

v’(t) = (c&l - a’(0) + q) u(t) - 9 v(t) (4”) 

+ bt {C,b,(t - T) d - a”(t - T)} U(T) d7 + f (t). 

409/66/2-5 



320 R. K. MILLER 

Let A be the operator defined on Xa by 

A (:I = ( 
-4w 1 u 

Cl0 - a’(0) +- a(0)2/4 )i) --a(0)!2. \v * 

Then the following facts are known if B is bounded and 8B is smooth: 

(H4’) A generates a C,-semigroup on Xa . 

(HS) For X sufficiently large, XI - A has a compact inverse on H,‘(B). 
There is a sequence A, + -co and a complete orthonormal set {&} C 
P(B) n H,,l(B) such that A& = A,& . 

The following result follows immediately from [I 8, Theorem 7.31. 

THEOREM 3. If (Hl)-(H3) and (H4’) are true with h(0) = 0, J = 3, then 
the following results are true: 

(a) For any pair (uO , vO) E D(A) x H,,l(B) and any Cl function f : [0, CO) -+ 
Hi(B) there is a unique distribution solution of (u(t), v(t)) of (4”) satisfying the 
given initial conditions. 

(b) For each pair (uO , v,,) E X, and each continuoux function f: [0, CO) 4 
H,l(B) there is a unique generalized distribution solution satisfying the given initial 
data. 

(c) The functions u(t, u,, , vO, f) and v(t, u,, , vO, f) wary continuously 
with the data. That is, given T > 0 there exists K > 0 (independent of uO , 
v,, andf) such that for 0 < t < T, 

/I up, uo , ql ,f )II + II u(t, %I 9 80 ,f )‘I d K{ll uo II + 4 ~0 II + o~~llf (t)ll>. 

The next result follows from the continuity (c) above. 

THEOREM 4. Suppose (Hl)-(H3) and (H4’)-(H5’) are true with k(0) = 0, 
J = 3. Fix (u. , vo) E xl, and f: [0, a) --f H,‘(B), f continuous. Let ( , )i denote 
the inner product for X2 or for X3 and de$ne 

and 
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where y*(t) is the solution of the scalar problem 

r;(t) = [CJk - 4O)lYkW - a(O).&(t) 

+ It {CAP - T> A, - a”(t - 4 yk(~) do + gk(t), 
0 

Y,(O) = Yk > y;(o) = 6, . 

Then urn(t) = u(t, uo, , van , fm> is a distribution solution of (4’) and for any finite 
interoal [0, T] the limit 

exists uniformly in t E [0, T]. 

3. STABILITY CONSIDERATIONS 

We now study some stability properties of solutions of (1). 

DEFINITION. Consider Eq. (3’) under assumptions (HI)-(HS), J = 2, and 
k(0) > 0. Assume r(t) = 0. System (3’) is called 

(a) Stable if for any initial history 8: (-co, 0] + D(d) with // e(t)11 + 
j] de(t)11 bounded, the distribution solution O(t) of (3’) is bounded on 0 < t < co. 

(b) Unstable if it is not stable. 

(c) Asymptotically stable if it is stable and in addition each solution e(t) 
with bounded initial history must have limit e(t) -+ 0 as t ---f ok. 

We remark that the restriction r(t) G 0 is not essential. As will be seen below, 
once the stability properties of (3’) are determined for r(t) = 0 the properties of 
solutions with r(t) f 0 will follow. We also remark that in the sequel for any 
function 4, by 4*(s) we shall mean the Laplace transformation of 4. 

Using Theorem 2 above as motivation one might conjecture that the stability 
of (3’) is related to the stability properties of the infinite set of scalar equations 
(M,). Indeed the proof of Theorem 5 below is that a necessary condition for 
stability of (3’) is that for each mode h, the equations (Mk) are stable. Theorem 6 
states that under minor additional restrictions this condition is also sufficient. 
It will be convenient to state stability assumptions for the equations (M,) in 
terms of the Laplace transform conditions (10) given below. Any other condition 
for stability of all modes must necessarily imply that (10) is true. 

THEOREM 5. A necessary condition for stability of (3’) is that k(0) + (k’)*(s) f 
0 for all s in the open right half plane Res > 0. 
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Proof. Suppose k(0) -I-- (K’)*(s) == 0 for some s,) with Res, > 0. Consider 
the equation 

where h, is an eigenvalue of il. The function on the right above has a pole at s0 . 
Thus this function must map any punctured neighborhood of s,, onto a neigh- 
borhood of infinity in the complex plane. Since h, ---f - co as m + co, then for 
all m sufficiently large one can find solutions s = s,, of the equation 

s[a(O) + (d)*(s)] - L[@) + w*w1 = 0 

with Res,, > 0. 
The function urn(t) = exp(s,t)$, h as b ounded initial history. Indeed since 

since A& = h,&, and since Res, > 0, 

II urn(t + II 44t)li = (1 + I L I) II h II I expel 
G (1 + I 4n I> IIAn II < co. 

This function is a solution of (3’) w h en r(t) E 0, as is easily checked. Since s, 
is a root of the equation above, then 

z&(t) - CAqJt) + a(O) urn(t) - j’ {Cb(t - T) A - a’(t - T)} Z&T) do 

= {sn - CA, + a(O)} urn(t) -7: (cb(~) A - U’(T)} ewsm7u,(t) dr 

= [s, - CA, + u(0) - Ch,b*(s,) + (a’)* (&)I urn(t) = 0 * z&(t) = 0. 

Since Res, > 0, then 

Thus the equation is unstable. Q.E.D. 

As a practical matter the equation k(0) + (k’)*(s) = 0 cannot have solutions 
with Res = 0 if stability is to be guaranteed. For if there were such a root, then 
arbitrarily small perturbations in k could shift this root into the right half plane. 
This condition is incorporated in the following assumption: 

K(0) + (K’)*(s) f 0 when Res > 0 and t ) d’(t)/ and t [ h’(t)\ E L’(0, 00). (9) 

THEOREM 6. If (9) is true, then (3’) is asymptotically stable if and only if 

s[~o) + (d)*(s)] - X,[k(O) + (h’)*(s)] f- 0 form = 1,2,3,... and Res 3 0. (10) 
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Proof. If (IO) is violated for some h, for some & and s, , then the proof used 
in Theorem 5 will show that u,(t) = esJ& has bounded initial history, solves 
(3’) when r(t) = 0 and does not tend to zero as t + CO. 

If (10) is true, then the methods of [9] or [19] can be applied. Thus there is a 
continuous operator-valued function R(t) such that I/ R(t)]1 ~Ll(0, 00) and 
I/ R(t)x [] -+ 0 as t - 00. Any distribution solution of (3’) can be represented 
in the form 

e(t) = R(t) O(0) + jot R(t - T)~(T) d-r. 

Since r(t) E 0, then 

f(t) = [” [h’(t - T) A@) - d’(t - T) O(T)] d+(O). 
J-cc 

If N is a bound for the histories ]j L~(T)I/ and Ij LW(T)II then 

Ilf @>I1 < (m il a”@ - ~11 + I W - dI> NdT 

= N tm (I C?(T)1 + 1 h’(T)} dT -+ 0 
s 

as t + co. Since /j R(t)]] EP(O, co), and 11 R(co) e(O)11 = 0, then 

II WI G II W Wll + j” II W - 4 llf(~)ll dT + 0 as 
0 

Moreover, 

where 

II wll G a wll + m4l{fWll: 0 < t < 4>, 

K = max{ll R(t)ll: 0 < t < co} + lrn /j I?(t)11 dt. 
0 

t-03. 

(11) 

Q.E.D. 

COROLLARY 7. If (9) and (10) are true, then for any initial history 0(t) with 
II d(t)11 + II Ae(t bounded on ---co < t < 0 and for any bounded, continuous 
function r(t), the genralized distribution solution of (3’) is bounded. If in addition 
11 r(t)// + 0 us t 3 co, then II e(t)11 + 0, too. 

Proof. Inequality (11) is true for any distribution solution, even when 
r(t) f 0. Since these solutions are dense among all generalized distribution 
solutions, (11) remains true for the generalized solutions. If r(t) is a Cl function 
with limit zero at t = co, then f(t) -+ 0. As in the proof of Theorem 6, the 
solution e(t) -P 0. Since Cl-smooth functions are dense in the space (4: [0, co) -+ 
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X1: d, is continuous and 4(t) ---f 0 as t -+ cc> with the uniform topology, then 
the conclusion follows from the Banach-Steinhaus theorem. Q.E.D. 

It is not possible to give information on the rate of convergence to zero in 
either Theorem 6 or Corollary 7. 

In certain situations A, = 0 is possible. In this case (10) is never true since 
A, =: 0 and s = 0 make the right-hand side in (10) equal to zero. In this case 
the following result is true. 

THEOREM 8. Suppose (9) is true and (10) is true except at the point s = 0 for 
A,. If for j = I, 2, 

and if 

s 3c s 02 
~j 1 a”(~)1 d7 < 00, Tj 1 K’(T)[ dT < 03, 

0 0 

a’(0) - jm Tan(T) dr # 0, 
0 

then there exists an operator-valued function R(t) such that R is continuous, 
11 R(t)x I/ + 0 us t + CO, (1 R(t)\1 EL’(O, co) and for any bounded initial history 
0(t) on - 03 < t < 0 and any Cknooth function r(t) the distribution solution of 
(3’) has the form 

e(t) = R(t) e(O) + (e(O), +I> +1 + jt {R(t - T)f (T) + (f(T), dd $1) &-. (12) 
0 

In particular if r(t) -0 as t-+a, then 

e(t) - (e(O), 41) dl - j’ <f(T), $1) #I dT-0 (t + 00). 
0 

Proof. The representation of solutions in form (12) is proved by a trival 
modification of the proof of Theorem 8 in [19]. Since Ij f (t)ll + 0 as t + 03, 
the limit follows immediately from the properties of R(t). Q.E.D. 

Stability results for Eq. (4’) are much harder to obtain. The methods used 
in [19] do not apply. However, an analog of Theorem 5 is true. Since the proof 
is essentially the same as that for Theorem 5, it is omitted. 

THEOREM 9. Suppose (HI)-(H3) and (H4’) and (H5’) are true with h(0) = 0, 
J = 3. If (4’) is stable, then it is necessary that 

K’(0) + (h”)*(s) # 0 when Res > 0. 

The remark which precedes assumption (9) also applies in an analogous 
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manner to Theorem 9. Therefore if one believes that a reasonable physical 
model of heat conduction must be stable and that this stability must be preserved 
under small changes in the heat conduction relation function K(t), then it 
necessarily follows that 

or 
(S) k(O) + (k’)*(s) f 0 when Res > 0 (if k(O) > 0) 

(S’) k’(O) + (k”)*(s) # 0 when Res > 0 (if K(0) = 0). 

These restriction have not been mentioned in the earlier literature on heat 
conduction in materials with memory, nor is any physical interpretation of (S) 
or (S’) clear. 

If (S) is true, then under mild additional assumptions it can be seen that (3’) 
is stable if and only (M,) is stable for all h, . This is equivalent to the Laplace 
transformation condition (10). Although conditions (10) look unwieldy, it is 
hoped that graphical techniques of the type used in systems theory (see, e.g., 
[5, 141) might be useful in verifying (10). For example, assume (9). Then one 
will have stability for all bounded configurations B if and only if for each h > 0 

w 40) + (4* (4 
’ k(0) + (k’)* (s) # -’ 

(Res > 0). 

Condition (E) is equivalent to the fact that the graph in the complex plane of 
the function 

40) + (J)* (iT> 
D(T) = i (k(0) + (k’)* (iT) 1 ’ 

O<T<co 

(for i = -11/z), does not hit the negative real axis. (Also note that (S) will be 
true if the graph {(k’)*(h); --oo < 7 < co} does not touch or encircle the 
point -1.) 

4. CLASSICAL SOLUTIONS OF (3’) 

For parabolic partial differential equations it is known that whenever the 
initial data is sufficiently smooth, then the distribution solution is actually a 
smooth, classical solution. Unfortunately similar results are not known for 
equations of the form (3’). The purpose of this section is to give a transformation 
of (3’) into a new equation for which the existence of a large class of classical 
solutions is easy to prove. 

LEMMA 3. Suppose (HI)-(H3) are true with k(0) > 0 and / = 2. 
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Then Eq. (3’) is equivalent to the following integrodiflerential equation: 

g (t, x) = F(t, x) + CA8(t, x) + y(0) 0(t, x) + ?^d y’(t - T) 0(,, x) dT, (13) 

where F is defined as 

F(t, x) =f(t, x) - 1” D(t - T)~(T, x) dT - D(t) e(O, x), 
0 

and where D(t) and y( t) satisfy the scalar equations 

D(t) = b(t) - 1” b(t - T) D(7) dr, 
0 

y(t) = [b(t) - a(t)] - j-” b(t - T)y(T) dT. 
0 

Proof. If * is used to denote convolution integration, then (3’) can be 
written as 

8’ = CAB-a(O)B+ Cb*dB--a’*e+f. (14) 

Since D(t) is the unique continuous solution of D = b - b * D then for any 
continuous function h the unique solution of 

z=h-b*x 

is z = h - D * h (see [17, Chap. I]). Let h = (~9’ + a(O)0 + a’ * ,9 -f)/C 
in (14) to see that 

Cde = (e, + a(O)0 + a’ * 0 - f) - D t (6’ + a(O)0 + a’ * 8 - f). (15) 

An integration by parts yields 

8’ - D * 8’ = 8’ - D(o)e + De(o) - D’ * 8. 

If this is used in (15), the result can be rearranged to see that 

8' = {f- D *f- De(o)} + cde + {D(O) - a(O)}e 

+ {D’ + a(O)D - a’ + D * a’} * 0. 

The last term in brackets can be written as 

y’(t) = {D’ + a(O)D - a’ + a’ * D} = {D - a + a * D}‘. 
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Thus y is the solution of the linear equation given above and (3’) can be written 
in the form (13). Q.E.D. 

It is interesting to note that since b ~Ll(0, KJ) then by a classical result of 
Paley and Wiener (see, e.g., [17, Chap. IV, Sect. 41) the function D ELI if and 
only if the stability condition (S) is true. Clearly D ELJ implies y E L1. If b’ E L1 
and if (S) is true, then it is not hard to see that y’ is also in L1. 

If the parabolic part of (15) admits a Green’s function in B, then a method 
suggested by the proof of Corollary 2 in Redheffer and Walter [26] can be used 
here. For a general discussion of Green’s functions for parabolic equations see 
[7, Chap. 3, Sect. 71. Assume that 

(H6) Region B is bounded on Z? is C2+*-smooth for some 6 > 0. 

Thus 

!?f = CAu 
at 3 forO<t<co, XEB, 

u(t, x) = 0, forO<t<co, XE~B 

admits a Green’s function G(t - 7, x, t). AIso assume 

(H7) The initial history e(t, X) is chosen so that A0 exists and is continuous 
in (-co, 0] x B, B(0, ) x is continuous in B u aB, f3(0, x) = 0 on aB, and the 
function sFa {h’(t - T) A~(T, x) - a”(t - T) 0(,, x)} do is locally Holder con- 
tinuous in [0, co) x B. 

(H8) The function r(t,x) is locally Holder continuous on the set [0, 00) x B. 

THEOREM 10. Suppose (Hl)-(H3) are true with h(0) > 0, J = 2, h’ and tin 
are locally Hiilder continuous and (H6)-(H8) are true. Then the history problem ( 13) 
with boundary conditions 

e(t, x) = 0 for 0 < t -C co, XE aB 

has a classical solution t9(t, x) satisfying the condition 

g e(t, x) = e(0, x) for x E B U aB. 

Proof. Given the Green’s function we try to solve the integral equation 
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Elementary arguments involving the contraction map will show that (16) has 
a continuous solution e(t, x) in the region [0, co) x (B u M). It remains to 
show that this function 0(t, x) has the required number of continuous derivatives 
in (0 < t < co, x E B}. 

Since 0(0, x) is continuous on B u aB, the first term on the right has continuous 
derivatives. This is a standard result for Green’s functions. The second term 
will also be smooth if the function F(t, x) is locally Holder continuous in 
[0, co) x B. Recall that D(t) solves the equation 

D(t) = b(t) - jt b(t - T) D(7) d7. 
0 

Since b(t) = K’(t)/K(O) is in P[O, co), then D(t) E Cl[O, co). Since 0(0, x) is 
P(B) then the term D(t) 0(0, x is certainly of class Cl([O, co) x B). ) 

Since D E P[O, CO), then the terms f - D * f will be Halder continuous 
whenever f is. Since f has the form 

assumptions (H7) and (H8) guarantee the Holder continuity off. Thus the 
second integral on the right in (16) d fi e nes a function with the required con- 
tinuous partial derivatives. 

Since the function 

rn(t, X) = y(o) e(t, x) + j$'(t - ~)e(,, X) dr (17) 
0 

is continuous, then the properties of the Green’s function G imply that the third 
integral on the right in (16) is in Cl for 0 < t < 03, x E B. Thus 0 is also in Cl. 
It remains to show that the second term on the right in (17) is locally Hijlder 
continuous in t. However, b’(t) - a’(t) is locally Hijlder continuous and so 

y’(t) = [6’(t) - a’(t)] - b(O)y(t) - j’ b’(t - T)Y(T) d7 
0 

is, too. Thus y’ * 0 is also locally Halder continuous in t. 

5. HYPERBOLICITY WHEN k(0) = 0 

Q.E.D. 

In this section we give a transformation similar to the one in the last section, 
which will transform Eq. (4’) into a form where its hyperbolic character is more 
easily seen. 
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LEMMA 4. If (Hl)-(H3) are true with K(0) = 0 and J = 3, then (4’) can be 
transformed to the new equation 

g (4 4 = Yl(0) g (t, 4 + Y;(o) qt, x) + Cl44 4 + w, 4 

+ jt y;(t - T) e(~, 4 dT, 

(153) 

0 

where 

F(t, 4 =f (t, 4 - & E(t, 4f(~, 4 dT - E(t) [g (0,x) + a(0) o(O, x)] 

- E’(t) qo, 4, 

while E and y1 satisfy the scalar equations 

and 

E(t) = b,(t) - j’ b,(t - T) E(T) dr 
0 

Ydt) = [h(t) - a(t)] - lt b,(t - T, YdT) dT- (19) 

Proof. Write (4’) in the abbreviated form 

(e+ate)“=f+c,(de+b,*de). 

Since E(t) is the solution of E = b, - b, * E, then 

Integration by parts in the last term on the right and rearrangement yields 

8” = -a(O) 8’ - a’(0) e - a” * e + E(0) [et + a(0) e + a’ * e] 

+E’(O)[e+a~e]+E”*(~+a*~)+C,&+f-E*f 

- E(t) [g (0, X) + a(O) em x)] - E’(t) qo, x) 

= [(E - a + E * a) * 01” + CIA0 + F. 

Since yr = E - a + E * a is the solution of (19), then (4’) can be written in 
the equivalent form ( 18). 

We remark that by the Paley-Wiener theorem (see [17, Chap. IV, Sect. 41) 
E E L1 if and only if the stability condition (s’) is true. Also, E E Ll implies 
y1 E L1. 
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From (18) it can be seen that a distrubance at x0 travels in all directions at 
speed at most C1/2 =: (h’(O)/ol(O)) ljz. The disturbance is damped in time if 
y,(O) = (@‘(0)/k’(O) - (cL(O)/a(O)) < 0 and grows in magnitude if y,(O) :> 0. 
As an example of how (18) can be used, we prove the following result in R3. 

THEOREM 11. Suppose (Hl)-(H3) are true with k(0) = 0, J = 3, and 
B = R3. Suppose the initiaE history fl is zero for -CO < t < 0, x E R3. If r(t, x) 
is a smooth function such that r(t, x) = 0 for t < 0 and for j x - x,, i > 6, then 
the solution e(t, x) of (18) must be zero when / x - x,, 1 3 S -+ CW. 

Proof. It is well known that the equation 

Utt = Cl Au + Yl(O) Ut - (Yl(OW4)U + $46 x), u(0, x) = u,(O, x) = 0, 

has as solution 

1 t 
‘Ctp x) = 4T(Cl)1/2 .r 

7eY1(o)7/2 
iu p et - T, x + UJ(C’~)~‘~ T) dw dT, o 1 

where !S is the unit sphere in R3 and dw is the differential there. Thus the solution 
of (18) with e(t, x) = 0 for t < 0, x E R3 must be a solution of the integral 
equation 

1 t 
e(t, ‘) = 4n(C,)1i2 s 

7ev1(oh/2 
rsi 

F(t - T, x + LU(C’~)~‘~ 7) o sa 

+ (y;(o) + qqe(t - 7, x + w(cly2 T) 

+ Lt-’ y;(t - 7 - u) e(u, x + u(CJ’~ T) do) dw d7. 

If r(t, x) is a smooth function such that r(t, X) = 0 for / x - x0 1 > 6 and for 
t < 0 then a straightforward contraction mapping argument can be used to see 
that the solution of (19) is zero for all (t, x) for which 1 x - x0 ] > 6 + C1/2t. 

Q.E.D. 

The condition “Oft, X) = 0 if 1 x - x0 1 2 6 + W2t” is the statement that 
(18) has jinite wave speed. Thus we see that (18) is hyperbolic in the sense used by 
Davis [2,3]. The assumptions used by Davis imply that a(t) and k(t) are ex- 
ponential polynomials. This in turn implies that (4’) is really the integrated form 
of a higher-order linear partial differential equation with constant coefficients. 
The results in [20] avoid the assumption that a(t) and R(t) are exponential 
polynomials but the hypotheses used there are still hard to verify. The treatment 
of hyperbolicity given here is much simpler and more natural for (4) than the 
earlier work in [2, 3, 201. 
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