JOURNAL OF FUNCTIONAL ANALYSIS 61, 360-377 (1985)

Relaxation Results for a Class of Variational Integrals*

GIUSEPPE BUTTAZZO[†]

Scuola Normale Superiore, Piazza dei Cavalieri, 7 Pisa I-56100, Italy

AND

ANTONIO LEACI[†]

Università della Basilicata, Via Nazario Sauro, 34, Potenza I-85100, Italy Communicated by H. Brezis

Received July 18, 1984

The relaxation problem for functionals of the form $\int_{\Omega} f(u, Du) dx$ with f(s, z) not necessarily continuous with respect to s is studied. © 1985 Academic Press, Inc

INTRODUCTION

After the proof of a semicontinuity result for functionals of the form

$$F(u,\,\Omega)=\int_{\Omega}f(u,\,Du)\,dx$$

with f(s, z) not necessarily continuous with respect to s (see [5]), the interest of relaxation problems for such functionals was pointed out by E. De Giorgi in a lecture held in Paris, November 1983 (see [4]). In this paper we give a first result in this direction; more precisely we deal with the following problem:

Find hypotheses on f under which it is possible to give an integral representation formula for the greatest functional $\overline{F}(u, \Omega)$ which is lower semicontinuous with respect to the $L^1_{loc}(\Omega)$ -topology and less than or equal to $F(u, \Omega)$.

This problem, under continuity assumptions on f, has been considered by several authors (see, e.g., [1, 2, 6, 9]). In the present paper (see Sec-

- * Work partially supported by a research project of the Italian Ministry of Education.
- ⁺ The authors are members of the G.N.A.F.A.-C.N.R.

tion 3) we prove that, for a large class of functions f, there exists a function $\phi_f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ such that:

- (i) $\phi_f(\cdot, 0)$ is lower semicontinuous;
- (ii) for every $z \in \mathbb{R}^n$, $\phi_f(\cdot, z)$ is measurable;
- (iii) for a.a. $s \in \mathbb{R}$, $\phi_f(s, \cdot)$ is convex;
- (iv) for every $u \in W^{1,p}(\Omega)$ we have

$$\overline{F}(u,\Omega) = \int_{\Omega} \phi_f(u,Du) \, dx.$$

In Section 4 we give an explicit way to construct the function ϕ_f .

1. INTEGRANDS

In this section we study some properties of functions from $\mathbb{R} \times \mathbb{R}^n$ into $[0, +\infty]$. Denote by \mathcal{M} the class of all Lebesgue measurable functions $b: \mathbb{R} \to [0, +\infty]$; the class \mathcal{M} is ordered in the usual way by setting

$$b_1 \leq b_2 \Leftrightarrow b_1(s) \leq b_2(s)$$
 for a.e. $s \in \mathbb{R}$.

LEMMA 1.1. Let I be a set of indices, and for every $i \in I$ let $b_i \in \mathcal{M}$. Then there exists a function $b \in \mathcal{M}$ (which we denote by \mathcal{M} -sup $_{i \in I} b_i$) such that:

- (i) $b_i \leq \mathcal{M} b$ for every $i \in I$;
- (ii) if $\beta \in \mathcal{M}$ and $b_i \leq \mathcal{M} \beta$ for every $i \in I$, then $b \leq \mathcal{M} \beta$.

Proof. See [10, Proposition II-4-1, p. 43].

In the following we say that a function $f: \mathbb{R}^n \to \mathcal{M}$ is \mathcal{M} -convex if

$$f(\lambda z_1 + (1 - \lambda) z_2) \leqslant \lambda f(z_1) + (1 - \lambda) f(z_2)$$

for every $z_1, z_2 \in \mathbb{R}^n$, $\lambda \in [0, 1]$.

From Lemma 1.1 we obtain immediately:

COROLLARY 1.2. Let I be a set of indices, and for every $i \in I$ let $f_i: \mathbb{R}^n \to \mathcal{M}$ be a \mathcal{M} -convex function. Then the function $f: \mathbb{R}^n \to \mathcal{M}$ defined by $f(z) = \mathcal{M}$ -sup_{$i \in I$} $f_i(z)$ is \mathcal{M} -convex.

DEFINITION 1.3. Let $f: \mathbb{R} \times \mathbb{R}^n \to [0, +\infty]$ be a function; we say that

(i) f is a general integrand if for every $z \neq 0$ the function $f(\cdot, z)$ belongs to \mathcal{M} ;

(ii) f is an *integrand* if f is a general integrand, $f(\cdot, 0)$ is a Borel function and for a.a. $s \in \mathbb{R}$ the function $f(s, \cdot)$ is continuous;

(iii) f is a convex general integrand if for every $z \in \mathbb{R}^n$ the function $f(\cdot, z)$ belongs to \mathcal{M} and the function $z \mapsto f(\cdot, z)$ from \mathbb{R}^n into \mathcal{M} is \mathcal{M} -convex;

(iv) f is a convex integrand if f is an integrand and for a.a. $s \in \mathbb{R}$ the function $f(s, \cdot)$ is convex on \mathbb{R}^n ;

(v) f is a convex *l.s.c.* general integrand if f is a convex general integrand and the function $f(\cdot, 0)$ is lower semicontinuous on \mathbb{R} ;

(vi) f is a convex l.s.c. integrand if f is a convex integrand and the function $f(\cdot, 0)$ is lower semicontinuous on \mathbb{R} .

In the following, by null set we mean a set of Lebesgue measure zero.

DEFINITION 1.4. Given two functions f_1, f_2 from $\mathbb{R} \times \mathbb{R}^n$ into $[0, +\infty]$ we write

(i)
$$f_1 \leq f_2 \Leftrightarrow \begin{cases} (i_1) & \text{for every } s \in \mathbb{R} \ f_1(s, 0) \leq f_2(s, 0); \\ (i_2) & \text{for every } z \in \mathbb{R}^n \text{ there exists a null subset } N_z \\ & \text{of } \mathbb{R} \text{ such that} \\ & f_1(s, z) \leq f_2(s, z) \text{ for every } s \in \mathbb{R} - N_z; \end{cases}$$

(ii) $f_1 \ll f_2 \Leftrightarrow \begin{cases} (ii_1) & \text{for every } s \in \mathbb{R} \ f_1(s, 0) \leq f_2(s, 0); \\ (ii_2) & \text{there exists a null subset } N \text{ of } \mathbb{R} \text{ such that} \\ & f_1(s, z) \leq f_2(s, z) \text{ for every } s \in \mathbb{R} - N, z \in \mathbb{R}^n. \end{cases}$

Moreover we call f_1, f_2 generally equivalent (and we write $f_1 \sim f_2$) if $f_1 \leq f_2$ and $f_2 \leq f_1$; analogously, we call f_1, f_2 equivalent (and we write $f_1 \approx f_2$) if $f_1 \ll f_2$ and $f_2 \ll f_1$.

Remark 1.5. Let f_1, f_2 be integrands; then $f_1 \leq f_2$ if and only if $f_1 \leq f_2$.

Remark 1.6. From Corollary 1.2 it follows that for every function f from $\mathbb{R} \times \mathbb{R}^n$ into $[0, +\infty]$ there exists a convex general integrand (which we denote by co(f)) defined by

 $co(f)(\cdot, z) = \mathcal{M}$ -sup{ $\phi(\cdot, z)$: ϕ convex general integrand, $\phi \leq f$ }.

DEFINITION 1.7. Let $1 \le p < +\infty$ and let $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ be a function; we say that f satisfies hypothesis (\mathbf{H}_p) if for a suitable constant $c \ge 0$

$$(\mathbf{H}_p) \quad 0 \leq f(s, z) \leq c(1 + |s|^p + |z|^p) \text{ for every } s \in \mathbb{R}, \ z \in \mathbb{R}^n.$$

If $p = +\infty$ we say that f satisfies hypothesis (H_{∞}) if for every $M \ge 0$ there exists $c_M \ge 0$ such that

$$(H_{\infty})$$
 $0 \leq f(s, z) \leq c_M$ for every $(s, z) \in \mathbb{R} \times \mathbb{R}^n$ with $|s| \leq M, |z| \leq M$.

In the following we denote by $\oint_A g \, dx$ the average of a function g on a set A.

PROPOSITION 1.8. Let f be a convex general integrand satisfying hypothesis (H_{∞}) . Then there exists a convex integrand \tilde{f} such that $\tilde{f} \sim f$.

Proof. For every $s \in \mathbb{R}$, $z \in \mathbb{R}^n$ we define

$$\tilde{f}(s, z) = \begin{cases} \limsup_{\varepsilon \to 0^+} \int_{s-\varepsilon}^{s+\varepsilon} f(t, z) dt & \text{if } z \neq 0, \\ f(s, 0) & \text{if } z = 0. \end{cases}$$

By Lebesgue's differentiation theorem we have $\tilde{f} \sim f$; so to achieve the proof it suffices to prove that for a.a., $s \in R$, the function $\tilde{f}(s, \cdot)$ is convex. Let N be a null subset of \mathbb{R} such that

$$\lim_{\varepsilon \to 0^+} \int_{s-\varepsilon}^{s+\varepsilon} f(t,0) \, dt = f(s,0) \qquad \text{for every } s \in \mathbb{R} - N \tag{1.1}$$

and let $s \in \mathbb{R} - N$, $z, z_1, z_2 \in \mathbb{R}^n$, $\lambda \in [0, 1]$, $\varepsilon > 0$. Since f is *M*-convex, we have for $z = \lambda z_1 + (1 - \lambda) z_2$

$$\int_{s-\varepsilon}^{s+\varepsilon} f(t,z) dt \leq \lambda \int_{s-\varepsilon}^{s+\varepsilon} f(t,z_1) dt + (1-\lambda) \int_{s-\varepsilon}^{s+\varepsilon} f(t,z_2) dt$$

and so, taking the limit as $\varepsilon \rightarrow 0^+$ and using (1.1)

$$\widetilde{f}(s,z) \leq \lambda \widetilde{f}(s,z_1) + (1-\lambda) \widetilde{f}(s,z_2).$$

Let $f: \mathbb{R} \times \mathbb{R}^n \to [0, +\infty]$ be a function; consider the class

$$\mathcal{F}_f = \{ \phi \text{ convex l.s.c. integrand: } \phi \leq f \}.$$

PROPOSITION 1.9. Assume f to be a general integrand that satisfies hypothesis (H_{∞}) . Then there exists $\phi_f \in \mathscr{F}_f$ such that $\phi \leq \phi_f$ for every $\phi \in \mathscr{F}_f$.

Proof. Define for every $z \in \mathbb{R}^n$

$$g(\cdot, z) = \begin{cases} \mathcal{M}\text{-sup}\{\phi(\cdot, z): \phi \in \mathcal{F}_f\} & \text{if } z \neq 0, \\ \sup\{\phi(\cdot, 0): \phi \in \mathcal{F}_f\} & \text{if } z = 0. \end{cases}$$

Then g is a general integrand, $g \leq f$ and $g(\cdot, 0)$ is lower semicontinuous. Since for every $\phi \in \mathscr{F}_f$ the function $\phi(\cdot, 0)$ is lower semicontinuous, by the Lindelöf covering theorem $g(\cdot, 0)$ is the supremum of a countable family $(\phi_h(\cdot, 0))_{h \in \mathbb{N}}$ with $\phi_h \in \mathscr{F}_f$. Then $g(\cdot, 0) = \mathscr{M}$ -sup $\{\phi_h(\cdot, 0): h \in \mathbb{N}\}$ and so

$$g(\cdot, z) = \mathcal{M} \operatorname{sup} \{ \phi(\cdot, z) : \phi \in \mathcal{F}_f \} \quad \text{for every} \quad z \in \mathbb{R}^n.$$

Therefore, by Corollary 1.2, g is a convex general integrand; thus by Proposition 1.8 there exists $\phi_f \in \mathscr{F}_f$ such that $\phi_f \sim g$. Let $\phi \in \mathscr{F}_f$; by definition of g we have $\phi \leq g$ and so $\phi \leq \phi_f$.

2. STATEMENT OF THE RESULTS

In the following Ω will denote a fixed bounded open subset of \mathbb{R}^n . We denote by \mathscr{A} the class of all open subsets of Ω ; \mathscr{P} the class of all piecewise affine functions on \mathbb{R}^n , i.e., the class of all Lipschitz functions u for which there exists a finite family $(\Omega_i)_{i \in I}$ of open subsets of \mathbb{R}^n such that u is affine on each Ω_i and meas $(\mathbb{R}^n - \bigcup_{i \in I} \Omega_i) = 0$; $u_{s,z}$ the affine function $u_{s,z}(x) = s + \langle z, x \rangle$ ($s \in \mathbb{R}, z \in \mathbb{R}^n$); $I_{\sigma}(s)$ the open interval $]s - \sigma, s + \sigma[(\sigma > 0, s \in \mathbb{R}); B_{\rho}(x)$ then open ball $\{y \in \mathbb{R}^n : |x - y| < \rho\}$ ($\rho > 0, x \in \mathbb{R}^n$); I_A the characteristic function of A, i.e.,

$$1_{A}(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise;} \end{cases}$$

|A| the Lebesgue measure of the set A. Let f be a general integrand; then we can define the functional

$$F(u, A) = \int_{A} f(u, Du) \, dx \tag{2.1}$$

for every $u \in \mathcal{P}$, $A \in \mathcal{A}$. If f is an integrand we have (see [5, Lemma 3]) that the functional F can be defined by (2.1) for every $u \in W_{loc}^{1,1}(\Omega)$, $A \in \mathcal{A}$.

Remark 2.1. Let f_1, f_2 be two general integrands; then it is immediate to see that

$$f_1 \leq f_2 \Leftrightarrow \forall u \in \mathscr{P}, \quad \forall A \in \mathscr{A} \int_A f_1(u, Du) \, dx \leq \int_A f_2(u, Du) \, dx.$$

If f_1, f_2 are integrands we have (see [5, Lemma 2])

$$f_1 \not\ll f_2 \Leftrightarrow \forall u \in W^{1,1}_{\text{loc}}(\Omega), \qquad \forall A \in \mathscr{A} \, \int_A f_1(u, \, Du) \, dx \leq \int_A f_2(u, \, Du) \, dx.$$

In the following, if (X, τ) is a topological space, $E \subseteq X$, $F: E \to \overline{\mathbb{R}}$, we denote by $\Gamma(\tau)F$ the function defined on the τ -closure \overline{E} of E by

$$\Gamma(\tau) F(x) = \liminf_{y \to x} F(y) = \sup_{U \in \mathscr{I}(x)} \inf_{y \in U} F(y),$$

where $\mathcal{I}(x)$ stands for the family of all τ -neighborhoods of x in X. We can now state our relaxation results.

THEOREM 2.2. Let f be a general integrand satisfying hypothesis (H_{∞}) and let F(u, A) be the functional defined on $\mathcal{P} \times \mathcal{A}$ by (2.1). Then, for every $u \in \mathcal{P}$ and $A \in \mathcal{A}$

$$\Gamma(L^1_{\text{loc}}(A)) F(u, A) = \int_A \phi_f(u, Du) \, dx,$$

where ϕ_f is the function defined in Proposition 1.9.

THEOREM 2.3. Let f be an integrand and let $p \in [1, +\infty]$. For every $A \in \mathcal{A}$ and $u \in W^{1,p}(A)$ define

$$F(u, A) = \int_A f(u, Du) \, dx.$$

Suppose that

- (i) f satisfies hypothesis (H_p) ;
- (ii) the function $\phi_f(\cdot, 0)$ is continuous.

Then, for every $A \in \mathscr{A}$ and $u \in W^{1,p}(A)$,

$$\Gamma(L^1_{\rm loc}(A)) F(u, A) = \int_A \phi_f(u, Du) \, dx.$$

3. PROOF OF THE RESULTS

Let f be a general integrand satisfying hypothesis (H_{∞}) and let F be the functional defined on $\mathscr{P} \times \mathscr{A}$ by (2.1); we denote briefly by $\overline{F}(u, A)$ the functional $\Gamma(L^{1}_{loc}(A)) F(u, A)$. The following theorem holds.

THEOREM 3.1. For every $u \in \mathcal{P}$ the set function $\overline{F}(u, \cdot)$ is the restriction to \mathcal{A} of a regular Borel measure which is absolutely continuous with respect to the Lebesgue measure.

Proof. It follows as in Section 3 of [2].

PROPOSITION 3.2. For every $x_0 \in \mathbb{R}^n$, $u \in L^1_{loc}(\Omega)$, $A \in \mathcal{A}$ we have

$$\overline{F}(u, A) = \overline{F}(u \circ \tau_{x_0}, \tau_{x_0}^{-1}(A)),$$

where $\tau_{x_0}: \mathbb{R}^n \to \mathbb{R}^n$ is the map $\tau_{x_0}(x) = x + x_0$.

Proof. It follows from the fact that the same property holds for F.

LEMMA 3.3. Let $g \in L^1_{loc}(\mathbb{R})$ and let $\lambda > 0$; for every $s \in \mathbb{R}$ and $h \in \mathbb{N}$ define

$$M_h(s) = \frac{1}{2h} \sum_{l=-h}^{h-1} g\left(s + \frac{i\lambda}{h}\right), \qquad M(s) = \int_{I_\lambda(s)} g(t) dt.$$

Then we have $M_h \to M$ in $L^1_{loc}(\mathbb{R})$.

Proof. If g is continuous, then the assertion follows immediately from Riemann's integrability theorem. In the general case, let a > 0 and for every $\varepsilon > 0$, let g_{ε} be a continuous function such that

$$\|g_{\varepsilon}-g\|_{L^{1}(-a-\lambda,a+\lambda)} \leq \varepsilon.$$

Set $M_h^{\varepsilon}(s) = (1/2h) \sum_{i=-h}^{h-1} g_{\varepsilon}(s + (i\lambda/h))$ and $M^{\varepsilon}(s) = \int_{I_{\lambda}(s)} g_{\varepsilon}(t) dt$. Then for every $\varepsilon > 0$ we have

$$\begin{split} \limsup_{h} \|M_{h} - M\|_{L^{1}(-a,a)} \\ \leqslant \limsup_{h} \|M^{\varepsilon} - M\|_{L^{1}(-a,a)} + \|M^{\varepsilon} - M^{\varepsilon}_{h}\|_{L^{1}(-a,a)} + \|M^{\varepsilon}_{h} - M_{h}\|_{L^{1}(-a,a)}] \\ \leqslant \limsup_{h} \left[\frac{a\varepsilon}{\lambda} + \frac{1}{2h} \sum_{i=-h}^{h-1} \int_{-a}^{a} |g\left(s + \frac{i\lambda}{h}\right) - g_{\varepsilon}\left(s + \frac{i\lambda}{h}\right)| ds \right] \\ \leqslant \frac{a\varepsilon}{\lambda} + \|g - g_{\varepsilon}\|_{L^{1}(-a-\lambda,a+\lambda)} \leqslant \frac{a\varepsilon}{\lambda} + \varepsilon. \end{split}$$

From the arbitrariness of $\varepsilon > 0$ we get $\lim_{h} \|M_h - M\|_{L^1(-a,a)} = 0$. Define now for every $s \in \mathbb{R}, z \in \mathbb{R}^n$

$$f(s, z) = \limsup_{\rho \to 0^+} \frac{F(u_{s,z}, B_{\rho}(0))}{|B_{\rho}(0)|}.$$

THEOREM 3.4. The function f satisfies the following conditions:

- (i) hypothesis (H_{∞}) holds for f;
- (ii) for every $z \in \mathbb{R}^n$ the function $\overline{f}(\cdot, z)$ is measurable on \mathbb{R} ;

366

- (iii) for every $u \in \mathcal{P}$, $A \in \mathcal{A}$ $\overline{F}(u, A) = \int_A \overline{f}(u, Du) dx$;
- (iv) the function $f(\cdot, 0)$ is lower semicontinuous on \mathbb{R} ;
- (v) for a.a. $s \in \mathbb{R}$ the function $f(s, \cdot)$ is convex on \mathbb{R}^n .

Proof. Property (i) follows immediately from the definition of \overline{f} and from the fact that hypothesis (H_{∞}) holds for f. Let $z \in \mathbb{R}^n$; for every $\rho > 0$ the function $s \mapsto \overline{F}(u_{s,z}, B_{\rho}(0))/|B_{\rho}(0)|$ is lower semicontinuous on \mathbb{R} ; then for every $h \in \mathbb{N}$ the function

$$\alpha_h(s) = \sup\left\{\frac{\vec{F}(u_{s,z}, B_{\rho}(0))}{|B_{\rho}(0)|} : 0 < \rho < \frac{1}{h}\right\}$$

is lower semicontinuous on \mathbb{R} , and so from the equality

$$f(s, z) = \inf\{\alpha_h(s): h \in \mathbb{N}\}\$$

we get (ii). From Theorem 3.1, for every $s \in \mathbb{R}$, $z \in \mathbb{R}^n$, $A \in \mathscr{A}$, we have

$$\overline{F}(u_{s,z}, A) = \int_{A} g_{s,z}(x) \, dx,$$

where $g_{s,z}$ is a suitable function belonging to $L^1(\Omega)$. Now, let $s \in \mathbb{R}$, $z \in \mathbb{R}^n$, $A \in \mathcal{A}$; since $g_{s,z} \in L^1(\Omega)$, for a.a. $x \in \Omega$

$$g_{s,z}(x) = \lim_{\rho \to 0^+} \oint_{B_{\rho}(x)} g_{s,z}(y) \, dy;$$

thus by using Proposition 3.2, we have

$$\int_{A} \bar{f}(s + \langle z, x \rangle, z) \, dx = \int_{A} \left[\limsup_{\rho \to 0^{+}} \oint_{B_{\rho}(0)} g_{s + \langle z, x \rangle, z}(y) \, dy \right] dx$$
$$= \int_{A} \left[\limsup_{\rho \to 0^{+}} \oint_{B_{\rho}(x)} g_{s, z}(y) \, dy \right] dx$$
$$= \int_{A} g_{s, z}(x) \, dx = \bar{F}(u_{s, z}, A).$$

Therefore, by using Theorem 3.1, property (iii) is proved. To prove property (iv) consider $s_h, s \in \mathbb{R}$ with $s_h \to s$; then $u_{s_h,0} \to u_{s,0}$ and so, by using property (iii), for every $A \in \mathcal{A}$ we have

$$|A| \ \overline{f}(s, 0) = \overline{F}(u_{s,0}, A) \leq \liminf_{h} \overline{F}(u_{s,0}, A) = |A| \liminf_{h} \overline{f}(s_{h}, 0).$$

Finally we prove (v). Let $s \in \mathbb{R}$, $z_1, z_2 \in \mathbb{R}^n$ with $z_1 \neq z_2$, $\lambda \in [0, 1[$ and set $z = \lambda z_1 + (1 - \lambda) z_2$; suppose that $z \neq 0$, $z_1 \neq 0$, $z_2 \neq 0$. We shall prove that

$$\tilde{f}(s, z) \le \lambda \tilde{f}(s, z_1) + (1 - \lambda) \tilde{f}(s, z_2).$$
 (3.1)

Let $z_0 = (z_2 - z_1)/|z_2 - z_1|$; for every $h \in \mathbb{N}$, $j \in \mathbb{Z}$ set

$$\Omega_{hj}^{1} = \left\{ y \in \mathbb{R}^{n} : \frac{j-1}{h} < \langle z_{0}, y \rangle < \frac{j-1+\lambda}{h} \right\},$$
$$\Omega_{hj}^{2} = \left\{ y \in \mathbb{R}^{n} : \frac{j-1+\lambda}{h} < \langle z_{0}, y \rangle < \frac{j}{h} \right\},$$
$$\Omega_{h}^{1} = \bigcup_{j \in \mathbb{Z}} \Omega_{hj}^{1}, \quad \Omega_{h}^{2} = \bigcup_{j \in \mathbb{Z}} \Omega_{hj}^{2}.$$

Note that, in the weak* topology of $L^{\infty}(\Omega)$, the sequences $(1_{\Omega_h^1})$ and $(1_{\Omega_h^2})$ converge to λ and to $(1-\lambda)$, respectively. Let (u_h) be the sequence of functions of \mathscr{P} defined by

$$u_{h}(y) = \begin{cases} s + c_{hj}^{1} + \langle z_{1}, y \rangle & \text{if } y \in \Omega_{hj}^{1}, \\ s + c_{hj}^{2} + \langle z_{2}, y \rangle & \text{if } y \in \Omega_{hj}^{2}, \end{cases}$$
(3.2)

where $c_{hj}^1 = ((j-1)(1-\lambda)/h) |z_2 - z_1|$ and $c_{hj}^2 = -(jh/h) |z_2 - z_1|$. For every $y \in \Omega_{hj}^1$,

$$|u_{h}(y) - u_{s,z}(y)| = |c_{hy}^{1} + \langle z_{1} - z, y \rangle| = (1 - \lambda) |z_{2} - z_{1}| \left| \frac{j - 1}{h} - \langle z_{0}, y \rangle \right|$$

$$\leq \frac{\lambda(1 - \lambda)}{h} |z_{2} - z_{1}|.$$

Analogously, for every $y \in \Omega_{h_i}^2$,

$$|u_h(y) - u_{s,z}(y)| \leq \frac{\lambda(1-\lambda)}{h} |z_2 - z_1|;$$

therefore (u_h) converges to $u_{s,z}$ in $L^{\infty}(\mathbb{R}^n)$ and weakly* in $W^{1,\infty}(\Omega)$. By Lusin's theorem, for every $\delta > 0$ there exist an open set $A_{\delta} \subseteq \mathbb{R}$ with $|A_{\delta}| < \delta$ and two continuous functions g_1, g_2 from \mathbb{R} into $[0, +\infty[$ such that for every $s \in \mathbb{R} - A_{\delta}$ we have

$$f(s, z_1) = g_1(s)$$
 and $f(s, z_2) = g_2(s)$.

Since \vec{f} satisfies hypothesis (H_{∞}), there exists a constant c such that

$$\overline{F}(u_{s,z}, B_{\rho}(0)) \leq \liminf_{h} \int_{B_{\rho}(0)} \overline{f}(u_{h}, Du_{h}) dx$$

$$= \liminf_{h} \left[\int_{B_{\rho}(0) \cap \Omega_{h}^{1}} \overline{f}(u_{h}, z_{1}) dx + \int_{B_{\rho}(0) \cap \Omega_{h}^{2}} \overline{f}(u_{h}, z_{2}) dx \right]$$

$$\leq \liminf_{h} \left[\int_{B_{\rho}(0) \cap \Omega_{h}^{1}} g_{1}(u_{h}) dx + \int_{B_{\rho}(0) \cap \Omega_{h}^{2}} g_{2}(u_{h}) dx + c |B_{\rho}(0) \cap u_{h}^{-1}(A_{\delta})| \right]. \quad (3.3)$$

It is not difficult to see that there exists a constant $c_1 > 0$ independent of h such that for every $h \in \mathbb{N}$

$$|B_{\rho}(0) \cap u_{s,z}^{-1}(A_{\delta})| \leq c_1 \delta \quad \text{and} \quad |B_{\rho}(0) \cap u_h^{-1}(A_{\delta})| \leq c_1 \delta.$$

Then, by using (3.3), for a suitable constant $c_2 > 0$

$$\begin{split} \overline{F}(u_{s,z}, B_{\rho}(0)) \\ &\leq \lambda \int_{B_{\rho}(0)} g_{1}(s + \langle z, x \rangle) \, dx + (1 - \lambda) \int_{B_{\rho}(0)} g_{2}(s + \langle z, x \rangle) \, dx + cc_{1}\delta \\ &\leq \lambda \int_{B_{\rho}(0)} \overline{f}(s + \langle z, x \rangle, z_{1}) \, dx + (1 - \lambda) \int_{B_{\rho}(0)} \overline{f}(s + \langle z, x \rangle, z_{2}) \, dx + c_{2}\delta \\ &= \left(\frac{|z_{1}|}{|z|}\right)^{n} \int_{B_{\rho}(|z|/|z_{1}|)(0)} \overline{f}(s + \langle z_{1}, x \rangle, z_{1}) \, dx \\ &+ (1 - \lambda) \left(\frac{|z_{2}|}{|z|}\right)^{n} \int_{B_{\rho}(|z|/|z_{2}|)(0)} \overline{f}(s + \langle z_{2}, x \rangle, z_{2}) \, dx + c_{2}\delta. \end{split}$$

Since δ is arbitrary, we obtain

$$\begin{split} \oint_{B_{\rho}(0)} \tilde{f}(s + \langle z, x \rangle, z) \, dx &\leq \lambda \oint_{B_{\rho}(|z|/|z_1|)(0)} \tilde{f}(s + \langle z_1, x \rangle, z_1) \, dx \\ &+ (1 - \lambda) \oint_{B_{\rho}(|z|/|z_2|)(0)} \tilde{f}(s + \langle z_2, x \rangle, z_2) \, dx \end{split}$$

and so, taking the limit as $\rho \to 0^+$, we get (3.1). We prove now that for every $s \in \mathbb{R}$ there exists

$$\gamma(s) = \lim_{\substack{z \neq 0 \\ z \neq \emptyset}} f(s, z).$$

We argue by contradiction: suppose that two sequences (z_h^1) and (z_h^2) exist which converge to 0 such that for a suitable $s \in \mathbb{R}$,

$$\lim_{h} \tilde{f}(s, z_{h}^{1}) < \lim_{h} \tilde{f}(s, z_{h}^{2}).$$
(3.4)

By (3.1) and by hypothesis (H_{∞}) the function $\tilde{f}(s, \cdot)$ is continuous on $\mathbb{R}^n - \{0\}$, so we can assume that (z_h^1) and (z_h^2) are such that for every $h \in \mathbb{N}$ the straight line 1_h joining z_h^1 to z_h^2 does not contain the origin. Then, by (3.1), the restriction of $\tilde{f}(s, \cdot)$ to 1_h is convex and so for every h sufficiently large there exists z_h^3 with $|z_h^3| = 1$ and such that

$$\tilde{f}(s, z_h^3) \ge \tilde{f}(s, z_h^1) + |z_h^3 - z_h^1| \frac{\tilde{f}(s, z_h^2) - \tilde{f}(s, z_h^1)}{|z_h^2 - z_h^1|}.$$

Taking the limit as $h \to +\infty$ we have, by (3.4),

$$\lim_{h} \bar{f}(s, z_{h}^{3}) = +\infty$$

which contradicts hypothesis (H_{∞}). Now, define

$$\tilde{f}(s, z) = \begin{cases} \bar{f}(s, z), & \text{if } z \neq 0, \\ \gamma(s), & \text{if } z = 0; \end{cases}$$

we have proved that for every $s \in \mathbb{R}$ the function $\tilde{f}(s, \cdot)$ is convex on \mathbb{R}^n , so to conclude the proof of property (v) it is enough to prove that $\tilde{f}(s, 0) = \tilde{f}(s, 0)$ for a.a. $s \in \mathbb{R}$. We prove first that

$$\tilde{f}(s,0) \leq \tilde{f}(s,0)$$
 for a.a. $s \in \mathbb{R}$. (3.5)

Let $s \in \mathbb{R}$, $\varepsilon > 0$, and let (u_h) be the sequence defined in (3.2) with $z_1 = (-\varepsilon, 0, ..., 0), z_2(\varepsilon, 0, ..., 0), \lambda = \frac{1}{2}$. Let Q be the cube of \mathbb{R}^n given by $Q = \{x \in \mathbb{R}^n : |x_i| < 1 \text{ for } i = 1, ..., n\}$; then, setting $v_h(x) = u_h(x) + (\varepsilon/4h)$, we have

$$2^{n} \overline{f}(s, 0) = \overline{F}(u_{s,0}, Q) \leq \liminf_{h} \overline{F}(v_{h}, Q)$$
$$= \liminf_{h} \left[\int_{\Omega \cap \Omega_{h}^{1}} \widetilde{f}(v_{h}, z_{1}) \, dx + \int_{\Omega \cap \Omega_{h}^{2}} \widetilde{f}(v_{h}, z_{2}) \, dx \right]$$
$$\leq \omega(\varepsilon) + \liminf_{h} \int_{Q} \widetilde{f}(v_{h}, 0) \, dx, \qquad (3.6)$$

where $\lim_{\epsilon \to 0^+} \omega(\epsilon) = 0$ and the last inequality follows from the convexity

of $\tilde{f}(s, z)$ with respect to z and from hypothesis (H_{∞}). By (3.6), it follows that

$$2^{n}\overline{f}(s,0) \leq \omega(\varepsilon) + \liminf_{h} \sum_{j=-h+1}^{n} \left\{ \int_{\Omega \cap \Omega_{h_{j}}^{1}} \widetilde{f}(s+(j-\frac{3}{4}/h)\varepsilon - \varepsilon x_{1},0) dx + \int_{Q \cap \Omega_{h_{j}}^{2}} \widetilde{f}(s-(j-\frac{1}{4}/h)\varepsilon + \varepsilon x_{1},0) dx \right\}$$
$$= \omega(\varepsilon) + 2^{n-1} \liminf_{h} \frac{4h}{\varepsilon} \int_{s-(\varepsilon/4h)}^{s+(\varepsilon/4h)} \widetilde{f}(t,0) dt$$
$$= \omega(\varepsilon) + 2^{n} \liminf_{h} \int_{s-(\varepsilon/4h)}^{s+(\varepsilon/4h)} \widetilde{f}(t,0) dt.$$
(3.7)

Therefore, if s is a Lebesgue point of $\tilde{f}(\cdot, 0)$ we have

$$\tilde{f}(s,0) \leq 2^{-n}\omega(\varepsilon) + \tilde{f}(s,0)$$

and thus, since ε is arbitrary, we get (3.5). Finally, we prove that

$$\tilde{f}(s,0) \leq \tilde{f}(s,0)$$
 for a.a. $s \in \mathbb{R}$. (3.8)

Let $s \in \mathbb{R}$, $\lambda \in]0, 1[$, let (u_h) be the sequence defined in (3.2) with $z_1 = (1, 0, ..., 0), z_2 = (0, 0, ..., 0)$, and let Q be the cube of \mathbb{R}^n given by $Q = \{x \in \mathbb{R}^n : |x_i| < 1 \text{ for } i = 1, ..., n\}$. Then, setting $u(x) = s + \langle \lambda z_1, x \rangle$, we have, for a suitable constant c > 0 and a suitable function $\omega(\lambda)$ with $\lim_{\lambda \to 0^+} \omega(\lambda) = 0$

$$\begin{aligned} \oint_{I_{\lambda}(s)} \widetilde{f}(t,0) dt \\ &\leq \int_{I_{\lambda}(s)} \left[\omega(\lambda) + \widetilde{f}(t,\lambda z_{1}) \right] dt \\ &= \omega(\lambda) + \int_{I_{1}(0)} \widetilde{f}(s+\lambda x_{1},\lambda z_{1}) dx_{1} = \omega(\lambda) + \int_{Q} \widetilde{f}(u,Du) dx \\ &= \omega(\lambda) + \frac{1}{|Q|} \overline{F}(u,Q) \leq \omega(\lambda) + \frac{1}{|Q|} \liminf_{h} \overline{F}(u_{h},Q) \\ &= \omega(\lambda) + \frac{1}{|Q|} \liminf_{h} \left[\int_{Q \cap \Omega_{h}^{1}} \widetilde{f}(u_{h},z_{1}) dx + \int_{Q \cap \Omega_{h}^{2}} \widetilde{f}(u_{h},0) dx \right] \\ &\leq \omega(\lambda) + \frac{1}{|Q|} \liminf_{h} \left[c \left| Q \cap \Omega_{h}^{1} \right| + \sum_{j=1-h}^{h} \widetilde{f}\left(s - \frac{j\lambda}{h}, 0\right) \left| Q \cap \Omega_{hj}^{2} \right| \right] \\ &= \omega(\lambda) + c\lambda + (1-\lambda) \liminf_{h} \frac{1}{2h} \sum_{j=-h}^{h-1} \widetilde{f}\left(s + \frac{i\lambda}{h}, 0\right). \end{aligned}$$
(3.9)

Using Lemma 3.3 we obtain that there exist a null subset N of \mathbb{R} and a subsequence (h_k) such that

$$\lim_{k} \frac{1}{2h_k} \sum_{i=-h_k}^{h_k-1} \tilde{f}\left(s + \frac{i\lambda}{h_k}, 0\right) = \int_{I_{\lambda}(s)} \tilde{f}(t, 0) dt$$

for every $\lambda \in \mathbb{Q} \cap [0, 1[$ and $s \in \mathbb{R} - N$. Therefore by (3.9), for every $\lambda \in \mathbb{Q} \cap [0, 1[$ and $s \in \mathbb{R} - N$

$$\oint_{I_{\lambda}(s)} \tilde{f}(t,0) dt \leq \omega(\lambda) + c\lambda + (1-\lambda) \oint_{I_{\lambda}(s)} \tilde{f}(t,0) dt;$$

so, in the limit as $\lambda \to 0^+$ we get (3.8), and the proof of Theorem 3.4 is achieved.

Proof of Theorem 2.2. In Theorem 3.4 we have proved that for every $u \in \mathcal{P}$, $A \in \mathcal{A}$

$$\overline{F}(u, A) = \int_{A} \overline{f}(u, Du) \, dx$$

with \overline{f} convex l.s.c. integrand. Since $\overline{F} \leq F$, by Remark 2.1 we have that $\overline{f} \in \mathscr{F}_f$ and so $\overline{f} \leq \phi_f$. On the other hand, the functional $\Phi(u, A) = \int_A \phi_f(u, Du) dx$ is $L^1_{loc}(A)$ -lower semicontinuous (see [5], Proposition 2.7 and Theorem 1) and $\Phi \leq F$; then $\Phi \leq \overline{F}$ and so $\phi_f \leq \overline{f}$. Therefore $\phi_f \sim \overline{f}$ and thus for every $u \in \mathscr{P}$, $A \in \mathscr{A}$ we have

$$\overline{F}(u, A) = \int_A \phi_f(u, Du) \, dx.$$

Proof of Theorem 2.3. For every $A \in \mathcal{A}$ and $u \in W^{1,p}(A)$ define

$$G(u, A) = \Gamma(L^{1}_{loc}(A)) F(u, A);$$
$$\Phi(u, A) = \int_{A} \phi_{f}(u, Du) dx.$$

Since ϕ_f is a convex integrand, there exists a null subset N of \mathbb{R} such that, for every $s \notin N$ the function $\phi_f(s, \cdot)$ is convex on \mathbb{R}^n . Set for every $s \in \mathbb{R}$, $z \in \mathbb{R}^n$

$$\alpha(s, z) = \begin{cases} \phi_f(s, 0), & \text{if } s \in N, \\ \phi_f(s, z), & \text{otherwise.} \end{cases}$$

We have $\alpha \approx \phi_f$; moreover, by hypotheses i) and ii) of Theorem 2.3, the function α satisfies all conditions of Theorem 2.1 of [3]. Let $A \in \mathcal{A}$ and let

 $u \in W^{1,p}(A)$; Let B be an open set such that $\overline{B} \subseteq A$ and let $v \in W^{1,p}(\mathbb{R}^n)$ with compact support in A such that u = v a.e. on B. Let (v_h) be a sequence in \mathscr{P} strongly converging to v in $W^{1,p}(\mathbb{R}^n)$ (in the case $p = +\infty$ we choose (v_h) converging to v in $L^{\infty}(\mathbb{R}^n)$, with $Dv_h(x) \to Dv(x)$ a.e. in \mathbb{R}^n and such that $\sup_h \|Dv_h\|_{L^{\infty}} < +\infty$). Then, by Theorem 2.2 and by Theorem 2.1 of [3], we have

$$G(u, B) = G(v, B) \leq \liminf_{h} G(v_{h}, B) = \liminf_{h} \Phi(v_{h}, B)$$
$$= \liminf_{h} \int_{B} \alpha(v_{h}, Dv_{h}) dx = \int_{B} \alpha(v, Dv) dx$$
$$= \int_{B} \phi_{f}(v, Dv) dx = \int_{B} \phi_{f}(u, Du) dx.$$

Since the function $G(u, \cdot)$ is the restriction to the open subsets of A of a regular Borel measure on A (see Section 3 of [2]), we have

$$G(u, A) \leq \int_{A} \phi_{f}(u, Du) \, dx. \tag{3.10}$$

On the other hand, the functional $\Phi(\cdot, A)$ is $L^1_{loc}(A)$ -lower semicontinuous (see [5, Theorem 1]); therefore

$$\Phi(u,A) \leqslant G(u,A)$$

which, together with (3.10), completes the proof.

4. FURTHER REMARKS

We begin this section by giving an explicit characterization of the function ϕ_f . In the following, given a measurable function $\gamma: \mathbb{R} \to \overline{\mathbb{R}}$, we define (see [7, p. 159]) for every $s_0 \in \mathbb{R}$,

 $\gamma^{-}(s_0) = \sup\{t \in \mathbb{R}: \text{ the set } \{s: \gamma(s) < t\} \text{ has density 0 at } s_0\}.$

LEMMA 4.1. Let $\gamma \in L^{\infty}_{loc}(\mathbb{R})$ be a nonnegative function. Then, for every $s_0 \in \mathbb{R}$ and every $\rho > 0$ we have

$$\inf\left\{\liminf_{h} \oint_{I_{\rho/h}(0)} \gamma(s+s_h) \, ds\right\} \leq \gamma^-(s_0)$$

where the infimum is taken over all sequences (s_h) converging to s_0 .

Proof. Let $s_0 \in \mathbb{R}$ and let $t > \gamma^-(s_0)$; then the set $E = \{s: \gamma(s) < t\}$ has the property

$$\limsup_{\sigma \to 0^+} \frac{|E \cap I_{\sigma}(s_0)|}{|I_{\sigma}(s_0)|} > 0.$$

Therefore, for a suitable sequence (σ_h) converging to 0 and a suitable $\delta > 0$, we have

$$|E \cap I_{\sigma_h}(s_0)| \ge 2\delta\sigma_h \qquad \text{for every} \quad h \in \mathbb{N}.$$
(4.1)

By (4.1), for every $h \in \mathbb{N}$ there exists $s_h \in E \cap I_{\sigma_h}(s_0)$ such that

$$\lim_{\tau \to 0^+} \frac{|E \cap I_{\sigma_h}(s_0) \cap I_{\tau}(s_h)|}{|I_{\tau}(s_h)|} = 1.$$
(4.2)

Let $\rho > 0$; for every $k \in \mathbb{N}$ we have

$$\begin{aligned} \oint_{I_{\rho/k}(0)} \gamma(s+s_h) \, ds &= \frac{k}{2\rho} \left[\int_{I_{\rho/k}(s_h) \cap E \cap I_{\sigma_h}(s_0)} \gamma(s) \, ds + \int_{I_{\rho/k}(s_h) - (E \cap I_{\sigma_h}(s_0))} \gamma(s) \, ds \right] \\ &\leq t + \|\gamma\|_{L^{\infty}} \left[1 - \frac{|I_{\rho/k}(s_h) \cap E \cap I_{\sigma_h}(s_0)|}{|I_{\rho/k}(s_h)|} \right]. \end{aligned}$$

By (4.2), for a suitable sequence (k_h) of integers, we get

$$\liminf_{h} \oint_{I_{\rho/k_h}(0)} \gamma(s+s_h) \, ds \leqslant t;$$

hence the thesis follows from the arbitrariness of $t > \gamma^{-}(s_0)$.

Given a function $g: \mathbb{R} \times \mathbb{R}^n \to \overline{\mathbb{R}}$ we denote by $g^{**}(s, z)$ the greatest function convex in z which is less than or equal to g(s, z). Let $f: \mathbb{R} \times \mathbb{R}^n \to [0, +\infty]$ be a function; by using Remark 1.6 we define

$$\begin{split} \gamma(s) &= \operatorname{co}(f)(s, 0); \\ f_1(s, z) &= \begin{cases} \operatorname{co}(f)(s, z), & \text{if } z \neq 0, \\ \liminf_{t \to s} [\gamma^-(t) \land f(t, 0)], & \text{if } z = 0; \\ f_2(s, z) &= \begin{cases} \operatorname{co}(f_1)(s, z), & \text{if } z \neq 0, \\ f_1(s, 0) & \text{if } z = 0. \end{cases} \end{split}$$

THEOREM 4.2. If f is a general integrand satisfying hypothesis (H_{∞}) , then $\phi_f \sim f_2$.

Proof. We shall prove Theorem 4.2 in several steps.

374

Step 1. For every $\phi \in \mathscr{F}_f$ we have $\phi \leq f_1$. By definition of the class \mathscr{F}_f and by Remark 1.6, it is enough to prove that

$$\phi(s,0) \leq \gamma^{-}(s)$$
 for every $s \in \mathbb{R}$. (4.3)

Let $s \in \mathbb{R}$, $\varepsilon > 0$ and let (s_h) be a sequence converging to s; let Q be the cube of \mathbb{R}^n given by $Q = \{x \in \mathbb{R}^n : |x_i| < 1 \text{ for } i = 1,...,n\}$ and let (u_h) be the sequence defined in (3.2) with $z_1 = (-\varepsilon, 0,..., 0), z_2 = (\varepsilon, 0,..., 0), \lambda = \frac{1}{2}$. Set $w_h = u_h + (\varepsilon/4h) + s_h - s$; then, by using the L^1_{loc} -lower semicontinuity of the functional $\int_Q \phi(u, Du) dx$ (see [5] Theorem 1) and by arguing as in (3.6) we get

$$\begin{aligned} |Q| \ \phi(s,0) &\leq \liminf_{h} \int_{Q} \phi(w_{h}, Dw_{h}) \ dx \\ &\leq \liminf_{h} \left[\int_{Q \cap \Omega_{h}^{1}} f_{1}(w_{h}, z_{1}) \ dx + \int_{Q \cap \Omega_{h}^{2}} f_{1}(w_{h}, z_{2}) \ dx \right] \\ &\leq \omega(\varepsilon) + \liminf_{h} \int_{Q} \gamma(w_{h}) \ dx, \end{aligned}$$

where in the last inequality we have used Proposition 1.8. Therefore, with the same calculations used in (3.7) we obtain

$$\phi(s,0) \leq 2^{-n} \omega(\varepsilon) + \liminf_{h} \oint_{I_{\varepsilon/4h}(0)} \gamma(t+s_h) \, dt.$$

Since (s_h) is arbitrary, by Lemma 4.1

$$\phi(s,0) \leq 2^{-n}\omega(\varepsilon) + \gamma^{-}(s),$$

and so, taking the limit as $\varepsilon \to 0^+$, we get (4.3).

Step 2. For every $\phi \in \mathscr{F}_f$ we have $\phi \leq f_2$. It follows immediately from the definition of the class \mathscr{F}_f and from Remark 1.6.

Step 3. The function f_2 is a convex l.s.c. general integrand. By Proposition 1.8 there exists a convex integrand $\phi \sim co(f)$; define

$$\phi_1(s, z) = \begin{cases} \phi(s, z), & \text{if } z \neq 0, \\ f_1(s, 0), & \text{if } z = 0; \end{cases}$$

$$\phi_2(s, z) = \begin{cases} \phi_1^{**}(s, z), & \text{if } z \neq 0, \\ f_1(s, 0), & \text{if } z = 0. \end{cases}$$

By the definition of f_1 we have

$$f_1(s,0) \leq \phi(s,0)$$
 for a.a. $s \in \mathbb{R}$. (4.4)

By [8, Proposition 7, p. 329] and by (4.4), the function ϕ_2 is a convex l.s.c. integrand. Fix $z \in \mathbb{R}^n$; we obtain easily

$$co(f_1)(s, z) = co(\phi_1)(s, z) = \phi_1^{**}(s, z)$$
 for a.a. $s \in \mathbb{R}$;

thus $\phi_2 \sim f_2$ and so the proof of Step 3 is achieved.

Step 4. We have $f_2 \sim \phi_f$. By Step 2 it follows that $\phi_f \preccurlyeq f_2$. On the other hand, if ϕ_2 is the convex l.s.c. integrand defined in Step 3, we have $\phi_2 \preccurlyeq f$; thus, by definition of ϕ_f , we get $\phi_2 \preccurlyeq \phi_f$ and so $f_2 \preccurlyeq \phi_f$.

Remark 4.3. Let f be an integrand satisfying hypothesis (H_{∞}) . We can define

$$\beta(s) = f^{**}(s, 0);$$

$$g_{1}(s, z) =\begin{cases} f^{**}(s, z), & \text{if } z \neq 0, \\ \liminf_{t \to s} [\beta^{-}(t) \land f(t, 0)] & \text{if } z = 0; \end{cases}$$

$$g_{2}(s, z) =\begin{cases} g_{1}^{**}(s, z), & \text{if } z \neq 0, \\ g_{1}(s, 0), & \text{if } z = 0. \end{cases}$$

It is easy to prove that $\beta = \gamma$ a.e. on \mathbb{R} , $g_1 \sim f_1$, $g_2 \sim f_2$. Therefore, since g_2 is a convex l.s.c. integrand (see [8, Proposition 7, p. 329]), we have $g_2 \approx \phi_f$.

EXAMPLE 4.4. Let $A(s) = (a_y(s))$ be a measurable symmetric $n \times n$ matrix such that

$$0 \leq \sum_{i,j} a_{ij}(s) \ z_i z_j \leq \Lambda \ |z|^2 \quad \text{for every } s \in \mathbb{R}, \ z \in \mathbb{R}^n.$$

Let $g: \mathbb{R} \to \mathbb{R}$ be a Borel function such that

$$0 \leq g(s) \leq c(1+|s|^2)$$
 for every $s \in \mathbb{R}$.

The function

$$f(s, z) = \langle A(s) z, z \rangle + g(s)$$

is a convex integrand satisfying condition (H_2) . Denote by \bar{g} the function

$$\bar{g}(s) = \liminf_{t \to s} g(t).$$

Then, by applying Remark 4.3, we get easily

$$\phi_f(s, z) = \begin{cases} \langle A(s) \, z, \, z \rangle + g(s), & \text{if } \langle A(s) z, \, z \rangle \geqslant g(s) - \bar{g}(s) \\ \bar{g}(s) + 2\sqrt{g(s) - \bar{g}(s)} \sqrt{\langle A(s) z, \, z \rangle}, & \text{if } \langle A(s) z, \, z \rangle < g(s) - \bar{g}(s). \end{cases}$$

EXAMPLE 4.5 (See [9, Example 3.9]). Let n = 1 and let

$$f(s, z) = (1 + |1 + z|)^{|s|}.$$

Then, by applying Remark 4.3, we get easily

$$\phi_f(s, z) = \begin{cases} f(s, z) & \text{if } |s| > 1, \\ 1 & \text{if } |s| \le 1. \end{cases}$$

Remark 4.6. If Ω satisfies the cone property, then by using the Sobolev imbedding theorems, it is possible to prove Theorem 2.3 even if the function f verifies the following weaker estimates instead of the hypothesis (H_p) :

if
$$p > n$$
 $0 \leq f(s, z) \leq c(\psi(s) + |z|^p)$,

where $\psi \colon \mathbb{R} \to [0, +\infty)$ is a continuous function;

if
$$p = n$$
, $0 \le f(s, z) \le c(1 + |s|^k + |z|^p)$ where $k \in [1, +\infty[$
if $p < n$, $0 \le f(s, z) \le c(1 + |s|^k + |z|^p)$ where $k = \frac{np}{n-p}$.

ACKNOWLEDGMENT

We wish to thank Professor E. De Giorgi for many stimulating discussions.

References

- 1. E. ACERBI AND N. FUSCO, Semicontinuity problems in the Calculus of Variations, Arch. Rational Mech. Anal. 86 (1984), 125-145.
- 2. G. BUTTAZZO AND G. DAL MASO, Γ -limits of integral functionals, J. Anal. Math. 37 (1980), 145-185.
- 3. G. BUTTAZZO AND A. LEACI, A continuity theorem for operators from $W^{1,q}(\Omega)$ into $L^{r}(\Omega)$, J. Funct. Anal. 58 (1984), 216-224.
- 4. E. DE GIORGI, Some semicontinuity and relaxation problems, in "Proceedings, Colloque Ennio de Giorgi," Paris, November 1983, in press.
- 5. E. DE GIORGI, G. BUTTAZZO, AND G. DAL MASO, On the lower semicontinuity of certain integral functionals, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (5) 74 (1983), 274-282.
- 6. I. EKELAND AND R. TEMAM, "Convex Analysis and Variational Problems," North-Holland, Amsterdam, 1976.
- 7. H. FEDERER, "Geometric Measure Theory," Springer, New York, 1969.
- 8. A. D. IOFFE AND V. M. TIHOMIROV, "Theory of Extremal Problems," North-Holland, Amsterdam, 1979.
- 9. P. MARCELLINI AND C. SBORDONE, Semicontinuity problems in the calculus of variations, Nonlinear Anal. 4 (1980), 241-257.
- 10. J. NEVEU, "Bases mathématiques du calcul des probabilités," Masson, Paris, 1964.