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INTRODUCTION 

After the proof of a semicontinuity result for functionals of the form 

F(u,sz)=J f(u,Du)dx 
R 

with f(s, z) not necessarily continuous with respect to s (see [S]), the 
interest of relaxation problems for such functionals was pointed out by E. 
De Giorgi in a lecture held in Paris, November 1983 (see [4]). In this 
paper we give a first result in this direction; more precisely we deal with the 
following problem: 

Find hypotheses on f under which it is possible to give an integral 
representation formula for the greatest functional F((u, Q) which is lower 
semicontinuous with respect to the Z&(O)-topology and less than or equal 
to F(u, l-2). 

This problem, under continuity assumptions on f, has been considered 
by several authors (see, e.g., [ 1, 2, 6, 93). In the present paper (see Sec- 
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tion 3) we prove that, for a large class of functions f, there exists a function 
4,.: R x R” + R such that: 

(i) df(*, 0) is lower semicontinuous; 
(ii) for every z E IV’, q5,(., z) is measurable; 

(iii) for a.a. s E R, q5#, .) is convex; 
(iv) for every UE W’~p(Q) we have 

F(u, 9) = Ia tjf(u, Du) dx. 

In Section 4 we give an explicit way to construct the function c$~. 

1. INTEGRAND~ 

In this section we study some properties of functions from R x R” into 
[0, +co]. Denote by A! the class of all Lebesgue measurable functions 
b: R + [0, +co]; the class A%? is ordered in the usual way by setting 

b, 5 b,-=b,(s) G b(s) for a.e. s fz R. 

LEMMA 1.1. Let I be a set of indices, and for every i E I let b, E A?. Then 
there exists a function b E A! (which we denote by A-sup, E, b,) such that: 

(i) bi <e/I b for every iE& 

(ii) if PEA and b, <.&/? for every ieZ, then b G.&P. 

Proof: See [lo, Proposition H-4-1, p. 433. 1 

In the following we say that a function f: R” + A is .&Z-convex if 

for every zl, z2 E R”, I E [O, 11. 
From Lemma 1.1 we obtain immediately: 

COROLLARY 1.2. Let Z be a set of indices, and for every iE Z let 
fi: R” + A be a A-convex function. Then the function f: R” + A defined by 
f(z) = A-supiEl f,(z) is A-convex. 

DEFINITION 1.3. Let f: R x R” --t [0, + co] be a function; we say that 

(i) f is a general integrand if for every z # 0 the function f(*, z) 
belongs to A; 
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(ii) f is an integrand if f is a general integrand, f(-, 0) is a Bore1 
function and for a.a. s E E-8 the function f(s, .) is continuous; 

(iii) f is a convex general integrand if for every ZE R” the function 
f(., z) belongs to A and the function zt+ f(., z) from R” into A is A-con- 
vex; 

(iv) f is a cunuex integrand if f is an integrand and for a.a. s E R the 
function f(s, -) is convex on IR”; 

(v) f is a convex I.s.c. general integrand if f is a convex general 
integrand and the function f(*, 0) is lower semicontinuous on R; 

(vi) f is a convex 1.~. integrand if f is a convex integrand and the 
function f(*, 0) is lower semicontinuous on R. 

In the following, by null set we mean a set of Lebesgue measure zero. 

DEFINITION 1.4. Given two functions f,, fi from [w x R” into [0, +a~] 
we write 

(il) for every SE R! fi(s, 0) < fJ.7, 0); 

(0 fi<f2- 
(i2) for every z E IX” there exists a null subset NZ 

of R such that 
fi(s. z) < f2(s, z) for every s E R - N,; 

i 

(ii,) for every s E R fi(s, 0) < f2(s, 0); 
(ii) fi=Vf2e (iiz) there exists a null subset N of R such that 

f,(s, z) < f2(s, z) for every s E R -N, z E IT!“. 

Moreover we call fi, f2 generally equivalent (and we write f, - fJ if fl < f2 
and f2< fi; analogously, we call fi, f2 equivalent (and we write fi xfJ if 
fi=%fi and fiefi. 

Remark 1.5. Let fi, f2 be integrands; then fi =$ fi if and only if 
fief*. 

Remark 1.6. From Corollary 1.2 it follows that for every function f 
from IF! x KY into [0, +co] there exists a convex general integrand (which 
we denote by co( f )) defined by 

co(f )(., z) = &-sup{4(-, z): 4 convex general integrand, 4 < f }. 

DEFINITION 1.7. Let 1 dp < +co and let f: [w x R” -+ R be a function; 
we say that f satisfies hypothesis (H,) if for a suitable constant c>O 

(H,) O~f(s,z)~c(l+~slP+l~l~)foreverys~R,~~R”. 
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If p = + cc we say that S satisfies hypothesis (H,) if for every M 2 0 there 
exists cM 2 0 such that 

(A!,) 0 <<(s, z) < cM for every (s, z) E R! x R” with Is[ GM, IzI GM. 

In the following we denote by fA g dx the average of a function g on a 
set A. 

PROPOSITION 1.8. Let f be a convex general integrand satisfying 
hypothesis (H,). Then there exists a convex integrand 7 such that 7-f. 

Proof For every s E R, z E R” we define 

if z #O, 

if z =O. 

By Lebesgue’s differentiation theorem we have 3-f; so to achieve the 
proof it suffices to prove that for a.a., s E R, the function 3(s, .) is convex. 
Let N be a null subset of R such that 

f 
S+E 

lim f(t, 0) dt=f(s,O) for every SE@-N (1.1) 
E-o+ S--E 

and let SER-N, z, zl, z~EIR”, AE[O, 11, e>O. Since f is A-convex, we 
have for z = AZ, + (1 - A) z2 

f 
S+& 
S--E f(t,z)d+ 11f(t,z,)dt+(l-I)~+‘f(t,z,)dt S--E 

and so, taking the limit as E --f 0 + and using ( 1.1) 

3b z) G ~363 Zl) + (1 - A) fb, zd. I 

Let f: R x R” + [0, +co] be a function; consider the class 

Pf = { 4 convex 1.s.c. integrand: 4 <f }. 

PROPOSITION 1.9. Assume f to be a general integrand that satisfies 
hypothesis (H, ). Then there exists q5, E F, such that C,I~ < 4f for every Q E Yj. 

Proof: Define for every z E 08” 

~-SUP{N, z): 4 E 3) if z #O, 
sup{&, 0): &9f} if z =O. 
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Then g is a general integrand, g< f and g(*, 0) is lower semicontinuous. 
Since for every 4 E 44 the function 4(., 0) is lower semicontinuous, by the 
Lindelof covering theorem g(., 0) is the supremum of a countable family 
(hA.7 O))/l, N with 4h E $,.Then g(., 0) = A-sup(qj,,(., 0): h E N } and so 

d’, 2) = -J-q.J{&, 2): 4 -5 q for every z E R”. 

Therefore, by Corollary 1.2, g is a convex general integrand; thus by 
Proposition 1.8 there exists dfcFf such that 4fwg. Let 4~9~; by 
definition of g we have 4 <g and so 4 =$ dY 1 

2. STATEMENT OF THE RESULTS 

In the following 52 will denote a fixed bounded open subset of R”. We 
denote by ~4 the class of all open subsets of 8; 9 the class of all piecewise 
afftne functions on R”, i.e., the class of all Lipschitz functions u for which 
there exists a finite family (52Jre, of open subsets of 178” such that u is afline 
on each Sz, and meas(R”-u,,, QJ =O; u,,~ the ahine function u,,(x) = 
s + (z, x) (s E R, z E R”); Z,(s) the open interval ]s - cr, s + a[ (0 > 0, s E R); 
B,(x) then open ball {YE R”: Jx-yJ <p} (p >O, XE R”); 1, the charac- 
teristic function of A, i.e., 

if xEA, 
otherwise; 

IAl the Lebesgue measure of the set A. Let f be a general integrand; then 
we can define the functional 

F(u,A)=j f(u,Du)dx (2-l ) 
A 

for every u E 9, A E&. If f is an integrand we have (see [S, Lemma 33) 
that the functional F can be defined by (2.1) for every UE W~$(sZ), A E&. 

Remark 2.1. Let f,,f2 be two general integrands; then it is immediate 
to see that 

fi<f2-=-VUE~, VA EGI j fi(u,Du) dxs j f*(u,Du) dx. 
A A 

If fi , f2 are integrands we have (see [ 5, Lemma 21) 
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In the following, if (X, T) is a topological space, E G X, f? E + I!% we denote 
by I’(r)F the function defined on the z-closure E of E by 

T(r) F(x) = liminf F( v) = sup inf F(y), 
Y-X UGY(X) ye cl 

where Y(x) stands for the family of all r-neighborhoods of x in X. We can 
now state our relaxation results. 

THEOREM 2.2. Let f be a general integrand satisfying hypothesis (H, ) 
and let F(u, A) be the functional defined on 9’ x d by (2.1). Then, for every 
UEB andAE&’ 

where tir is the function defined in Proposition 1.9. 

THEOREM 2.3. Let f be an integrand and let p E Cl, + co]. For every 
A E d and u E W1-p(A) define 

F(u, A) = j f(u, Du) dx. 
A 

Suppose that 

(i) f satisfies hypothesis (H,); 
(ii) the function q5,-(., 0) is continuous. 

Then, for every A E ~4 and u E W1,p(A), 

W:,,(A)) F(u, A) = il, tif,(u, Du) dx. 

3. PROOF OF THE RESULTS 

Let f be a general integrand satisfying hypothesis (H,) and let F be the 
functional defined on B x d by (2.1); we denote briefly by F( u, A) the 
functional T(L,QA)) F(u, A). The following theorem holds. 

THEOREM 3.1. For every u E 9’ the set function F((u, * ) is the restriction to 
d of a regular Bore1 measure which is absolutely continuous with respect to 
the Lebesgue measure. 

580’61 i3-9 
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Proof: It follows as in Section 3 of [2]. 1 

PROPOSITION 3.2. For every x,, E R”, u E L:,,(Q), A .E& we have 

F(u, A)=F(uoTxo, z,‘(A)), 

where zxo: R” -+ R” is the map z,,(x) = x + x0. 

ProoJ It follows from the fact that the same property holds for F. 1 

LEMMA 3.3. Let g E L,‘,,(W) and let 1> 0; for every s E R and h E N define 

M(s) = f g(t) dt. 
IA(S) 

Then we have M, + it4 in L:,,(R). 

Proof If g is continuous, then the assertion follows immediately from 
Riemann’s integrability theorem. In the general case, let a > 0 and for every 
E > 0, let g, be a continuous function such that 

II ge - g II L’( --a - I.0 + 1) d E. 

Set M;(s) = (1/2h) Cfzlh g,(s + (iA/h)) and M”(s) = j& g,(t) dt. Then for 
every E > 0 we have 

lim;w IIMh - WI L1c -a,a) 

From the arbitrariness of E > 0 we get limb llMh - MIIL~C+a.oj =O. 1 

Define now for every s E IR, z E R” 

.flf(s> z) = lirr”o”p 
~h,Z> B,(O)) 

lB,(O)( . 

THEOREM 3.4. The function f satisfies the following conditions: 

(i) hypothesis (H,) holds for f; 

(ii) for every IE R” the function J(., z) is measurable on R; 



RELAXATION OF VARIATIONAL INTEGRALS 361 

(iii) for every 24 E 8, A E d 924, A) = jA J(u, Du) kc; 
(iv) the function f(., 0) is lower semicontinuous on 52; 
(v) for au. s E IR the function f((s, .) is conuex on R”. 

Proof. Property (i) follows immediately from the definition of f and 
from the fact that hypothesis (H,) holds for jY Let ZE R”; for every p > 0 
the function s H F( u,,,, B,(O))/lB,(O)j is lower semicontinuous on R; then 
for every h E N the function 

is lower semicontinuous on 08, and so from the equality 

f(f(s, z) = inf{cr,(s): h E N} 

we get (ii). From Theorem 3.1, for every s E R, z E R”, A ES&‘, we have 

where g,, is a suitable function belonging to L’(Q). Now, let SE R, z E R”, 
AE~; since g,=ELl(Q), for a.a. XEQ 

thus by using Proposition 3.2, we have 

j- f(s + (z, x), z) dx 
A 

= I g,,(x) dx = %,m A 1. 
A 

Therefore, by using Theorem 3.1, property (iii) is proved. To prove 
property (iv) consider s,,, s E R with s,, + s; then u,,~ + us,0 and so, by using 
property (iii), for every A E SB we have 

IAl f(s, O)=F(‘(U~,~, A)dli~inf~(u,,,, A)= IAJ lirnjnff(s,, 0). 
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Finally we prove (v). Let SE R, zr, z2 E 08” with z1 # z2, d E 10, l[ and set 
z=Az,+(l--l)z,; suppose that z # 0, z1 # 0, z2 # 0. We shall prove that 

3~‘(s~z)~~3~~~z1)+(1--)3(~,z2). (3.1) 

Let zo= (z2--z1)/Iz2-zl/; for every hE iV,jeZ set 

j-l 
YEWh< (z,,y)< 

“f= yER”: 
i 

j-1+2. 
h < (z,,Y)<; 

‘I 
7 

a:, = (J q,, sz;= u Qf. 
JEL /EL 

Note that, in the weak* topology of L”(Q), the sequences (In;) and (In:) 
converge to 1 and to (l-2) respectively. Let (u,J be the sequence of 
functions of 9 defined by 

dY) = i 
s+cz,+ (Zl,Y> if ~ESZL,, 

s+c$+ (Z2FY) if ~ESZ~,, 
(3.2) 

wherec~j=((j-1)(1-i)/h)~z2-z,~ d 
YE%,> 

an cf= -(jh/h)Jz,-z,l.Forevery 

(ZO>Y) 

$1-J-) 
- Iz2-z11* h 

Analogously, for every y E Q$, 

I%(Y)--u,,z (Y)l2$3 lz,-z,I; 

therefore (u,,) converges to u,,, in L”(!R”) and weakly* in w’+‘(Q). By 
Lusin’s theorem, for every 6 >O there exist an open set A6 G R! with 
[Aal < 6 and two continuous functions g, , g, from R into [O, + cc [ such 
that for every s E R - A6 we have 

3h zl)=gl(s) and fh z2) = g2(s). 
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Since f satisfies hypothesis (H,), there exists a constant c such that 

= liminf 
h 

< liminf 
h 

gl(“h) dx 

+s g2t”h) dx + c iB,(O) n u&b)\ 1 . 
Bp(0)nR: 

(3.3) 

It is not difficult to see that there exists a constant c1 > 0 independent of h 
such that for every h E N 

P,(O) n ~s:z1(4)I G cd and P,(O) n u;‘(A,)l d c,6. 

Then, by using (3.3), for a suitable constant c2 > 0 

~b%,Z~ B,(O)) 

<A s B&?(O) g~(s+(z,x))dx+(l-~)jBlo,g,(s+(z,x))dx+cc,S P 

z2, x), z2) dx + c,6. 

Since 6 is arbitrary, we obtain 

rF, co,3(9+ 0 (~7 XL z) dx<l -jBp,,z,,,r,,,Io,3(s+ (ZI, x>, ~1) dx 

+w)f 3(s + (22, x>, ~2) dx 
~P(l.-l/i2,l)(0) 

and so, taking the limit as p + 0 +, we get (3.1). We prove now that for 
every s E 88 there exists 

y(s) = lim f(s, z). 
‘,t 8 
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We argue by contradiction: suppose that two sequences (zk) and (.z$ exist 
which converge to 0 such that for a suitable SE R, 

lip .f(f(s, zi) < lip f(‘(s, 2:). (3.4) 

By (3.1) and by hypothesis (H,) the function f((s;) is continuous on 
R” - (0}, so we can assume that (zi) and (zi) are such that for every h E N 
the straight line 1, joining zk to zi does not contain the origin. Then, by 
(3.1), the restriction of f(f(s, 9) to 1, is convex and so for every h sufficiently 
large there exists zi with Izifl = 1 and such that 

Taking the limit as h --, +co we have, by (3.4), 

limy(f(s, .zz)= +cc 
h 

which contradicts hypothesis (H,). Now, define 

if z #O, 
if z=O; 

we have proved that for every s E R the function y((s, .) is convex on R”, so 
to conclude the proof of property (v) it is enough to prove that f(s, 0) = 
T(s, 0) for a.a. SE 5% We prove first that 

f(s, 0) <JI(s, 0) for a.a. SE R. (3.5) 

Let SE R, E >O, and let (uh) be the sequence defined in (3.2) with 
z, =(-E, 0 ,..., 0), z~(E, 0 ,..., 0), 2 = $ Let Q be the cube of R” given by 
Q= {XE KY: Ix,I < 1 for i= l,..., ?I}; then, setting uh(x) = &(X) + (&/4/z), we 
have 

= liminf 
h 

vh,zl)dx+ oh, Zz) dx 

< W(E) + liyinf jo y(vh, 0) dx, (3.6) 

where lim E _ 0+ O(E) = 0 and the last inequality follows from the convexity 
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of Y(s, z) with respect to .z and from hypothesis (H,). By (3.6), it follows 
that 

2”J( s, 0) < O(E) -t liminf 
h 

,=$+, rjD~~~,f(s+(j-~/h)E--ESl,O)dX 

+ (S-(j-i/h)&+EX~,o)dX 

= W(s) + 2”-’ lirninf T JS+ ‘a’4h)T(t, 0) dl 
s- (&/4h) 

= W(E) + 2” liminf f s + (E'4h) y( t, 0) dt. 
h s-(&/4/l) 

(3.7) 

Therefore, if s is a Lebesgue point of f(., 0) we have 

f(s, 0) 6 2-nco(E) +T(s, 0) 

and thus, since E is arbitrary, we get (3.5). Finally, we prove that 

y(s, 0) <f(s, 0) for a.a. s E R. (3.8) 

Let s E 54, A E 10, 1 [, let (&,) be the sequence defined in (3.2) with 
z1 = (1,O ,..., 0), z2 = (0,O ,..., 0), and let Q be the cube of R” given by 
Q = {x E 58”: lxil < 1 for i = l,..., n>. Then, setting u(x)=s+ (AZ,, x), we 
have, for a suitable constant c> 0 and a suitable function o(A) with 
limA+O+ w(A) = 0 

f jb, 0) dt 
IA(S) 

6 f Co(n) +vk AZ,)] dt Ids) 

=~(/.)+~~~~~(s+~x~,~z~)dx,=o(l)+~ j$Ou)dx 
I Q 
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Using Lemma 3.3 we obtain that there exist a null subset N of [w and a 
subsequence (Irk) such that 

0 jyt, 0) dt 

for every 1 E Q n 10, l[ and SE Iw - N. Therefore by (3.9), for 
AoQn]O, l[ and solW-N 

f,,,s,-T’t, 0) dt G w(n) + cl + (1 - 2) 
A 

fI (s,3^(‘, 0) dt; 
1 

so, in the limit as A+ 0 + we get (3.8), and the proof of Theorem 
achieved. 1 

Proof of Theorem 2.2. In Theorem 3.4 we have proved that for 
UE.C?, AE~ 

every 

3.4 is 

every 

F(u, A) = j- f(u, Du) dx 
A 

with f convex 1s.~. integrand. Since P< F, by Remark 2.1 we have that 
fogs and so f<bf. On the other hand, the functional @(u, A) = 
jA d,-(u, Du) dx is L,QA)-lower semicontinuous (see [S], Proposition 2.7 
and Theorem 1) and CB < 40; then Qi < F and so 4,-,,<f. Therefore bfr-f and 
thus for every u E 8, A E a? we have 

F(u) A) = s, &,(u, Du) dx. I 
Proof of Theorem 2.3. For every A E & and u E W1vp(A) define 

G(u, A I= W,‘,,(A 1) F(u, A 1; 

@(u, A I= .r, 4+, Du) dx. 

Since 4f is a convex integrand, there exists a null subset N of Iw such that, 
for every s&N the function d,(.s, *) is convex on Iw”. Set for every s E Iw, 
ZER” 

if SEN, 
otherwise. 

We have uzbJ; moreover, by hypotheses i) and ii) of Theorem 2.3, the 
function tl satisfies all conditions of Theorem 2.1 of [3]. Let A E.& and let 
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u E I@‘(A); Let B be an open set such that B s A and let u E W1*p(Rn) with 
compact support in A such that u = u a.e. on B. Let (v,J be a sequence in 9 
strongly converging to tr in W1*P(lRn) (in the case p = +co we choose (u,,) 
converging to u in L”(R”), with &J,(X) + Do(x) a.e. in R” and such that 
sup,, llDuhllLm < +cc). Then, by Theorem 2.2 and by Theorem 2.1 of [3], 
we have 

G(u, B)=G(u, B)glimjnfG(u,, B)=lin$nf @(u,, B) 

= liminf 
s 

u.(uh, Du,) dx = c((u, Du) dx 
h B I B 

= jB 4Au, Du) dx = lB ##, Du) dx. 

Since the function G(u, *) is the restriction to the open subsets of A of a 
regular Bore1 measure on A (see Section 3 of [2]), we have 

G(u, A) < 1, q+/(u, Du) dx. (3.10) 

On the other hand, the functional a(-, A) is L:,,(A)-lower semicontinuous 
(see [5, Theorem 1-J); therefore 

@(u, A) < G(u, A) 

which, together with (3.10), completes the proof. i 

4. FURTHER REMARKS 

We begin this section by giving an explicit characterization of the 
function c$~. In the following, given a measurable function y: R + R, we 
define (see [7, p. 1591) for every so E Iw, 

Y-(s~) = sup{t~ R: the set {s: y(s) < t} has density 0 at so}. 

LEMMA 4.1. Let y E LgJ[w) be a nonnegative function. Then, for every 
so E R and euery p > 0 we have 

where the infimum is taken over all sequences (sh) conuerging to so. 
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Proof Let SUER! and let t > y-(so); then the set E= {s: y(s)< t} has 
the property 

Therefore, for a suitable sequence (uJ converging to 0 and a suitable 6 > 0, 
we have 

IEn t&o)la 26~7, for every h E N. 

By (4.1), for every h E N there exists sh E En IJs,) such that 

(4.1) 

lim IEn LJso) n Wh)l = 1 
r-rot IZhh)l . 

(4.2) 

Let p > 0; for every k E N we have 

f y(s+s/Jds=k 
f&l/k(O) 2P 

~t+llYlll.m l- [ 
lZplk(sh) n En Zoh(~O)l 1 IZp,k(Sh)l * 

By (4.2), for a suitable sequence (kh) of integers, we get 

liminf f y(s + s/J ds < t; 
h f,,k,(o) 

hence the thesis follows from the arbitrariness of t > y-(,ro). 1 

Given a function g: [w x R” + R we denote by g**(s, z) the greatest 
function convex in z which is less than or equal to g(s, z). Let f: Iw x [w” + 
[0, + co ] be a function; by using Remark 1.6 we define 

z), if z #O, 
if z =O. 

THEOREM 4.2. Zf f is a general integrand satisfying hypothesis (H, ), 
then bfr- fi. 

Proof: We shall prove Theorem 4.2 in several steps. 
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Step 1. For every 4 E 9f we have 4 <fi. By definition of the class F, 
and by Remark 1.6, it is enough to prove that 

e, 0) G Y - (3) for every s E [w. (4.3) 

Let s E [w, E > 0 and let (sh) be a sequence converging to s; let Q be the cube 
of R” given by Q = (XE R”: Ix,\ < 1 for i= l,..., n} and let (uh) be the 
sequence defined in (3.2) with z, = (-E, 0 ,..., 0), z2 = (E, 0 ,..., 0), A = $. Set 
w,, = u,, + (s/4/r) + sh -s; then, by using the L {,,-lower semicontinuity of the 
functional so $(u, Du) dx (see [S] Theorem 1) and by arguing as in (3.6) 
we get 

IQ1 Ql(s, 0) dliyinf IQ #(w,, Dw,) dx 

6 liminf 
h 

fi(w,, 2,) dx+ 
I QnQ: 

fi(w,, zd dx 1 
6 O(E) + liminf s dWh) dx, 

h Q 

where in the last inequality we have used Proposition 1.8. Therefore, with 
the same calculations used in (3.7) we obtain 

4(s, 0) d 2-%0(s) + lir$nf f y(t +s,) dt. 
+!(O) 

since (sh) iS arbitrary, by Lemma 4.1 

and so, taking the limit as E + O+, we get (4.3). 

Step 2. For every 4 E Ff we have C$ <f2. It follows immediately from 
the definition of the class 9f and from Remark 1.6. 

Step 3. The function f2 is a convex 1.s.c. general integrand. By 
Proposition 1.8 there exists a convex integrand 4 w co( f ); define 

if z #O, 
if z = 0; 

$& z) = {y(;;;p if z #O, 
if z =O. 

By the definition of fi we have 

(4.4) 
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By [8, Proposition 7, p. 3291 and by (4.4), the function q$ is a convex I.s.c. 
integrand. Fix z E R”; we obtain easily 

CO(fl)(& 2) = Cd~l)(S, z) = i:*ts, 2) for a.a. s E R; 

thus I$*” fi and so the proof of Step 3 is achieved. 

Step 4. We have f2-df. By Step 2 it follows that dr< f2. On the other 
hand, if q& is the convex 1.s.c. integrand defined in Step 3, we have &=$A 
thus, by definition of #f, we get q& < q5Y and so fi < q5Y. t 

Remark 4.3. Let f be an integrand satisfying hypothesis (H, ). We can 
define 

gl(s’ ‘)= i 
f**(J,Z), if z #O, 
lifn_ipf[B-(t) A f(t, 0)] if 2 = 0; 

g,(s, z) = 
i 
g:*(s, z), 
gh Oh 

if z#O, 
if 2 = 0. 

It is easy to prove that /I = y a.e. on [w, g, -fl, 8,-f,. Therefore, since g, is 
a convex 1.s.c. integrand (see [S, Proposition 7, p. 329]), we have g,z#f. 

EXAMPLE 4.4. Let A(s)= (a,(s)) be a measurable symmetric n x n 
matrix such that 

for every s E IR, 2 E R”. 

Let g: Iw + Iw be a Bore1 function such that 

OGg(s)~c(l+ ls12) for every s E [w. 

The function 

f(s,z)=<A(s)z,z)+g(s) 

is a convex integrand satisfying condition (Hz). Denote by 2 the function 

g(s) = liminf g(t). 
I-S 

Then, by applying Remark 4.3, we get easily 

<A(s) z, z > + g(s), 
“(” ‘I= (R(s) + 2Jm Jm, 

if (A(s)z, z) >g(s)--g(s) 
if (A(s)z, z) < g(s) -g(s). 
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EXAMPLE 4.5 (See [9, Example 3.91). Let n = 1 and let 

f(s,z)=(l+(l+zI)‘s’. 

Then, by applying Remark 4.3, we get easily 

Remark 4.6. If Q satisfies the cone property, then by using the Sobolev 
imbedding theorems, it is possible to prove Theorem 2.3 even if the 
function f verities the following weaker estimates instead of the hypothesis 
(HP): 

if p>n 0 <j-b, z) 6 c(W) -i- IzIP), 

where II/: Iw + [0, +oo [ is a continuous function; 

if ~=n, 0 <f(s, 2) < 41 + ISlk -I- lzl”) where ke [l,+co[; 

if p<n, O~~(s,z)~c(l+lslk+IZlp) v where k = - 
n-p’ 
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