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INTRODUCTION

After the proof of a semicontinuity result for functionals of the form
Flu, Q):f f(u, Du) dx
Q

with f(s, z) not necessarily continuous with respect to s (see [5]), the
interest of relaxation problems for such functionals was pointed out by E.
De Giorgi in a lecture held in Paris, November 1983 (see [4]). In this
paper we give a first result in this direction; more precisely we deal with the
following problem:

Find hypotheses on f under which it is possible to give an integral
representation formula for the greatest functional F(u, Q) which is lower
semicontinuous with respect to the L (£2)-topology and less than or equal
to F(u, Q2).

This problem, under continuity assumptions on f, has been considered
by several authors (see, e.g., [1,2,6,9]). In the present paper (see Sec-
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RELAXATION OF VARIATIONAL INTEGRALS 361
tion 3) we prove that, for a large class of functions f, there exists a function
¢,: RxR" - R such that:

(i) ¢, 0) is lower semicontinuous;

(ii) for every ze R", ¢,(-, z) is measurable;
(iii) for a.a. seR, ¢.(s,-) is convex;
(iv) for every ue W'?(2) we have

Fu, Q)= L} ¢ Au, Du) dx.

In Section 4 we give an explicit way to construct the function ¢,.

1. INTEGRANDS

In this section we study some properties of functions from R x R” into
[0,4+00]. Denote by .# the class of all Lebesgue measurable functions
b: R — [0, 4+00]; the class .# is ordered in the usual way by setting

b, § by<>b,(5) < by(s) for ae. seR.
LemMA 1.1. Let I be a set of indices, and for every i€l let b, M. Then
there exists a function be # (which we denote by #-sup,.,b,) such that:
(1) b; < 4 b for every i€l
(ii) if peM and b, < , B for every i€l then b < , J.
Proof. See [10, Proposition 11-4-1, p. 43]. |

In the following we say that a function f: R” —» .# is .#-convex if
Oz +(1=2)25) < 4f(z)) + (1= 4) f(z2)

for every z,,z,eR", 1[0, 1].
From Lemma 1.1 we obtain immediately:

COROLLARY 1.2. Let I be a set of indices, and for every icl let
S R" > M be a M-convex function. Then the function f: R" — .# defined by
f(2)=M-sup,.,; f(z) is M-convex.

DerFNITION 1.3, Let £ Rx R" - [0, +0c0] be a function; we say that

(i) f is a general integrand if for every z+#0 the function f(:,z)
belongs to .4
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(ii) f is an integrand if f is a general integrand, f(-, 0) is a Borel
function and for a.a. se R the function f{(s, ‘) is continuous;

(iii)) f is a convex general integrand if for every ze R” the function
f(, z) belongs to .# and the function z+ f(:, z) from R" into .# is .#-con-
vex;

(iv) fis a convex integrand if f is an integrand and for a.a. se R the
function f(s,") is convex on R”;

(v) [ is a convex Ls.c. general integrand if f is a convex general
integrand and the function f(-, 0) is lower semicontinuous on R;

(vi) fis a convex ls.c. integrand if f is a convex integrand and the
function f(:, 0) is lower semicontinuous on R.

In the following, by null set we mean a set of Lebesgue measure zero.

DEerINITION 1.4, Given two functions f;, f, from R x R” into [0, +o0]
we write

(i;) foreveryseR f(s, 0) < f5(s, 0);

. (i,) forevery z € R” there exists a null subset N,
@) fisfee of R such that

fi(s. 2) < fo(s, z) forevery se R— N;
(ii,) forevery seR fi(s, 0)< f5(s, 0);

(ii) fi<f,y<> { (ii,) there exists a null subset N of R such that
fi(s, z) < f5(s, z) forevery se R— N, ze R™

Moreover we call f,, f, generally equivalent (and we write f, ~ f,) if f; < f,
and f,< f,; analogously, we call f}, f, equivalent (and we write f, =~ f,) if
[i<f; and [, << /.

Remark 15. Let f,,f, be integrands; then f,<f, if and only if
L=</

Remark 1.6. From Corollary 1.2 it follows that for every function f
from R x R” into [0, +co] there exists a convex general integrand (which
we denote by co(f)) defined by

co( f)(, z) = M-sup{é(:, z): # convex general integrand, ¢ =< f }.
DeFINITION 1.7. Let 1<p< +o and let f/:RxR”— R be a function;
we say that f satisfies hypothesis (H,) if for a suitable constant ¢>0

(H,) 0<f{(s,z)<c(l +]s|” + |z|”) for every s€ R, ze R"
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If p= +o0 we say that f satisfies hypothesis (H ) if for every M >0 there
exists c,, >0 such that

(H,) 0<f(s,2)<c, for every (s, z)e Rx R” with |s[< M, |z| <M.

In the following we denote by §, g dx the average of a function g on a
set A.

ProPOSITION 1.8. Let f be a convex general integrand satisfying
hypothesis (H_,). Then there exists a convex integrand [ such that f~f.

Proof. For every se R, ze R” we define

limsup ]fm fLz)di i z#0,
Fls = | o e
(s, 0) it z=o0.

By Lebesgue’s differentiation theorem we have f~f; so to achieve the
proof it suffices to prove that for a.a., s R, the function f(s,-) is convex.
Let N be a null subset of R such that

fim { f(s,0)dt=f(s,0) for every seR— N (L.1)

e~ 0t Ys—¢

and let se R—N, z, z,, z,eR", 4€[0, 1], ¢>0. Since f is .#-convex, we
have for z=4z,+ (1—-14) z,

Jf”ef(t, 2) dtsl)(Hef(t, z)di+(1 ~A)J[Wf(t, 2,)dt

and so, taking the limit as ¢ - 0* and using (1.1)
](Saz)glf(s’zl)"'(I-A’)](saZZ)' l
Let £ RxR" > [0, +c0] be a function; consider the class

%, = {¢ convex Ls.c. integrand: ¢ < 1 }.
PROPOSITION 1.9. Assume f to be a general integrand that satisfies
hypothesis (H,,). Then there exists ¢, %, such that $ < ¢, for every p € F;.
Proof. Define for every ze R”

¢ )‘{M'supm"”:“%} it 240,
86D \up(g(,0): e #) it z=0.
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Then g is a general integrand, g=< f and g(-, 0) is lower semicontinuous.
Since for every ¢ € % the function ¢(-, 0) is lower semicontinuous, by the
Lindel6f covering theorem g(-, 0) is the supremum of a countable family
(#4(, 0))sc n With ¢, € # Then g(-, 0) = #-sup{¢,(-, 0): he N} and so

g(, z) = M-sup{g(, z): e F } for every zeR™

Therefore, by Corollary 1.2, g is a convex general integrand; thus by
Proposition 1.8 there exists ¢,€.% such that ¢,~g. Let geF; by
definition of g we have 4 <X g and so ¢ <¢,. |

2. STATEMENT OF THE RESULTS

In the following £ will denote a fixed bounded open subset of R". We
denote by o the class of all open subsets of 2; 2 the class of all piecewise
affine functions on R” ie., the class of all Lipschitz functions u for which
there exists a finite family (R2,),., of open subsets of R” such that u is affine
on each 2, and meas(R"—),.,2,)=0; u,, the affine function u,,(x)=
s+ <{z,x) (se R, ze R"); I(s) the open interval Js — o, s+ o[ (6 >0, seR);
B,(x) then open ball {yeR™ |x—y|<p} (p>0, xeR"); 1, the charac-
teristic function of A4, i.e.,

1 if xeA,
0 otherwise;

1A(X)={

|A| the Lebesgue measure of the set 4. Let f be a general integrand; then
we can define the functional

Flu, A)=f f(u, Du) dx (2.1)

for every ue #, Ae . If f is an integrand we have (see [5, Lemma 3])
that the functional F can be defined by (2.1) for every ue Whi(Q), Ae .

Remark 2.1. Let f,, /> be two general integrands; then it is immediate
to see that

FI<freoVue®, VAeﬂf f1(u, Du) dxsj fou, Du) dx.
A A
If f,, f, are integrands we have (see [5, Lemma 2])

S Lo Vue Wi(Q),  Vded | fiw Du)dx<] fo(w, Du) dx.
A A
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In the following, if (X, t) is a topological space, E< X, F: E - R, we denote
by I'(t)F the function defined on the t-closure E of E by

I'(t) F(x)=liminf F(y)= sup inf F(y),
y—ox

Ue £(x) yelU

where #(x) stands for the family of all z-neighborhoods of x in X. We can
now state our relaxation results.

THEOREM 2.2. Ler f be a general integrand satisfying hypothesis (H )
and let F(u, A) be the functional defined on P x o by (2.1). Then, for every
ue® and Ae A

(Ll A)) Flu, A)= | ¢,(u, Du) dx,
A
where ¢ is the function defined in Proposition 1.9.

THEOREM 2.3. Let f be an integrand and let pe[1,+cc]). For every
Ae o and ue W"-*(A) define

Flu, A) = j f(u, Du) dvx.

Suppose that

(i) f satisfies hypothesis (H,),
(1) the function ¢, 0) is continuous.

Then, for every A€ of and ue W"?(A),

I(L}(A4)) Fu, A)= | ¢(u, Du) dx.

3. PROOF OF THE RESULTS

Let f be a general integrand satisfying hypothesis (H_ ) and let F be the
functional defined on 2 x .o/ by (2.1); we denote briefly by F(u, A) the
functional I'(L}.(A4)) F(u, A). The following theorem holds.

THEOREM 3.1. For every ue P the set function F(u, ") is the restriction to
& of a regular Borel measure which is absolutely continuous with respect to
the Lebesgue measure.

580'61./3-9
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Proof. 1t follows as in Section 3 of [2]. |]

PROPOSITION 3.2.  For every xo€R", ue L}, (Q), Ae o we have
Flu, A)=F(uot,,, 1, (4)),
where ©,: R" — R" is the map 1,(x)=x+ x,.

Proof. 1t follows from the fact that the same property holds for F. |

LemMa 3.3. Let ge L] (R) and let 4> 0; for every se R and he N define

loc
iz
M,,(s)— Z g(s+ h) Mis)=} gloydr
= I(s)
Then we have M, - M in L (R).

Proof. If g is continuous, then the assertion follows immediately from
Riemann’s integrability theorem. In the general case, let a > 0 and for every
¢>0, let g, be a continuous function such that

lg:— 8N ca—rarn<e

Set Mi(s)=(1/2h) 21, g.(s+ (i3/h)) and M*(s)={,, g.(1) dr. Then for

every ¢ >0 we have

limhsup My, — M| 11— 0y

Slimhsup [“ME_M“Ll(fa.a) + M — M| Ly —aay T | M5, — Myl 11— o]

1 Agl e iA iz
<1lmsup[/1 2h’ZJ |g<s+;>——g5<s+z> ds]

= h —a

7+|Ig gl pi—a- Aa+).)\l1+8

From the arbitrariness of ¢ >0 we get lim,, [[M,— M| ;1 ,.,,=0. |

Define now for every se R, ze R”

. F(u,., B,(0))
$, z) =limsup ———~£——.
fls,2)=limsep =5 )
THEOREM 3.4. The function [ satisfies the following conditions:

(i) hypothesis (H ) holds for f;
(ii) for every zeR" the function f(:, z) is measurable on R;
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(iii) for every ue ?, Ae o Flu, A) =, fu, Du) dx;
(iv) the function f(-,0) is lower semicontinuous on R,
(v) for aa. seR the function f(s,-) is convex on R".

Proof. Property (i) follows immediately from the definition of f and
from the fact that hypothesis (H,,) holds for f. Let ze R"; for every p>0
the function s F(u,, B,(0))/|B,(0)| is lower semicontinuous on R; then
for every he N the function

Flu,., B,(0)).

1
: 0 —
B,0) - PT }

5(s) = sup { :

is lower semicontinuous on R, and so from the equality
f(s, z) =inf{a,(s): he N}

we get (ii). From Theorem 3.1, for every se R, ze R", A€ ./, we have
Flu,, )= g.:(x)dx,
A

where g, . is a suitable function belonging to LY(Q). Now, let se R, ze R",
Ae of;since g€ L'(Q), for aa. xeQ

g,.(x)= lim | g,.(y)dy;

p—0* YBy(x

thus by using Proposition 3.2, we have

[ o zyan=] [timsup], o comraly) dy |
A A By(0)

p—0"

=] [imsupf, g(na |ax
4 By(x)

p—0*

= j g..(x)dx=F(u,,, A).

Therefore, by using Theorem 3.1, property (iii) is proved. To prove
property (iv) consider s, s € R with 5, — s; then u,, , — u,, and so, by using
property (iii), for every 4 € o/ we have

|A] (s, 0)=Fu,q, A) < lirrlllinf Flu,,o, A) = | A| lin}'inff(s,,, 0).
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Finally we prove (v). Let seR, z,,z,e R" with z, #z,, 1€ ]0, 1[ and set
z=A4z;+ (1 —4) z,; suppose that z#0, z, #0, z,#0. We shall prove that

J(s, )< (s, 20) + (1= 2) f (s, 2,). (3.1)

Let zo=(z,—z,)/|z,—z,|; for every he N, je Z set

1 .

h

1 .
Qi,={yeR":J h+'1< <zo,y><%},

2= 2, a-U 2,

JeZ JeZ

Note that, in the weak* topology of L*(Q), the sequences (1) and (12)
converge to 4 and to (1—1), respectively. Let (u,) be the sequence of
functions of 2 defined by

s+cl +<4z, 1> if yeQ!,
un(y ={ me YE (3.2)

s+cp+ <29 if ye@;,

where ¢;, = ((j— 1)(1 = 4)/h) |z, —z,| and cﬁjz —(jh/h) |z, — z,|. For every
ye&,,

—1
4s(y) = s = Il + <21 =2 )] = (1= 1) |75 = 2] ’—h——<z0,y>‘
A1—4)

<
h

lzy—z4).
2

Analogously, for every ye 2},

A(l-2
) = N < 1y

therefore (u,) converges to u,, in L*(R"”) and weakly* in W"*(Q). By
Lusin’s theorem, for every >0 there exist an open set A;SR with
|45l <6 and two continuous functions g,, g, from R into [0, +co[ such
that for every se R— A5 we have

f(s,zl)=g1(s) and f(S, 2,) = g,(s).
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Since f satisfies hypothesis (H ), there exists a constant ¢ such that

F(u,., B,(0)) < liminf j F(uy, Du,) dx
h B,(0)

A

=liminfU lf(u,,,z,)dx+‘[ Zf(uh,zz)dx]
B0 nQl B0 2

< liminf U g.1(uy) dx
h B (0)~Q}

+| mw)dre |Bp(0)r\u,,“1(A5)|]. (3.3)
B(0)n 2}

It is not difficult to see that there exists a constant ¢; > 0 independent of A
such that for every he N

|B(0)nu M(4s)l<cid and  |B,(0)nu; '(45) <c,d.
Then, by using (3.3), for a suitable constant ¢, >0

Fu,., B,(0))

<1J{ g5+ <z, x))dx+(1-4) 2y(s+ <z, x))dx+cc,d
B,(0)

B,y(0)

<[ Jls+<ax)z)det (1-2) L o SO+ 0, 2 drtad

B,(0)

(B et
Bo(j21/121)(0)

||

+(1-—l)<—,2—2,> j f(s+ {25, x), z,) dx + c50.
|z By(1z1/1z(0)

Since ¢ is arbitrary, we obtain

:f f(s+<z,x>,z)dx</1][ fs+ <z, x),z,)dx
B,(0) Bp(iz/1211)(0)
+(1-24 J(s+ (a2, 3, 2) dx
Bp(1z1/1221)(0)

and so, taking the limit as p - 0", we get (3.1). We prove now that for
every s€ R there exists

y(s)=lim f(s, 2).

Zz—r
z ¥
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We argue by contradiction: suppose that two sequences (z;) and (z%) exist
which converge to 0 such that for a suitable se R,

li’rzn f(s,zh) <li£n (s, 22). (3.4)

By (3.1) and by hypothesis (H,) the function f(s,) is continuous on
R"— {0}, so we can assume that (z}) and (z2) are such that for every he N
the straight line 1, joining z} to z2 does not contain the origin. Then, by
(3.1), the restriction of f(s,") to 1, is convex and so for every A sufficiently
large there exists z; with |z}| =1 and such that

PAYER 1
Fis,28)3 Fs, 24) + 127 — 2y L0 2),
|25 —z,l

Taking the limit as # — +o00 we have, by (3.4),

lim f(s, z})= +o0
h

which contradicts hypothesis (H. ). Now, define

[ fls.2), if z#£0,
](s’z)_{y(s), if z=0;

we have proved that for every s e R the function f{(s, -) is convex on R”, so
to conclude the proof of property (v) it is enough to prove that f(s, 0)=
7(s, 0) for a.a. se R. We prove first that

(s, 0)< f(s,0) for aa. seR (3.5)

Let seR, ¢>0, and let (u,) be the sequence defined in (3.2) with
z,=(—¢,0,.,0), z,(¢0,.,0), A=41 Let Q be the cube of R" given by
Q= {xeR™ [x|<1 for i=1,., n}; then, setting v,(x)=u,(x) + (¢/4h), we
have

2’7(& 0) = F(”s,Oa Q) élmilan(Uh, Q)
=liminfU T, zl)dx+J F(vy, 2,) dx
h Qna; QnQ;

sw(s)+1iminfj 7(v,, 0) dx, (3.6)
h Q

where lim, _, 5+ w(g) =0 and the last inequality follows from the convexity
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of f(s, z) with respect to z and from hypothesis (H_, ). By (3.6), it follows

that
h

2’7(s,0)<w(e)+lin}1'inf Y {J f(s+(j— 3/h) e —ex,, 0) dx

J=—h+1

S oy %/h)s+ax,,0)dx}
2nQ ;,,
4h

s+ (e/4h)
=o(s)+2"~" liminf = j 7(t,0) dt
& (¢/4h)

w(e) + 2 nmmf]( T 0y dt, (3.7)

~ (&/4h)
Therefore, if s is a Lebesgue point of f(-, 0) we have
f(5,0) <2 "w(e) + f(s, 0)
and thus, since ¢ is arbitrary, we get (3.5). Finally, we prove that
f(s,0)< f(5,0)  for aa. seR. (3.8)

Let seR, 1€ ]0,1[, let (u,) be the sequence defined in (3.2) with
z,=(1,0,..,0), z,=(0,0,..,0), and let Q be the cube of R™ given by

={xeR™ |x)| <1 for i=1,.,n}. Then, setting u(x)=s+ {Az,, x>, we
have, for a suitable constant ¢>0 and a suitable function w(1) with
lim, _ ¢+ w(d)=

][ 7(t,0) dt

sy

sjf [w(d) + 71, Az))] dt
1i(s)

=)+ s+ ix,, dz) dr, = w(l)+J£Q](u,Du)dx

1(0)

=w(4) +——-— F(u, Q)< o(4) +-1— lin}lian'(u,,, Q)

(9] QI
=co(/1)+|—Q—l lirr}linfU mlf(u,,, zl)dx+j zf(u,,, 0) dx:l
Sw(d)+— T hmlnfl:lenQ|+ Z f(S*— O) QN Q2 :I

_w(l)+cl+(l—i)hmmf— bl f( i ) (39)

t—h
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Using Lemma 3.3 we obtain that there exist a null subset N of R and a
subsequence (4,) such that

b —1

llinih—k ) f(s+— 0) ]fm 7(t,0) dt

for every AeQn ]0,1[ and seR—N. Therefore by (3.9), for every
Ae@n]0,1[ and se R—N

)f 7(,0)dt < o(A) + A+ (1 —2) ]f 7(t,0) dt;
Ii(s)

Ii(s)

s0, in the limit as 1 > 0" we get (3.8), and the proof of Theorem 3.4 is
achieved. |}

Proof of Theorem 2.2. In Theorem 3.4 we have proved that for every
ueP, Aed

Fu, A)=f f(u, Du) dx

with f convex ls.c. integrand. Since F<F, by Remark 2.1 we have that
feZ and so f<¢, On the other hand, the functional ®(u, 4)=
{4 8/u, Duydx is L. (A)-lower semicontinuous (see [5], Proposition 2.7
and Theorem 1) and & < F; then @ < F and so ¢, < /. Therefore ¢,~ f and
thus for every ue 2, Ae o/ we have

Flu, 4) = L ,(u, Du)dx. 1

Proof of Theorem 2.3. For every Ae o/ and ue W"?(A4) define

G(u, A)=I(Lio(A)) Flu, A);

loc

B(u, A) = f 8/(u, Du) dx.

Since ¢, is a convex integrand, there exists a null subset N of R such that,
for every s¢ N the function ¢,(s,) is convex on R". Set for every seR,
zeR"

_ Pls, 0), if seN,
s, 2) = {q)f(s, z), otherwise.

We have ax¢,; moreover, by hypotheses i) and ii) of Theorem 2.3, the
function « satisfies all conditions of Theorem 2.1 of [3]. Let 4 € o/ and let
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ue W'P(A); Let B be an open set such that B< A and let ve W"?(R") with
compact support in 4 such that u=v a.e. on B. Let (v,) be a sequence in #
strongly converging to v in W"?(R") (in the case p= +oo we choose (v,)
converging to v in L*(R”), with Dv,(x) — Dv(x) a.e. in R” and such that
sup,, | Dv,ll 1= < +00). Then, by Theorem 2.2 and by Theorem 2.1 of [3],
we have

G(u, B)= G(v, B) < liminf G(v,,, B) = lin}linf &(v,, B)
h
= liminfj a(v,, Dv,) dx ='[ o(v, Dv) dx
h B B

= 80, Do) dx= ¢, Du) dx.
B B

Since the function G(u,-) is the restriction to the open subsets of 4 of a
regular Borel measure on A4 (see Section 3 of [2]), we have

G, A)< [ #u Du) dx. (3.10)

On the other hand, the functional @(, 4) is L} (4)-lower semicontinuous
(see [5, Theorem 1]); therefore

D(u, A)<G(u, 4)

which, together with (3.10), completes the proof. |

4. FURTHER REMARKS
We begin this section by giving an explicit characterization of the

function ¢,. In the following, given a measurable function y: R~ R, we
define (see [7, p. 159]) for every s, R,

? " (s9) =sup{te R: the set {s:y(s) <1} has density O at s,}.

LeEmMMA 4.1, Let ye L2 (R) be a nonnegative function. Then, for every
So€ R and every p >0 we have

inf{limian{ y(s+s,,)ds}<v_(so)
h I,/0(0)

where the infimum is taken over all sequences (s,) converging to s,.
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Proof. Let soeR and let >y~ (s,); then the set E= {s:y(s) <t} has
the property

: IEmIa(SO)l
limsup —————
a->0+p lIa(SO)l

Therefore, for a suitable sequence (¢,) converging to 0 and a suitable § >0,
we have

>0.

[EN,(s0)] = 200, for every heN. (4.1)

By (4.1), for every he N there exists s,e En1,,(so) such that

. 1EnI;(se) N I.(s4)]
lim b =1. 4.2
A 1) (42)
Let p>0; for every ke N we have
k
{ o s+spds=o| y(s)ds+ | y(s) ds
1(0) 20 | 1utsm 0 B Loy(s0) Lk(sn) — (E Iny(s0))

_ IIp/k(Sh) NnEN Ia,,(so)l :l
|Ip/k(Sh)| .

By (4.2), for a suitable sequence (k,) of integers, we get

St+ Iyl e [1

liminf][ y(s+s,)ds <,
h Ip/kh(o)

hence the thesis follows from the arbitrariness of #>7 7 (so). |

Given a function g:RxR”— R we denote by g**(s,z) the greatest
function convex in z which is less than or equal to g(s, z). Let f RxR" —»
[0, +c0] be a function; by using Remark 1.6 we define

(s} =co(f)(s, 0);

_ [co(f)(s, 2), if z#0,
fl(s’z)“{nminf[y-(z)Af(z,on, it z=0;
_ feo(fiXs, 2), if z#0,
fZ(s’z)_{fl(s,O) if z=0.

THEOREM 4.2. If f is a general integrand satisfying hypothesis (H,,),
then ¢~ f,.

Proof. We shall prove Theorem 4.2 in several steps.
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Step 1. For every ¢ € #; we have ¢ < f,. By definition of the class %
and by Remark 1.6, it is enough to prove that

o(5,0)<y 7 (s) for every seR. (4.3)

Let se R, ¢>0 and let (s,) be a sequence converging to s; let Q be the cube
of R” given by Q= {xeR" |x|<1 for i=1,.,n} and let (u,) be the
sequence defined in (3.2) with z, =(—¢,0,..,0), z,=(¢, 0,.., 0), A=13. Set
wy,=u, + (¢/4h) + s, — s; then, by using the L] -lower semicontinuity of the
functional j"Q é(u, Du) dx (see [5] Theorem 1) and by arguing as in (3.6)
we get

101 6(s, 0) < liminf j #(w,, Dw,) dx
h Q

Sliminf[fg ol Siwy, z¢) dx‘*‘J‘Q szl(wh’ ) dx]

h
< w(e) + liminf j »(w,) dx,
h Q

where in the last inequality we have used Proposition 1.8. Therefore, with
the same calculations used in (3.7) we obtain

¢(s,0)<2‘"w(s)+liminf} Wt +s,) dt.
h Ie/4n(0)

Since (s,) is arbitrary, by Lemma 4.1
#(s,0) <27 "w(e) +7 7~ (s),

and so, taking the limit as ¢ » 0", we get (4.3).

Step 2. For every ¢ € # we have ¢ < f,. It follows immediately from
the definition of the class & and from Remark 1.6.

Step 3. The function f, is a convex ls.c. general integrand. By
Proposition 1.8 there exists a convex integrand ¢ ~co( f); define

_ {d(s, 2), if z#£0,
bils, 2)= {fl(s, 0), if z=0;
_ OF*(s, z), if z#0,
¢2(S’ Z) B {fl(s’ 0), if z=0.

By the definition of f; we have
f1(5,0)< ¢(s,0) foraa seR (4.4)
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By [8, Proposition 7, p. 3297 and by (4.4), the function ¢, is a convex ls..
integrand. Fix z e R"; we obtain easily

co( f1)(s, z) =col(@,)s, z) =p¥*(s,z)  for aa. seR;

thus ¢, ~ f, and so the proof of Step 3 is achieved.

Step 4. We have f,~¢,. By Step 2 it follows that ¢, < f>. On the other
hand, if ¢, is the convex ls.c. integrand defined in Step 3, we have ¢, < f;
thus, by definition of ¢,, we get ¢, < ¢, and so /,<¢,. 1§

Remark 4.3. Let f be an integrand satisfying hypothesis (H ). We can
define

B(s)=f**(s, 0);

s Z)_{f**(s,z), if z#0,
E5 T Uiminf (8~ (1) A f(1,0)] i z=0;
_ {gf*(s, z), it z#0,
gZ(S’Z)_{gl(s,O), if z=0.

It is easy to prove that =y ae. on R, g,~ f|, g,~ f>. Therefore, since g, is
a convex ls.c. integrand (see [8, Proposition 7, p. 329]), we have g,~¢,.

ExamPLE 44. Let A(s)=(a,(s)) be a measurable symmetric nxn
matrix such that

0<Y ay(s)z,z,<Az)>  forevery seR, zeR".
L]

Let g: R — R be a Borel function such that
0<g(s)<c(l +|s]*)  for every seR.
The function
S5, 2)=<A(s)z, z) + g(s)
is a convex integrand satisfying condition (H,). Denote by g the function

g(s) = liminf g(z).
ft—s

Then, by applying Remark 4.3, we get easily

(A(s) z, 2) +g(s), if CA(s)z, z) > g(s)—£(s)
8(s)+2./2(s) — &(s) /{A(5)z, 2, i CA($)z, 2> < gls) — &(s)-

#s.1)={
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ExampLE 4.5 (See [9, Example 3.9]). Let n=1 and let
f(s, z)= (1 + (14 z[)M.
Then, by applying Remark 4.3, we get easily
_ffG,z) i s>,
#s, ”‘{1 it sl<1.

Remark 4.6. If Q satisfies the cone property, then by using the Sobolev
imbedding theorems, it is possible to prove Theorem 2.3 even if the
function f verifies the following weaker estimates instead of the hypothesis
(H,):

if p>n  O0<f(s, z)<c(¥(s)+(2(%),

where ¥: R — [0, +oo[ is a continuous function;
if p=n,  O0<[f(s,z)<c(l+|s|*+|z{?)  where ke[l,+oo[;

np
n—p

if p<n,  0<f(s,z2)<c(l+])s)*4+1)z|?)  where k=
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