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Abstract

We investigate the spectrum of a typical non-self-adjoint differential operator

AD ¼ �d2=dx2#A acting on L2ð0; 1Þ#C
2; where A is a 2� 2 constant matrix. We

impose Dirichlet and Neumann boundary conditions in the first and second

coordinate, respectively, at both ends of ½0; 1�CR: For AAR2�2 we explore in detail

the connection between the entries of A and the spectrum of AD; we find necessary
conditions to ensure similarity to a self-adjoint operator and give numerical evidence

that suggests a non-trivial spectral evolution.
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1. Introduction

In this paper, we investigate spectral properties of the linear operator AD

acting on L2ð0; 1Þ#C
2 where A is a 2� 2 constant matrix and D denotes the
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ordinary differential operator

D
f

g

 !
:¼ �

f00

g00

 !
;

fð0Þ ¼ fð1Þ ¼ 0;

g0ð0Þ ¼ g0ð1Þ ¼ 0:

The apparently simple combination of Dirichlet and Neumann boundary
conditions allows self-adjointness if, an only if, A is real and diagonal. If A is
non-diagonal and upper-triangular the numerical range of AD is a large
sector of C: Otherwise it is the whole of C preventing us from applying the
theory of sectorial sesquilinear forms in a straightforward manner.
Our main goal is to explore the connection between the entries of matrix

A and the location of the spectrum of AD in the complex plane. Streater [8]
considers the particular case

A ¼
1 g

1=2g 1

 !
; g > 0;

in order to find necessary conditions for the stability of small perturbations
about the stationary solution of certain non-linear system of parabolic
equations. Streater’s system represents a thermodynamical model for hot fluid
in one dimension and the localization of the spectrum is achieved by
constructing a non-unitary transformation that makes AD similar to a non-
negative self-adjoint operator, hence the spectrum of AD is real and non-
negative. This similarity transformation does not work for other matrices and
a slight modification of the entries of A can destroy reality of the spectrum (cf.
Sections 6 and 7) so the general case should be attacked by other methods.

Although this paper mainly concerns AAR2�2; the results of Sections 2–5
refer to any complex 2� 2 matrix. The core results are to be found in Section
6 where we present an exhaustive description of the spectrum of AD in terms
of the entries of A: Among various other unexpected conclusions, the
following three epitomize the complexity of the problem to be considered:

(a) When A is triangular and non-diagonalizable, AD is not similar to a
self-adjoint operator but the spectrum of AD is real (Theorem 19).

(b) The spectrum of AD can be non-real even when both eigenvalues of
A are positive and equal (Theorem 26).

(c) There is a continuous family of matrices A whose eigenvalues do not
intersect the real line but such that the spectrum of AD is real
(Theorem 23).

The last two assertions show that the spectra of A; D and AD are typically
unrelated.
The crucial idea in Section 6 is to reduce the four-parameter problem of

localizing the spectrum of AD in terms of the entries of A; to five two-
parameter cases and describe separately each of these cases. Sections 2–5 are
devoted to describing the various properties of AD we will use in Section 6,
whereas Section 7 is devoted to numerical computations which illustrate

L.S. Boulton / J. Differential Equations 186 (2002) 186–229 187



some of the results reported. In Section 2, we find the boundary conditions
associated to the adjoint of AD and compute the numerical range of AD: In
Section 3, we show that the resolvent of AD is compact for all non-singular
A: In Section 4, we explore the stability of the spectrum of AD in the sense of
[4,9], and provide estimates which allow us to enclose the spectrum of AD in
angular regions when A is subject to various different constraints. In Section
5, we use standard ODE methods to compute the transcendental function of
the spectral problem associated to AD:

2. Definitions and notation

Let K be a linear operator whose domain is denoted by DomðKÞ:
Throughout this paper SpecðKÞ stands for the spectrum of K and the
numerical range of K is defined to be

NumðKÞ :¼ f/Kf ; fS: fADomðKÞ; jjf jj ¼ 1g:

We recall that the numerical range of any linear operator is convex and that

if SpecðKÞa|; then

SpecðKÞCNumðKÞ:

If K ¼ Kn and SpecðKÞCð0;NÞ; we will say that K is positive and write

K > 0: If K ¼ Kn and SpecðKÞC½0;NÞ; we will say that K is non-negative
and write KX0:

Below and elsewhere jvj denotes the norm of a vector vAC2: The norm of
any

f �
f

g

 !
AL2ð0; 1Þ#C

2

is the standard Hilbert tensor product norm

jjf jj2 ¼ /f ; fS ¼
Z 1

0

jf ðxÞj2 dx ¼
Z 1

0

ðjfðxÞj2 þ jgðxÞj2Þ dx:

Unless explicitly stated, we denote

A :¼
a b

c d

 !
:

The complex numbers aþ; a� denote the eigenvalues of A and the non-zero

C2 vectors vþ; v� denote the eigenvectors

Av7 ¼ a7v7:

If aþ and a� are real and different, we adopt the convention a�oaþ: Notice
that the v7 are not necessarily orthogonal.
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Let W 2;2 be the Sobolev space of all fAL2ð0; 1Þ#C2; such that the

generalized derivative f 00AL2ð0; 1Þ#C2:We define rigorously the domain of
AD as

DomðDÞ ¼ ffAW 2;2 : fð0Þ ¼ fð1Þ ¼ 0; g0ð0Þ ¼ g0ð1Þ ¼ 0g:

If A is invertible, it is standard to show that AD is always a closed densely

defined linear operator acting on L2ð0; 1Þ#C2:

Lemma 1. If A is singular, then AD is not closed in the domain DomðDÞ:

Proof. Let vAC
2 be a non-vanishing vector such that Av ¼ 0 and let f ðxÞ :

¼ vxAL2ð0; 1Þ#C2: Clearly feDomðDÞ: Let fn be a sequence of smooth
functions whose support is compact in ð0; 1Þ and such that fnðxÞ-x in

L2ð0; 1Þ: Then fnvADomðDÞ and fnv-f : Also

ADfnðxÞv ¼ �f00
nðxÞAv ¼ 0;

so that ADðfnvÞ is a convergent sequence in L2ð0; 1Þ#C2: We complete the
proof by noticing that if AD was closed, then we would have
fADomðDÞ: &

For the rest of this section and in Sections 3–5 we will assume without
further mention that A is non-singular. In Section 6, we will consider again
singular A:
In order to show that AD is in general non-self-adjoint, let us compute the

adjoint ðADÞn: Let

P :¼
1 0

0 0

 !
:

Then the boundary conditions for D can be rewritten as

Pf ð0Þ ¼ Pf ð1Þ ¼ 0; ðI � PÞf 0ð0Þ ¼ ðI � PÞf 0ð1Þ ¼ 0:

Lemma 2. The adjoint of AD is

ðADÞnf ¼ �Anf 00;

for fAW 2;2 subject to the boundary conditions

P̂f ð0Þ ¼ P̂f ð1Þ ¼ 0;

ðI � P̂Þf 0ð0Þ ¼ ðI � P̂Þf 0ð1Þ ¼ 0; ð1Þ

where P̂ ¼ P̂2 is the rank one projection such that

RanðP̂Þ ¼ RanðAðI � PÞÞ>;

RanðI � P̂Þ ¼ RanðAPÞ>: ð2Þ
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Proof. For fADomðDÞ and gAL2ð0; 1Þ#C2;

/ADf ; gS ¼ �
Z 1

0

/Af 00ðxÞ; gðxÞS dx

¼/APf 0; gSj01 þ
Z 1

0

/Af 0ðxÞ; g0ðxÞS dx:

We ought to find a complex 2� 2 matrix B and impose boundary conditions
on g; for

/f ; ðADÞngS ¼ �
Z 1

0

/f ðxÞ;Bg00ðxÞS dx

¼ /Bnf ; g0S
��0
1
þ
Z 1

0

/Bnf 0ðxÞ; g0ðxÞS dx

¼/BnðI � PÞf ; g0S
��0
1
þ
Z 1

0

/Bnf 0ðxÞ; g0ðxÞS dx

and

/ADf ; gS ¼ /f ; ðADÞngS:

This must be true in particular for all f and g with compact support in ð0; 1Þ
so clearly B ¼ An:

Let the boundary conditions for ðADÞn be given by (1) where P̂ ¼ P̂2 is a

non-necessarily orthogonal projection on C
2: We show (2). If f ; g are

smooth functions supported in ½0; 1Þ; then

/APf 0ð0Þ; ðI � P̂Þgð0ÞS ¼ /AQf ð0Þ; P̂g0ð0ÞS;

where f ð0Þ; f 0ð0Þ; gð0Þ and g0ð0Þ are arbitrary vectors in C
2: If f 0ð0Þ ¼ 0; the

right-hand side should vanish for all f ð0Þ; g0ð0ÞAC
2; so that

RanðP̂Þ ¼ RanðAQÞ>:

If f ð0Þ ¼ 0; the left-hand side should vanish for all f 0ð0Þ; gð0ÞAC
2; so that

RanðI � P̂Þ ¼ RanðAPÞ>:

Since A is non-singular these two spaces are one dimensional. &

Corollary 3. AD is self-adjoint if, and only if, A is real and diagonal.

Proof. Using the notation of Lemma 2, AD is self-adjoint if, and only if,

A ¼ An and P ¼ P̂:

The latter occurs if, and only if,

A
1

0

 !
>

0

1

 !
:

These conditions ensure A real and diagonal. &
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We now show that due to the boundary conditions we have chosen,

NumðADÞ ¼ C

for a large family of non-diagonal matrices A: This prevent us from
employing the theory of sectorial sesquilinear forms in order to find the
spectrum.

Theorem 4. Let A be a non-singular matrix.

(a) If A is an upper triangular matrix (that is c ¼ 0), then

NumðADÞ ¼ frz: rA½0;NÞ; zANumðAÞg:

(b) If A is not an upper triangular matrix (that is ca0), then

NumðADÞ ¼ C:

Proof. Since 0 is always an eigenvalue of AD (cf. Section 3), then
0ANumðADÞ: For fADomðDÞ;

/ADf ; fS ¼ �
Z 1

0

/Af 00ðxÞ; f ðxÞS dx

¼/Af 0; fSj01 þ
Z 1

0

/Af 0ðxÞ; f 0ðxÞS dx

¼ A
f0

g0

 !
;

f

g

 !* +�����
0

1

þ
Z 1

0

/Af 0ðxÞ; f 0ðxÞS dx

¼ A
f0

0

 !
;
0

g

 !* +�����
0

1

þ
Z 1

0

/Af 0ðxÞ; f 0ðxÞS dx: ð3Þ

Case (a): Call

F :¼ frz: rA½0;NÞ; zANumðAÞg:

Then F is a convex set and

F ¼frz: rA½0;NÞ; zANumðAÞg

¼ f/Av; vS: vAC
2g:

If c ¼ 0;

A
f0

0

 !
;
0

g

 !* +�����
0

1

¼
af0

0

 !
;
0

g

 !* +�����
0

1

¼ 0
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so that

/ADf ; fS ¼
Z 1

0

/Af 0ðxÞ; f 0ðxÞS dx:

This and the fact that F is closed and convex, yield

NumðADÞDF:

In order to prove the reverse inclusion, let vAC
2 be such that jvj ¼ 1 and

let

z :¼ /Av; vSANumðAÞ:

For all tX5; let

ctðxÞ :¼

1�cosðptx=2Þffiffiffiffiffiffiffiffiffiffiffi
4�10=t

p if 0pxp2=t;

2ffiffiffiffiffiffiffiffiffiffiffi
4�10=t

p if 2=tpxp1� 2=t;

1�cosðptðx�1Þ=2Þffiffiffiffiffiffiffiffiffiffiffi
4�10=t

p if 1� 2=tpxp1:

8>>>>><
>>>>>:

Then ctð0Þ ¼ ctð1Þ ¼ c0
tð0Þ ¼ c0

tð1Þ ¼ 0;Z 1

0

jctðxÞj
2 dx ¼ 1 and

Z 1

0

jc0
tðxÞj

2 dx ¼
p2t2

8t � 20
:

Let ft :¼ vctADomðDÞ: By construction jjftjj ¼ 1 and

/ADft; ftS ¼
Z 1

0

/Af 0
t ðxÞ; f

0
t ðxÞS dx

¼/Av; vS
Z 1

0

jc0
tðxÞj

2 dx

¼
zp2t2

8t � 20
:

Thus by taking t-N; from the fact that 0ANumðADÞ and since NumðADÞ
is convex, we gather

NumðADÞ+F:

Case (b): Now ca0: Let z be a fixed non-zero complex number. Our aim
is to find functions feADomðDÞ parameterized by e > 0; such that jjfejj ¼ 1
and /Afe; feS is close to z for small e:
For 0oeo1

2
; let

feðxÞ :¼

e
cpsinðxp=eÞ if 0pxpe=2;
e
2cp½1� cosð2pðx=e� 1ÞÞ� if e=2pxpe;

0 if epxp1:

8><
>:
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Then, straightforward computations show feð0Þ ¼ feð1Þ ¼ f0
eð1Þ ¼ 0;

f0
eð0Þ ¼ c�1;Z 1

0

jfeðxÞj
2 dx ¼

11e3

16c2p2
and

Z 1

0

jf0
eðxÞj

2 dx ¼
e
2c2

:

For all e > 0 small enough, we define the required test function fe as

feðxÞ :¼
zfeðxÞ

aðeÞ

 !
;

where

aðeÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jzj2jjfejj

2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

11jzj2e3

16c2p2

s

is independent of x: By construction feADomðDÞ and

jjfejj2 ¼ jjzfejj
2 þ aðeÞ2 ¼ 1:

According to (3),

/ADfe; feS ¼ A
zf0

eð0Þ

0

 !
;

0

aðeÞ

 !* +
þ
Z 1

0

/Af 0ðxÞ; f 0ðxÞS dx

¼ zaðeÞ þ A
1

0

 !
;
1

0

 !* +Z 1

0

jzj2jf0
eðxÞj

2 dx

¼ zaðeÞ þ
ae
2c2

jzj2:

Since aðeÞ-1 as e-0; the above shows /ADfe; feS-z as e-0; so that z is
an accumulation point of NumðADÞ: By moving zAC; any complex number
is an accumulation point of NumðADÞ: Since NumðADÞ is convex, the only
possibility for NumðADÞ is to be the whole of C: &

3. The resolvent of AD

In this section we show that the resolvent of AD is compact for all non-
singular A: In general it is false that the product of a bounded operator and
an operator whose resolvent is compact has compact resolvent, however if
we know in addition that the spectrum of the product is not the whole of C;
then the assertion is true.
We first show that the resolvent of D is compact by making use of its self-

adjointness. Since the constant function

f0 �
0

1

 !
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is in DomðDÞ and ADf0 vanishes,

0ASpecðADÞ:

Proposition 5. If A is a diagonal matrix, then

SpecðADÞ ¼ fa�p2k2; aþp2k2g
N

k¼0:

The zero eigenvalue is always non-degenerate and all the remaining

eigenvalues are of multiplicity no greater than 2.

Proof. Let f0ADomðDÞ be as above. For all n ¼ 1; 2;y; let

f2n�1ðxÞ :¼
ffiffiffi
2

p sinðpnxÞ

0

 !
and f2nðxÞ :¼

ffiffiffi
2

p 0

cosðpnxÞ

 !
: ð4Þ

Then fkADomðDÞ;

ADf2n�1 ¼ ðaþp2n2Þf2n�1; ADf2n ¼ ða�p2n2Þf2n

and ffkg
N

k¼0 is a complete orthonormal set in L2ð0; 1Þ#C
2: &

According to Corollary 3 and the above proposition, D ¼ Dn
X0 and

SpecðDÞ ¼ fp2k2gNk¼0:

Since the eigenfunctions ffkg
N

k¼0 form a complete orthonormal set, the

resolvent of D is compact.
Let us now rule out the possibility SpecðADÞ ¼ C:

Lemma 6. For any non-singular AAC

SpecðADÞaC:

Proof. Fix matrix A: Since

AD � l ¼ AðD � lA�1Þ;

the complex number lASpecðADÞ if, and only in,

0ASpecðD � lA�1Þ:

Let HðlÞ :¼ D � lA�1: Then the family of operators HðlÞ with domain
DomðDÞ independent of l is a holomorphic family of type (A) for all lAC:
Since 0 is a non-degenerate isolated eigenvalue of Hð0Þ ¼ D and A�1 is
bounded, there exist an open neighbourhood 0AUCC such that HðlÞ has a
non-degenerate isolated eigenvalue, (denoted by mðlÞ) close to 0 for all lAU

and mðlÞ is a complex valued holomorphic function in U (cf. [7, Theorem
XII.8]).
If there exists some l0AU satisfying mðl0Þa0; then 0eSpecðHðl0ÞÞ so that

l0eSpecðADÞ: Hence, in order to show that SpecðADÞaC; it is enough to
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show that mc0: For this we find the first coefficients in the Rayleigh–
Schrödinger series expansion of m about 0. Let

mðlÞ ¼ m0 þ m1lþ m2l
2 þ?; lAU :

Since mð0Þ ¼ 0; m0 ¼ 0: Since jjf0jj ¼ 1 and Hð0Þf0 ¼ Df0 ¼ 0; we compute
directly m1 (cf. [6, Remark 2.2, p. 80]) by

m1 ¼/A�1f0; f0S

¼ A�1 0

1

 !
;
0

1

 !* +
:

If A is such that aa0;

A�1 0

1

 !
;
0

1

 !* +
a0

so that m1 does not vanish and hence mc0:
Let A be such that a ¼ 0: Then m1 ¼ 0 so we compute m2: Let fk be

the eigenfunctions of D as in (4) so that jjfkjj ¼ 1 for all k ¼ 1; 2;y : Let
l2n�1 ¼ l2n :¼ p2n2 for all n ¼ 1; 2;y so that

Hð0Þfk ¼ Dfk ¼ lkfk:

Then (cf. [6, Remark 2.2, p. 80])

�m2 ¼
XN
k¼1

/A�1f0; fkS/A�1fk; f0S
lk

:

We compute each term in the series. Since a ¼ 0 and A is invertible, then b

and c do not vanish and

A�1 ¼
�d=ðbcÞ 1=c

1=b 0

 !
:

Hence

/A�1f0; fkS ¼
Z 1

0

A�1 0

1

 !
; fkðxÞ

* +
dx ¼

Z 1

0

1=c

0

 !
; fkðxÞ

* +
dx;

so that

/A�1f0; f2nS ¼
ffiffiffi
2

p Z 1

0

1=c

0

 !
;

0

cosðpnxÞ

 !* +
dx ¼ 0
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and

/A�1f0; f2n�1S ¼
ffiffiffi
2

p Z 1

0

1=c

0

 !
;
sinðpnxÞ

0

 !* +
dx

¼
ffiffiffi
2

p
=c

Z 1

0

sinðpnxÞ dx

¼
0 if n ¼ 2m;

2
ffiffiffi
2

p
=ðcpnÞ if n ¼ 2m � 1;

(

for m integer and n ¼ 1; 2;y : On the other hand,

/A�1fk; f0S ¼
Z 1

0

A�1fkðxÞ;
0

1

 !* +
dx;

so that

/A�1f2n; f0S ¼
ffiffiffi
2

p Z 1

0

A�1 0

cosðpnxÞ

 !
;
0

1

 !* +
dx

¼
ffiffiffi
2

p Z 1

0

cosðpnxÞ=c

0

 !
;
0

1

 !* +
dx ¼ 0

and

/A�1f2n�1; f0S ¼
ffiffiffi
2

p Z 1

0

A�1 sinðpnxÞ

0

 !
;
0

1

 !* +
dx

¼
ffiffiffi
2

p Z 1

0

d sinðpnxÞ=ðbcÞ

sinðpnxÞ=b

 !
;
0

1

 !* +
dx

¼
ffiffiffi
2

p
=ðbÞ

Z 1

0

sinðpnxÞ dx

¼
0 if n ¼ 2m;

2
ffiffiffi
2

p
=ðbpnÞ if n ¼ 2m � 1

(

for m integer and n ¼ 1; 2;y : This yields

/A�1f0; fkS/A�1fk; f0S ¼
0 if ka4m � 3;

8=ðbcp2n2Þ if k ¼ 4m � 3

(

for m ¼ 1; 2;y : Thus

�m2 ¼
XN
m¼1

8

bcp4ð2m � 1Þ4
a0

so that mc0 as we required. &

Theorem 7. For all zeSpecðADÞ; the resolvent ðAD � zÞ�1 is compact.
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Proof. Since D is non-negative and it has compact resolvent,

AD þ A ¼ AðD þ 1Þ

has a compact inverse. Let zeSpecðADÞ; then

AD � z ¼AD þ A � A � z

¼ ðI � ðA þ zÞðAD þ AÞ�1ÞðAD þ AÞ:

Hence

ðAD þ AÞ�1 ¼ ðAD � zÞ�1ðI � ðA þ zÞðAD þ AÞ�1Þ;

so that

ðAD � zÞ�1 ¼ ðAD � zÞ�1ðA þ zÞðAD þ AÞ�1 þ ðAD þ AÞ�1

¼ ððAD � zÞ�1ðA þ zÞ þ 1ÞðAD þ AÞ�1:

Thus ðAD � zÞ�1 is compact as needed. &

Theorem 7 shows that the spectrum of AD consists entirely of isolated
eigenvalues of finite multiplicity. Since the eigenvalue problem ADf ¼ lf is
a constant coefficient system of second-order ordinary differential equa-
tions, due to the fact that we have a combination Dirichlet and Neumann
boundary condition at both ends of the interval, the multiplicity of each
eigenvalue is never greater than 2.

4. Asymptotics of the resolvent

We now investigate the asymptotic behaviour of the resolvent norm of
AD: The results we discuss in this section are connected with the stability of
the heat semigroup e�ADt: They are also relevant from the computational
point of view and they are closely related to both local and global stability of
the spectrum (cf. [1,4,9] and the reference therein). The present approach is
motivated by analogous reports on non-self-adjoint Schrödinger operators
in [2,4,5].
Let

J :¼
1 0

0 �1

 !
:

Below and elsewhere we will denote by D̃ :¼ JD: According to Lemma 3,

D̃ ¼ D̃n: According to Lemma 5,

SpecðD̃Þ ¼ f7p2n2gNn¼0

each eigenvalue being of multiplicity 1. We will employ part (b) of the
following theorem in the proof of Theorem 20(b).
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Theorem 8. Assume that there exists a non-singular diagonal matrix B such

that B�1AB ¼ ðB�1ABÞn > 0: Then

(a) AD is similar to a non-negative self-adjoint operator.
(b) AD̃ is similar to a self-adjoint operator whose numerical range is the

whole real line.

Proof. Let C :¼ B�1AB so that C ¼ Cn > 0: Since diagonal matrices
commute with the boundary conditions, AD is similar to CD: For the same

reason and since diagonal matrices also commute with J; AD̃ is similar to

CD̃:

By hypothesis, the square root C1=2 ¼ ðC1=2Þn > 0: Then

CD ¼ C1=2ðC1=2DC1=2ÞC�1=2 ¼ C1=2KC�1=2;

where

K ¼ C1=2DC1=2;

DomðKÞ ¼ ffAL2ð0; 1Þ#C
2 :C1=2fADomðDÞg;

so that CD is similar to K : Since D ¼ Dn
X0; then K ¼ Kn

X0:

Analogously, CD̃ is similar to

K̃ :¼ C1=2D̃C1=2;

where DomðK̃Þ ¼ DomðKÞ: Since D̃ ¼ D̃n; then K̃ ¼ K̃n: Furthermore, since

NumðD̃Þ ¼ R

and

/K̃f ; fS ¼ /D̃C1=2f ;C1=2fS;

the numerical range of K̃ the whole real line. &

Let A be as in the hypothesis. The similarity to a self-adjoint operator
ensures the existence of a constant kAX1 such that

jjðAD � zÞ�1jjp
kA

distðz; ½0;NÞÞ
; zeSpecðADÞ

and

jjðAD̃ � zÞ�1jjp
kA

distðz;RÞ
; zeSpecðAD̃Þ:

These identities show that although the numerical range of AD and AD̃ are
in general the whole complex plane, the eigenvalues of these operators are
stable in the sense of [9].

If we assume the weaker condition C þ Cn > 0; we show how to recover
part of the above estimate. We start with a preliminary lemma.
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Lemma 9. Let A be such that NumðAÞCfReðzÞ > 0g: Then

SpecðADÞ CfReðzÞX0g and there exists k > 0 independent of z; such that

jjðAD � zÞ�1jjp
k

jzj
; ReðzÞo0: ð5Þ

Proof. Let r > 0 and let ze½0;NÞ: Then

AD � z ¼AðD � zA�1Þ

¼A ðD � rzÞ þ zðr � A�1Þ
� �

¼A 1þ ðr � A�1ÞzðD � rzÞ�1
� �

ðD � rzÞ:

Therefore zeSpecðADÞ; whenever

jjðr � A�1ÞzðD � rzÞ�1jjo1: ð6Þ

We show that there is always r > 0 independent of z; such that this holds for
all ReðzÞo0:
Since DX0 and 0ASpecðADÞ;

jjðD � rzÞ�1jj ¼
1

rjzj
:

Thus

jjðr � A�1ÞzðD � rzÞ�1jjpjj1� r�1A�1jj:

The hypothesis we imposed on A is equivalent to saying

A þ An > 0;

then

A�1 þ ðA�1Þn ¼ A�1ðAn þ AÞðA�1Þn > 0:

For all vAC
2;

jjðI � r�1A�1Þvjj2 ¼/ðI � r�1ðA�1 þ ðA�1ÞnÞ þ r�2ðA�1ÞnA�1Þv; vS

¼ jvj2 � r�1/ðA�1 þ ðA�1Þn þ r�1ðA�1ÞnA�1Þv; vS:

Hence there exists a constant k0 > 0 independent of r (and z), such that

jjI � r�1A�1jjo1� r�1k0

when r is large enough. For such an r; identity (4) holds for any ReðzÞo0:
This shows that SpecðADÞ must be enclosed in the right-hand plane.
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Furthermore,

jjðAD � zÞ�1jjp jjA�1jj jjðD � zA�1Þ�1jj

p jjA�1jj jjðD � rzÞ�1jj jjð1þ zðD � rzÞ�1ðr � A�1ÞÞ�1jj

p
jjA�1jj

rjzj

XN
k¼0

jjzðD � rzÞ�1ðr � A�1Þjjk

p
jjA�1jj

rjzj

XN
k¼0

jj1� r�1A�1jjk

p
k

jzj

so (5) is also proven. &

Below and elsewhere we denote by O the set of non-singular diagonal
matrices and

Sða;bÞ :¼ fzAC: apargðzÞpbg; apb:

Theorem 10. If there exists BAO such that

NumðB�1ABÞCSða; bÞ; b� aop;

then SpecðADÞCSða;bÞ and for any small enough e > 0 there exists ke > 0
independent of z; such that

jjðAD � zÞ�1jjp
ke

jzj
; zeSða� e;bþ eÞ:

Proof. Let C :¼ B�1AB; so that

NumðCÞCSða;bÞ:

Since B commutes with the boundary conditions, AD is similar to CD and so
it is enough to show the theorem for CD: Now, for all �ðaþ
p=2ÞoWop=2� b

NumðeiWCÞCfReðzÞ > 0g;

so we just have to apply Lemma 9 to eiWC: &

The constant ke of this theorem is in general strictly greater than 1;
therefore this is weaker than the similar condition for m-sectorial operators
in [6, p. 279].
If A is triangular, the hypothesis of the above theorem does not

necessarily hold. For instance if

A ¼
a 0

1 a

 !
; a > 0;
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then

NumðAÞ ¼ fa þ z : jzjo1
2
g

and so for small a the numerical range contains the origin. Nonetheless by
using a similarity transformation and an approximation argument, we can
show positivity of the spectrum whenever both of the eigenvalues of A are
positive (a > 0 in our example). The conclusion about the spectrum of the
following result will be improved in Theorem 19.

Corollary 11. Let A be either upper or lower triangular. If aXd > 0; then

SpecðADÞC½0;NÞ

and for all e > 0 there exists ke > 0 independent of z; such that

jjðAD � zÞ�1jjo
ke

jzj

for all zeSð�e; eÞ:

Proof. If A is upper triangular the proof is similar so let us assume that

A ¼
a 0

c d

 !
:

Let

AðrÞ :¼
1 0

0 r

 !
A

1 0

0 r�1

 !
¼

a 0

rc d

 !
:

Then AD is similar to AðrÞD for all ra0: Put

CðrÞ :¼ AðrÞ þ AðrÞn ¼
2a r%c

rc 2d

 !
:

Then CðrÞ ¼ CðrÞn: The eigenvalues of CðrÞ are

a þ d7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � dÞ2 þ r2jcj2

q
;

thus for small r > 0; CðrÞ > 0: The numerical range of AðrÞ is an ellipse with
focus at a; d and principal axis in the vertical direction of the order of r: By
taking r-0; Theorem 10 completes the proof. &

If A is as in the hypothesis of Corollary 11, there does not exist BAO such
that B�1AB ¼ ðB�1ABÞn or B�1ðAJÞB ¼ ðB�1ðAJÞBÞn so Theorem 8 is not
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applicable. We show that at least in one case AD fails to be similar to self-
adjoint.

Theorem 12. Let

A ¼
a 0

1 a

 !
; a > 0:

Let e > 0 and zðrÞ :¼ 4ap2r27ie: Then there exists a constant ke > 0
independent of r; such that

jjðAD � zðrÞÞ�1jj > ker
1=2; r ¼ 1; 2;y :

Proof. Fix e > 0 and let zðrÞ :¼ 4ap2r2 � ie: Without loss of generality, we
can assume r ¼ 3; 4;y : Throughout the proof the constants lj are assumed

to be positive, possibly depending upon e but independent of r: In order to
show the desired conclusion, it is enough to find frADomðDÞ and l0; such
that

jjADfr � zðrÞfrjj
jjfrjj

pl0r
�1=2 ð7Þ

for all large enough r:
Let

f ¼
f

g

 !
ADomðDÞ:

Then

ADf � zðrÞf ¼ �
a 0

1 a

 !
f00

g00

 !
� zðrÞ

f

g

 !

¼
�af00 � zðrÞf

�f00 � ag00 � zðrÞg

 !
:

Hence

jjf jj2 ¼ jjfjj2 þ jjgjj2

and

jjADf � zðrÞf jj2 ¼ jjaf00 þ zðrÞfjj2 þ jjag00 þ zðrÞgþ f00jj2:

We now define the appropriate frADomðDÞ satisfying (7). Let

grðxÞ :¼ cosð2prxÞ:
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Then jjgrjj
2 ¼ 1

2
: Let

frðxÞ :¼
�ie cosð2prxÞ=ð4p2r2Þ if xAð1=r; 1� 1=rÞ;

0 if xeð1=ð2rÞ; 1� 1=ð2rÞÞ

(

be such that fr is smooth and

(a) jfrðxÞjpe=ð4p2r2Þ for all xA½0; 1�;
(b) jf0

rðxÞjpl1=r for all xeð1=r; 1� 1=rÞ;
(c) jf00

r ðxÞjpl2 for all xeð1=r; 1� 1=rÞ:

Then

jjfrjj
2 ¼

Z 1

0

jfrðxÞj
2 dxpe2=ð16p4r4Þpl3r

�4

and

jjfrjj
2
X

Z 1�1=r

1=r

e2 cos2ð2prxÞ
16p4r4

dxXl4r
�4:

Hence

fr ¼
fr

gr

 !
ADomðDÞ

and

1
4
pjjfrjj

2 ¼ jjfrjj
2 þ jjgrjj

2p1 ð8Þ

for all large enough r: If 1=roxo1� 1=r;

af00ðxÞ þ zðrÞfðxÞ ¼ afðxÞ00 þ 4apr2fðxÞ � iefðxÞ

¼ ½aie cos00ð2prxÞ þ 4ap2r2ie cosð2prxÞ

þ e2 cosð2prxÞ�=ð4p2r2Þ

¼ e2 cosð2prxÞ=ð4p2r2Þ:

Then, (a) and (c) yield

jjaf00 þ zðrÞfjj2 ¼
Z 1

0

jaf00ðxÞ þ zðrÞfðxÞj2 dx

p
Z 1�1=r

1=r

l5=r4 dx þ
Z

xe½1=r;1�1=r�
l6 þ l7=r4 dx

p l6r
�1 þ l5r

�4 þ l7r
�5: ð9Þ
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Also,

ag00ðxÞ þ zðrÞgðxÞ þ f00ðxÞ ¼ ag00ðxÞ þ 4ap2r2gðxÞ � iegðxÞ þ f00ðxÞ

¼ a cos00ð2prxÞ þ 4ap2r2 cosð2prxÞ

� ie cosð2prxÞ þ f00ðxÞ

¼f00ðxÞ � ie cosð2prxÞ:

Then for 1=roxo1� 1=r;

ag00ðxÞ þ zðrÞgðxÞ þ f00ðxÞ ¼ ie cosð2prxÞ � ie cosð2prxÞ ¼ 0

and thus (c) yields

jjag00 þ zðrÞgþ f00jj2 ¼
Z 1

0

jag00ðxÞ þ zðrÞgðxÞ þ f00ðxÞj2 dx

¼
Z

xe½1=r;1�1=r�
jie cosð2prxÞ � f00ðxÞj2 dx

p
Z

xe½1=r;1�1=r�
l8 dx

p l8r
�1: ð10Þ

In order to complete the proof for zðrÞ :¼ 4apr2 � ie; notice that (8)–(10),
show (7). On the other hand, if zðrÞ :¼ 4apr2 þ ie it is enough to substitute fr

by �fr and repeat the above computations. &

This result is still valid for

A ¼
a 1

0 a

 !
:

Indeed, it is enough to put frðxÞ :¼ sinð2prxÞ;

grðxÞ :¼
7ie sinð2prxÞ=ð4p2r2Þ if xAð1=r; 1� 1=rÞ;

0 if xeð1=ð2rÞ; 1� 1=ð2rÞÞ

(

and carry out similar calculations. Since the resolvent norm of self-adjoint
operators remains bounded in horizontal lines, the above AD cannot be
similar to any self-adjoint operator.
Let Or be the set of all non-degenerate real diagonal matrices. If A does

not satisfy the hypothesis of Theorem 10 (for instance the numerical range
of A is an ellipse centered at the origin), but A is ‘‘close’’ in some sense to Or;
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an alternative to Theorem 10 can be established. We will employ this result
in the proof of Theorem 19.

Theorem 13. Let there exist BAOr such that

jjAB � I jjo1:

Let o :¼ arcsinðjjAB � I jjÞ with 0poop=2: Then

SpecðADÞCSð�o;oÞ,Sð�p� o;o� pÞ

and for any small enough e > 0 there exist ke > 0 independent of z; such that

jjðAD � zÞ�1jjp
ke

jzj

for all zeSð�o� e;oþ eÞ,Sð�p� o� e;o� pþ eÞ:

Proof. If o ¼ 0; AAOr so the conclusion is a consequence of Corollary 3.

Let o > 0; let l :¼ jjAB � I jj and put C :¼ B�1AOr: Then CD ¼ ðCDÞn and
according to the hypothesis 0olo1:
Let zAC be such that zeSð�o;oÞ,Sð�p� o;o� pÞ: Then

ðAD � zÞ ¼CD þ ðA � CÞD � z

¼ ½I þ ðAB � IÞCDðCD � zÞ�1�ðCD � zÞ:

Since CD is self-adjoint and by definition w ¼ arcsinðlÞ;

jjðAB � IÞCDðCD � zÞ�1jjp ljjCDðCD � zÞ�1jj

p l sup
xAR

x

x � z

��� ���
p sup

xAR

l

j1� z
x
j
o1; ð11Þ

so that

½I þ ðAB � IÞCDðCD � zÞ�1�

is invertible. Hence

zeSpecðADÞ

and

ðAD � zÞ�1 ¼ ðCD � zÞ�1½I þ ðAB � IÞCDðCD � zÞ�1��1 ð12Þ

for all oojargðzÞjpp: This encloses SpecðADÞ:
In order to show the second part, let

zeSð�o� e;oþ eÞ,Sð�p� o� e;o� pþ eÞ;
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for small e > 0: Then there exist a constant l1ðeÞ > 0 independent of z; such
that

jjðCD � zÞ�1jjp
l1ðeÞ
jzj

:

Also, there exist a constant 0ol2ðeÞo1 independent of z; such that

sup
xAR

l

j1� z
x
j
ol2ðeÞ:

These two estimates, (11) and (12) yield

jjðAD � zÞ�1jjp
l1ðeÞ

P
N

n¼0 l2ðeÞ
n

jzj
¼

ke

jzj
: &

This shows that if AnAC
2�2 is a sequence of non-singular matrices and

there exists BAOr such that

jjAn � Bjj-0

as n-N; then

SpecðAnDÞ-R:

Corollary 14. Let A be either upper or lower triangular. If a; dAR and ado0;
then

SpecðADÞCR

and for all e > 0 there exists ke > 0; such that

jjðAD � zÞ�1jjo
ke

jzj

for all zeSð�e; eÞ,Sð�p� e; e� pÞ:

Proof. It is similar to the proof of Corollary 11. Assume without loss of
generality that b ¼ 0 and let

AðrÞ ¼
1 0

0 r

 !
A

1 0

0 r�1

 !
¼

a 0

rc d

 !
:

Then AD is similar to AðrÞD for all r > 0: Put

C ¼
a�1 0

0 d�1

 !
AOr;

then

jjAðrÞC � I jj ¼
0 0

rc=a 0

 !�����
�����

�����
����� ¼ rjc=aj:

L.S. Boulton / J. Differential Equations 186 (2002) 186–229206



Let or :¼ arcsinðrjc=ajÞ: According to Theorem 13, for all 0oroja=cj

SpecðADÞ ¼ SpecðAðrÞDÞ

CSð�or;orÞ,Sð�p� or;or � pÞ:

By taking r small enough, Theorem 13 yields the desired estimate for the
resolvent norm. By taking r-0; a fortiori SpecðADÞCR: &

5. The Hamiltonian ode system

In this section we find an entire function whose zeros coincide with
SpecðADÞ: This is made by computing the transcendental function of the
2� 2 system of ordinary differential equations associated to AD via
standard ODE arguments.
Let the 2� 2 constant coefficients second-order eigenvalue problem

�Af 00 ¼ l2f ; ð13Þ

Pf ð0Þ þ Qf 0ð0Þ ¼ 0;

Pf ð1Þ þ Qf 0ð1Þ ¼ 0: ð14Þ

We will say that the complex number l is an eigenvalue of system (13)–(14),
if there exist a non-vanishing fACNð0; 1Þ#C

2 satisfying (13) and the

boundary conditions (14). By regularity, l2 is an eigenvalue of AD if, and
only if, l is an eigenvalue of (13)–(14). Our aim is to find a holomorphic
function, denoted by EV ðxÞ below, whose zeros coincide with the
eigenvalues of (13)–(14).
We proceed in the classical manner. Let the decomposition in Jordan

canonical form of A be

A ¼: VCV�1;

where the Jordan matrix C is either

C ¼
aþ 0

0 a�

 !
or C ¼

aþ 0

1 aþ

 !

and

V :¼
v1 v2

v3 v4

 !
:

Then (13)–(14) is equivalent to the 2� 2 system

�Cg00 ¼ l2g; ð15Þ
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PVgð0Þ þ QVg0ð0Þ ¼ 0;

PVgð1Þ þ QVg0ð1Þ ¼ 0: ð16Þ

In order to solve (15)–(16), we reduce it to a first order 4� 4 system as
follows. For all lAC; let

Bl ¼
0 I

�l2C�1 0

 !
AC4�4

and let

C :¼
v1 v2 0 0

0 0 v3 v4

 !
AC

2�4:

By regarding

F ¼
g

g0

 !
AC

4;

one sees that (15)–(16) is equivalent to

F0 ¼ BlF; ð17Þ

CFð0Þ ¼ CFð1Þ ¼ 0: ð18Þ

In order to solve (17) and (18) we must find a fundamental system of
solutions. Let e1; e2; e3; e4 be the standard orthonormal basis of the

Euclidean space C4: A straightforward computations show that

expðBlxÞej ; xA½0; 1�; j ¼ 1; 2; 3; 4

is indeed a linearly independent fundamental system for (17) and (18).
Hence, l is an eigenvalue of this system if, and only if, there exist
k1; k2; k3; k4; such that

FðxÞ ¼
X4
j¼1

kj expðBlxÞej ð19Þ

is non-vanishing and satisfies the boundary conditions.
We now proceed to compute EV ðxÞ: The exponential of Blx is given by

expðBlxÞ ¼
cosðlC�1=2xÞ l�1C1=2sinðlC�1=2xÞ

�lC�1=2sinðlC�1=2xÞ cosðlC�1=2xÞ

 !

for xA½0; 1�: In Theorems 15 and 16, we split our computation into two cases
depending upon the Jordan matrix C:
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Theorem 15. When

C ¼
aþ 0

0 a�

 !
;

l is an eigenvalue of system (17), (18) if, and only if, EV ðlÞ ¼ 0 for

EV ðxÞ :¼ 2
Y4
j¼1

vj

 !
1� cos

xffiffiffiffiffiffi
aþ

p
 !

cos
xffiffiffiffiffiffi
a�

p
 !" #

� v21v
2
4

ffiffiffiffiffiffi
aþ

p
ffiffiffiffiffiffi
a�

p þ v22v
2
3

ffiffiffiffiffiffi
a�

p
ffiffiffiffiffiffi
aþ

p
" #

sin
xffiffiffiffiffiffi
aþ

p
 !

sin
xffiffiffiffiffiffi
a�

p
 !

:

Proof. Notice that EV ð0Þ ¼ 0: Assume la0: According to the hypothesis,

C1=2 ¼
a
1=2
þ 0

0 a1=2�

 !
and C�1=2 ¼

a
�1=2
þ 0

0 a�1=2
�

 !
:

Then

expðBlxÞ ¼

cos lxffiffiffiffi
aþ

p 0

ffiffiffiffi
aþ

p
l sin lxffiffiffiffi

aþ
p 0

0 cos lxffiffiffiffi
a�

p 0

ffiffiffiffi
a�

p
l sin

lxffiffiffiffi
a�

p
� lffiffiffiffi

aþ
p sin lxffiffiffiffi

aþ
p 0 cos lxffiffiffiffi

aþ
p 0

0 � lxffiffiffiffi
a�

p sin lxffiffiffiffi
a�

p 0 cos lxffiffiffiffi
a�

p

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

Let FðxÞ be a particular solution given as in (19), where the complex
parameters kj are to be determined. Then

CFð0Þ ¼
k1v1 þ k2v2

k3v3 þ k4v4

 !

and

CFð1Þ ¼

k1v1 cos
lffiffiffiffi
aþ

p þ k2v2 cos
lffiffiffiffi
a�

p
þ k3v1

ffiffiffiffi
aþ

p
l sin lffiffiffiffi

aþ
p þ k4v2

ffiffiffiffi
a�

p
l sin lffiffiffiffi

a�
p

�k1v3
lffiffiffiffi
aþ

p sin lffiffiffiffi
aþ

p � k2v4
lffiffiffiffi
a�

p sin lffiffiffiffi
a�

p
þk3v3 cos

lffiffiffiffi
aþ

p þ k4v4 cos
lffiffiffiffi
a�

p

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:
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The solution F satisfies the boundary conditions (18) if, and only if,

k1v1 þ k2v2 ¼ 0;

k3v3 þ k4v4 ¼ 0;

k1v1 cos
lffiffiffiffi
aþ

p þ k2v2 cos
lffiffiffiffi
a�

p þ k3
v1

ffiffiffiffi
aþ

p
l sin lffiffiffiffi

aþ
p þ k4

v2
ffiffiffiffi
a�

p
l sin lffiffiffiffi

a�
p ¼ 0;

�k1
v3lffiffiffiffi

aþ
p sin lffiffiffiffi

aþ
p � k2

v4lffiffiffiffi
a�

p sin lffiffiffiffi
a�

p þ k3v3 cos
lffiffiffiffi
aþ

p þ k4v4 cos
lffiffiffiffi
a�

p ¼ 0:

8>>>>>>><
>>>>>>>:

The determinant of this 4� 4 system of linear equations in kj is precisely

EV ðlÞ: &

Theorem 16. When

C ¼
aþ 0

1 aþ

 !
;

l is an eigenvalue of system (17), (18) if, and only if, EV ðlÞ ¼ 0 for

EV ðxÞ :¼
v22v

2
4

4a3þ

� �
x2 � detV þ

v2v4

2aþ

� �2
sin2

xffiffiffiffiffiffi
aþ

p :

Proof. Notice that EV ð0Þ ¼ 0: Assume la0: One can verify directly that

C1=2 ¼
a
1=2
þ 0

1

2
ffiffiffiffi
aþ

p a
1=2
þ

0
B@

1
CA and C�1=2 ¼

a
�1=2
þ 0

� 1

2a
3=2
þ

�  a
�1=2
þ

0
@

1
A:

Then the four 2� 2 blocks of matrix expðBlxÞ are

cosðlC�1=2xÞ ¼

cos lxffiffiffiffi
aþ

p 0

lx

ð2a3=2þ Þ
sin lxffiffiffiffi

aþ
p cos lxffiffiffiffi

aþ
p

0
B@

1
CA;

l�1C1=2 sinðlC�1=2xÞ equal to

a
1=2
þ
l sin

lxffiffiffiffi
aþ

p 0

1

2l
ffiffiffiffi
aþ

p sin lxffiffiffiffi
aþ

p � x
2aþ
cos lxffiffiffiffi

aþ
p

" #
a
1=2
þ
l sin

lxffiffiffiffi
aþ

p

0
BBBB@

1
CCCCA

and �lC�1=2 sinðlC�1=2xÞ equal to

� l
a
1=2
þ

sin lxffiffiffiffi
aþ

p 0

l
ð2a3=2þ Þ

sin lxffiffiffiffi
aþ

p þ l2x
2a2þ
cos lxffiffiffiffi

aþ
p

" #
� l

a
1=2
þ

sin lxffiffiffiffi
aþ

p

0
BBB@

1
CCCA:
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Let FðxÞ be a particular solution given as in (19), where the complex
parameters kj are to be determined. Then

CFð0Þ ¼
k1v1 þ k2v2

k3v3 þ k4v4

 !

and

CFð1Þ ¼
CFð1Þ1
CFð1Þ2

 !
;

where

CFð1Þ1 ¼ k1 v1 cos
lffiffiffiffiffiffi
aþ

p þ
v2l

2a
3=2
þ

sin
lffiffiffiffiffiffi
aþ

p
 !

þ k2v2 cos
lffiffiffiffiffiffi
aþ

p
þ k3

v1
ffiffiffiffiffiffi
aþ

p
l

sin
lffiffiffiffiffiffi
aþ

p þ
v2

2l
ffiffiffiffiffiffi
aþ

p sin
lffiffiffiffiffiffi
aþ

p �
v2

2aþ
cos

lffiffiffiffiffiffi
aþ

p
 !

þ k4
v2

ffiffiffiffiffiffi
aþ

p
l

sin
lffiffiffiffiffiffi
aþ

p
and

CFð1Þ2 ¼ k1 �
v3lffiffiffiffiffiffi

aþ
p sin

lffiffiffiffiffiffi
aþ

p þ
v4l

2a
3=2
þ

sin
lffiffiffiffiffiffi
aþ

p þ
v4l

2

2aþ
cos

lffiffiffiffiffiffi
aþ

p
 !

þ k2
v4lffiffiffiffiffiffi

aþ
p sin

lffiffiffiffiffiffi
aþ

p þ k3 v3 cos
lffiffiffiffiffiffi
aþ

p þ
v4l

2a
3=2
þ

sin
lffiffiffiffiffiffi
aþ

p
 !

þ k4v4 cos
lffiffiffiffiffiffi
aþ

p :

The solution F satisfies the boundary conditions (18) if, and only if,

k1v1 þ k2v2 ¼ 0;

k3v3 þ k4v4 ¼ 0;

CFð1Þ1 ¼ 0;

CFð1Þ2 ¼ 0:

8>>><
>>>:

A rather long but straightforward computation shows that the determinant
of this 4� 4 system of linear equations in kj is EV ðlÞ: &

We show that AD can have non-real eigenvalues even when the spectrum
of A is positive.
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Example 1. Put

A :¼
2=5þ 3i=10 3=5� 3i=10

3=20þ 3i=10 17=20� 3i=10

 !
:

Then the eigenvalues of A are aþ ¼ 1; a� ¼ 1
4
; and the eigenvectors

vþ ¼
1

1

 !
; v� ¼

2i

1

 !
:

Thus

EV ðxÞ ¼ 4ið1� cosðxÞ cosð2xÞÞ ¼ 4ið1� 2 cos3ðxÞ þ cosðxÞÞ

so that EV ðlÞ=0 if, and only if,

cosðlÞ ¼ 1 or cosðlÞ ¼ �1
2
7i=2:

Hence

SpecðADÞ ¼ f4k2p2; ðl7 þ 2kpÞ2gkAZ;

where l7 ¼ arccosð�1
2
7i=2ÞE2:0270:53i:

6. Real matrices

In this section we explore some connections between the entries of

matrix A and the global behaviour of SpecðADÞ when AAR2�2:
Alongside we discuss conditions to ensure similarity to a self-adjoint
operator. For completeness of the picture, below and elsewhere we allow
detðAÞ ¼ 0:
Our first task is to reduce to two parameters the four that are initially

given as entries of A: This leads us to five different types of matrices to deal
with. For a; dAR; let

A0 :¼
a 0

0 d

 !
; A1 :¼

a 1

1 d

 !
; A2 :¼

a 0

1 d

 !
;

A3 :¼
a 1

0 d

 !
and A4 :¼

a �1

1 d

 !
:

We show that the AjD generate any AD;AAR2�2 via similarity transforma-

tions.

Lemma 17. If AAR2�2; then AD is similar to aAjD for some a; a; dAR and

j ¼ 0;y; 4:
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Proof. Let

A ¼
ã b

c d̃

 !
:

If bc ¼ 0; the proof is trivial. Let

AðrÞ :¼
1 0

0 r

 !
A

1 0

0 r�1

 !
¼

ã r�1b

rc d̃

 !
:

Then, AD is similar to AðrÞD for all ra0: If b=c > 0;

Að
ffiffiffiffiffiffiffi
b=c

p
Þ ¼

ã
ffiffiffiffiffi
bc

p
ffiffiffiffiffi
bc

p
d̃

 !
¼ aA1

for a ¼
ffiffiffiffiffi
bc

p
; a ¼ ã=

ffiffiffiffiffi
bc

p
and d ¼ d̃=

ffiffiffiffiffi
bc

p
: If b=co0;

Að
ffiffiffiffiffiffiffiffiffiffiffi
�b=c

p
Þ ¼

ã 8
ffiffiffiffiffiffiffiffiffi
�bc

p
7

ffiffiffiffiffiffiffiffiffi
�bc

p
d̃

 !
¼ 7aA4

for a ¼
ffiffiffiffiffiffiffiffiffi
�bc

p
; a ¼ 7ã=

ffiffiffiffiffiffiffiffiffi
�bc

p
and d ¼ 7d̃=

ffiffiffiffiffiffiffiffiffi
�bc

p
: &

The case j ¼ 0 was already described in Corollary 3. Indeed if ada0 then
A0D is similar to a self-adjoint operator and

SpecðA0DÞ ¼ fan2p2; dn2p2gNn¼0CR:

6.1. Matrix A1

Since a and d are real, A1 ¼ An
1 : Let b7 be the eigenvalues of A1: Then

b7 ¼
a þ d7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � dÞ2 þ 4

q
2

;

so that

(i) bþXb� > 0 if, and only if, ad > 1 and a; d > 0;
(ii) b�pbþo0 if, and only if, ad > 1 and a; do0;
(iii) bþ and b� have opposite signs if, and only if, ado1:

Theorem 18. The following statements are true:

(a) If ad ¼ 1 then SpecðA1DÞ ¼ C:
(b) If ad > 1 and a; d > 0 then A1D is similar to a non-negative operator so

that SpecðA1DÞC½0;NÞ:
(c) If ad > 1 and a; do0 then �A1D is similar to a non-negative self-

adjoint operator so that SpecðA1DÞCð�N; 0�:
(d) If ado1 then SpecðA1DÞCR:
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Proof. If ad ¼ 1; matrix A1 is singular so according to Lemma 1, A1D

is not a closed operator. This shows (a). Statement (b) is a consequence
of (i) and Theorem 8, and statement (c) is a consequence of (ii) and
Theorem 8.
Let us show (d). For eAR; let

BðeÞ :¼ A1 þ ie:

Then

NumðBðeÞÞCfImðzÞ > 0g; e > 0

and

NumðBðeÞÞCfImðzÞo0g; eo0:

According to Theorem 10,

SpecðBðeÞDÞCfImðzÞX0g; e > 0

and

SpecðBðeÞDÞCfImðzÞp0g; eo0:

Since BðeÞD is a holomorphic family of type (A) in a neighbourhood of e ¼ 0
and Bð0Þ ¼ A1; a fortiori

SpecðA1DÞCR: &

Although A1 ¼ An
1 ; it is unclear to us whether A1D is similar to self-

adjoint in the latter case.

6.2. Matrices A2 and A3

Since the results for matrix A3 are analogous and shown in a similar
manner as for A2; we will only consider the latter.

Theorem 19. The following statements are true:

(a) If ad ¼ 0 then SpecðA2DÞ ¼ C:
(b) If ada0 then SpecðA2DÞ ¼ fap2n2; dp2n2gNn¼0:
(c) If ad > 0; for all e > 0 there exists ke > 0 independent of z; such that

jjðA2D � zÞ�1jjp
ke

jzj
; ze7Sð�e; eÞ;

where the symbol 7 is chosen according to the symbol of a:
(d) If ado0; then for all e > 0 there exists ke > 0 independent of z; such

that

jjðA2D � zÞ�1jjp
ke

jzj

for all zeSð�e; eÞ,Sð�p� e;�pþ eÞ:
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(e) If a ¼ da0; let e > 0 and zr ¼ 4ap2r27ie: Then there exists a constant

ke > 0 independent of r; such that

jjðA2D � zrÞ
�1jjXkejzrj1=4

for all r ¼ 1; 2;y :

Proof. If ad ¼ 0; matrix A2 is singular according to Lemma 1, A2D is not a
closed operator. This shows (a).
Let us show (b). If aad; matrix A2 is diagonalizable and

A2 ¼
a � d 0

1 1

 !
a 0

0 d

 !
ða � dÞ�1 0

1� ða � dÞ�1 ða � dÞ�1

 !
:

Then, according to Theorem 15,

EV ðxÞ ¼ k0 sin
xffiffiffiffiffiffi
aþ

p
 !

sin
xffiffiffiffiffiffi
a�

p
 !

;

where k0 is constant in x: If a ¼ d; A2 is already in Jordan form and
according to Theorem 16,

EV ðxÞ ¼ �sin
xffiffiffi

a
p

 !2
:

Hence in both cases

SpecðA2DÞ ¼ fap2n2; dp2n2gNn¼0:

Statements (c) is a consequence of Corollary 11 and statement (d) is a
consequence of Corollary 14. For statement (e) use Theorem 12 and the fact

that jzrj is of order r2: &

6.3. Matrix A4

Formally speaking, so far the spectrum of AjD for j ¼ 0;y; 3 reproduces
the spectrum of Aj in the following sense: if Aj is non-degenerated and both

eigenvalues of Aj are positive (negative) then SpecðAjDÞ is non-negative
(non-positive), and if the eigenvalues are of opposite sign then AjD possess

both positive and negative spectrum. There is no reason to expect the same
for j ¼ 4; in fact this case is less simpler due to the way the entries of A4
interact with the boundary conditions.
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The eigenvalues of A4 are given by

b7 :¼
a þ d7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � dÞ2 � 4

q
2

: ð20Þ

Then

(i) bþ ¼ b� if, and only if, ja � d j ¼ 2: In this case A4 is not a
diagonalizable matrix.

(ii) b7 are real and have opposite signs if, and only if, ado� 1:
(iii) bþ > b� > 0 if, and only if, ad > �1; ja � d j > 2 and a þ d > 0:
(iv) b�obþo0 if, and only if, ad > �1; ja � d j > 2 and a þ do0:
(v) b7 are non-real with bþ ¼ b� if, and only if, ja � d jo2:
(vi) A4 is singular if, and only if, ad ¼ �1:

Motivated by this and for simplicity, we can divide the plane into 6 disjoint
regions Rk;

R1 :¼ fða; dÞAR2 : ja � d j ¼ 2; aa71g;

R2 :¼ fða; dÞAR2 : ado� 1g;

R3 :¼ fða; dÞAR2 : ad > �1; ja � d j > 2; a þ d > 0g;

R4 :¼ fða; dÞAR2 : ad > �1; ja � d j > 2; a þ do0g;

R5 :¼ fða; dÞAR2 : ja � d jo2g;

R6 :¼ fða; dÞAR2 : ad ¼ �1g:

Clearly R2 ¼
S

Rk: Below we establish the spectral results for A4D

separately in each region Rk:
Two cases are similar to what we have found so far.

Theorem 20. The following statements are true:

(a) If ða; dÞAR6; then SpecðA4DÞ ¼ C:
(b) If ða; dÞAR2; then SpecðA4DÞCR and A4D is similar to a self-adjoint

operator whose numerical range is the whole real line.

Proof. If ad ¼ �1; matrix A4 is singular so according to Lemma 1, A4D is
not a closed operator. This shows (a).
Let us show (b). Let J be as in Section 4. Then

A4D ¼ ðA4JÞðJDÞ ¼
a 1

1 �d

 !
D̃ ¼ ÃD̃:
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Here Ã ¼ Ãn and the eigenvalues of Ã are

b̃7 ¼
a � d7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða þ dÞ2 þ 4

q
2

:

Since ado� 1; b̃7 are either both positive or both negative. If they are both

positive, Ã > 0 so that Theorem 8(b) provides the desired conclusion. If they
are both negative apply the above argument to �A4D (Fig. 1). &

In order to find SpecðA4DÞ in Rk for k ¼ 1; 3; 4; 5; we ought to rely on
properties of the transcendental function EV ðxÞ: Nonetheless, Theorem 21
provides some indication of what we should expect, it bases on the
observation that if both a and d are positive,

A4 þ An

4 ¼
2a 0

0 2d

 !
> 0;

so by virtue of Lemma 9, SpecðA4DÞCfReðzÞX0g:

_5 _4 _3 _2 _1 0 1 2 3 4 5

_5

_4

_3

_2

_1

0

1

2

3

4

5

a

d

R
2

R
2

R
3

R
3

R
4

R
4

R
5

R
1

R
1

R
6

R
6

Fig. 1. Different regions of the plane in which SpecðA4DÞ exhibits a similar behaviour. The grey
line is fa2 � ad � 1 ¼ 0g-R5: See Theorems 20–26.
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Theorem 21. If both a and d are positive, then

SpecðA4DÞCSð�o;oÞ;

where sino ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ad þ 1

p
for 0ooop=2:

Proof. The numerical range of A4 is an ellipse whose foci are b7 and largest
diameter is of length ja � d j: It is easy to see that Sð�o;oÞ is the minimal
sector that contains such an ellipse. Use Theorem 10 to complete the
proof. &

Since

�1 0

0 1

 !
�a �1

1 �d

 !
�1 0

0 1

 !
¼ �

a �1

1 d

 !

and because of diagonal matrices commute with the boundary conditions,
SpecðA4DÞC� Sð�o;oÞ where both a and d are negative. This also shows
that the spectral results for A4D are symmetric with respect to the axis
a þ d ¼ 0: Below we will employ this symmetry often without mention.
In order to describe SpecðA4DÞ in R5; we will make use of the following

technical result.

Lemma 22. Let aAC be such that Reða2ÞX0; let �1pcp1 and let

F ðxÞ :¼ 1� cosðaxÞ cosð%axÞ � c sinðaxÞ sinð%axÞ; xAC:

Then F ðxÞ has an infinite number of zeros in the complex plane and

(a) if c ¼ �1; then F ðxÞ ¼ 0 if, and only if, sinðReðaÞxÞ ¼ 0;
(b) if c ¼ 1; then F ðxÞ ¼ 0 if, and only if, sinhðImðaÞxÞ ¼ 0;
(c) if �1oco1; then F ðxÞ only has a finite number of zeros lying on the

real and imaginary axis.

Proof. Let a ¼: rþ im so that rXm > 0 and let x ¼: x1 þ ix2 for x1;x2AR:
In order to show (a), assume c ¼ �1: Then

jF ðxÞj2 ¼ j1� cos½aðx1 þ ix2Þ� cos½%aðx1 þ ix2Þ�

þ sin½aðx1 þ ix2Þ�sin½%aðx1 þ ix2Þ�j
2

¼ 4½cos2ðrx1Þ � cosh
2ðrx2Þ�2:

Hence

F ðxÞ ¼ 0

if, and only if, coshðrx2Þ ¼ 1 and cosðrx1Þ ¼ 1: This gives (a).
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Similarly for (b), assume c ¼ 1: Then

jF ðxÞj2 ¼ j1� cos½aðx1 þ ix2Þ� cos½%aðx1 þ ix2Þ�

� sin½aðx1 þ ix2Þ�sin½%aðx1 þ ix2Þ�j2

¼ 4½cosh2ðmx1Þ � cos2ðmx2Þ�2:

Hence

F ðxÞ ¼ 0

if, and only if, coshðmx1Þ ¼ 1 and cosðmx2Þ ¼ 1:
Let us show assertion (c). If xAR; then

F ðxÞ ¼ 1� cosðaxÞ cosðaxÞ � c sinðaxÞ sinðaxÞ

¼ 1� j cosðaxÞj2 � cj sinðaxÞj2

¼ 1� cos2ðrxÞ � c sin2ðrxÞ � ð1þ cÞ sinh2ðmxÞ

and

F ðixÞ ¼ 1� cosð�i %axÞ cosði %axÞ � c sinð�i %axÞ sinði%axÞ

¼ 1� cosði %axÞ cosði %axÞ þ c sinð%axÞ sinði %axÞ

¼ 1� j cosði %axÞj2 � cj sinði %axÞj2

¼ 1� cos2ðmxÞ þ c sin2ðmxÞ � ð1� cÞ sinh2ðrxÞ:

Hence, if �1oco1;
lim

x-7N

F ðxÞ ¼ �N and lim
x-7N

F ðixÞ ¼ �N:

Since F ðxÞ is a smooth function, (c) follows.
Finally, let us show that F ðxÞ has a infinite number of zeros. Suppose that

F only has a finite number of zeros 0; z1;y; zn where the zj repeats as many

times as its order. Then

GðxÞ ¼
F ðxÞ

x2
Qn

j¼1ðx � zjÞ

is an entire function with no zeros. By virtue of the Weierstrass factorization

theorem, there is an entire function gðxÞ such that GðxÞ ¼ egðxÞ: Then

F ðxÞ ¼ x2
Yn

j¼1

ðx � zjÞ

" #
egðxÞ ¼: pðxÞegðxÞ:

Since it is a combination of sines and cosines, the order (cf. [3, p. 285]) in the
sense of entire functions of F ðxÞ is l ¼ 1: Thus by virtue of Hadamard’s
factorization theorem, gðxÞ is a polynomial of degree 1 in x and so

F ðxÞ ¼ pðxÞekxþl

for suitable k; lAC: Since pðxÞ is a polynomial, this is clearly a contradiction,
so F ðxÞ must have an infinite number of zeros. &
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Theorem 23. Let ða; dÞAR5:

(a) If ða; dÞAfa2 � ad � 1 ¼ 0g-f�2oa � do0g; then

SpecðA4DÞ ¼ f�k2p2=Imðb�1=2
þ Þ2gkAZCð�N; 0�:

(b) If ða; dÞAfa2 � ad � 1 ¼ 0g-f0oa � do2g; then

SpecðA4DÞ ¼ fk2p2=Reðb�1=2
þ Þ2gkAZC½0;NÞ:

(c) If ða; dÞefa2 � ad � 1 ¼ 0g; then SpecðA4DÞ is infinite but it only

intersects the real line in a finite number of points.

Proof. By virtue of (v), A4 is diagonalizable. We assume a þ dX0; so that

fb7gCfReðzÞX0g:

Let

y :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� ða � dÞ2

q
and g7 ¼ a � d7iy:

Then

A4 ¼
gþ g�
2 2

 !
bþ 0

0 b�

 !
1
2iy

�g�
4iy

� 1
4iy

gþ
2iy

 !
:

Let W :¼ arg gþ and a :¼ 1=
ffiffiffiffiffiffi
bþ

p
so that %a ¼ 1=

ffiffiffiffiffiffi
b�

p
: Then

EV ðxÞ
4g2�

¼
2gþ
g�

½1� cosðaxÞ cosð%axÞ� �
g2þ
g2�

ffiffiffiffiffiffi
bþ

b�

s
þ

ffiffiffiffiffiffi
b�

bþ

s !
sinðaxÞ sinð%axÞ

¼
2gþ
gþ

½1� cosðaxÞ cosð%axÞ� �
g2þ
gþ
2

%a
a
þ

a
%a

� �
sinðaxÞ sinð%axÞ

¼ 2ei2W½1� cosðaxÞ cosð%axÞ� � ei4W %a
a
þ

a
%a

� �
sinðaxÞ sinð%axÞ

¼ 2ei2W½1� cosðaxÞ cosð%axÞ � c sinðaxÞ sinð%axÞ�

¼ 2ei2WF ðxÞ; ð21Þ

where F ðxÞ and

c :¼
ð%aei2W=aÞ þ ðae�i2W=%aÞ

2

¼
eið2W�2 argðaÞÞ þ e�ið2W�2 argðaÞÞ

2

¼ cosð2W� 2 argðaÞÞ ¼ cosð2Wþ arg bþÞ

are as in Lemma 22.

L.S. Boulton / J. Differential Equations 186 (2002) 186–229220



Let us show (a). The hypothesis a � do0 ensures �1ocp1: Furthermore
c ¼ 1 if, and only if,

Imðg2þÞ
Reðg2þÞ

¼ �
ImðbþÞ
ReðbþÞ

:

The latter occurs if, and only if,

yða � dÞ

ða � dÞ2 � 2
¼ �

y

a þ d
:

By simplifying this identity, we gather that c ¼ 1 for a2 � ad � 1 ¼ 0 which
is precisely our assumption. Then, Lemma 22(b) and (21) complete the proof
of (a).
For (b), notice that since a � d > 0; the constant c is now such that

�1pco1 and c ¼ �1 if, and only if,

Imðg2þÞ
Reðg2þÞ

¼ �
ImðbþÞ
ReðbþÞ

:

Therefore a similar argument as for (a) and Lemma 22(a) show this case. In
order to prove (c) use the fact that �1oco1 in

R5\fa2 � ad � 1 ¼ 0g;

Lemma 22(c) and (21). &

Theorem 24. In the regions R3 and R4; SpecðA4DÞ is infinite, and

SpecðA4DÞCfðr þ iy0Þ
2 : rARg þ ½0;NÞ; ða; dÞAR3;

SpecðA4DÞCf�ðr þ iy0Þ
2 : rARg þ ð�N; 0�; ða; dÞAR4;

where in both cases the constant y0 > 0 only depends upon ða; dÞ:

Proof. We show the result only for R3: According to (iii), in this case
0ob�obþ and A4 is diagonalizable. By expressing the trigonometric
functions in exponential form,

EV ðxÞ ¼ k1 � k1 cosðaxÞcosðbxÞ � k2 sinðaxÞ sinðbxÞ

¼ k1 þ
K2 � K2

4
eiðaþbÞx þ e�iðaþbÞx� �

�
k2 þ k1

4
eiða�bÞx þ e�iða�bÞx� �

;

where k1; k2AR and 0oboa are constants we do not need to specify here. A
similar argument involving Hadamard’s theorem as in the proof of Lemma
22 shows that SpecðA4DÞ is infinite.
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By putting x ¼ r þ iy where r; yAR; g :¼ aþ b > 0 and d :¼ a� b > 0;

EV ðr þ iyÞ ¼ k1 þ
K2 � K2

4
½e�gyeigr þ egye�igr�

�
k2 þ k1

4
½e�dyeidr þ edye�idr�:

Since g > d > 0; if we chose yb0; the term egy dominates the expression and
so jEV ðr þ iyÞjXc > 0 for a suitable c independent of r: If we chose y50; the
term e�gy is the one that dominates and again jEV ðr þ iyÞj is large. This
shows that all the zeros of EV ðxÞ must be contained in a band
f�y0pReðxÞpy0g: &

The above theorem does not rule out the possibility of negative
eigenvalues when ado0: We will see in the numerical examples, evidence
of points in this region such that A4D has indeed negative spectrum.
With regard to finding the minimal y0: We will see in Section 7 an

argument involving Chebyshev polynomial that allows us to compute in
closed form SpecðA4DÞ for a certain dense subset of R3: We will also
illustrate this technique in various examples where the parabolic region is
found explicitly.
If ða; dÞAR1; matrix A4 is not diagonalizable and so EV ðxÞ is given by

Theorem 16 instead of Theorem 15. Nevertheless, similar techniques to the
ones we have seen so far apply to this case.

Lemma 25. Let 0acAR and let

F ðxÞ ¼ x2 þ c sinðxÞ2; xAC:

Then F ðxÞ has an infinite number of zeros in the complex plane but only a finite

number of them lie on R and on iR:

Proof. See the proofs of Lemma 22 and Theorem 24. &

Theorem 26. Let ða; dÞAR1: If ða; dÞ ¼ ð71
2
;83

2
Þ; then SpecðA4DÞ ¼ f0g:

Otherwise SpecðA4DÞ is infinite but it only intersects the real line in a finite

number of points.

Proof. If a � d ¼ 2;

A4 ¼
bþ þ 1 �1

1 bþ � 1

 !
¼

1 1

0 1

 !
bþ 0

1 bþ

 !
1 �1

0 1

 !

and if a � d ¼ �2;

A4 ¼
bþ � 1 �1

1 bþ þ 1

 !
¼

1 �1

0 1

 !
bþ 0

1 bþ

 !
1 1

0 1

 !
:
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Then

EV ðxÞ ¼
x2

4b3þ
� 17

1

2bþ

� �2
sin

xffiffiffiffiffiffi
bþ

p
 !2

; a � d ¼ 72:

The first statement follows from the fact that if ða; dÞ ¼ ð71
2
;83

2
Þ; then bþ ¼

81
2
and so the trigonometric term disappear. The second follows from

Lemma 25. &

Notice that the curve a2 � ad � 1 ¼ 0 meets the region R1 at ð71
2
;83

2
Þ:

These are the only points where SpecðA4DÞ is finite. Since all self-adjoint
operators with compact resolvent must have an infinite number of
eigenvalues, A4D is not similar to self-adjoint. All this suggests that for
ða; dÞ in a small neighbourhood of these points, SpecðA4DÞ must be highly
unstable. In the next section we explore closely this idea.

7. Some numerical results

As mentioned previously, this section is devoted to investigating some
aspects of the global spectral evolution of AD when we move the entries of
matrix A: To be more precise, we consider A ¼ A4 (see Section 6) and
compute SpecðA4DÞ as ða; dÞ moves along various lines inside

R1,R3,R5CR2: We also introduce a technique that allows us to find
explicitly SpecðA4DÞ when ða; dÞ are in a certain dense subset of R3 by
computing the roots of certain polynomial GðwÞ:
Our first task is to decompose R3 into a disjoint union of curves in order

to find the dense subset. For a > 1; let

d7ðaÞ :¼
aða4 þ 1Þ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða4 � 1Þ2a2 þ 4a2ða2 þ 1Þ2

q
2a2

and let

L7ðaÞ :¼ fða; d7ðaÞÞ : a > 81g:

Then

R3-fa � do0g ¼
[
a>1

LþðaÞ and R3-fa � d > 0g ¼
[
a>1

L�ðaÞ:

The motivation for this decomposition is found by observing that for

A4 ¼
a �1

1 d7ðaÞ

 !
;
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ=b�

p
¼ a; where 0ob�obþ are the eigenvalues of A4: That is, L7 are

level curves of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ=b�

p
in the ða; dÞ-plane. Notice that

R3 ¼
[

1oaAQ

LþðaÞ,L�ðaÞ:

The key idea behind finding GðwÞ is that for ða; dÞAL7ðaÞ where 1oaAQ;
the zeros of the transcendental function are periodic in the horizontal
direction. We show how to construct this polynomial. The transcendental
function for A4D is

EV ðxÞ ¼ k1 1� cos
xffiffiffiffiffiffi
bþ

p
 !

cos
xffiffiffiffiffiffi
b�

p
 !" #

� k2 sin
xffiffiffiffiffiffi
bþ

p
 !

sin
xffiffiffiffiffiffi
b�

p
 !

;

where k1 and k2 are two real constants depending upon a and d which we do
not need to specify here. Sinceffiffiffiffiffiffiffiffiffiffiffiffiffi

bþ=b�

p
¼ a ¼ p=q; p; qAZþ;ffiffiffiffiffiffi

b7

p
are rationally related and so the zeros of EV ðxÞ appear periodically in

lines parallel to the real axis. By putting z ¼ x=ðq
ffiffiffiffiffiffi
bþ

p
Þ;

EV ðzÞ ¼ k1½1� cosðpzÞ cosðqzÞ� � k2 sinðpzÞ sinðqzÞ

¼ k1 þ
k2 � k1

4
cos½ðp þ qÞz� �

k2 þ k1

4
cos½ðp � qÞz�;

where p � qop þ qAZþ: Standard computations show that,

cosðmzÞ ¼ TmðcosðzÞÞ; m ¼ 1; 2;y;

where Tm a polynomial of degree m (the mth Chebyshev polynomial of first
order). Then by letting

GðwÞ :¼ k1 þ
k2 � k1

2
TðpþqÞðwÞ �

k2 þ k1

2
Tðp�qÞðwÞ;

EV ðzÞ ¼ 0 if, and only if, GðcosðzÞÞ ¼ 0: Hence all the zeros of EV ðxÞ are of
the form

ð7arccosðw0Þ þ 2npÞq
ffiffiffiffiffiffi
bþ

p
AC; nAZ;

where w0 is a root of GðwÞ: In this manner, SpecðA4DÞ is generated by
translations of the roots of GðwÞ:
Although the above method computes SpecðA4DÞ explicitly for

ða; dÞAL7ðaÞ; 1oaAQ; its numerical implementation for large p þ q (> 20
in a PC) is highly unstable due to the well-known instability of the roots of
polynomials of high degree. Nevertheless, no other procedure tried so far,
has proven to be more efficient for estimating large eigenvalues in R3:
Figs. 2, 5 and 6 were produced via this approach.
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7.1. Spectral behaviour of A4 for ða; dÞ close to ð�12;
3
2Þ

By virtue of Theorem 26, SpecðA4DÞ ¼ f0g for ða; dÞ ¼ ð�1
2
; 3
2
Þ: In any

small neighbourhood of this point, the spectrum of A4D is infinite so high
instability is to be expected. Since A4D is holomorphic in a and d; every non-
zero eigenvalue of A4D either concentrates at zero or diverges to N for

ða; dÞ-ð�1
2
; 3
2
Þ: We explore this phenomenon in some detail.

According to Theorem 23(a), if ða; dÞAR5 satisfy a2 � ad � 1 ¼ 0 and
�2oa � do0;

SpecðA4DÞ ¼ f�k2p2=Imðb�1=2
þ Þ2gkAZ;

where bþ is the larger eigenvalue of A4: By taking a-� 1
2
and d-3

2
;

bþ ¼
a þ d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � dÞ2 � 4

q
2

-1
2
AR;

so that Imðb�1=2
þ Þ-0: Hence, all non-zero eigenvalues of A4D remain

negative and escape to �N as ða; dÞAR5 approach the critical point on the

curve a2 � ad � 1 ¼ 0:
In general, not every eigenvalue of A4D need to be in the left-hand plane

when ða; dÞ is close to ð�1
2
; 3
2
Þ: In Fig. 2 we consider the evolution of the first
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Fig. 2. Evolution of the first 16 eigenvalues of A4D for a ¼ �1
2
fixed and selected values of d

close to 3
2
:
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16 eigenvalues of A4D for a ¼ �12 fixed and 6 different values of d from

d ¼ 1:6075 to 1:5035: The awkward choice of d correspond to the sensible

values of aAQ; each pair ð�1
2
; dÞALþðaÞ for a ¼ 2; 8

5
; 4
3
; 5
4
; 7
6
; 9
8
: Notice that for

large p; q the polynomial GðwÞ has p þ q roots and nonetheless all these roots
but 0 lie on the same curve. This curve moves away from the origin and
there is always a negative eigenvalue. The positive eigenvalues also escape
rapidly to þN and there are infinitely many of them.

In Fig. 3 we isolate the negative eigenvalue for a ¼ �1
2
against 100

different values of d close to d ¼ 3
2
: This provides indication of how rapidly

it escapes to �N: In order to produce this picture, we made use of the
algorithm that Matlab provides to find the zero of EV ðxÞ for x on the
imaginary axis. Comparing with the comment we made earlier in Section
6.3, this provides points in R3 such that A4D has a negative eigenvalue of
arbitrarily large modulus.

7.2. Non-real eigenvalues in R1

We now explore the transition from real to non-real spectrum by
considering the spectral evolution of A4 on the line

fð0; dÞAR3 : d > 2g
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Fig. 3. Evolution of the negative eigenvalue for a ¼ �1
2
and 100 different values of d linearly

distributed on the segment ½1:5012; 1:6200�:
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Fig. 4. First 23 eigenvalues of A4D for a ¼ 0 and d ¼ 2:
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Fig. 5. Evolution of the first 17 eigenvalues (counting multiplicity) of A4D for a ¼ 0 and d > 2
close to d ¼ 2:
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close to ð0; 2ÞAR1: In Fig. 4 we show the first 23 eigenvalues of A4D for
a ¼ 0 and d ¼ 2: We produced this graphic by reducing the equation
EV ðxÞ ¼ 0 to a single real variable and then making use of the algorithm
that Maple provides to find zeros of real functions. According to Theorem
26, we know that SpecðA4DÞ is infinite but there is only finite intersection
with the real line. As the picture suggests, in this case the origin seems to be
the only real eigenvalue.
Fig. 5 shows the evolution of the first 17 eigenvalues (counting

multiplicity) of A4 when a ¼ 0 for various different values of d from d ¼
3:3333 to 2:0139: Each pair ð0; dÞALþðaÞ; respectively, for a ¼ 3; 5

2
; 9
4
; 2; 9

5
; 3
2
; 5
4
;

9
8
: The numerical evidence suggests that for d ¼ 3:3333 the spectrum is close
to the real line and each eigenvalue is of multiplicity 2: Each of these
operators has infinitely many real eigenvalues. Unfortunately, the method
we employed to find the roots of GðwÞ; is unable to deal with a finer partition
of the d-interval. Nonetheless, the global behaviour of the spectrum can be
appreciated, as d approaches to 2; each real eigenvalue eventually splits into
two conjugate non-real single eigenvalues stabilizing close to the region in
Fig. 4 (see the step d ¼ 2:0139). Notice that there is no spectrum in the left-
hand plane and compare with Theorem 21.
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Fig. 6. Evolution of the first 100 eigenvalues of A4D as ða; dÞ-ð�1; 1ÞAR6 on Lþð2Þ: The dots
are the first 100 eigenvalues while the crosses the remaining spectrum.
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7.3. Spectral evolution close to R6

Another type of peculiar behaviour can be observed as ða; dÞAR3
approach the region R6; where matrix A4 is singular and SpecðA4DÞ ¼ C:
Here we concentrate on the point ð�1; 1ÞAR6:
Fig. 6 shows the evolution of the first 100 eigenvalues of A4D (represented

by dots) as ða; dÞALþð2Þ approaches to ð�1; 1ÞAR6: Alongside we also
picture the remaining eigenvalues (represented by crosses) that lie on the box
½0; 2000� � ½�300; 300� . A very similar behaviour occurs for ða; dÞAL7ðaÞ as
ða; dÞ-ð81;71ÞAR6 for other values of aAQ: It cannot be appreciated in
the graph provided but there are two conjugate eigenvalues whose real part
is negative. These eigenvalues approach to the origin as ða; dÞ-ð�1; 1Þ: All
the remaining spectrum concentrates on the real line suggesting that
SpecðA4DÞ-½0;NÞ as ða; dÞ-ð�1; 1Þ this is in contrast with the fact that
SpecðADÞ ¼ C at ð�1; 1Þ:
Here we have chosen p ¼ 2 and q ¼ 1: This means that GðwÞ is only of

order 3 and so the spectrum is always generated by 3 points. It is not difficult
to show analytically that all three roots converge to 0 and then rigorously
prove that SpecðA4DÞ-½0;NÞ:
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