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Abstract

We investigate the spectrum of a typical non-self-adjoint differential operator
AD = —d*/dx* ® A acting on L*(0,1)® C?, where 4 is a 2 x 2 constant matrix. We
impose Dirichlet and Neumann boundary conditions in the first and second
coordinate, respectively, at both ends of [0, 1]=R. For 4eR*? we explore in detail
the connection between the entries of 4 and the spectrum of 4D, we find necessary
conditions to ensure similarity to a self-adjoint operator and give numerical evidence
that suggests a non-trivial spectral evolution.
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1. Introduction

In this paper, we investigate spectral properties of the linear operator AD
acting on L2(0, 1) ® C? where A is a 2 x 2 constant matrix and D denotes the
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ordinary differential operator

S\ (¢ s0=sm=0.

y )T YO =y'(1)=0.
The apparently simple combination of Dirichlet and Neumann boundary
conditions allows self-adjointness if, an only if, 4 is real and diagonal. If 4 is
non-diagonal and upper-triangular the numerical range of AD is a large
sector of C. Otherwise it is the whole of C preventing us from applying the

theory of sectorial sesquilinear forms in a straightforward manner.

Our main goal is to explore the connection between the entries of matrix

A and the location of the spectrum of 4D in the complex plane. Streater [8]
considers the particular case

Ly
A= , 7>0,
1/2y 1

in order to find necessary conditions for the stability of small perturbations
about the stationary solution of certain non-linear system of parabolic
equations. Streater’s system represents a thermodynamical model for hot fluid
in one dimension and the localization of the spectrum is achieved by
constructing a non-unitary transformation that makes 4D similar to a non-
negative self-adjoint operator, hence the spectrum of AD is real and non-
negative. This similarity transformation does not work for other matrices and
a slight modification of the entries of 4 can destroy reality of the spectrum (cf.
Sections 6 and 7) so the general case should be attacked by other methods.
Although this paper mainly concerns 4 € R**?, the results of Sections 2—5
refer to any complex 2 x 2 matrix. The core results are to be found in Section
6 where we present an exhaustive description of the spectrum of AD in terms
of the entries of A. Among various other unexpected conclusions, the
following three epitomize the complexity of the problem to be considered:

(a) When 4 is triangular and non-diagonalizable, 4D is not similar to a
self-adjoint operator but the spectrum of 4D is real (Theorem 19).

(b) The spectrum of AD can be non-real even when both eigenvalues of
A are positive and equal (Theorem 26).

(c) There is a continuous family of matrices A whose eigenvalues do not
intersect the real line but such that the spectrum of 4D is real
(Theorem 23).

The last two assertions show that the spectra of 4, D and 4D are typically
unrelated.

The crucial idea in Section 6 is to reduce the four-parameter problem of
localizing the spectrum of AD in terms of the entries of A, to five two-
parameter cases and describe separately each of these cases. Sections 2—5 are
devoted to describing the various properties of 4D we will use in Section 6,
whereas Section 7 is devoted to numerical computations which illustrate
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some of the results reported. In Section 2, we find the boundary conditions
associated to the adjoint of AD and compute the numerical range of 4D. In
Section 3, we show that the resolvent of 4D is compact for all non-singular
A. In Section 4, we explore the stability of the spectrum of 4D in the sense of
[4,9], and provide estimates which allow us to enclose the spectrum of 4D in
angular regions when 4 is subject to various different constraints. In Section
5, we use standard ODE methods to compute the transcendental function of
the spectral problem associated to AD.

2. Definitions and notation

Let K be a linear operator whose domain is denoted by Dom(K).
Throughout this paper Spec(K) stands for the spectrum of K and the
numerical range of K is defined to be

Num(K) = {{Kf.f>: feDom(K), |[f|| = 1}.

We recall that the numerical range of any linear operator is convex and that
if Spec(K)#0, then

Spec(K) = Num(K).

If K = K* and Spec(K)<(0, o0), we will say that K is positive and write
K >0. If K = K* and Spec(K)<[0, o0), we will say that K is non-negative
and write K>0.

Below and elsewhere [v] denotes the norm of a vector ve C*. The norm of
any

f= <¢> e L*(0,1)®C?
b
is the standard Hilbert tensor product norm

1 1
VIR = <fof> = / PP dx = / (6P + P d.
0 0

Unless explicitly stated, we denote

a b
A= .
c d
The complex numbers a,a_ denote the eigenvalues of 4 and the non-zero
C? vectors v,,v_ denote the eigenvectors

AUlL =dad4 4.

If a, and a_ are real and different, we adopt the convention a_ <a, . Notice
that the vy are not necessarily orthogonal.
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Let W22 be the Sobolev space of all feL?(0,1)®@C?, such that the

generalized derivative /" e L2(0, 1)®Cz. We define rigorously the domain of
AD as

Dom(D) = {f e W>?: $(0) = ¢(1) = 0, 7'(0) = /(1) = 0}.
If A is invertible, it is standard to show that AD is always a closed densely
defined linear operator acting on L*(0,1)® C?.

Lemma 1. If A is singular, then AD is not closed in the domain Dom(D).

Proof. Let veC? be a non-vanishing vector such that Av = 0 and let f(x) :

= oxe L2(0,1)®C>. Clearly f¢Dom(D). Let ¢, be a sequence of smooth
functions whose support is compact in (0,1) and such that ¢,(x)—x in
L*(0,1). Then ¢,ve Dom(D) and ¢,v—f. Also

AD,(x)v = —Pl(x)Av = 0,
so that AD(¢,v) is a convergent sequence in L*(0, 1)®<[32 . We complete the

proof by noticing that if 4D was closed, then we would have
feDom(D). O

For the rest of this section and in Sections 3—5 we will assume without
further mention that A is non-singular. In Section 6, we will consider again
singular A4.

In order to show that 4D is in general non-self-adjoint, let us compute the
adjoint (AD)*. Let

P (é g)

Then the boundary conditions for D can be rewritten as

PO)=Pf(1)=0, (I-PYf(0)=U-Pf'(1)=0.
Lemma 2. The adjoint of AD is
(AD)*f = =A%/,

for fe W?? subject to the boundary conditions

Pf(0) = Pf(1) =0,
(I - P)f'(0)= (I — Py'(1) =0, (1)

where P = P is the rank one projection such that
Ran(P) = Ran(4A(I — P))*,
Ran(I — P) = Ran(4P)". )
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Proof. For feDom(D) and ge L*(0,1)® C?,

1
(ADf.g> = — /0 CAP (), g() > dx

1
= (APf g0 + /0 CAP(3).4(0) d.

We ought to find a complex 2 x 2 matrix B and impose boundary conditions
on g, for

1
(f.(ADYrg = — /0 (), BI" (%) dx
1
— (B¢ /0 (B, g/(0)) dx

1
=B -Pf.g"> }?+/0 (B*f'(x),d/(x)) dx

and
(ADf,g> = {f,(4D)*g).
This must be true in particular for all f and g with compact support in (0, 1)
so clearly B = A*.
Let the boundary conditions for (4D)* be given by (1) where P = P?is a

non-necessarily orthogonal projection on C%. We show (2). If f,g are
smooth functions supported in [0, 1), then

CAPf'(0),(I = P)g(0)> = <AQf(0), Pg'(0)),
where 1(0), /7(0), g(0) and ¢/(0) are arbitrary vectors in C*. If f/(0) = 0, the
right-hand side should vanish for all £(0), g’ (O)e<[22, so that
Ran(P) = Ran(40)".
If /(0) = 0, the left-hand side should vanish for all f/(0), g(O)e(Ez, so that
Ran(/ — P) = Ran(4P)™.

Since A4 is non-singular these two spaces are one dimensional. [
Corollary 3. AD is self-adjoint if, and only if, A is real and diagonal.

Proof. Using the notation of Lemma 2, 4D is self-adjoint if, and only if,

A=A4* and P=P.

The latter occurs if, and only if,

(o))

These conditions ensure 4 real and diagonal. [
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We now show that due to the boundary conditions we have chosen,
Num(4D) =C

for a large family of non-diagonal matrices 4. This prevent us from
employing the theory of sectorial sesquilinear forms in order to find the
spectrum.

Theorem 4. Let A be a non-singular matrix.

(a) If A is an upper triangular matrix (that is ¢ = 0), then
Num(4D) = {rz: r€[0, o0), ze Num(4)}.

(b) If A is not an upper triangular matrix (that is ¢#0), then
Num(4D) = C.

Proof. Since 0 is always an ecigenvalue of AD (cf. Section 3), then
0eNum(4D). For fe Dom(D),

1
CADf.f ) = —/0 CAf"(x),f(x) > dx

1
= AN +/0 CAf(x).f'(x) > dx
()0

Y s
() 0))
0 Y
Case (a): Call

& = {rz: re[0, c0),ze Num(A4)}.

0 ]
4 / CAL GOS0 dx
1 0

0 1
4 / CAPQ)S() d. 3)
1 0

Then @ is a convex set and
& ={rz: re[0, c0),ze Num(4)}
= {{Av,v): veC?}.

0
=0

1
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so that

1
(ADf.f> = /O CAF (L) dx.

This and the fact that @ is closed and convex, yield
Num(4D)<= .

In order to prove the reverse inclusion, let veC? be such that |v] = 1 and
let
z = {Av,v) e Num(A4).
For all =5, let

1—cos(ntx/2) if 0<x<2/t

\/4-10/1t
0 =4 i

1—cos(nt(x—1)/2)

\/4-10/1
Then ¢,(0) = (1) = ¥;(0) = y;(1) = 0,

if 2/t<x<1-2/1,

if 1-2/r<x<l.

7172 l2

1 1
/0 W, (x)fdx =1 and /O |1V,(x)|2dx:8[7 0

Let f, = vyy,e Dom(D). By construction ||f;]| = 1 and
1
ADfufy = [ Caf.0 ds

1

— (Ao / WP d
0

. ZTE2[2

81— 20

Thus by taking t— oo, from the fact that 0 Num(A4D) and since Num(AD)
is convex, we gather

Num(4D)=9.

Case (b): Now ¢#0. Let z be a fixed non-zero complex number. Our aim
is to find functions f, e Dom(D) parameterized by ¢ > 0, such that ||f;]| = 1
and { Af,,f. > is close to z for small &.

For 0<g<, let

Lsin(xm/e) if 0<x<¢/2,
P (x) = { 5=l —cos2n(x/e — 1))] if &/2<x<e,
0 if e<x<1.
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Then, straightforward computations show ¢,(0) = ¢,(1) = ¢L(1) =0,
¢,(0) =1,

/ﬂ¢<wd-—iﬁi nd /|¢(Wd ‘o
| ) dx =155 a X dx =23

For all ¢ >0 small enough, we define the required test function f; as

ﬂ@?(??)

where

11|27
o) = /1~ EPlIg P = |1~ a e

is independent of x. By construction f, e Dom(D) and
EIP = Nz, |I* + e(e)* = 1.
According to (3),

"0 0 1
«um¢>=<A<w§))<“@>>+A CAF S ()> dx
1 1 1
::m@)+<A<O>,<O>>[:uﬂ¢xmﬁdx

=zo(e) —|— |Z|

Since a(e) — 1 as ¢— 0, the above shows { ADf,, f. > =z as ¢—0, so that z is
an accumulation point of Num(4D). By moving ze C, any complex number
is an accumulation point of Num(A4D). Since Num(A4D) is convex, the only
possibility for Num(A4D) is to be the whole of C. [

3. The resolvent of AD

In this section we show that the resolvent of AD is compact for all non-
singular A. In general it is false that the product of a bounded operator and
an operator whose resolvent is compact has compact resolvent, however if
we know in addition that the spectrum of the product is not the whole of C,
then the assertion is true.

We first show that the resolvent of D is compact by making use of its self-
adjointness. Since the constant function

()
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is in Dom(D) and A4Df; vanishes,
0eSpec(A4D).

Proposition 5. If A is a diagonal matrix, then
Spec(AD) = {a_m*k*, a k> } .

The zero eigenvalue is always non-degenerate and all the remaining
eigenvalues are of multiplicity no greater than 2.

Proof. Let fye Dom(D) be as above. For alln=1,2, ..., let

S 1(%) = ﬁ(sm(g”x)> and o (x) = ﬁ( 0 ) @)

cos(nnx)
Then f; e Dom(D),
ADfyy 1 = (ay W n)fon 1, ADfry = (a-7n*)f3,

and {fi}2, is a complete orthonormal set in L(0, 1)®(C2. O

According to Corollary 3 and the above proposition, D = D*>0 and
Spec(D) = {m*k*} 2.

Since the eigenfunctions {f;};~, form a complete orthonormal set, the
resolvent of D is compact.
Let us now rule out the possibility Spec(4D) = C.

Lemma 6. For any non-singular AeC
Spec(AD)#C.

Proof. Fix matrix 4. Since
AD — ). = A(D — 247",

the complex number 1€ Spec(AD) if, and only in,
0eSpec(D — 247Y).

Let H(J) = D — JA~'. Then the family of operators H(.) with domain
Dom(D) independent of A is a holomorphic family of type (A) for all 1eC.
Since 0 is a non-degenerate isolated eigenvalue of H(0) =D and 47! is
bounded, there exist an open neighbourhood 0e U =C such that H(Z) has a
non-degenerate isolated eigenvalue, (denoted by u(4)) close to 0 for all L.e U
and u(4) is a complex valued holomorphic function in U (cf. [7, Theorem
X11.8]).

If there exists some A€ U satisfying u(4g)#0, then 0¢ Spec(H(4g)) so that
Ao ¢ Spec(4D). Hence, in order to show that Spec(4D)#C, it is enough to
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show that u#0. For this we find the first coefficients in the Rayleigh—
Schrédinger series expansion of u about 0. Let

w(l) = po + A+ wit 4 -, LeU.

Since w(0) =0, py = 0. Since ||fpl| =1 and H(0)fo = Dfo = 0, we compute
directly y; (cf. [6, Remark 2.2, p. 80]) by

= <A o fod

(e (L0

If A4 is such that a#0,

SO0

so that u; does not vanish and hence p#0.

Let 4 be such that a =0. Then g, =0 so we compute u,. Let f; be
the eigenfunctions of D as in (4) so that ||[f¢|| =1 for all k = 1,2, ... . Let
Jon_1 = Aoy =m*n* for alln = 1,2, ... so that

H(0)fk = Dfic = -
Then (cf. [6, Remark 2.2, p. 80])

0 A—] , A—] ,
Ly = 3o SATe ) A7 o)
k=1

Ak

We compute each term in the series. Since @ = 0 and A4 is invertible, then b
and ¢ do not vanish and

PEN —d/(be) 1/c
B 1/b 0 )

Hence

1 1
A o> = /O <A‘<?>,ﬁc(X)> dx = /0 <<léc>,ﬁ<(X)> dx,

so that

e e Vif1/e 0 -
(A fo,fzn>—ﬁ/0 0 ) L eosiumey | ) 4=
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and
CA o 1> —\// <<1/‘> (Si“(g”x)>>dx
:\/E/c / sin(znx) dx
0
0 if n=2m
B 2\/5/(cnn) if n=2m-1,
for m integer and n = 1,2, ... . On the other hand,
! 0
<A{ﬁm»:i£<A%ﬂux<l>>w;
so that
1 0 0
-1 _ -1
A fanJo? 7\/5/ <A (cos(nnx))’ <1>>dx
B cos(nnx)/c 0 -
[ ()0 e
and

CA™ fon 1,fo>f\/_/ < <SIH(MX)>,<O>>dx
1
_ d sin(nnx)/(bc)
. ﬁ/o << sin(n) /b )
1
=Vv2/0 sin(mnx) dx
V2/(b) /0 ()
0 if n=2m
- 2\/5/(1775”) fn=2m-1
for m integer and n = 1,2, ... . This yields

} o if kot dm =3,
A JoSier <A fk’ﬁ)>_{8/(bcn2n2) if k= 4m—3

form=1,2,... . Thus

o 8
2 Zbcn“(Zm )

m=1

so that u#£0 as we required. O

Theorem 7. For all z¢Spec(AD), the resolvent (AD — z)~" is compact.
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Proof. Since D is non-negative and it has compact resolvent,
AD+A=AD+1)
has a compact inverse. Let z¢ Spec(A4D), then
AD —z=AD+A—A—:z
= — (A +2)(AD + A) " ')(AD + A).
Hence
(AD+ Ay ' =(AD —2)"'(I — (A4 2)(AD + A7),
so that
(AD —2) ' =(AD — 2) "(A + 2)(AD + A) ' 4+ (AD + 4)~"
=((AD — 2) YA+ 2) + 1) (4D + 4)".
Thus (AD — z)"! is compact as needed. [

Theorem 7 shows that the spectrum of AD consists entirely of isolated
eigenvalues of finite multiplicity. Since the eigenvalue problem ADf = /f is
a constant coefficient system of second-order ordinary differential equa-
tions, due to the fact that we have a combination Dirichlet and Neumann
boundary condition at both ends of the interval, the multiplicity of each
eigenvalue is never greater than 2.

4. Asymptotics of the resolvent

We now investigate the asymptotic behaviour of the resolvent norm of
AD. The results we discuss in this section are connected with the stability of
the heat semigroup e P!, They are also relevant from the computational
point of view and they are closely related to both local and global stability of
the spectrum (cf. [1,4,9] and the reference therein). The present approach is
motivated by analogous reports on non-self-adjoint Schrédinger operators
in [2,4,5].

Let

(5 %)

Below and elsewhere we will denote by D := JD. According to Lemma 3,
D = D*. According to Lemma 5,

Spec(D) = {+7m*n*} 7,

each eigenvalue being of multiplicity 1. We will employ part (b) of the
following theorem in the proof of Theorem 20(b).
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Theorem 8. Assume that there exists a non-singular diagonal matrix B such
that B-'AB = (B~'AB)* > 0. Then
(a) AD is similar to a non-negative self-adjoint operator.

(b) AD is similar to a self-adjoint operator whose numerical range is the
whole real line.

Proof. Let C:= B 'AB so that C = C*>0. Since diagonal matrices
commute with the boundary conditions, AD is similar to CD. For the same
reason and since diagonal matrices also commute with J, AD is similar to
CD.
By hypothesis, the square root C'/> = (C'/?)* > 0. Then

cD = C'(C'2pciyc? = ¢\ Pk,
where

K =C'?DC'?,

Dom(K) = {f€L*0,1)®C?: C'*f e Dom(D)},
so that CD is similar to K. Since D = D*>0, then K = K*>0.
Analogously, CD is similar to
R=CPpC”,
where Dom(K) = Dom(K). Since D = D*, then K = K*. Furthermore, since
Num(D) = R
and
(Rf.fy = <DC'2f,C'Pf,

the numerical range of K the whole real line. [0

Let A be as in the hypothesis. The similarity to a self-adjoint operator
ensures the existence of a constant k4 >1 such that

ky

-1
(AD — 2) ||<m’

z¢ Spec(AD)
and

I(AD — 2 "< z¢ Spec(AD).

_ 4
dist(z, Ry
These identities show that although the numerical range of AD and AD are
in general the whole complex plane, the eigenvalues of these operators are
stable in the sense of [9].

If we assume the weaker condition C + C* >0, we show how to recover
part of the above estimate. We start with a preliminary lemma.
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Lemma 9. Let A be such that Num(4)c{Re(z)>0}. Then
Spec(AD) = {Re(z)=0} and there exists k > 0 independent of z, such that

1(AD — z)*‘||<%, Re(2) <0. 5)

Proof. Let r >0 and let z¢[0, c0). Then

AD —z=AD — z4™")
=A[D—rz)+z(r— 4"
=A[l+ @ — A "zD —rz) "' |(D - r2).

Therefore z¢ Spec(4D), whenever
I(r — A "z(D — rz) 7' < 1. (6)

We show that there is always r > 0 independent of z, such that this holds for
all Re(z)<0.
Since D=0 and 0eSpec(4D),

_ 1
D —r2)" 'l =
izl

Thus
- = A"Dz(D = r2) <L —r A7

The hypothesis we imposed on A is equivalent to saying
A+ A*>0,

then
AT A Y =474+ A > 0.

For all ve C?,

I —r Al = <A —r ' A+ A + 24 Y A o)
=P —r AT+ @Y AT A e, ).

Hence there exists a constant ky > 0 independent of r (and z), such that
W —r A7 <1 —r "k

when r is large enough. For such an r, identity (4) holds for any Re(z)<0.
This shows that Spec(4D) must be enclosed in the right-hand plane.
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Furthermore,
I(AD — 2) "< 1A ID = z47H 7|
< NANND = r2) NN + 2D = r2) ' — A7)

1
< ”Zn (D= r2) Y — A

izl

47" & L
< St —rtat
el =

L3
E

so (5) is also proven. [

Below and elsewhere we denote by Q the set of non-singular diagonal
matrices and

S(a, p) = {zeC: a<arg(z)<f}, a<p.

Theorem 10. If there exists BeQ such that
Num(B '4B)cS(x, ), p—o<m,

then Spec(AD)<S(a, f) and for any small enough ¢ >0 there exists k, >0
independent of z, such that

[|(AD — z)~ ||<|| z¢S(o— ¢, f+¢).

Proof. Let C := B 'A4B, so that
Num(C) <= S(a, f).

Since B commutes with the boundary conditions, AD is similar to CD and so
it is enough to show the theorem for CD. Now, for all —(x+
n/2)<3<n/2 —f

Num(e™ C) = {Re(z) > 0},

so we just have to apply Lemma 9 to ¢C. O

The constant k, of this theorem is in general strictly greater than I,
therefore this is weaker than the similar condition for m-sectorial operators
in [6, p. 279].

If A is triangular, the hypothesis of the above theorem does not
necessarily hold. For instance if

A= , a>0,
1 a
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then

Num(4) ={a+z: |Z|<%}

and so for small a the numerical range contains the origin. Nonetheless by
using a similarity transformation and an approximation argument, we can
show positivity of the spectrum whenever both of the eigenvalues of A are
positive (a >0 in our example). The conclusion about the spectrum of the
following result will be improved in Theorem 19.

Corollary 11. Let A be either upper or lower triangular. If a=d > 0, then
Spec(AD)<]0, o)

and for all ¢ > 0 there exists k, > 0 independent of z, such that

— kz;
IAD — 27 I<

1
for all z¢ S(—¢,¢).

Proof. If A4 is upper triangular the proof is similar so let us assume that

(<)
A= .
¢ d
A._IOAIO _fa O
()= 0 r 0 ') \re d)

Then AD is similar to A(r)D for all »r#0. Put

Let

« 2a rc
C(r) = A(r)+ A(n)* = ( e Zd)'

Then C(r) = C(r)*. The eigenvalues of C(r) are

a+d+n/(a—dy* + P,

thus for small r > 0, C(r) > 0. The numerical range of A(r) is an ellipse with
focus at a, d and principal axis in the vertical direction of the order of r. By
taking r— 0, Theorem 10 completes the proof. [

If A is as in the hypothesis of Corollary 11, there does not exist Be Q such
that B-'AB = (B 'AB)* or B~'(4J)B = (B~'(4J)B)* so Theorem 8§ is not
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applicable. We show that at least in one case 4D fails to be similar to self-
adjoint.

Theorem 12. Let

(0%)
A= , a>0.
1 a

Let ¢>0 and z(r) = dam®r? +ie. Then there exists a constant k, >0
independent of r, such that

W(AD — z(r)) Y| > k', r=1,2,... .

Proof. Fix ¢>0 and let z(r) := 4an’r* — ie. Without loss of generality, we
can assume r = 3,4, ... . Throughout the proof the constants /; are assumed
to be positive, possibly depending upon & but independent of r. In order to
show the desired conclusion, it is enough to find f,e Dom(D) and /y, such
that

l4Df — Z(V)fr||<10r71/2

7
7] @
for all large enough r.
Let
f= <¢> e Dom(D).
Y
Then

0 "
ADf — 2(r)f = — (‘1’ a) (‘fﬂ) —z(r)<(f>

([ —ad" =009
—¢" —ay" —z(r)y |
Hence

1P = I + P
and
14D — 2()f 1P = llag” + 2l + llay” + =(r)y + ¢"|I.
We now define the appropriate f, € Dom(D) satisfying (7). Let

7,(x) = cos(2nrx).
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2 _ 1
Then ||y, | =1 Let

| —iecosQmrx)/(4n*r?) if xe(1/r,1—1/r),
¢D=1 it x¢(1/20,1 - 1/(2r)
be such that ¢, is smooth and

(@) |p,(x)|<e/(dn*r?) for all xe[0, 1],
(b) |¢p.(x) <l /r for all x¢(1/r,1—1/r),
(© ) (x)|<h for all x¢(1/r,1—1/r).

Then

1
bl = /0 16, (P dx<e® /(16x* ) <l

and
1-1/r 2 2(2mrx)
22/ %d > L4
P> [ e vl
Hence
Kz
fr= e Dom(D)
"V
and

SR =11, P + P <1 (®)
for all large enough r. If 1/r<x<1—1/r,
ag” (x) + z(rp(x) = ap(x)" + danr*dp(x) — iep(x)

= [aie cos” 2nrx) + dan’ric cos(2mrx)
+ &2 cos(2nrx)]/(4n°r?)

=& cos(2mrx)/(4nr?).

Then, (a) and (c) yield
1
llag” + 2l = /0 lap” (x) + 2(Np(x)[* dx

1-1/r
</ 15/r4dx+/ ls + I /r* dx
1

r x¢[1/r,1—-1/r]
<l '+ lsr 9)
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Also,

@y"(x) + 2(r)y(x) + ¢ (x) = @y (x) + dan’rPp(x) — iey(x) + ¢"(x)
= a cos"(2nrx) + 4an*r* cos(2mrx)
— igcos(2mrx) + ¢”(x)
= ¢"(x) — ie cos(2mrx).

Then for 1/r<x<1—1/r,
ay”(x) + z(r)p(x) + ¢"(x) = ie cos(Qnrx) — ic cos(2nrx) = 0

and thus (c) yields

1
llay” + 2(ryy + ¢"II* = /0 " (x) + 2()(x) + " (x)[ dx

= / lie cos(2mrx) — ¢ (x)|* dx
x¢[1/r,1-1/r]

< / Is dx
x¢[1/r,1-1/r]

<l (10)

In order to complete the proof for z(r) := 4anr® — ie, notice that (8)—(10),
show (7). On the other hand, if z(r) := 4anr? + ic it is enough to substitute ¢,
by —¢, and repeat the above computations. [

This result is still valid for

A:<g ;).

Indeed, it is enough to put ¢,(x) == sin(2nrx),

) tie sinQnrx)/(4n*r?) if xe(1/r,1 —1/r),
H=q if x¢(1/2r),1 - 1/2r)

and carry out similar calculations. Since the resolvent norm of self-adjoint
operators remains bounded in horizontal lines, the above 4D cannot be
similar to any self-adjoint operator.

Let Q, be the set of all non-degenerate real diagonal matrices. If 4 does
not satisfy the hypothesis of Theorem 10 (for instance the numerical range
of A is an ellipse centered at the origin), but A4 is “‘close’ in some sense to Q,,
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an alternative to Theorem 10 can be established. We will employ this result
in the proof of Theorem 19.
Theorem 13. Let there exist BeQ, such that

[|[AB — I||< 1.
Let o = arcsin(||AB — I||) with 0<w<mn/2. Then
Spec(AD) < S(—w, w)u S(—7 — w, w — 1)

and for any small enough ¢ > 0 there exist k, > 0 independent of z, such that

.
14D — 27 I<
|2

forall z¢ S(—w — e, +)US(—T— W — e, — T+ &).
Proof. If =0, A4€Q, so the conclusion is a consequence of Corollary 3.
Let >0, let [ = ||[AB — I|| and put C = B~'€Q,. Then CD = (CD)* and

according to the hypothesis 0</<1.
Let zeC be such that z¢ S(—w, w) U S(—7 — w,w — m). Then

(AD—-z)=CD+(A—-C)D -z
=[I 4+ (4B — I)CD(CD — z)"'[(CD — 2).
Since CD is self-adjoint and by definition w = arcsin(/),

(4B — I)CD(CD — z)~Y|< I|CD(CD — 2)7 Y|

X
<[ sup ‘
xeR!'X — Z
< sup —<1, (11)
xek [1 =2
so that
[I +(AB—T1)CD(CD —z) 1]
1s invertible. Hence
z¢Spec(A4D)
and
(AD —2)"' = (CD — 2)'[I + (4B — )CD(CD — z)~'T"! (12)

for all w<|arg(z)|<=. This encloses Spec(AD).
In order to show the second part, let

z¢S(—w — g, +e)uS(—t—w—¢, 00—+ ¢),
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for small ¢ > 0. Then there exist a constant /;(g) > 0 independent of z, such
that
_ li(e)
I(CD = i<

Also, there exist a constant 0 </(g) <1 independent of z, such that

sup <h(e).

veR |1 =3
These two estimates, (11) and (12) yield
hie) Y po ble)" _ ke

I(AD —2) 1I< —
2] Bl

This shows that if 4,eC>? is a sequence of non-singular matrices and
there exists BeQ, such that

l4n — B||—0
as n— oo, then
Spec(4,D)—R.

Corollary 14. Let A be either upper or lower triangular. If a,d € R and ad <0,
then

Spec(AD) =R

and for all ¢ > 0 there exists k, > 0, such that

T
I(AD —z) ll<=

||

for all z¢ S(—¢,e)US(—7m — ¢, — m).

Proof. It is similar to the proof of Corollary 11. Assume without loss of
generality that b = 0 and let

A_IOAIO_aO
(r)ior 0 ') \re d)

Then AD is similar to A(r)D for all r > 0. Put

a' 0
C= 0 4 eQ,,

then

AN C - 1I|| = H (rc(;a g) H =r|c/al.
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Let w, := arcsin(r|c/al). According to Theorem 13, for all 0<r<|a/c|
Spec(AD) = Spec(A(r)D)
c S(—w, w)US(—n — w,, w, — 7).

By taking r small enough, Theorem 13 yields the desired estimate for the
resolvent norm. By taking r—0, a fortiori Spec(4D)cR. O

5. The Hamiltonian ode system

In this section we find an entire function whose zeros coincide with
Spec(AD). This is made by computing the transcendental function of the
2 x 2 system of ordinary differential equations associated to AD via
standard ODE arguments.

Let the 2 x 2 constant coefficients second-order eigenvalue problem

—Af" = 12f, (13)
Pf(0) + 0f'(0) = 0,
PA(1)+ Of'(1) = 0. (14)

We will say that the complex number 4 is an eigenvalue of system (13)—(14),
if there exist a non-vanishing fe C*(0, 1)®C2 satisfying (13) and the

boundary conditions (14). By regularity, A% is an eigenvalue of 4D if, and
only if, 4 is an eigenvalue of (13)—(14). Our aim is to find a holomorphic
function, denoted by EV(x) below, whose zeros coincide with the
eigenvalues of (13)—(14).

We proceed in the classical manner. Let the decomposition in Jordan
canonical form of 4 be

A=:VCV,

where the Jordan matrix C is either

C= ar 0 or C= a0
0 a- 1 ay
V= <Ul U2>.
U3 U4

Then (13)—(14) is equivalent to the 2 x 2 system
~Cq" = Vg, (15)

and
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PVg(0) + QVy'(0) =0,

PVg(1)+ QVg'(1) = 0. (16)

In order to solve (15)—(16), we reduce it to a first order 4 x 4 system as
follows. For all 1eC, let

0 1
B/l — , €C4X4
—2°Cc7t 0

and let

0 0
p— [ eC4,
0 0 U3 U4

By regarding

one sees that (15)—(16) is equivalent to

@ = B,d, (17)

Yd(0) = Yd(1) = 0. (13)

In order to solve (17) and (18) we must find a fundamental system of
solutions. Let ey,e),e3,¢4 be the standard orthonormal basis of the

Euclidean space c' A straightforward computations show that
exp(B,x)e;, x€[0,1], j=1,2,3,4

is indeed a linearly independent fundamental system for (17) and (18).
Hence, A is an eigenvalue of this system if, and only if, there exist
k1, ko, ks, k4, such that

4
B(x) =Y kjexp(B;x)e; (19)
j=1

is non-vanishing and satisfies the boundary conditions.

We now proceed to compute EV(x). The exponential of B,x is given by

cos(AC1/2x) AL CY2sin(AC12x)

exp(B;x) = .
—2C~2sin(AC~1/2x) cos(AC~1/2x)

for x€[0, 1]. In Theorems 15 and 16, we split our computation into two cases
depending upon the Jordan matrix C.
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Theorem 15. When

0
0 a_

A is an eigenvalue of system (17), (18) if, and only if, EV(4) = 0 for

EV(x) = <2f[1 u,-> 1 — cos <\/La_+> cos <\/LCT>
- [l sl () ()

Proof. Notice that EV'(0) = 0. Assume A#0. According to the hypothesis,

12 —12
Cc'? = a+/ 0 and C-12— [ % / 0 i
0 a'/? 0 a2

Then

Ax
cos 0 sin 0
a A \/;
a_
0 cos —4 0 \/_sin A
exp(B,x) = \/Z + a
——%_sin 0 cos —4X 0
0 — X gjn 4 0 cos —4~
\/ai a_ a_—

Let &(x) be a particular solution given as in (19), where the complex
parameters k; are to be determined. Then

kivy + k2U2>

Yo(0) =
( ) <k3l)3 +k4l)4

and

kv cos ;\/7 + kyvs cos L\/ﬁ
a, a_

+k301£sin 4 +k402£sin¢
Y1) = Ve RV

— ke v3——sin —4— — kovy —2—sin —4—

Ve \/_ N
+k3v3 cos —= \/w + kavg cos —— \/Z
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The solution ¢ satisfies the boundary conditions (18) if, and only if,

kivy + kava = 0,
ksvs + kqvg =0,

kiv) cos 4=+ krvp cos 4=+ k \/> + k4 \/Tsm =0,
e e T v

—y A sm\/_—kz Uil i —4 =0.

+ k303 cOS —2= + k44 COS —i=
e N

The determinant of this 4 x 4 system of linear equations in k; is precisely
EV(). O

Theorem 16. When

0
1 ay

A is an eigenvalue of system (17), (18) if, and only if, EV (1) = 0 for
v3v2 A X

EV(x)= (22 )x> = (det V + 22 sin® ——.

(x) (401 ) ( etV + 2, sin T

Proof. Notice that EV(0) = 0. Assume A#0. One can verify directly that

A2 0 ~12 0
Cc\r 4+ 4 c 72— @
= J an = 1 ~12

2\/7 B (247?) %+

Then the four 2 x 2 blocks of matrix exp(B;x) are

cos \;/Y;T 0

sin

cos(AC™1?x) = P

\/ZCOS\/Z

MC
@a?)

A71CY2 sin(AC~1/2x) equal to
al/z
——sin

a4

1/2

Ax +

\/751n\/7 20 COS ﬁ] sm\/z
and —1C~'/2sin(1C~'/2x) equal to

_aﬁT sin X 0

N

22x A _Ax

sin & cos—2| A gin—4
[(2 3/2) \/—' 202 \/;: 1/7 \/;:
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Let @(x) be a particular solution given as in (19), where the complex
parameters k; are to be determined. Then

k k
'I’@(O)—( 101 + 202)

k3vs + kava
and
Yo(l
Pa(l) — (1, ,
Yo(1),
where
02) A A
Yd(1), =k | vy cos + kyvy cos ——
1 1( 1 Tr % 3/2 ~> 202 e
+ k Ul'a+sin ‘ + Uz : )v
3 ;L 1/a+ ,/ + 2a+ 1/a+
v, /a
+ k4gsin i
A N as
and
LY 1;41 y! mz J
Yo(l), =k
1< i )
4)L . )L U4/1 . )v
\/7 \/7 U3COS\/7Jr Iy 3/2 \/_

A

+ k4v4 cOS ——.

v/ a+

The solution @ satisfies the boundary conditions (18) if, and only if,
ko) + kovy =0,
k3vs + kqvgy = 0,
lIlqj(l)l = 09
Yo(l), = 0.

A rather long but straightforward computation shows that the determinant
of this 4 x 4 system of linear equations in k; is EV(4). O

We show that AD can have non-real eigenvalues even when the spectrum
of A is positive.



212 L.S. Boulton | J. Differential Equations 186 (2002) 186-229

Example 1. Put
Y 2/5+3i/10  3/5—3i/10
“\3/20 4+ 3i/10  17/20 —3i/10 )

Then the eigenvalues of 4 are a;, =1, a_ = %, and the eigenvectors

1 2i

<) ()
Thus

EV(x) = 4i(1 — cos(x) cos(2x)) = 4i(1 — 2 cos*(x) + cos(x))
so that EV(1)=0 if, and only if,

cos(A)) =1 or cos(d) = —1+i/2.
Hence

Spec(AD) = {4k°1%, (s + 2kn)*}y o7,
where A1 = arccos(—3+1i/2)~2.0240.53i.

6. Real matrices

In this section we explore some connections between the entries of
matrix 4 and the global behaviour of Spec(AD) when AeR>*%
Alongside we discuss conditions to ensure similarity to a self-adjoint
operator. For completeness of the picture, below and elsewhere we allow
det(4) = 0.

Our first task is to reduce to two parameters the four that are initially
given as entries of 4. This leads us to five different types of matrices to deal
with. For a,deR, let

g a 0 e a 1 4y a 0
0 — d ’ 1 — 1 d ] 2 = 1 d )
a 1 a -1
Ay = and Ay = .
0 d 1 d

We show that the 4;D generate any AD,Ae R**? via similarity transforma-
tions.

(=]

Lemma 17. IfAeRZXZ, then AD is similar to aA;D for some o,a,deR and
j=0,...,4
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Proof. Let
a b
A= L.
c d
If bc = 0, the proof is trivial. Let

e [V O (T 0N _(a b
(V)I_OV Orfl_rch.

Then, AD is similar to A(r)D for all r#0. If b/c > 0,

A(V/b/o) = (;E {?) = 0d,

for o = \/be, a = a/\/be and d = d/\/be. If b/c<0,

a Fv—bc
A/ —b = = 4aAd
(v =b/c) (J_r\/—T)c P ) +ady

for o« = \/—bc, a = +d/\/—bc and d = +d/\/—bc. O

The case j = 0 was already described in Corollary 3. Indeed if ad #0 then
AoD is similar to a self-adjoint operator and

Spec(4¢D) = {an*n°, dnznz}fz‘o cR.

6.1. Matrix A,

Since a and d are real, A) = A}. Let b, be the eigenvalues of 4;. Then

a+d+\/(a—d?+4
by \/( )

2 >

so that

(1) by=b_>01if, and only if, ad > 1 and a,d > 0,
(1) b_<b, <0 if, and only if, ad > 1 and a,d <0,
(ii1) b, and b_ have opposite signs if, and only if, ad < 1.

Theorem 18. The following statements are true:

(a) If ad = 1 then Spec(4,D) = C.

(b) Ifad > 1 and a,d > 0 then A, D is similar to a non-negative operator so
that Spec(A4,D)<]0, o).

(c) If ad > 1 and a,d<0 then —A|D is similar to a non-negative self-
adjoint operator so that Spec(A;D)<(—o0,0].

(d) If ad <1 then Spec(A;D)<R.
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Proof. If ad = 1, matrix 4, is singular so according to Lemma 1, 4;D
is not a closed operator. This shows (a). Statement (b) is a consequence
of (i) and Theorem 8, and statement (c) is a consequence of (ii) and
Theorem 8.

Let us show (d). For eeRR, let

B(e) .= Ay + ie.
Then

Num(B(¢)) < {Im(z) >0}, &>0
and

Num(B(¢)) < {Im(z) <0}, &<O0.
According to Theorem 10,

Spec(B(e)D) < {Im(z)=>0}, &>0
and

Spec(B(e)D) < {Im(z) <0}, &<0.
Since B(g)D is a holomorphic family of type (A) in a neighbourhood of ¢ = 0
and B(0) = A, a fortiori

Spec(41D)<=R. O

Although A, = 4%, it is unclear to us whether 4;D is similar to self-
adjoint in the latter case.

6.2. Matrices A» and As

Since the results for matrix A3 are analogous and shown in a similar
manner as for 4,, we will only consider the latter.

Theorem 19. The following statements are true:

(a) If ad = 0 then Spec(A,D) = C.
(b) If ad #0 then Spec(A2D) = {an’n?,dn’n*} " .
(c) If ad > 0, for all ¢ > 0 there exists k; > 0 independent of z, such that

ke,
I(42D — Z)flllélz'r z¢ £5(—¢,8),
where the symbol + is chosen according to the symbol of a.
(d) If ad <0, then for all ¢ >0 there exists k. > 0 independent of z, such

that

Lk

(42D — 2) "<
E

for all z¢ S(—¢,e)US(—m — ¢, —7 + ¢).
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€) Ifa=d+#0,lete>0andz, = 4an®r* +ie. Then there exists a constant
k. > 0 independent of r, such that

(42D — z,) M= kelz ]/
foralr=1,2,....

Proof. If ad = 0, matrix A, is singular according to Lemma 1, 4, D is not a
closed operator. This shows (a).
Let us show (b). If a#d, matrix A, is diagonalizable and

_[a=d 0\fa 0 (a—d)! 0
U )0 d\i—@-a @-ayt)

Then, according to Theorem 15,

EV(x) = ko sin (\/%> sin (%) ,

where ko is constant in x. If a =d, A, is already in Jordan form and
according to Theorem 16,

2
EV(x) = —sin <\/x3> .

Hence in both cases
Spec(4,D) = {an’n?, dn’n*} 7.

Statements (c) is a consequence of Corollary 11 and statement (d) is a
consequence of Corollary 14. For statement (e) use Theorem 12 and the fact
that |z,| is of order 2. O

6.3. Matrix Ay

Formally speaking, so far the spectrum of 4;D forj =0, ..., 3 reproduces
the spectrum of 4; in the following sense: if 4; is non-degenerated and both
eigenvalues of A4; are positive (negative) then Spec(4;D) is non-negative
(non-positive), and if the eigenvalues are of opposite sign then 4;D possess
both positive and negative spectrum. There is no reason to expect the same
for j = 4, in fact this case is less simpler due to the way the entries of Ay
interact with the boundary conditions.
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The eigenvalues of A4 are given by

a+d+y\/(a—d)? -4
bi = .

2

(20)
Then

(1) b =b_ if, and only if, |a—d|=2. In this case A4 is not a
diagonalizable matrix.
(i1) b4 are real and have opposite signs if, and only if, ad < — 1.
(i) by >b_>01if, and only if, ad > —1, |a — d|>2 and a+ d > 0.
(iv) b_<b, <0 1if, and only if, ad > —1, |a — d| > 2 and a + d <0.
(V) b, are non-real with b, = b_ if, and only if, |a — d| <2.
(vi) Ay is singular if, and only if, ad = —1.

Motivated by this and for simplicity, we can divide the plane into 6 disjoint
regions Ry,

R, = {(a,d)eR*:ja—d| =2, a# +1},

Ry = {(a,d)eR? 1 ad< — 1},

Ry = {(a,d)eR*:ad>—1, l[a—d|>2, a+d>0},
Ry = {(a,d)eR? :ad > -1, la—d|>2, a+d<0},
Rs = {(a,d)eR? : |a — d| <2},

Rs = {(a,d)eR® : ad = —1}.

Clearly R?>= (JRk. Below we establish the spectral results for A4D
separately in each region Ry.
Two cases are similar to what we have found so far.

Theorem 20. The following statements are true:

(a) If (a,d)e€ R, then Spec(A4D) = C.
(b) If (a,d)e Ry, then Spec(A4D) =R and A4D is similar to a self-adjoint
operator whose numerical range is the whole real line.

Proof. If ad = —1, matrix A4 is singular so according to Lemma 1, A4D is
not a closed operator. This shows (a).
Let us show (b). Let J be as in Section 4. Then

AsD = (A4J)(JID) = (T _1d>15 — AD.
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Fig. 1. Different regions of the plane in which Spec(44D) exhibits a similar behaviour. The grey
line is {a* — ad — 1 = 0} N\ Rs. See Theorems 20-26.

Here A = A* and the eigenvalues of 4 are

. a—d+y\[(a+d)’+4
bi: .

2

Since ad < — 1, b are either both positive or both negative. If they are both

positive, 4 > 0 so that Theorem 8(b) provides the desired conclusion. If they
are both negative apply the above argument to —A44D (Fig. 1). O

In order to find Spec(A44D) in Ry for k=1,3,4,5, we ought to rely on
properties of the transcendental function EV(x). Nonetheless, Theorem 21
provides some indication of what we should expect, it bases on the
observation that if both a and d are positive,

" 2a 0
ditdi=1 54)7"

so by virtue of Lemma 9, Spec(A44D) < {Re(z) =>0}.
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Theorem 21. If both a and d are positive, then

Spec(A4D) = S(—w, w),

where sinw = 1/v/ad + 1 for 0<w<n/2.

Proof. The numerical range of 44 is an ellipse whose foci are b1 and largest
diameter is of length |a — d|. It is easy to see that S(—w, w) is the minimal
sector that contains such an ellipse. Use Theorem 10 to complete the
proof. O

Since

O [ [P S ()

and because of diagonal matrices commute with the boundary conditions,
Spec(A4D) = — S(—w, w) where both a and d are negative. This also shows
that the spectral results for A4D are symmetric with respect to the axis
a+ d = 0. Below we will employ this symmetry often without mention.

In order to describe Spec(A4D) in Rs, we will make use of the following
technical result.

Lemma 22. Let aeC be such that Re(a?)>0, let —1<c<1 and let
F(x) =1 — cos(ax) cos(éx) — ¢ sin(ox) sin(éx), xeC.

Then F(x) has an infinite number of zeros in the complex plane and

(@) if ¢ = —1, then F(x) = 0 if, and only if, sin(Re(a)x) = 0,

(b) if ¢ =1, then F(x) = 0 if, and only if, sinh(Im(x)x) = 0,

(o) if —1<c<], then F(x) only has a finite number of zeros lying on the
real and imaginary axis.

Proof. Let o =: p + iu so that p>u >0 and let x =: x| + ix; for x|, x; eR.
In order to show (a), assume ¢ = —1. Then

IF(x)P? =1 — cos[a(x] + ix2)] cos[a(x) + ix2)]
+ sinfo(x; + ixa)Jsin[@(x] + ix)])*

=4[cos*(px1) — cosh?(px2)]%.
Hence
F(x)=0

if, and only if, cosh(px;) = 1 and cos(px;) = 1. This gives (a).
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Similarly for (b), assume ¢ = 1. Then
IF(x)P* =1 — cos[a(x] + ixz)] cos[a(x] + ix2)]
— sin[a(x) + ixa)]sin[@(x; + ix2)])?
=4[cosh’(ux;) — cos>(ux2)]*.
Hence
F(x)=0

if, and only if, cosh(ux;) = 1 and cos(ux;) = 1.
Let us show assertion (c). If xeR, then

F(x) =1 — cos(ax) cos(ax) — ¢ sin(ex) sin(ox)
=1 — | cos(ox)]* — ¢ sin(ox)[?
=1 — cos?(px) — ¢sin*(px) — (1 + ¢) sinh?(ux)
and

F(ix) =1 — cos(—idx) cos(idx) — ¢ sin(—idx) sin(idx)

=1 — cos(idx) cos(icx) + ¢ sin(dx) sin(icx)
=1 — | cos(iax)|> — ¢| sin(igx)[*
=1 — cos?(ux) + ¢sin’(ux) — (1 — ¢) sinh?(px).

Hence, if —1<c<],

lim F(x)=—oc and lim F(ix) = —o0.
xX—+ w0 xX—>+ o
Since F(x) is a smooth function, (c) follows.
Finally, let us show that F(x) has a infinite number of zeros. Suppose that

F only has a finite number of zeros 0, zi, ..., z, where the z; repeats as many
times as its order. Then

_ F(x)
G(x) - X2 }1:1()6 — Zj)

is an entire function with no zeros. By virtue of the Weierstrass factorization
theorem, there is an entire function g(x) such that G(x) = ¢?®). Then

F(x) = lxz ﬁ(x - Zj)] eI =1 p(x)ed™.
=1

Since it is a combination of sines and cosines, the order (cf. [3, p. 285]) in the
sense of entire functions of F(x) is A = 1. Thus by virtue of Hadamard’s
factorization theorem, g(x) is a polynomial of degree 1 in x and so

F(x) = p(x)e™™!

for suitable k, /e C. Since p(x) is a polynomial, this is clearly a contradiction,
so F(x) must have an infinite number of zeros. [
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Theorem 23. Let (a,d)e Rs.
@) If (a,d)e{a®> —ad — 1 =0} n{—2<a— d<0}, then
Spec(A4D) = {—k*n* /Im(b; ")} ez = (— 00, 0].

(b) If (a,d)e{a*> —ad — 1 =0}n{0<a — d<2}, then
Spec(A4D) = {k*1* /Re(b;"*)} o7 <[0, ).

(©) If (a,d)¢ {a*> —ad — 1 =0}, then Spec(A4D) is infinite but it only
intersects the real line in a finite number of points.

Proof. By virtue of (v), 44 is diagonalizable. We assume a + d >0, so that
{b+} = {Re(2)>0}.

Let
y=1\/4—(a—d)’ and y, =a—d+iy.

Then

e -\ (b 0O\( 3w &
=1 2o s Lo )
- T4y 2iy
Let § :=argy, and o == 1/4/b; so that @ = 1/4/b_. Then

E;;EX) 2V+[ — cos(ax) cos(ax)] — (M\/Z \/> > sin(owx) sin(&x)

2;*[1 — cos(ax) cos(dx)] — (_2 + >sm(ocx) sin(dx)
+ v

=2¢?"[1 — cos(ax) cos(@x)] — (ei43& + §> sin(oex) sin(dx)
=2¢?%[1 — cos(ox) cos(@x) — ¢ sin(owx) sin(dx)]

=2 F(x), 21
where F(x) and
(e Jo) + (ae™ 2 /)

2
ei(29—2 arg(a)) + e—i(29—2 arg(a))

- 2
=cos(2% — 2 arg(x)) = cos(29 + arg b, )

are as in Lemma 22.
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Let us show (a). The hypothesis @ — d <0 ensures —1 <c¢< 1. Furthermore
¢ = 11if, and only if,
ImG) __Im(b)
Re(2)  Re(b.)

The latter occurs if, and only if,
ya—d) y

(a—d? -2 a+d

By simplifying this identity, we gather that ¢ = 1 for a> — ad — 1 = 0 which
is precisely our assumption. Then, Lemma 22(b) and (21) complete the proof
of (a).

For (b), notice that since @ —d >0, the constant ¢ is now such that
—1<c<1 and ¢ = —1 if, and only if,

Im(2) _ Im(b)
Re()  Re(b,)

Therefore a similar argument as for (a) and Lemma 22(a) show this case. In
order to prove (c) use the fact that —1<c¢<1 in

Rs\{a> —ad — 1 =0},

Lemma 22(c) and (21). O

Theorem 24. In the regions R; and R4, Spec(A4D) is infinite, and
Spec(A4D) = {(r + ivo)* : reR} +1[0, 0), (a,d)eRs,

Spec(A4D) < {—(r + iyy)* : reR} + (—0,0], (a,d)eRy,
where in both cases the constant yy > 0 only depends upon (a,d).

Proof. We show the result only for R;. According to (iii), in this case
0<b_<b, and A, is diagonalizable. By expressing the trigonometric
functions in exponential form,

EV(x) =k — ky cos(oux)cos(Bx) — ky sin(ox) sin(fx)
=k + #{e«w)x + e—i(a+/x)x]

ky + ki i(a—f)x —i(a—p)x
_ T[e +e ]

>

where k|, k, e R and 0 < f <« are constants we do not need to specify here. A
similar argument involving Hadamard’s theorem as in the proof of Lemma
22 shows that Spec(A44D) is infinite.



222 L.S. Boulton | J. Differential Equations 186 (2002) 186-229

By putting x = r + iy where r,yeR,y =a+f>0and § = o — >0,

K, — K.
EV(r+iy) =k + 24 2

_kath
4

[e 7 e evyefivr]

[676y€i5’, + e(iyefid‘r]'

Since y > § > 0, if we chose y> 0, the term e’ dominates the expression and
so |[EV(r + iy)| = ¢ > 0 for a suitable ¢ independent of r. If we chose y <0, the
term e 7 is the one that dominates and again |EV(r + iy)| is large. This
shows that all the zeros of EV(x) must be contained in a band
{=ro<Re(x)<yo}. O

The above theorem does not rule out the possibility of negative
eigenvalues when ad <0. We will see in the numerical examples, evidence
of points in this region such that 44D has indeed negative spectrum.

With regard to finding the minimal yy. We will see in Section 7 an
argument involving Chebyshev polynomial that allows us to compute in
closed form Spec(A44D) for a certain dense subset of R;. We will also
illustrate this technique in various examples where the parabolic region is
found explicitly.

If (a,d)e Ry, matrix A4 is not diagonalizable and so EV(x) is given by
Theorem 16 instead of Theorem 15. Nevertheless, similar techniques to the
ones we have seen so far apply to this case.

Lemma 25. Let 0#ceR and let
F(x) = x> + ¢sin(x)?, xeC.

Then F(x) has an infinite number of zeros in the complex plane but only a finite
number of them lie on R and on iR.

Proof. See the proofs of Lemma 22 and Theorem 24. O

Theorem 26. Let (a,d)eR. If (a,d) = (+1, F3), then Spec(44D) = {0}.
Otherwise Spec(A4D) is infinite but it only intersects the real line in a finite
number of points.

Proof. If a —d = 2,

P R I U AU AV R VAR
U1 b, —1) Lo 1)L b ) oo

and if a —d = -2,

P e R N A R AV A VAN
A S B SUES I B WV R 1 b, )\0 1)
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Then

2
x2 1\? X
Vi) = — (14— sin| —— —d=+2.
E (x) 41)1 ( 2b+> Sln(\/l?) ’ . d

The first statement follows from the fact that if (a,d) = (£3, F3), then b, =
1% and so the trigonometric term disappear. The second follows from

Lemma 25. O

Notice that the curve a* — ad — 1 = 0 meets the region R; at (+1, F3).
These are the only points where Spec(A4D) is finite. Since all self-adjoint
operators with compact resolvent must have an infinite number of
eigenvalues, 44D is not similar to self-adjoint. All this suggests that for
(a,d) in a small neighbourhood of these points, Spec(44D) must be highly
unstable. In the next section we explore closely this idea.

7. Some numerical results

As mentioned previously, this section is devoted to investigating some
aspects of the global spectral evolution of 4D when we move the entries of
matrix A. To be more precise, we consider 4 = A4 (see Section 6) and
compute Spec(A44D) as (a,d) moves along various lines inside
RyUR;URs<=R?*. We also introduce a technique that allows us to find
explicitly Spec(A4D) when (a,d) are in a certain dense subset of R; by
computing the roots of certain polynomial G(w).

Our first task is to decompose Rj3 into a disjoint union of curves in order
to find the dense subset. For o > 1, let

a(er + 1)+ \/(oc“ — 1)?a? + 402(c2 + 1)°
202

ds(a) =

and let
Ai(a) = {(a,d+(a)) : a> F1}.
Then

Rinfa—d<0} =|JA (@) and Rsn{a—d>0}=|JA_(a)

o>1 o>1

The motivation for this decomposition is found by observing that for

Ay — a —1
T d@ )
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\/bi/b_ =a, where 0<b_<b, are the eigenvalues of A4. That is, A, are
level curves of /b, /b_ in the (a,d)-plane. Notice that
R= |J Ao (.
1<oe@

The key idea behind finding G(w) is that for (a, d) € A 4 (o) where 1 <o e Q,
the zeros of the transcendental function are periodic in the horizontal
direction. We show how to construct this polynomial. The transcendental
function for 44D is

EV(x) =k [1 — cos (%ﬁ) cos (\/Lb_ﬂ
— ky sin <\/);7+> sin (\/’Z_> ,

where k| and k; are two real constants depending upon « and d which we do
not need to specify here. Since

Vb+/b*:a:p/q’ p,q€Z+,

y/b4 are rationally related and so the zeros of EV(x) appear periodically in

lines parallel to the real axis. By putting z = x/(g/b+),
EV(z) =k|[1 — cos(pz) cos(gz)] — k sin(pz) sin(gz)

kz — kl k2 + kl
i o coslp — )2l

where p — g<p + qeZ*. Standard computations show that,

=k + cos[(p + ¢)z] —

cos(mz) = Ty(cos(z)), m=1,2,...,

where T, a polynomial of degree m (the mth Chebyshev polynomial of first
order). Then by letting

kz—k] k2+kl

3 Tprgw) — TT(pfq)(W)a

EV(z) = 0 if, and only if, G(cos(z)) = 0. Hence all the zeros of EV'(x) are of
the form

(Farccos(woy) + 2nm)q\/b.€C, nel,

where wy is a root of G(w). In this manner, Spec(A4D) is generated by
translations of the roots of G(w).

Although the above method computes Spec(44D) explicitly for
(a,d)e A4 (2), | <ae@, its numerical implementation for large p + ¢ (> 20
in a PC) is highly unstable due to the well-known instability of the roots of
polynomials of high degree. Nevertheless, no other procedure tried so far,
has proven to be more efficient for estimating large eigenvalues in Rj.
Figs. 2, 5 and 6 were produced via this approach.

Gw) =k +
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7.1. Spectral behaviour of A4 for (a,d) close to (—1,3

By virtue of Theorem 26, Spec(44D) = {0} for (a,d) = (—1,3). In any
small neighbourhood of this point, the spectrum of 44D is infinite so high
instability is to be expected. Since 44D is holomorphic in ¢ and d, every non-
zero eigenvalue of A4D either concentrates at zero or diverges to oo for
(a,d)—(—%,3). We explore this phenomenon in some detail.

According to Theorem 23(a), if (a,d)eRs satisfy a*> —ad — 1 =0 and
—2<a—d<0,

Spec(A44D) = { —k2n2/1m(b11/2)2}k 7>

where b, is the larger eigenvalue of A4. By taking a— —% and d—»%,

_a+d+\/(a—d)2—4

so that Im(b,

+ =

1/2

2

_)EER

>

)—0. Hence, all non-zero eigenvalues of A4D remain

negative and escape to — oo as (a,d) € Rs approach the critical point on the
curve a’> —ad — 1 = 0.

In general, not every eigenvalue of 44D need to be in the left-hand plane
when (a, d) is close to (—%, %). In Fig. 2 we consider the evolution of the first

d=1.6075 d=1.5525 d=1.5203
200 . - 200 . . 200 . . :
150 150 150 .
] .
.
100 . -* : 100 o 100 ¢
50 . 501 - e - 50
L4 .. .
Of -e¢- o . o} oo . 0 .
. .
—-50 .. R -50 . -50
_100 S _100 . ~100 .
‘ . N .
_150 _150 _150 .
200 200 ~200 >
[) 100 200 300 [) 100 200 300 100 200 300
d=1.5123 d=1.5059 d=1.5035
200 . . 200 S 200 . .
. : .
150 . - 150 .. 150
100 o 100 100
50 - * sof -* 50
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0 03 Ofe- -o Ole
. .
—50} - & -50f -, 50
~100 ERR ~100 ~100
—150 * B —150 . —150 R
.
~200 —200 ° —200
0 100 200 300 0 100 200 300 100 200 300

Fig. 2. Evolution of the first 16 cigenvalues of 44D for a = —} fixed and selected values of d
close to 3.
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16 eigenvalues of A4D for a = —% fixed and 6 different values of d from
d = 1.6075 to 1.5035. The awkward choice of d correspond to the sensible
values of «e@; each pair (—4,d)e A, (x) for o = 2,8 4,3, 7.2 Notice that for
large p, ¢ the polynomial G(w) has p + ¢ roots and nonetheless all these roots
but 0 lie on the same curve. This curve moves away from the origin and
there is always a negative eigenvalue. The positive eigenvalues also escape
rapidly to + oo and there are infinitely many of them.

In Fig. 3 we isolate the negative eigenvalue for a = —% against 100
different values of d close to d = % This provides indication of how rapidly
it escapes to —oo. In order to produce this picture, we made use of the
algorithm that Matlab provides to find the zero of EV(x) for x on the
imaginary axis. Comparing with the comment we made earlier in Section
6.3, this provides points in R; such that 44D has a negative eigenvalue of
arbitrarily large modulus.

7.2. Non-real eigenvalues in R;

We now explore the transition from real to non-real spectrum by
considering the spectral evolution of A4 on the line
{(0,d)eR3:d >2}

a=-5
-10 T T

-15

-20 - - - - - ...o°'° - - - . . . - - - - =

| | |

w w N
[&] o ol

T T T

o
.

o,
3

1 1 1

Negative eigenvalue

|

N

o
T
.
1

a5 : : : S : : : : A . . S

50 f- - - - . . . . . . . . . : : : : .

755 . 1 1
15 155 1.6

d

Fig. 3. Evolution of the negative eigenvalue for a = —% and 100 different values of d linearly
distributed on the segment [1.5012, 1.6200].
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Fig. 5. Evolution of the first 17 eigenvalues (counting multiplicity) of 44D for a =0 and d > 2
close to d = 2.
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close to (0,2)e R;. In Fig. 4 we show the first 23 eigenvalues of A4D for
a=0 and d =2. We produced this graphic by reducing the equation
EV(x) =0 to a single real variable and then making use of the algorithm
that Maple provides to find zeros of real functions. According to Theorem
26, we know that Spec(A44D) is infinite but there is only finite intersection
with the real line. As the picture suggests, in this case the origin seems to be
the only real eigenvalue.

Fig. 5 shows the evolution of the first 17 eigenvalues (counting
multiplicity) of A4 when a = 0 for various different values of d from d =
3.3333 t0 2.0139. Each pair (0, d) € A (), respectively, for o = 3,3,%,2,%,3, 3,
% The numerical evidence suggests that for ¢ = 3.3333 the spectrum is close
to the real line and each eigenvalue is of multiplicity 2. Each of these
operators has infinitely many real eigenvalues. Unfortunately, the method
we employed to find the roots of G(w), is unable to deal with a finer partition
of the d-interval. Nonetheless, the global behaviour of the spectrum can be
appreciated, as d approaches to 2, each real eigenvalue eventually splits into
two conjugate non-real single eigenvalues stabilizing close to the region in
Fig. 4 (see the step d = 2.0139). Notice that there is no spectrum in the left-
hand plane and compare with Theorem 21.
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Fig. 6. Evolution of the first 100 eigenvalues of 44D as (a,d)—(—1,1)e Rg on A (2). The dots
are the first 100 eigenvalues while the crosses the remaining spectrum.



L.S. Boulton | J. Differential Equations 186 (2002) 186-229 229

7.3. Spectral evolution close to Rg

Another type of peculiar behaviour can be observed as (a,d)eR;
approach the region Rg, where matrix A4 is singular and Spec(A44D) = C.
Here we concentrate on the point (—1, 1) € Rg.

Fig. 6 shows the evolution of the first 100 eigenvalues of 44D (represented
by dots) as (a,d)eA(2) approaches to (—1,1)e Rs. Alongside we also
picture the remaining eigenvalues (represented by crosses) that lie on the box
[0,2000] x [—300,300] . A very similar behaviour occurs for (a,d)e A1 (x) as
(a,d)—(F1, +£1)e R¢ for other values of ae@. It cannot be appreciated in
the graph provided but there are two conjugate eigenvalues whose real part
is negative. These eigenvalues approach to the origin as (a,d)—(—1,1). All
the remaining spectrum concentrates on the real line suggesting that
Spec(A4D)—[0, 0) as (a,d)—(—1,1) this is in contrast with the fact that
Spec(AD) = C at (—1,1).

Here we have chosen p = 2 and ¢ = 1. This means that G(w) is only of
order 3 and so the spectrum is always generated by 3 points. It is not difficult
to show analytically that all three roots converge to 0 and then rigorously
prove that Spec(A4D)—[0, c0).
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