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In this paper we show that Minty’s iemma can be used to prove the Hahn-Banach theorem
as well as other theorems in this class such as Radon’s and Helly’s theorem for oriented
matroids having an intersection property which guarantees that every pair of flats intersects in
some poini extension &U p of the oriented matroid €.

1. Introduction

In [12] Las Vergnas introduced the notion of convexity for oriented matroids in
order to study analogues of the Hahn—-Banach theorem. Cordovil [5, 6] proved
versions of the Hahn-Banach theorem for oriented matrc'ds of rank three. As
Mandel [13] pointed out this theorem is no longer true for oriented matroids of
rank greater than three. In this paper we show that Minty’s lemma can be used to
prove 2 slightly stronger form of the Hahn-Banach theorem as well as other
theorems in this class such as Radon’s and Helly’s itheorem for oriented matroids
of any rank provided the oriented matroids have a so-called intersection property.
This intersection property (IP) came across when ipvestigating polars of oriented
matroids. It defines a class of oriented matroids which is contained in the more
general class of Euclidezn matroids zad which includes those oriented matroids
having aa oriented adjoirt (i.e. allowing the construction of polars).

Loosely speaking the intersection property guarantees that every pair of flats
intersects in some paint extension OL!p of 0. In case of unoriented matroids of
rank 4 this is equivalent to what geometers call the bundle condition (cf. Kern
[10D).

Ler € be an oriented matroid. We consider the circuits of @ as vectors X of
2+E.= {4 — 0}F and as usual write X(X*, X~, X°) for the set of all e € E for
which X, #0 (X. =+, X.=—, X. =0) and also use the notation X, =0 (<0) if
X, e {+,0}Ve e A (X, € {—, 0}Ve € A) respectively X =0(<0) if A = E. A vector
X €2*E is calied a cell of @ (resp. cocell) if X is an element of the circuit span
(resp. cocircuit span) of 0. Note that a vector of X € 2*E is a cocell of O if and
only if it is orthogonal to all circuits C of €. For the sake of simplicity we shall
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always assume that O is acyclic, i.e. it kas no circuit X =0. Clearly any oriented
matroid can be reoriented to an acyclic one.

2. Hahn-Banach theorems

To state the Hahn-Banach theorem we need the notation of convexity and
separability. Two sets A, B c E are called separable if Y, =0 and Yy <0 for some
cocircuit Y of 0. In othe: words A and B are separable if A and B lie on opposite
sides of the hyperplane Y° of @. The convex hull of A c E is defined as

conveg(A):=A U {e € E\A | 3 circuit X of J with X~ = {e}, X" c A}
(cf. Las Vergnas [12]).

Th:orem 2.1 (Cordovil [5]). Let O be an acyclic oriented matroid of rank at most
three and let A,BcE. If for all point extensions 0 :=0Up convefA)N
convg{B) =0 then A and B are separable.

Mandel [13] and Fukuda {8] gave examples of oriented matroids of rank greater
than three which disprove this form of the Hahn-Banach theorem fer arbitrary
oriented matroids. Interesting enough these examples were also used to construct
oriented matroid programming problems where the simplex algorithm cycles
through nondegenerate pivots. Edmonds and Fukuda invented the class of
BOM’s (Bland-oriented-matroids) to exclude those possible cyclings. It turned
out that the Bland-oriented-matroids are in fact euclidean oriented matroids
introduced by Edmonds and Mande! (cf [13]), i.e. oriented matroids which do
have hyperplanes through a given point and ‘parallel’ to a given hyperplane.

Hence the Hahn-Banach Theorem cannot be proved for all non-euclidean
oriented matroids. Here we shall use the intersection property (which implies
euclidean) to prove a slightly stronger form of Theorem 2.1 for oriented matroids
of arbitrary rank.

We call two sets A, B ¢ E strongly separable if Y, =0, Y;<0and Y°=8 fora
cocell Y of @. Since every cocell of an oriented matroid is the conformai sum of
cocircuits (ci. [4]) strongly separable implies separable. In [6] Cordovil and
Duchet proved that Theorem 2.1 is still valid if ‘separable’ is replaced by ‘strongly
separable’.

We say O has the intersection propeity (IP) if for every nonmodular pair of flats
F, G (i.e. r(F v G) + r(F A G)<r(F) + r(G) where ‘ v’ siands for join and ¢ A’
for meet) of rank at least 2 there exists a point extension 0':=0Up with
ro(F)=ro(F v p) and ro(G)=re(G v p) such that ro(F A G)<rg ([Fvp]a
[G vp)). Informally the intersection property allows any two flats of € to
intersect (either in a given point e € E or in a point extension p of 0.)
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The intersection property 2s defined above is omne of several intersection
properties including Levi’s and Euclidean intersection property. In [1] we discuss
the classes of matroids having these intersection properties. There it is shown that
representabie and all rank three matroids do have the intersection properties.
Graphic mairoids and other important classes of matroids do satlsfy the
intersection property as was shown in [7]. However, in [1] we gave also infinite
classes of nonisomorphic matroids not fulfilling the different intersection

properties.

Theorem 2.2. {Hahn-Banach). Let O be an acyclic oriented matroid wiih the
intersection property. Then A, B c E are strongiy separable if and only if for every
point extension 0' := GU p convg(A) N conve(B) =§.

Proof. Let A, Bc E be strongly separable, i.e. ¥,=0, Yp<0 and Y°=§ for
some vector Y of the cocircuit span. Assume convg.(A) N conve(B) # @ for some
point extemsion O':=O0Up of 0. Clearly, since Y°=§ ANB=@, by
definition of the convex hull operator either there exists a circuit X of € such that
X~ ={e} cA and X* c B for some e € E (interchange A and B if necessary) or
there exist circuits W and Z of @' such that W™= {e}, W*c A and Z* = {e},
Z~ c B. In the latter case we can use the circuit elimination axiom to construct a
circuit X with X*c(W*UZ*)\e=W*c A and X~ < (W~ 'J Z")/e c B. Hence
in both cases there is a circuit X of € with X* c A and X~ c B. Thus X is not
orthogonal to Y, a contradiction.

For the converse assume A and B are not strongly separable, i.e. there is no
conformal sum of cocircuits Y all of which fulfill Y; <0 and Y, =0, moreover
there exists e AUB (w.l.o.g. e€B) such that Y3=<0, Y,;=0 holds for no
cocircnit Y of €. In other words there is no cocircuit Y with ee Yc AU B and
Y*NB=Y NA=§. Using the partition e BUAUGUR=E(G:=E\(AUB),
R :=0) we can apply Minty’s painting lemma to concludz ihe existence of a circuit
X of O with ecsXcAUBand X*NB=X"1"A=0, ie. X,=0 and Xp<0.
Since @ is acyclic A and B both must have elements with X in common. If
ANX={e} for some ¢ € A then the circuit —X with (-=X)™ = {e} and (-X)* c
B shows e e convg(Bj M A, a contradiction. Thus we may assume |4 N X|=2 and
iIBNX|=2 and clearly the flats F =cl(A NX), G =cl(B NX) have rank of at
least 2. Since ANX and BN X are independent we have r(F)-+-»(G)=|ANX]|
+|B N X] =|X| and obviously F v G =cl(X), i.e. r(F v G) = |Xj — 1. Hence if F
and G is a modular pair of flats then 7(F A G)=1, i.e. pe FNG for some pe E
and there are circuits $ and T of O withpeSc(ANX)Up and p e Tc (BN X)
Up. On the other side if F and G are non-modular there exisis (by assumption)
a point extension 0' = OUp and with the same arguments as above we obtain
circuits S and T of 0" with the above properties. Hence in either case we can usc
the circuit elimination axiom (applied to S and T or —S§, T) to construct a new
circuit R with Rc X, i.e. X =X or R = —X. Moreover since R*<S*UT" and
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R cS UT™ respec. X,=0 and Xp<0 we have S,=0 and Tp<0. The
oriented matroid @ is acyclic, i.e. @' = OU p is acyclic (or may be chosen acyclic)
and thus S~ #@ and T+ +#0. Hence p e S~ N T, which proves p € convg(4) N
convg(B). O

Since all oriented matroids of rank three do have the intersection property,
Theorem 2.2 implies Theorem 2.1.

If A, B c E are strongly separable there exists a cocell Z of @ represented by a
conformal sum of some cocircuits Y, ..., Y* such that Z,=0, Z; <0 and
Z°=@. Thus for any given point p e AUB there exists always a hyperplane
H:=E\Y' (for some i=1,...,k) such that peY’ and Y,=0 and Y;<0.
Moreover the following stronger proposition holds.

Proposition 2.3. If Y is a nonzero cocell of O, then there is an extension 0' of O in
which Y is a cocircuit.

Proof. A cocell Y of O is a cocircuit of O iff d(Y):=r(0) —r(E\Y) —1 is zero.
Let Y be any cocell of @ with d(Y)>0. For the proof it suffices to construct a
point extension @' :=OU p which contains Y as a cocell with d'(Y)=d(Y) - 1.

This can easily be done by using Las Vergnas’s [11] method of lexicographic
point extensions. Let x be a cocircuit of © which conforms to Y and choose a base
B:=B,UB, U {e} of E such that B, is a base of E\Y and B, UB, is a base of
ENX. Let e, ..., e, be the elements of B with BUB,={e;,...,e€,_;} and
e =e,. The lexicographic point extension lex (e, . . ., e,—;, —e,) now yields the
desired extension 0'. 0O

Corollary 2.4. If A, B c E are strongly separable then there exists an extension ©'
of the oriented matroid O such that Ac Y* and B < Y~ for some cocircuit Y of O,
i.e. A and B can be strictly separated by a hyperplane H = E'\Y.

Theorem 2.2 shows that the intersection property is sufficient for the validity of
the Hahn-Banach theorem. On the other side however the class of oriented
matroids with the Hahn-Banach property properly includes the class of oriented
matroids having the intersection property.

Proposition 2.5. The Vamos matroid (oriented as usual) satisfies the statement of
the Hahn—Banach Theorem but not the intersection property.

Proof. Clearly, the Vamos matroid does not satisfy the intersection property.
Assume that the Vamos matroid does not satisfy the Hahn-Banach property, i.c.
there exist not strongly separable sets A, B E such that conve(A)N
convg(B) = 9 for every extension O’ of 0. As shown in the proof of Theorem 2.2
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Fig. 1. Vamos matzoid.

this proves the existence of two sets A'c A and B'c B such that the
corresponding flats F =cl(A’') and G =cl(B') are nonmodular and cannot be
intersected (using any point extension). Hence both sets A and B must contain (at
least) one of the lines /; i=1,...,4) resp. [, (j=1, ..., 4" (cf. Fig. 1).

The Vamos matroid is a well-known example of a bad behaved matroid. Here we
look at the Vamos matroid as a perturbed cube which misses exactly one 4-point
hyperplane g, h, c, d. We can now enumerate all such possible combinations of A
and B and prove that in any circumstance either A or B can be strongly separaied
or there exist flats (cf. the proof of Theorem 2.2) such that there exists a point p
in the intersection of the convex hulls of A and B. Instead of proving every
(similar) instance we loock ai a representable instance in a number of different
cases. (This will prove the other instances, by symmetry).

(@) A=l or A=l forsome i,je{l,...,4)}, then A and E\A can easily be
strongly separated. Let A =cl(a, b) and B arbitrary. The hyperplanes
cl(c, d, e, f). <la, b, e, f) and cl(a, b, c, d) show that A, B can be strongly
separated. Siniilar if A = cl(c, d), we choose ci(a, b, g, k), cl(a, b, ¢, d) and
cl(c, d, g) resp. cl(c, d, h) as separating hyperplanes.

(b) If A is a proper 3-element subset of one of the five four-point facets then 4
and E\A can be strongly separated as the following example A =<l(q, ¢, d)
shows. The separating hyperplanes are cl(a, b, ¢, d), cl(b,d, e, g) and
cl(a,d,g). In case A is a proper 3-element subset of the non facet
{c,d, g, h) (e.g. A=cl(c,d,g)) A can e.g. be strongly szparaicd by
cl(a,d,e, h), cl(a,b,g, h), cl(a,d,g), cl(a,d,g) and ci(c,d, h) or
cl(d, h, g).

(c) If |JA|=4 and A is one of the four-point facets, then corresponding
four-point hyperplanes (not facets) show the strong separation.



308 A. Bachem, A. Wanka

(d) In all other instances A and B include diagonal lines lying on a four-point
hyperplane. Of course the corresponding circuit C satisfies C, <0 and
Cy=0. Hence as in the proof of Theorem 2.2, we can find a point
extension p in the convex hullsof A and B. O

Usually an element x of a polytope P < R" is called a vertex if and only if P\{x}
is convex. This is a special case of the following more general definition of faces
of a polytope. Let P=conv(v,,...,v,) be a polytope and FcE:=
{v1, ..., v,}. Then conv(F) is a face of P if and only if aff(¥) N conv(E\F) =@.
In oriented matroid Janguage this translates to the foilowing statement.

Let @ be an acyclic oriented matroid on E and V the vertices of

0. Let FcV, then conv F is a face of O (in the notation of Las

Vergnas) if and only if conve.(E\F) Nclg(F) =@ in every point

extensions 0’ of 0. . 2.5)
Munson {14] proved the necessity of Statement (2.5) for general oriented
matroids and Kern [10] gave an example of Vamos-type-matroid which shows
that the condition in (2.5) does not suffice in general. Hence this characterization
of facets does not carry over to oriented matroids.

Theorem 2.6. For acyclic oriented matroids with the intersection property, let
FcV. Then F is a face of the oriented matroid O if and only if convg(E\F)N
clo(F) =@ in every point extension O’ of O.

Procf. Suppose that F c E and conv(E\F) N cI(F) =@ in every point extension of
0. Hence F is closed. By Thecrem 2.2 Ye2*E with Y*=E\F, Y " =F is a
cocell. Consider the vector W € 2*E with W* = E\F, W™ =@. Fis a face iff Wis a
cacell. So, if Fis not a face, there is a circuit X not orthogona! to W. That means
that @ # E\F o X*\F. Since F is civsed, |X\F|=2. Since 0 is acyclic, X~ #@ and
since Y is orthogonal to X, X* N F #@, hence |X N F|=2. From the intersection
property, there is a point extension of @ in which there is a p e conv(X\F)N
cl(E\F), and arguing as in 2.2, V €2*E with V*=X\F, V™= {p}) is a circuit.
Whencs p e conv(X\F) c conv{E\F}. Since p ecl(XNF)ccl(F), we have a
contradiction. O

Corollary 2.7. Let O be an oriented acyclic matroid with vertices V and F a face of
O. Then there exists an extension O' of O and a hyperplane H' of ©' such that
F=conv(VNH") and V = C* U C® for ihe cocircuit C (corresponding to H') of

!I’

7

)
.

C

3. Caratheodory-, Radon- and Heliy-type theorems

Once having the tool of a convexity operator one can easily prove a
Caratheodory-type theorem for oriented matroids.
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Proposition 3.1 (Caratheodory). Let O be an acyclic oriented matroid of rank r
on E. Let Ac E and e € conv(A) for e € E. Then there exisis a sibset B A of A
such that e € conv(B) and |B|<r.

Proof. Since e € conve(A), there exists a circuit C of @ with C~ = {e} and
C* c A. Since |Cj<r+1 we can use B:=CN A to prove the proposition. O

Radon’s and Helly’s theorem are not valid in general oriented matroids. Here
we are going to apply the proof techrique of Theorem 2.2 to prove Radon’s
theorem (for oriented matroids having the intersection property) and then use
Radon’s theorem for a proof of Helly’s theorem.

Corollary 3.2 (Radon’s theorem). Let O be an acyclic matroid of rank r with the
intersection property and let A c E with |A|=r + 1. Then there exists a partition
A'UA"=A of A such that convg(A') Nconve(A”) #@ for some point extension
0'=0Upof 0.

Proof. Since |A1>r+ 1, there ex_ists a circuit C of 0 with Cc A. Since O is
acyclic neither A’:=ANC* nor A":=ANC" are empty. Hence A’ and A" are
not strongly separated, and the result follows from Theorem 2.2. O

Corollary 3.3 (Helly’s theorem). Let @ be an acyclic oriented matroid of rank r
sets such that every intersection of (n —1) of the sets K; is nonempty. Then there
exists an extension O’ such that (\;-,,...conve(K;) #9.

Proof. Due to the assumption there exists for every i=1,...,n a point
x; €econve(Ky) N - - - Nconve(K;—1) Nconve(K;.1) N - - - Nconve(K,). Corollary
3.2 (Radon’s theorem) gives us now a point extension 0'=0Ux such that
x econv({x;|jeJ})Nconv({x;|j¢J}) for some Jc{l,...,n}. Since xe€
conv({x; | j eJ}) we have x € N, conve(K;) and similar since x € conv({x; |j ¢
J}) we have x € N ;conve(K;). Hence x € N[, conve(K)). [
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