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1. Introduction

A v × v matrixW is a type II matrix if
v∑

x=1

W(x, a)

W(x, b)
= δa,bv for a, b = 1, . . . , v. (1)

Hadamard matrices and the character tables of finite abelian groups satisfy this condition. Type II

matrices also arise from combinatorial objects such as symmetric designs, tight sets of equiangular

lines and strongly regular graphs [2].

In [8], Nomura constructed the Bose–Menser algebra of an association scheme from each type II

matrix W , hence another connection to combinatorics. We call this algebra the Nomura algebra of W ,

and denote it byNW . Jaeger et al. [8] showed that a type II matrixW belongs toNW if and only if cW is

∗ Corresponding author.

E-mail addresses: ssachan@yorku.ca (A. Chan), munemasa@math.is.tohoku.ac.jp (A. Munemasa).
1 The first author gratefully acknowledges the support from a JSPS postdoctoral fellowship and a NSERC discovery grant.

0024-3795/$ - see front matter © 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2011.01.020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82266226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.laa.2011.01.020
http://www.sciencedirect.com/science/journal/03608352
www.elsevier.com/locate/laa
http://dx.doi.org/10.1016/j.laa.2011.01.020


A. Chan, A. Munemasa / Linear Algebra and its Applications 435 (2011) 330–341 331

a spin model for some non-zero scalar c. Spin models give link invariants and they are difficult to find.

The ability to identify the Bose–Mesner algebras that are the Nomura algebras of type II matrices is a

step towards the search of spin models.

We say two type II matricesW1 andW2 are type II equivalent if

W1 = P1D1W2D2P2

for some invertible diagonal matrices D1 and D2 and permutation matrices P1 and P2. Suzuki [11]

showed that ifNW contains theHamming schemeH(n, 3), thenW is type II equivalent to the character

table of the group Z
n
3.

It is straightforward to show that W1 and W2 are type II matrices if and only if their Kronecker

product W1 ⊗ W2 is a type II matrix. We generalize Suzuki’s result and show that if NW contains the

adjacency matrix of the Hamming graph H(n, q), n � 2 and q � 3, then W is type II equivalent to

W1 ⊗ W2 ⊗ · · · ⊗ Wn

where W1,W2, . . . ,Wn are q × q type II matrices. In this case, NW is isomorphic to

NW1
⊗ NW2

⊗ · · · ⊗ NWn
.

As a consequence, when n � 2 and q � 3, the Bose–Mesner algebra of the Hamming schemeH(n, q)
and theBose–Mesner algebra of the generalizedHamming schemeH(n,A), for any association scheme

A on q vertices, cannot be the Nomura algebras of type II matrices.

If W is type II, then so is WT . In [8], Jaeger et al. showed that NW and NWT are formally dual.

If NW = NWT , which includes the case where W is symmetric, then NW is formally self-dual. The

Hamming schemeH(n, q) is a formally self-dual association scheme. It also satisfies Delsarte’s notion

[4] of self-duality and the notion of hyper self-duality defined by Curtin and Nomura [3]. We now have

a family of association schemes satisfying all three notions of duality but are not the Nomura algebras

of type II matrices.

In this paper, we use Iv and Jv to denote the v × v identity matrix and the matrix of all ones,

respectively. We use 1v to denote the column vector of all ones of length v. We omit the subscript if

the size or the length is clear.

2. Nomura algebras

We recall type II matrices and their Nomura algebras, see [8,10] for details.

Given matrices M and N of the same order, their Schur product, M ◦ N, is defined by

(M ◦ N)(i, j) = M(i, j)N(i, j) for all i and j.

IfM has no zero entry, we useM(−) to denote the matrix whose (i, j)-entry is M(i, j)−1.

A v × v matrixW is type II if W(−)TW = vI. The v × v matrix

W = (t − 1)I + J

is type II if and only if t is a root of the quadratic t2 + (v − 2)t + 1 = 0. This is the simplest spin

model (after an appropriate scaling), called the Potts model, and the associated link invariant is the

Jones polynomial [9].

Let the vectors e1, . . . , ev be the standard basis of Cv. Given a v × v type II matrixW , we define v2

vectors

Ya,b = Wea ◦ W(−)eb for a, b = 1, . . . , v.

It follows from (1) that W is invertible and has no zero entries. Hence, for all a, the set {Ya,b : b =
1, . . . , v} is a basis for C

v.
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The Nomura algebra, NW , of W is the set of matrices that have Ya,b as eigenvectors for all a, b. It
follows immediately that NW contains I and it is closed under matrix multiplication. By (1), JYa,b =
δa,bvYa,b. Hence J ∈ NW and dimNW � 2.

For each matrixM ∈ NW , let ΘW (M) be the v × v matrix whose (a, b)-entry satisfies

MYa,b = ΘW (M)(a, b)Ya,b for a, b = 1, . . . , v.

The following results, obtained from Theorems 1 to 3 of [8], are useful in subsequent sections.

Theorem 2.1. Let W be a v × v type II matrix. Then NW is closed under matrix multiplication, Schur

product and transpose. It is commutative with respect to matrix multiplication.

Moreover ΘW (NW ) = NWT , and

1. ΘW (M1M2) = ΘW (M1) ◦ ΘW (M2),
2. ΘW (M1 ◦ M2) = 1

v
ΘW (M1)ΘW (M2),

3. ΘW (MT
1 ) = ΘW (M1)

T ,

for M1,M2 ∈ NW.

Lemma 2.2. Let W be a type II matrix. For any invertible diagonal matrices D1 and D2 and for any

permutation matrices P1 and P2,

NP1D1WD2P2 = P1NWPT1 .

An association scheme on v elements with n classes is a set of v × v 01-matrices

A = {A0, A1, . . . , An}
satisfying

1. A0 = I.

2.
∑n

i=0 Ai = J.

3. AT
i ∈ A for i = 0, . . . , n.

4. AiAj lies in the span of A for i, j = 0, . . . , n.
5. AiAj = AjAi for i, j = 0, . . . , n.

The simplest association scheme is {I, J − I}, called the trivial association scheme.

The span of an association scheme over C is called its Bose–Mesner algebra. The Bose–Mesner

algebra of A is closed under matrix multiplication, Schur product and transpose. It is commutative

with respect to matrix multiplication, and it contains I and J. Conversely, any algebra satisfying these

conditions is the Bose–Mesner algebra of an association scheme [1].

A formal duality between two Bose–Mesner algebras B1 and B2 is an invertible linear map Θ :
B1 → B2 satisfying Θ(MN) = Θ(M) ◦ Θ(N) and Θ(M ◦ N) = 1

v
Θ(M)Θ(N). When B1 = B2 and

Θ2(M) = vMT , we say B1 is formally self-dual.

Theorem 2.3. If W is a type II matrix, thenNW andNWT are a formally dual pair of Bose–Mesner algebras.

3. Products

SupposeW1 andW2 are type II matrices then so is their Kronecker productW1 ⊗W2. Proposition 7

of [8] determines the Nomura algebra of W1 ⊗ W2.

Lemma 3.1. If W1 and W2 are type II matrices, then

NW1⊗W2
= NW1

⊗ NW2
.
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Hosoya and Suzuki [7] studied the structure of W if J ⊗ I belongs to NW . In [11], Suzuki showed

that if I ⊗ J and J ⊗ I belong to NW , then W is type II equivalent to the Kronecker product of two

type II matrices. We tailor Theorem 1.2 of [11] to Lemma 3.4 and Theorem 3.5 by showing the type II

equivalence explicitly, for later use.

For the remainder of this section, we assume thatW is anmn × mn type II matrix and

In ⊗ Jm, Jn ⊗ Im ∈ NW .

For a vector u of length mn, we use u[i] to denote its ith block of length m for i = 1, . . . , n. We also

denote by W[i, j] the m × m submatrix located at the (i, j)-block of W .

Lemma 3.2. For 1 � a, b � mn, the following statements hold.

1. ΘW (In ⊗ Jm)(a, b) = m if and only if

Ya,b[i] ∈ span(1m) for all i = 1, . . . , n,

or equivalently, Wea[i] ∈ span(Web[i]) for all i = 1, . . . , n.
2. ΘW (Jn ⊗ Im)(a, b) = n if and only if

Ya,b[i] = Ya,b[1] for all i = 1, . . . , n,

or equivalently,

(Wea[i]) ◦ (W(−)ea[1]) = (Web[i]) ◦ (W(−)eb[1]) for all i = 1, . . . , n.

Proof. Straightforward. �

Lemma 3.3. There exists a permutation matrix P such that

ΘWP(In ⊗ Jm) = m(Jn ⊗ Im) and ΘWP(Jn ⊗ Im) = n(In ⊗ Jm). (2)

Proof. For 1 � a, b � mn, we write a ∼1 b when ΘW (In ⊗ Jm)(a, b) = m, and a ∼2 b when

ΘW (Jn ⊗ Im)(a, b) = n. Since {Ya,1, . . . , Ya,mn} is a basis of C
mn consisting of eigenvectors of In ⊗ Jm

which has eigenvalue m with multiplicity n, |{b | a ∼1 b}| = n, for each given a. It follows from

Lemma 3.2 that ∼1 is an equivalence relation with m equivalence classes of size n. Similarly, for each

given a, |{b | a ∼2 b}| = m, and Lemma 3.2 implies that ∼2 is an equivalence relation with n

equivalence classes of sizem.

Furthermore, Lemma 3.2 implies that a ∼1 b and a ∼2 b occur simultaneously only when a = b.

Hence an equivalence class of ∼1 meets every equivalence class of ∼2 in exactly one element, and

there exists a permutation matrix P so that the equivalence classes of ∼1 and ∼2 defined for WP are

{h,m + h, 2m + h, . . . , (n − 1)m + h} for h = 1, . . . ,m

and

{rm + 1, rm + 2, . . . , rm + m} for r = 0, . . . , n − 1,

respectively. By Lemma 2.2, NW = NWP . We conclude that NWP contains In ⊗ Jm and Jn ⊗ Im, and (2)

holds. �

We say a type II matrix is normalized if all entries in its first row and its first column are 1. Given

any type II matrix W , there exists invertible diagonal matrices D and D′ such that W ′ = DWD′ is
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normalized. By Lemma 2.2, we haveNW ′ = NW . Note that the eigenvectorW ′ea ◦ W ′(−)
eb is a scalar

multiple of Wea ◦ W(−)eb. We conclude that ΘW ′(M) = ΘW (M) for allM ∈ NW .

Lemma 3.4. Suppose W is normalized and

ΘW (In ⊗ Jm) = m(Jn ⊗ Im) and ΘW (Jn ⊗ Im) = n(In ⊗ Jm).

Then W = U ⊗ V for some n × n type II matrix U and some m × m type II matrix V.

Proof. By Lemma 3.2, we have a ≡ b (mod m) if and only if

Wea[i] ∈ span(Web[i]) for i = 1, . . . , n.

Since the first row of W is 1Tmn, setting i = 1 gives

W[1, 1] = W[1, 2] = . . . = W[1, n]. (3)

Let V = W[1, 1]. Further, the first column of W is 1mn, so there exists a non-zero scalar U(i, j) such

that

We(j−1)m+1[i] = U(i, j)1m for i, j = 1, . . . , n. (4)

Suppose a = (j − 1)m + h and c = (j − 1)m + 1 for j = 1, . . . , n and h = 1, . . . ,m. As

ΘW (Jn ⊗ Im) = n(In ⊗ Jm), Lemma 3.2 implies that

Wea[i] = (Veh) ◦ (U(i, j)1m) ◦ (W(−)[1, 1]e1) (by (3), (4))

= U(i, j)(Veh).

Hence W[i, j] = U(i, j)V for i, j = 1, . . . , n. It is straightforward to check that both U and V are

type II. �

Theorem 3.5. Suppose W is a type II matrix and

In ⊗ Jm, Jn ⊗ Im ∈ NW .

Then

W = D1(U ⊗ V)D2P

for some n × n type II matrix U, m × m type II matrix V, permutation matrix P, and invertible diagonal

matrices D1 and D2. In this case,

NW = NU ⊗ NV .

Proof. By Lemma 3.3, there exists a permutation matrix P such that (2) holds. There exist invertible

diagonal matrices D and D′ such that W ′ = DWPD′ is normalized. Then by Lemma 3.4, W ′ = U ⊗ V

for some n × n type II matrix U and m × m type II matrix V . The rest of the proof is immediate from

Lemmas 2.2 and 3.1. �

4. Generalized Hamming schemes

We recall from [5] the definition of and some facts concerning the generalized Hamming scheme

H(n,A). Let A = {A0, A1, . . . , Ad} be an association scheme on q vertices. Consider the product
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association scheme A⊗n and the symmetric group Sn acting on {1, . . . , n}. For each element σ ∈ Sn,

define

(Ai1 ⊗ Ai2 ⊗ · · · ⊗ Ain)
σ = Ai

1σ−1 ⊗ Ai
2σ−1 ⊗ · · · ⊗ Ai

nσ−1 .

Then Sn is a group of algebra automorphism of the span ofA⊗n. The set of matrices in the span ofA⊗n

fixed by every element of Sn is closed under matrix multiplication, Schur product and transpose, and

this set contains Iqn and Jqn . It is the Bose–Mesner algebra of a subscheme of A⊗n [5]. This subscheme

is called the generalized Hamming scheme H(n,A). In particular, for i = 1, . . . , d, the matrix

(Ai ⊗ Iq ⊗ · · · ⊗ Iq) + (Iq ⊗ Ai ⊗ · · · ⊗ Iq) + · · · + (Iq ⊗ Iq ⊗ · · · ⊗ Ai)

lies in H(n,A). The Hamming scheme H(n, q) is H(n,A) when A is the trivial association scheme on

q vertices.

Let Ω be the set of words of length n over an alphabet of size q. The Hamming graph H(n, q) has

vertex set Ω , and twowords are adjacent if and only if they differ in exactly one position. We use A(n)
to denote the adjacency matrix of H(n, q). Up to permutation of the vertices, we can write A(n) as

[
(Jq − Iq) ⊗ Iq ⊗ · · · ⊗ Iq

] + [
Iq ⊗ (Jq − Iq) ⊗ · · · ⊗ Iq

] + · · · + [
Iq ⊗ · · · ⊗ Iq ⊗ (Jq − Iq)

]
(5)

=
d∑

i=1

[
(Ai ⊗ Iq ⊗ · · · ⊗ Iq) + (Iq ⊗ Ai ⊗ · · · ⊗ Iq) + · · · + (Iq ⊗ Iq ⊗ · · · ⊗ Ai)

]
.

Therefore A(n) lies in the Bose–Mesner algebra ofH(n,A) for any association schemeA on q vertices.

More importantly, A(n) satisfies the recursion

A(n) = (Jq − Iq) ⊗ Iqn−1 + Iq ⊗ A(n − 1)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A(n − 1) Iqn−1 · · · Iqn−1

Iqn−1 A(n − 1) · · · Iqn−1

...
...

. . .
...

Iqn−1 Iqn−1 · · · A(n − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Here are some facts about A(n) that are useful in the next section, see [1,6] for details. The matrix

A(n) has n + 1 eigenvalues

θh(n) = (q − 1)(n − h) − h for h = 0, . . . , n.

The eigenspace of θh(n), denoted by Vh(n), has dimension (q − 1)h
(
n

h

)
. Note that θ0(n) = (q − 1)n is

the valency of the vertices in the Hamming graph H(n, q), so 1qn is an eigenvector of A(n) belonging
to the eigenvalue θ0(n). Since V0(n) has dimension one, V0(n) = span(1qn).

The next lemma exhibits the recursive nature of the eigenvectors of A(n) in Vh(n) when h � 1.

Given a column vector u of length qn, we use u[i] to denote the ith block of u of length qn−1.

Lemma 4.1. Let 1 � h � n. Then u ∈ Vh(n) if and only if

u[i] − u[j] ∈ Vh−1(n − 1) for i, j = 1, . . . , q, (6)

and

q∑
i=1

u[i] ∈ Vh(n − 1). (7)
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In particular, u ∈ V1(n) if and only if there exist a vector w ∈ V1(n − 1) and scalars a1, . . . , aq such that

a1 + · · · + aq = 0 and

u[i] = w + ai1qn−1 for i = 1, . . . , q.

Proof. From

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A(n − 1) Iqn−1 · · · Iqn−1

Iqn−1 A(n − 1) · · · Iqn−1

...
. . .

...
...

Iqn−1 Iqn−1 · · · A(n − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u[1]
u[2]

...

u[q]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= θh(n)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u[1]
u[2]

...

u[q]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

we get

(
A(n − 1) − Iqn−1

)
u[i] +

q∑
l=1

u[l] = θh(n)u[i] (8)

for i = 1, . . . , q. It follows that

(
A(n − 1) − Iqn−1

)
(u[i] − u[j]) = θh(n)(u[i] − u[j])

or

A(n − 1)(u[i] − u[j]) = θh−1(n − 1)(u[i] − u[j])
for i, j = 1, . . . , q and (6) follows.

We also get from (8) that

q∑
i=1

⎛
⎝(A(n − 1) − Iqn−1)u[i] +

q∑
l=1

u[l]
⎞
⎠ = θh(n)

q∑
i=1

u[i]

which leads to

A(n − 1)

q∑
i=1

u[i] = θh(n − 1)

q∑
i=1

u[i].

Hence (7) is true. The converse is straightforward.

Suppose u ∈ V1(n). From (6), there exist scalars a1, . . . , aq such that

1

q

q∑
j=1

(u[i] − u[j]) = ai1qn−1 for i = 1, . . . , q.

Set

w = 1

q

q∑
j=1

u[j].
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Then by (7), w ∈ V1(n − 1) and w + ai1qn−1 = u[i] holds for i = 1, . . . , q. Since

q∑
i=1

ai1qn−1 = 1

q

q∑
i,j=1

(u[i] − u[j]) = 0,

we see that a1 + · · · + aq = 0. The converse is again straightforward. �

5. When NW contains the Hamming graph

In this section, we assume W is a type II matrix and A(n) is the adjacency matrix of the Hamming

graph H(n, q) given in (5) for some n � 2 and q � 3.

Lemma 5.1. Suppose A(n) ∈ NW. If Ya,b ∈ V1(n), then either

Ya,b =
(
a11qn−1 a21qn−1 · · · aq1qn−1

)T
where a1 + a2 + · · · + aq = 0, or

Ya,b =
(
w w · · · w

)T
for some non-zero vector w ∈ V1(n − 1).

Proof. From Lemma 4.1, there existw ∈ V1(n−1) and scalars a1, . . . , aq satisfying a1 +· · ·+aq = 0

such that

Ya,b[i] = w + ai1qn−1 for i = 1, . . . , q. (9)

Now suppose w is not the zero vector and not all ai’s are zero, and we shall derive a contradiction.

By Theorem 2.1 and the symmetry of A(n),

ΘW (A(n))(a, b) = ΘW (A(n))(b, a)

so Yb,a ∈ V1(n). Similar to Ya,b, it follows from (6) that there exist scalars cij such that

Yb,a[i] − Yb,a[j] = Ya,b[i](−) − Ya,b[j](−) = cij1qn−1 (10)

for all i, j = 1, . . . , q.
Applying (10) to the rth and the sth blocks gives

1

w(l) + ar
− 1

w(l) + as
= crs for l = 1, . . . , qn−1. (11)

There exists r ∈ {1, . . . , q} such that ar 	= 0, and since a1 + · · · + aq = 0, there exists s ∈ {1, . . . , q}
such that as 	= ar . Then crs 	= 0 by (11). Hence, for l = 1, . . . , qn−1, w(l) is a root of the quadratic

x2 + (ar + as)x + aras + ar − as

crs
= 0. (12)

Since w ∈ V1(n − 1) is orthogonal to 1qn−1 and w 	= 0, there exist l and l′ such that w(l) 	= w(l′).
Then w(l) and w(l′) are the roots of the quadratic (12). This implies that w has two distinct entries,
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the sum of which is −(ar + as). Also, since swas arbitrary subject to as 	= ar , we see that the ai’s take

exactly two distinct values.

Letw have x entries equal
−(ar+as)

2
+α and (qn−1 −x) entries equal −(ar+as)

2
−α whereα 	= 0. Let

Ya,b have y blocks equalw+ ar1qn−1 , q− y blocks equalw+ as1qn−1 . Since Ya,b, Yb,a ∈ V1(n), we have

1TqnYa,b = (2y − q)qn−1 (ar − as)

2
+ (2x − qn−1)qα = 0,

1TqnYb,a = 1

( ar−as
2

)2 − α2

(
(2y − q)qn−1 (ar − as)

2
− (2x − qn−1)qα

)
= 0

These two equations give

x = qn−1

2
and y = q

2
.

This is a contradiction if q is odd.

Now assume q is even. Then
∑q

i=1 ai = q

2
ar + q

2
as = 0, so as = −ar . Assume, without loss of

generality, that the first
q

2
blocks of Ya,b are w + ar1qn−1 and the last

q

2
blocks are w − ar1qn−1 .

Since dim V1(n) = (q − 1)n > 1 and {Yb,c : c ∈ Ω} is a basis of C
qn , there exists c 	= a such that

Yb,c ∈ V1(n). From (6), there exist scalars bij such that

Yb,c[i] − Yb,c[j] = bij1qn−1 for i, j = 1, . . . , q.

There exists k ∈ {0, 1 . . . , n} such that Ya,c ∈ Vk(n). Then by (6), we have

Ya,c[i] − Ya,c[j] ∈ Vk−1(n − 1).

On the other hand,

Ya,c[i] − Ya,c[j] =
{
bij(w + ar1qn−1) if 1 � i, j � q

2
,

bij(w − ar1qn−1) if
q

2
+ 1 � i, j � q.

Since w and ar1qn−1 are non-zero vectors in distinct eigenspaces of A(n − 1), we have bij = 0 for

1 � i, j � q

2
and for

q

2
+ 1 � i, j � q. Therefore the first

q

2
blocks of Yb,c are identical and the last

q

2
blocks of Yb,c are identical. If we let u = Yb,c[1] + Yb,c[q], then

Yb,c[i] =
⎧⎨
⎩

b1q
2
1qn−1 + 1

2
u if i = 1, . . . , q

2
,

− b1q
2
1qn−1 + 1

2
u if i = q

2
+ 1, . . . , q.

By (7),

q∑
i=1

Yb,c[i] = q

2
u ∈ V1(n − 1).

So if Yb,c ∈ V1(n), then it lies in the span of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1qn−1

...

1qn−1

−1qn−1

...

−1qn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∪

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u

...

u

u

...

u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: u ∈ V1(n − 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
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which has dimension at most 1 + (q − 1)(n − 1). The set {Yb,c : c ∈ Ω} is a basis of C
qn , so

there should be dim V1(n) = (q − 1)n eigenvectors of the form Yb,c in V1(n). But when q � 3,

(q − 1)n > 1 + (q − 1)(n − 1). This is a contradiction. �

Lemma 5.2. If A(n) ∈ NW, then

Iq ⊗ Jqn−1 ∈ NW .

Proof. Suppose Ya,b ∈ V0(n). Then Ya,b[i] ∈ span(1qn−1) for i = 1, . . . , q, and Ya,b is an eigenvector

of Iq ⊗ Jqn−1 belonging to the eigenvalue qn−1.

Suppose Ya,b ∈ V1(n). By the previous lemma, either all of Ya,b[1], . . . , Ya,b[q] lie in span(1qn−1)
or they all lie in V1(n − 1). In the former case, Ya,b is an eigenvector of Iq ⊗ Jqn−1 belonging to

the eigenvalue qn−1. In the latter case, Ya,b is an eigenvector of Iq ⊗ Jqn−1 belonging to the eigen-

value 0.

Suppose Ya,b ∈ Vh(n) for some h > 1. It follows from (6) that

Jqn−1(Ya,b[i] − Ya,b[j]) = 0

for all 1 � i, j � q. From (7), we have

q∑
i=1

Jqn−1Ya,b[i] = 0.

These two equations give

Jqn−1Ya,b[i] = 0 for i = 1, . . . , q.

Therefore Ya,b is an eigenvector of Iq ⊗ Jqn−1 belonging to the eigenvalue 0. �

Theorem 5.3. If A(n) ∈ NW, then W is type II equivalent to W1 ⊗ · · · ⊗ Wn and

NW = NW1
⊗ · · · ⊗ NWn

,

where W1, . . . ,Wn are q × q type II matrices.

Proof. By Lemma 5.2, we have Iq ⊗ Jqn−1 ∈ NW . Then

Jq ⊗ Iqn−1 = A(n) −
(
A(n) ◦ (Iq ⊗ Jqn−1)

)
+ Iqn

also belongs to NW .

Theorem 3.5 tells us that W is type II equivalent to W1 ⊗ V for some q × q type II matrix W1 and

qn−1 × qn−1 type II matrix V , and

NW = NW1
⊗ NV .

Observe that

A(n) ◦
(
Iq ⊗ Jqn−1

)
= Iq ⊗ A(n − 1) ∈ NW ,

so A(n − 1) ∈ NV . The theorem follows by induction. �
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We now give Theorem 1.3 of [11] as an immediate consequence of this theorem and the fact that

the unique 3 × 3 type II matrix, up to type II equivalence, is

⎛
⎜⎜⎜⎝
1 1 1

1 ω ω2

1 ω2 ω

⎞
⎟⎟⎟⎠ , (13)

where ω is a primitive cube root of unity.

Corollary 5.4. IfH(n, 3) ⊆ NW, then W is type II equivalent to a character table of Zn
3.

Theorem5.5. LetA be an association scheme on q � 3 vertices. Then, for n � 2, the Bose–Mesner algebra

ofH(n,A) is not the Nomura algebra of a type II matrix.

Proof. Suppose that the Bose–Mesner algebra of H(n,A) coincides NW for some type II matrix W .

Since A(n) belongs to the span of H(n,A), it follows from Theorem 5.3 that

NW = NW1
⊗ · · · ⊗ NWn

,

where W1, . . . ,Wn are q × q type II matrices. There exists a Schur idempotent A1 	= I of NW1
, and

A1⊗I⊗· · ·⊗I belongs to the association schemedefined byNW . This forcesA1⊗I⊗· · ·⊗I ∈ H(n,A)
which is absurd. �

It is known that if A is formally self-dual, then so is H(n,A) [5]. The corollary gives plenty of

examples of formally self-dual association schemes that are not the Nomura algebras of type II matri-

ces.

Corollary 5.6. The Bose–Mesner algebra of H(n, q), n � 2 and q � 3, is not the Nomura algebra of a

type II matrix.

When n = 1,H(1, q) is the trivial scheme on q vertices. It follows from Theorem 6.4 of [2] that the

Nomura algebra of the Pottsmodel of size q, for q � 5, is trivial. The Nomura algebra of the 3×3 type II

matrix in (13) has dimension three. The Nomura algebra of a 4 × 4 type II matrix has dimension at

least three [8]. So the Bose–Mesner algebra ofH(1, q) is the Nomura algebra of a type II matrix exactly

when q � 5.

The Bose–Mesner algebra of H(2, 2) is the Nomura algebra of

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

1 1 −1 −1

1 −1 α −α

1 −1 −α α

⎞
⎟⎟⎟⎟⎟⎟⎠

when α is not a fourth root of unity [8].
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