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Many evolving treatments for cancer patients are based on the targeted delivery of therapeutic cargoes to and
into cancer cells. The advent of monoclonal antibodies and the use of peptide hormones, growth factors and
cytokines have historically provided a spectrum of ligands needed to selectively target tumor-associated
antigens on cancer cells. However, issues linked to the size, cost and immunogenicity of protein-based ligands
have led to the search for alternate ligand families. The advent of short synthetic oligonucleotide ligands
known as aptamers now provides a simple strategy to select for membrane-impermeant aptamers tailored to
precisely target internalized surface markers present on cancer cells. Here we described how 25-base long,
synthetic single-stranded DNA aptamers were derived to bind to known internalized tumor markers such as
CD33, CEA, MUC1 and Tn antigens and are imported through these surface portals into cancer cells. The key
consequence of using internalized aptamers is their ability to accumulate inside the cells, thus routing their
therapeutic cargoes to intracellular sites relevant to their action. Internalized aptamers are discussed in the
context of how such ligands have been used to create a range of guided therapeutic agents ranging from drug-
based conjugates up to targeted nanoparticles.
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1. Introduction

Many classes of oligonucleotides such as siRNAs, microRNAs and
antisense oligonucleotides represent potential therapeutic agents in
view of their ability to selectively block the expression or transcrip-
tion of genes and mRNAs inside diseased cells. Unfortunately, their
anionic character makes them cell-impermeant and thus will not
reach their intracellular targets unless they are conjugated or com-
plexed to a cell-penetrating peptide, a polymeric vector, a protein
ligand (hormones, cytokines, and monoclonal antibodies), a nano-
particle or a liposome favoring their import into cells or are delivered
using a viral vector. A more recent and potentially simpler solution
to this challenge is to derive short synthetic oligonucleotides known
as DNA and RNA aptamers which themselves specifically bind to
internalized surface markers (cellular portals) and thus can act as
delivery vehicles for therapeutic oligonucleotides and other thera-
peutic cargoes. This review will provide a basic description of the
principles underlying the concept and discovery of aptamers with a
particular emphasis on targeting known internalized tumor cell sur-
face markers.
Fig. 1. Isolation of aptamers using the SELEX procedure. A combinatorial library of DNA oligon
composed of a random oligonucleotide element sequence (typically 20 to 50 nucleotides
of target-binding library elements by PCR. The synthetic DNA oligonucleotide pool is directl
(step 1). In the case of an RNA aptamer selection, a random library of RNA aptamers is initiall
5′ constant sequence includes a T7 promoter region. Aptamers in each library will adopt diffe
oligonucleotides able to bind to a target immobilized on beads or other solid supports (step
emphasize the presence of bulges and hairpins in such structures. Following a washing ste
amplified by PCR using the constant flanking sequences acting as primer sites (step 4). Th
(lower target concentration for example) until tight-binding aptamers for a given target ar
1.1. The SELEX procedure: a rapid strategy to identify short single-strand
synthetic oligonucleotides (aptamers) that recognize specific targets

Cancer cells typically harbor multiple oncogenic mutations leading
to the aberrant display and/or overexpression of molecular signatures
on their surface. Classical approaches to target such signatures have
madeuse of peptides, proteins andmainly antibodies. However, recent
studies suggest that oligonucleotides known as aptamers can be
utilized in the same capacity. Aptamers are short single-stranded
nucleic acid oligomers (ssDNA or RNA) that can form specific and
complex three-dimensional structures which can bind with high
affinity to specific targets. The term ‘aptamer’ is derived from the Latin
word aptus meaning “to fit” [1]. Two groups reported a PCR-based
strategy termed SELEX (an acronym for Systematic Evolution of Ligands
by EXponential enrichment; [2]) to derive aptamers that specifically
recognized targets ranging from small molecules to large proteins
(Refs. [1,2]; Fig. 1). SELEX is an iterative panning procedure where
combinatorial libraries composed of a random oligonucleotide ele-
ment flanked by constant primer regions are allowed to bind to an
immobilized target. The bound oligonucleotides are then recovered
ucleotides is chemically synthesized using standard solid-phase methods. The library is
in length) flanked by two distinct constant sequences for the subsequent enrichment
y mixed with the immobilized target for the purpose of retaining bound DNA aptamers
y derived from a double-stranded DNA library by in vitro transcription, in which case the
rent three-dimensional structures based on their random sequence element with some
1). The crystal structure of a thrombin-binding RNA aptamer [4] is displayed (center) to
p (step 2), the bound oligonucleotides are eluted from the solid support (step 3) and
e selection cycle is repeated (step 5) typically 10–15 times with increasing stringency
e identified, sequenced and synthesized for subsequent analyses.
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and amplified by PCR to generate a sub-library of aptamers able to
recognize a given target. The binding/amplification cycle is then re-
peated several times on enriched pools of aptamers until one recovers
ssDNA or RNA aptamers displaying Kds in the nanomolar to picomolar
range for their respective targets. So far, thrombin represents the only
protein that does not normally bind nucleic acids and for which crys-
tals structures of its complexes with aptamers have been obtained
[3,4]. Interestingly, the two available structures (thrombin complexed
to a DNA and a RNA aptamer) indicate that each aptamer binds to a
distinct region on the protein located on opposite sides of each other
on the molecule (Fig. 2). This finding suggests that the process of
identifying aptamers using the SELEX procedure does not necessarily
favor a unique epitope on a given target. Specifically, the DNA aptamer
was shown to contact a region of thrombin that normally binds to
fibrinogen (exosite 1), while the RNA aptamer binds to a domain
associated with heparin-binding (exosite 2) [5]. Interactions between
these aptamers and thrombin are mostly electrostatic since both of
the exosites are positively charged interfaces [3,5,6]. These structural
features highlight the fact that aptamers recognize their targetsmostly
through electrostatic interactions in contrast to dominant hydropho-
bic interactions typically observed in proteins. It also suggests that the
number of surface elements on a given target that could serve as
recognized interfaces for aptamers isfinite and potentially predictable.

1.2. RNA versus DNA aptamers

A large number of RNA aptamers have now been reported against
different targets. The versatility of RNAmolecules as functional ligands
is well documented in regards to the frequent occurrence of modified
nucleotides within their structure, their base pairing properties and
their tendency to form intricate three-dimensional structures [7]. For
instance, all natural riboswitches (which bind to small molecules) are
RNA molecules [8]. The derivation and use of RNA aptamers does pres-
ent some important practical challenges. For instance, the SELEXprocess
requires the synthesis of randomoligonucleotide libraries and thechem-
ical synthesis of random RNA oligonucleotide pools remains expensive.
Therefore, an in vitro transcription step is introduced in the SELEX pro-
cedure to obtain the initial RNApool. Secondly, RNAoligonucleotides are
more susceptible to hydrolysis than their DNA counterparts and thus
their manipulation requires RNAse-free conditions.
Fig. 2. Overlapped crystal structures of a RNA and a DNA aptamer bound to the protein throm
on thrombin (grey-colored contour surface). The 25-nucleotide long RNA aptamer Toggle-
while the 15-base long DNA aptamer [blue, bottom] bound near the thrombin exosite 1 (fib
charged surfaces.
DNA tertiary structures have been observed in nature [9]. These
structures, rich in guanine, are found in telomeres and promoter
regions [10,11]. Guanine-rich sequences form various G-quadruplexes
that appear to be major structural elements found in DNA aptamers as
exemplified in the thrombin DNA aptamer (Fig. 2). Examples of DNA
aptamers have been reported and include an anti-HIV aptamer [12]
and the anti-nucleolin aptamer AS1411 [13]. Catalytically-active DNA
aptamers have also been derived using the SELEX approach [14,15].
The selection procedure for DNA aptamers is simpler than for RNA
aptamers. Specifically, inexpensive pools (libraries) of DNA oligonu-
cleotides can be chemically synthesized and contain only single-
stranded sequences as opposed to the initial double-stranded pool of
DNA sequences required for the in vitro transcription step used for
RNA-based aptamer selection. Furthermore, reverse transcription is
not required and an asymmetric PCR step is sufficient to recover the
sub-library of ligand-binding aptamers needed to proceed to the next
round of selection. In summary, the advantages of DNA aptamers stem
from the simpler enrichment procedure involved and the lower cost
and stability of thefinal aptamerswhile the benefit of selecting for RNA
aptamers is the higher level of structural diversity possible with RNA
templates.

2. Aptamers can serve as intracellular delivery vehicles via their
binding to known cancer-associated surface antigens

The main purpose of this review is to highlight the potential of
membrane-impermeant oligonucleotides to serve as intracellular de-
livery agents if they can be engineered to target internalized surface
markers on cancer cells. The best described surface determinant used
for this purpose (Table 1) has been the prostate-specific membrane
antigen (PSMA), a membrane protein overexpressed on the surface of
prostate cancer cells. PSMA is internalized by such cells via clathrin-
coated pits [16–19]. Fromadrug delivery perspective, antibody studies
have shown that the rate of PSMA internalizationwas promoted by the
binding of an antibody to its extracellular domain [19]. The PSMA
antigen is also differentially expressed on prostate cancer cells with
normal prostate cells displaying an alternatively spliced cytosolic form
of the protein while malignant cells express the full length surface
protein [20]. The extracellular domain of PSMA served as a target for
developing the first RNA aptamers known to bind a tumor-associated
bin [3,4]. The SELEX process has identified aptamers that interact with two distinct sites
25t [purple, top] was found to bind near exosite 2 (heparin-binding site on thrombin)
rinogen-binding domain). Both interacting interfaces on thrombin displayed positively



Table 1
Examples of aptamers and their cargoes directed at internalized surface markers on
cancer cells.

Reference Aptamer Internalized target Cargoes

[109] sgc8c PTK7 Viral capsid

Drugs
[64] A10 PSMA Doxorubicin
[63] sgc8c PTK7 Doxorubicin
[62] 5TR1 MUC1 tandem repeat Chlorin e6
[62] 5TRG2 Tn antigen Chlorin e6
[62] GalNAc3 N-acetylgalactosamine Chlorin e6

Toxins
[67] A9 PSMA Gelonin

Nanostructures
[70] sgc8c PTK7 Nanorod
[72–75,110] A10 PSMA Nanoparticle
[111] AS1411 Nucleolin Nanoparticle
[112] A9 PSMA Quantum dot
[76] A10 PSMA Quantum dot–doxorubicin

Radioisotopes
[68] TTA1 Tenascin-C 99mTC
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antigen [18]. The selective delivery and uptake properties of such
aptamers by prostate cancer cells led to the subsequent design of an
RNA chimera incorporating a PSMA-specific aptamer (delivery vehicle)
and a therapeutic siRNA that targets Polo-like kinase 1 (PLK1) and
BCL2. This RNA aptamer-siRNA construct was shown to cause tumor
regression in a xenograft model of prostate cancer [21]. These findings
suggested that by choosing appropriate internalized surface markers
on cancer cells, one may be able to develop aptamers that can serve
as both cell targeting agents and intracellular delivery vehicles. We
will now focus our discussion on recent evidence from our labora-
tory suggesting that DNA aptamers can indeed be generated against
membrane-bound tumor markers that are recycled inside cells.

2.1. CD33

The CD33 antigen is a 67-kDa type 1 transmembrane glycoprotein
that belongs to the superfamily of sialic acid-binding immunoglob-
ulin-related lectins (siglecs; siglec-3) [22]. CD33 is expressed on early
multilineage hematopoietic progenitors, myelomonocytic precursors,
as well as more mature myeloid cells, monocytes, macrophages and
dendritic cells [23–25]. Most adult and pediatric acute myeloid leuke-
mia (AML) cases as well as 15–25% of acute lymphoblastic leukemia
(ALL) cases are CD33-positive [26–29]. The presence of CD33 on AML
blasts has led to the development of monoclonal antibody treatments
that have been approved for AML patients that have relapsed. One of
these anti-CD33 antibodies was conjugated to calicheamicin, a potent
cytotoxic antibiotic that cleaves double-stranded DNA at unique sites.
The resulting antibody–drug conjugate is commonly knownasGemtu-
zumab ozogamicin orMylotarg (Wyeth Laboratories, PA, USA) [30,31].
Antibody-bound CD33 has been shown to be rapidly internalized by
myeloid cells, a process that is largely modulated by its cytoplasmic
immunoreceptor tyrosine-based inhibitory motifs [32,33]. A 26% re-
sponse rate has been observed for AML patients treated in first re-
lapse with Gemtuzumab ozogamicin as a monotherapy with a median
disease-free-survival of 6·4 months in patients [34]. Surprisingly,
there is nomajor loss of surface CD33 expression on leukemic blasts at
relapse after Gemtuzumab treatment suggesting that alternate
therapies targeting CD33-positive cell populations would be feasible
and safe [35,36]. This finding would suggest the development and use
of smaller and less immunogenic CD33-specific aptamers carrying less
toxic cargoes than calicheamicin (hepatotoxicity) into CD33+ cells.
As a proof-of-concept, our group has recently developed 25-base long
synthetic DNA aptamers against a recombinant form of CD33 to
examine their ability to be internalized by myeloid (CD33+) cell lines.
As shown by flow cytometry and confocal microscopy (Fig. 3), one
such CD33-specific Cy5-labeled DNA aptamer binds to (4 °C) and is
internalized (37 °C) by CD33+ cells within 90 min of exposing cells to
this oligonucleotide. In contrast, no binding or cellular uptake was
observed for a control aptamer (25-base long repeat of the sequence
ATGC) identically modified with a Cy5 probe exposed to the same set
of cell lines. Finally, neither aptamers bound to the CD33− cell line
LP1. The dissociation constant (Kd) of this monomeric CD33-specific
aptamer was calculated to be 17.3 nM suggesting that it is only ∼10
fold less avid for its target than modified forms of the established
bivalent-binding CD33-specific monoclonal antibody HuM195 [37].
These results suggest that DNA aptamers evolved to bind to the
antigen CD33 can mimic the properties of anti-CD33 antibodies in
terms of binding and being imported into CD33-positive cells.

2.2. Carcinoembryonic antigen (CEA)

Thehumancarcinoembryonic antigen (CEA) is a 180 kDaGPI-linked
cell glycoprotein and a member of an immunoglobulin cell adhesion
molecule superfamily (CEACAMs). CEA was originally identified as a
surfacemarker on adenocarcinomas of the humangastrointestinal tract
as well as on cells of the fetal digestive system [38]. Other CEACAM
members have since been identified in an array of tumors including
breast, lung, pancreas, stomach, thyroid, ovaries and melanomas [39].
CEA is aberrantly overexpressed on the surface of colorectal tumor
cells in relation to normal colonic cells [40]. As the tumor progresses
and invades the basal lamina, elevated levels of CEA can be detected in
sera. For this reason, CEA has been used as a serum marker for recur-
rence of colorectal cancer despite its low sensitivity and specificity
[41]. CEA has often being referred to as a non-internalizing or as a shed
antigen, yet studies have shown that anti-CEA antibodies are endo-
cytosed at a rate consistent with the metabolic turnover of CEA [42–
45]. Anti-CEA antibody targeted therapies have been reported to date
[46,47]. As in the case of antibody therapies aimed at solid tumors,
poor tumor penetration remains an issue and in the specific cases
of high affinity CEA antibodies, their rapid clearance due by free cir-
culating antigen [48,49]. In order to assess the potential of CEA as an
internalizing antigen on cancer cells, DNA aptamers were developed
specifically to recognize a recombinant form of the N-terminal Ig
domain of human CEA using the SELEX approach. The binding of one
such 25-base long DNA aptamer (and a control DNA aptamer) to the
mouse colon adenocarcinoma cell line MC-38 (CEA−) and its related
cell line transduced to express the human CEA gene, MC-38.cea
(CEA+) [50]wasmonitored byflow cytometry. Specifically, these cells
were incubated with a Cy5 conjugated CEA-specific DNA aptamer at
4 °C (surface binding only) and at 37 °C (binding and internalization).
As shown in Fig. 4, MC-38 (CEA−) MC38 cells showed no significant
binding of the CEA-specific aptamer at both temperatures (Fig. 4B).
In contrast, the CEA-specific aptamer strongly associated with the
CEA-positive cell line MC-38.cea, with a significant increase in mean
fluorescence intensity being observed after 2 h at 37 °C in relation
to 4 °C (Fig. 4B). The higher fluorescence signal observed at 37 °C is
attributed to the CEA aptamer being internalized during this time
period. The irrelevant Cy5-labeled DNA aptamer (control; ATGC
repeats) did not bind to either cell lines at both temperatures. Thus,
CEA may represent a powerful portal for aptamer-directed conjugates
to selectively reach and be imported into colon cancer cells.

2.3. CA15-3 antigen, MUC1 peptides and Tn antigens

The mucin MUC1 is a membrane glycoprotein that is highly ex-
pressed and is aberrantly glycosylated [shortened O-glycans struc-
tures] in greater than 90% of all primary and metastatic breast cancers
[51–54]. The mucin MUC1 extracellular domain largely consists of 30



Fig. 3. A CD33-specific DNA aptamer binds to and is internalized by CD33+ myeloid leukemia cell lines. FACS histograms (top) and fluorescence confocal images (bottom) of CD33+

myeloid leukemia cell lines HL60, OCI-AML5 and THP1 exposed to a 25-base long synthetic, Cy5-labeled CD33-specific DNA aptamer at 4 °C and 37 °C for 90 min. The flow cytometry
profiles indicate that the CD33-specific DNA aptamer binds specifically to CD33+ cells at 4 °C (green curves) with increased fluorescence intensities being observed at 37 °C (red
curves) as a consequence of internalization. In contrast, the labeled aptamer did not recognize the CD33− myeloma cell line LP1. A 25-base long Cy5-labeled control DNA aptamer
composed of ATGC repeats displayed fluorescence profiles at 4 °C (black curves) and 37 °C (blue curves) that were comparable to the autofluorescence profiles (grey areas) of
unstained cells.
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to 100 copies of a 20-amino acid long tandem repeat [55]. Serine
and threonine residues within the tandem repeat represent sites of
O-glycosylation. The pattern of O-glycosylation at such sites is altered
in cancer cells giving rise to truncated short sugar chains known as
the T, Tn and sialyl-Tn antigens [56,57] as well as exposing antigenic
sites on the peptide chain itself. MUC1 peptide domains and its asso-
ciated truncated carbohydrate epitopes are clinically referred to as
the CA15-3 antigen. Increasing serum levels of the CA15-3 antigen
correlate with poor prognosis. In terms of drug delivery, mucin MUC1
glycoforms are endocytosed and recycled by cells in order to com-
plete their glycosylation pattern prior to returning to the cell surface
[58–61]. Any ligands binding to such structures will thus be imported
into MUC1+ cells and in particular through Golgi compartments. Our
group has recently derived short 25-base long, synthetic DNA apta-
mers that specifically recognize either the MUC1 peptide backbone or
its Tn antigens (GalNAc sugars linked to serine and threonine hydroxyl
Fig. 4. A CEA-specific DNA aptamer binds to and is imported into colon carcinoma cells
expressing human CEA. FACS histograms confirmed the binding (4 °C, green curves)
and internalization (37 °C, red curves) of a 25-base long synthetic, Cy5-labeled CEA-
specific DNA aptamer binding to the human CEA+ MC38.cea cell line after a 2-hour
incubation period. No binding or internalization was observed for the Cy5 aptamer to
the parent CEA− MC38 cell line or for a control aptamer (as described in Fig. 3; black
(4 °C) and blue (37 °C) curves) to both cell lines.
side chains on the MUC1 peptide tandem repeat) on epithelial cancer
cells with binding affinities (Kds) for their targets ranging from 18 to
85 nM [62]. Confocalmicroscopy and flow cytometry studies [62] have
shown that these labeled aptamers circulate from the cell surface and
into endosomal and Golgi compartments upon binding to under-
glycosylated mucins (Fig. 5). These DNA aptamers were subsequently
derivatized at their 5′ end with the photodynamic therapy agent
chlorin e6 and shown to deliver chlorin e6 to cellular compartments
and cause cytotoxicity at concentrations 2- to 3-orders of magnitude
lower than the concentration needed for the free drug [62].
3. Aptamer-guided delivery of payloads into cancer cells

In theory, aptamers represent simpler antibody-like mimics in
terms of their ability to recognize tumor markers. Therapeutic agents
can be directly coupled to aptamers or packaged into particles modi-
fied with aptamers in order to exploit recycling pathways associated
with internalized cancer markers. However, the optimal efficacy of an
aptamer-based intracellular delivery agent will depend in part on the
recycling properties of their target and the possible induction of a
receptor-mediated internalization event upon binding to a surface
marker. In addition, the intracellular routing of aptamers is influenced
by the abundance of the cell surface target itself, the macroscopic
nature of the aptamer conjugate being delivered (size and nature of
the cargo) and the dominant endocytic pathways associated with a
given tumor cell type. The known cellular import mechanisms that
lead to the vesicular trafficking of ligands bound to cell surface recep-
tors are illustrated in Fig. 6 and include (1) macropinocytosis and
(2) phagocytosis, distinguished by the size of their endocytic vesicles,
(3) clathrin-mediated, (4) caveolae (caveolin-based lipid rafts) and
(5) clathrin-independent pathways. Recently designed aptamer-
cargoes complexes do exploit import pathways, although few studies
have explored theirmode of cellular delivery. Most reported examples
of internalized aptamer conjugates (Table 1) have either made use of
the RNA aptamers A9 and A10 directed at the prostate-specific mem-
brane antigen (PSMA) or the DNA aptamer sgc8c recognizing the tyro-
sine kinase 7 (PTK7).

3.1. Aptamer–drug conjugates

Aptamer–drug conjugates have been constructed by chemically
coupling a chemotherapeutic drug to the aptamer via a linker [63] or



Fig. 5. Proposed mechanisms of cellular entry and recycling of DNA aptamers directed at aberrantly glycosylated mucin MUC1 present on the surface of epithelial cancer cells.
Aptamers bind tomembrane-bound, underglycosylated MUC1mucin (branched structures). These mucin structures are recycled from the cell surface into endosomes that are either
sent back to the cell surface or routed to the Golgi network where they are further glycosylated before returning to the cell surface.
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by intercalating the drug into the aptamer folded structure creating
a physical complex [64]. The drug is then imported into target cells
while reducing its toxicity towards other cells (oligonucleotides in-
cluding aptamers are cell-impermeant). Drugs can be conjugated to
aptamers during solid-phase synthesis or post-synthesis by incor-
porating an amino or thiol group at one end of the oligonucleotide
during their assembly. For instance, doxorubicin, an anthracycline
used in the treatment of various cancers, has been coupled via an acid-
labile hydrazone linker [65] to a 41-nucleotide long tyrosine kinase 7
PTK7-specific DNA aptamer (sgc8c) to release the drug in endosomes.
This aptamer–drug conjugates has been shown to prevent the non-
specific internalization of the drug as well as decrease its cellular toxi-
city towards non-target cells. The conjugate is selectively internalized
by CCFR-CEM cells (T-cell acute lymphoblastic leukemia cells) with no
apparent reduction in aptamer affinity for its target [63]. Asmentioned
in Section 2.3, DNA aptamers targeting known tumor-associated anti-
gens such as mucin MUC1 peptides and mucin Tn antigens have also
been modified with a photodynamic therapy agent chlorin e6 and de-
livered to epithelial cancer cells. These aptamer–chlorin e6 conjugates
exhibited a N500-fold increase in toxicity upon light activation as com-
pared to the drug alone and were not cytotoxic to cells lacking these
mucin markers [62].
3.2. Aptamer–protein conjugates

Previous work with antibody–toxin conjugates has suggested that
the most important determinant of cellular cytotoxicity of immuno-
toxins is the efficiency of their import into cells [66]. The coupling of
aptamers to cytotoxic as well as therapeutic proteins can facilitate
them reaching their intracellular substrates. A case in point is the anti-
PSMA RNA aptamer (A9) conjugated to gelonin, a ribosome-inacti-
vating protein toxin. As mentioned in Section 2, the prostate-specific
membrane antigen (PSMA) is internalized by prostate cancer cells
and thus provides a portal for the directed entry of the cytotoxic PSMA-
specific aptamer-gelonin construct into such cells. Gelonin is an en-
zyme that inactivates ribosomes when deposited in the cytosol of
intoxicated cells. The construct displayed a 600-fold increase in toxi-
city towards PSMA+ LNCaP cells as compared to non-PSMA-expres-
sing PC3 cells and ∼180-fold increase in toxicity towards LNCaP cells
relative to free gelonin [67].

3.3. Aptamer–radionuclide conjugates

Few aptamers to date have been modified to incorporate radio-
nuclides or metal chelators with a view to image or kill cancer cells



Fig. 6. Possible endocytic pathways taken by aptamer-cargoes. The nature and size of a cargo, the membrane-cycling property and abundance of a targeted surface portal on a given
cell type as well as the number of portal-directed aptamers attached to a cargo (valency) can influence which import mechanism(s) may dominate in routing an aptamer-containing
conjugate into cells. Large multivalent aptamer-targeted nanoparticles, polymer aggregates and liposomes would favor actin-filament-mediated uptake mechanisms such as
macropinocytosis (1) or phagocytosis (2) while smaller monomeric aptamer conjugates involving a drug, a radionuclide, an siRNA or a protein as examples of payloads may enter
cells via receptor-mediated events involving clathrin-dependent (3), caveolin-dependent (4) and/or clathrin-independent (5) endocytic pathways.
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in vivo. Hicke et al. [68] have reported the introduction of the metal
chelator mercapto-acetyl diglycine (MAG2) at the 5′ end of TTA1, a
Tenascin-C-specific aptamer. TTA1 is a 40-nucleotide long RNA apta-
mer that incorporates 2-fluoro-pyrimidines and binds to the protein
Tenascin-Cwith a Kd of 5 nM [69]. Tenascin is a large, hexameric glyco-
protein associated with the extracellular matrix and is expressed
during tissue remodeling events linked to angiogenesis and tumor
growth. The MAG2-containing TTA1 aptamer chelates 99mTc and was
used to determine its biodistribution in vivo in the context of nude
mice harboring a human glioblastoma U251 xenograft. 99mTc-TTA1
showed rapid blood clearance and tumor uptake, reaching a tumor-to-
blood ratio of 50 within 3 h. In addition, good scintigraphy images of a
breast and glioblastoma tumor xenograft in nude mice were recorded
using this labeled aptamer [68]. The success of this particular chelator–
aptamer complex also highlighted the empirical nature of the design
process as an alternate choice of a chelator and radionuclide does
result in significant changes in the uptake and clearance patterns of
this aptamer in vivo. Nevertheless, the use of radiolabeled aptamers for
imaging purposes in vivo is feasible.

3.4. Aptamer–nanostructure conjugates

The recent creation of aptamer-conjugated nanostructures sug-
gests that they may represent a promising class of new agents for
targeted cancer imaging and therapy. These targeted structures
include nanorods, quantum dots, as well as soft and hard nanoparti-
cles. Nanorods for example, can be viewed as an alternate scaffold for
assembling and immobilizing aptamers to nanomaterials in order to
generate multivalent conjugates. Huang and colleagues were able to
show that up to 80 aptamers could be covalently linked to the surface
of Au–Ag nanorods via a 5′ end thiol group introduced into the struc-
ture of the fluorescein-labeled DNA aptamer sgc8c (Section 3.1). The
avidity of the resulting aptamer-nanorods towards the tyrosine kinase
7 PTK7 transmembrane protein on CCFR-CEM cells was shown to
be 26-fold higher than the affinity of the unconjugated fluorescein-
labeled aptamer sgc8c for the same cells. The fluorescence intensity
signal observed by flow cytometry was also 300-fold greater for the
aptamer-nanorods labeled cells than the signals observed for CCFR-
CEM cells labeled with the unconjugated fluorescein-labeled aptamer
[70].

RNA aptamers directed at the prostate-specific membrane antigen
(PSMA) have been used in the design of numerous nanostructures.
Streptavidin-coated quantum dots (QD; semiconductor nanocrystals)
have also been decorated with a biotinylated, 70-nucleotide long
PSMA-specific RNA aptamer termed A9 and the resulting conjugates
used for cellular imaging. Specifically, the photostability and small size
of quantum dots was shown to improve the visualization of PSMA-
positive cells (LNCaP) as adherent cell monolayers, in suspension pre-
parations and embedded in a collagen matrix [71]. Aptamer particles
have also been designed to serve the dual purpose of acting as a tumor-
targeted agent and as a particle capable of controlled drug release.
For example, the FITC-labeled PSMA-specific RNA aptamer A10 was
coupled to a poly(lactic acid)-block-polyethylene glycol (PEG) co-
polymer nanoparticles that have been derivatizedwith a terminal car-
boxylic acid functional group (PLA-PEG-COOH). Rhodamine-labeled
dextran was encapsulated (as a model drug) into these polymeric
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particles. The nanoparticles including their cargo were selectively im-
ported into PSMA-positive LNCaP cells as confirmed by fluorescence
microscopy [72]. Farokhzad et al. [73] subsequently loaded docetaxel,
a chemotherapeutic drug into the aptamer-conjugated nanoparti-
cles and injected a single intratumoral dose of the construct in nude
mice harboring a LNCaP xenograft. Significant tumor regression was
observed with no apparent immunogenicity. More recently, the same
aptamer–nanoparticle conjugates were loaded with docetaxel and
doxorubicin [74] or with cisplatin although the overall improvement
in survival in the treated tumor-bearing animals was modest in rela-
tion to the non-aptamer-targeted drug loaded nanoparticles [75].
Finally, the creation of a conjugate composed of the PSMA-specific
RNA aptamer A10–doxorubicin–quantum dot was recently reported
by Jon and Farokhzad groups [76]. Again, this nanostructure is im-
ported into PSMA+ LNCaP prostate cancer cells by PSMA-mediated
endocytosis. The construct offers the dual advantages of specifically
delivering doxorubicin intercalated into the A10 aptamer structure
to prostate cancer cells aswell as imaging the delivery process through
a FRET event arising from interactions of the released doxorubicin and
the QD itself [76].

To date, liposomes remain one of themost successful drug delivery
systems [77]. Liposome formulations of many of the most frequently
prescribed chemotherapeutic drugs have been approved and are
currently used in clinical practice [78]. Liposomes have been shown
to increase the circulation time of aptamers while these aptamers aid
in targeting liposomes to their desired site of action [73,79]. Liposo-
mal drug delivery strategies have focused on developing long-circu-
lating liposomes that target areas of increased vascular permeability
via the enhanced permeation and retention (EPR) effect [80]. The EPR
effect however remains a passive tumor localization strategy that can
lead to detrimental systemic consequences and suboptimal antitumor
efficacy [81,82]. Aptamer-labeled liposomes can thus increase the
delivery of encapsulated therapeutic agents to cancer cells.

3.5. Challenges facing the in vivo use of aptamers

The concept of using aptamers as therapeutic agents was initially
tested by selecting aptamers to thrombin with a view to preventing
blood clotting [83]. The rationale for creating thrombin-selective apta-
mers was to generate heparin mimics that did not form complexes
with platelet factor 4 which reacts with platelet-activating antibodies
leading to heparin-induced thrombocytopenia [84]. LarryGold′s group
selected aptamers against the targeted HIV reverse transcriptase [85].
Since virus transcriptases normally bind nucleic acids, they repres-
ent excellent aptamer targets. Other parts of the virus are also being
targeted by aptamers, some of which are DNA aptamers [86,87]. In
spite of their large therapeutic potential, aptamer drugs are still not
a commonplace treatment mostly due to the previously mentioned
challenges associated with translating small scale in vitro laboratory
experiments into medical practice. Currently, the only aptamer ap-
proved by the FDA is Macugen (OSI Pharmaceuticals and Pfizer),
an aptamer used to treat age-related macular degeneration (AMD).
Macugen is a PEGylated 29-nucleotide long RNA aptamerwith amodi-
fied backbone that significantly increases its circulating half-life [88].
Macugen recognizes the vascular endothelial growth factor isoform
VEGF165 but does not bind to VEGF121 [88]. In contrast, the antibody
against VEGF marketed by Genentech under the name Ranibizumab
shows specificity towards both isoforms [89].

Aptamer structures can be evolved to recognize minor structural
differences within a given target and typically bind to their targets
with affinities comparable to those of antibodies [90,91]. Practical ad-
vantages of aptamers over antibodies include their lower mass, low
cost of synthesis, long shelf-life and consistent quality. However, apta-
mers do face challenges as potential therapeutic or delivery agents.
Firstly, nucleic acids are small, charged molecules. As such, they can-
not passively traverse a cell membrane. Secondly, oligonucleotides are
rapidly degraded by nucleases in plasma and cleared from circulation,
resulting in short in vivo half-lives [67,92]. Thirdly, oligonucleotides
are typically not immunogenic. Yet, immune responses mediated by
Toll-like receptor family members have been reported as exemplified
by unmethylated CpG sequences [93]. Solutions to these challenges
are available. There are several approaches for increasing the circu-
lating time (half-life) of aptamers in plasma. One of them is PEGyla-
tion, the process of conjugating polyethylene glycol (PEG) groups to
such molecules. The coupling of a cholesterol group or a cell-pene-
trating peptide can also reduce their systemic clearance [79,94].
Another approach is by using chemically modified nucleotides shown
to increase the half-life of aptamer sequences by more than 40-fold
[95]. Such changes can be introduced during the SELEX process by
using modified nucleotides that are incorporated by the T7 polymer-
ase at the in vitro transcription step when RNA aptamers are being
selected. In the case of DNA aptamers,modified nucleotides are simply
introduced during library synthesis [96,97]. Possible modifications
compatible with the SELEX protocol include substitution of the 2′ OH
group with a 2′ fluoro or 2′ amino group [98,99]. Besides the sugar
component of themolecule, various groups such as aromatic and alkyl
moieties can be attached to the C5 position of UTP [100]. Other mod-
ifications termed “post SELEX” have been introduced after a useful
sequence is identified [101]. One form of post SELEX modification is
Locked Nucleic Acid (LNA) [102]. The LNAs can have one or more
nucleotides with a methylene linkage between the 2′ oxygen and the
4′ carbon,which results in the “locked” conformation of the sugar. This
modification provides an increased affinity for the complementary
strand, higher thermal stability, and resistance to nuclease degrada-
tion [103]. Multivalency represents another factor that can increase
the avidity and potency of aptamers, as demonstrated by the oligo-
merization of an RNA aptamer against the Drosophila protein B52
[104]. The tetravalent RNA aptamer recognizing the cytotoxic T-cell
antigen-4 (CTLA-4) has also shown a therapeutic advantage over its
monomeric counterpart in prolonging the survival of C57BL/6 mice
implanted with the B16/F10.9 murine melanoma [105].

Among other aptamers selected to target tumor specific proteins,
the first one to enter clinical trials is an unmodified DNA aptamer
termed AS1411 (Antisoma). It was shown that its G rich sequence
binds nucleolin present on the surface of cancer cells and can in-
hibit NF-κB pathways [106,107]. This aptamer is currently in Phase II
clinical trials and shows activity towards many types of hematological
cancers (clinical trials.gov identifier NCT00512083; NCT00740441).
Interestingly, this 26-nucleotide long unmodified DNA aptamer is
stable in serum, which indicates that the sequence of the aptamers
results in a three-dimensional structure that is not easily susceptible
to nuclease degradation [108]. Thus, the need to further modify DNA
aptamers to increase their stability in vivomay not be necessary in all
cases.

Finally, Fig. 6 outlines how aptamer-cargoes can reach several
intracellular vesicular compartments. The illustration is also meant to
highlight the fact that the cytosolic release of cargoes entrapped in
vesicles remains an inefficient process and a common challenge con-
fronting other drug delivery strategies involving polymer formula-
tions, antibody conjugates and cell-penetrating peptides. Aptamer-
targeted cargoes such as radionuclides (acting within a cell diameter
or via a bystander effect), hydrophobic drugs, gold particles and lipo-
somesmay reach the cytosol or have their therapeutic effect enhanced
by simply residing or cycling through vesicles. Other charged cargoes
such as siRNAs, plasmids and proteins will be inefficiently released
from endosomal compartments and may require the use of endoso-
molytic agents.

4. Concluding remarks

A major challenge associated with chemotherapeutic agents
remains their toxicity towards normal tissues. This challenge limits
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their use to suboptimal doses and ultimately leads to treatment fail-
ure. Therapeutic cargoes linked to antibodies are being developed to
specifically deliver chemotherapeutic agents to cancer cells. Yet, anti-
body-guided therapies come with major limiting factors including
their size, cost and immunogenicity. Accordingly, simpler targeting
agents are needed to focus the delivery of useful cargoes to cancer
cells. Since their inception in 1990 [1,2] short DNA/RNA aptamers
have been developed to recognize therapeutically important molec-
ular targets such as VEGF, thrombin and HIV. More importantly, apta-
mers can serve as cellular delivery vehicles by targeting cell surface
markers that are internalized by cancer cells, allowing for the intra-
cellular localization of therapeutic cargoes. Aptamers can be rapidly
developed through SELEX screens, are easily synthesized, are typically
non-immunogenic and are readily amenable to modifications leading
to increased circulation times and stability. Aptamers directed at
internalized surface markers can be conjugated directly to drugs,
RNA/DNA, radionuclides, proteins and nanostructures to serve as
tumor selective diagnostic and therapeutic agents.
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