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Al~tract--The Bifurcation Interpreter is a computer program that autonomously explores the steady-state 
orbits of one-parameter families of periodically-driven oscillators. To report its findings, the Interpreter 
generates schematic diagrams and English text descriptions similar to those appearing in the science and 
engineering research literature. Given a system of equations as input, the Interpreter uses symbolic algebra 
to automatically generate numerical procedures that simulate the system. The Interpreter incorporates 
knowledge about dynamical systems theory, which it uses to guide the simulations, to interpret the results 
and to minimize the effects of numerical error. 

1. I N T R O D U C T I O N  

Most of the effort in scientific computing concerns programs that produce numerical output, 
although there is also much interest in developing graphical rendering techniques that help people 
to visualize this output [1]. But whether a numerical experiment generates numbers or pictures, 
there remains the task of interpreting the results--to distill the numerical output into high-level, 
often qualitative descriptions that can be summarized, reasoned about and used to guide new 
experiments. This paper illustrates how such interpretations can be created automatically, with 
appropriate combinations of numerical and symbolic processing. 

The Bifurcation Interpreter is a computer program that autonomously explores the steady-state 
orbits of one-parameter families of periodically-driven oscillators. To report its findings, the 
Interpreter generates schematic diagrams and English text descriptions similar to those appearing 
in the science and engineering research literature. 

Section 2 of this paper illustrates reports generated by the Interpreter and compares these with 
similar reports published by dynamicists to describe their own investigations of nonlinear systems. 
Section 3 summarizes the range of phenomena that the Bifurcation Interpreter can observe, and 
describes the internal data structures it maintains to keep track of its observations. Section 4 is 
a detailed description of the methods used by the program. The paper ends by discussing the 
limitations of the present implementation and describes directions for improvement. 

2. QUALITATIVE BEHAVIOR OF DYNAMICAL SYSTEMS 

A periodically-driven dissipative nonlinear oscillator typically admits a finite number of periodic 
orbits, where the period of each orbit is an integer multiple of the drive period.t This multiple is 
called the order of the orbit. In a parametrized family of oscillators, smooth variations in the 
parameters give rise to families of orbits that also vary smoothly, except at certain critical values 
of the parameters at which there occur bifurcations, or discontinuous changes in orbital behavior. 
Depending on the type of the bifurcation, a family of orbits may vanish, change order or merge 
with other families, or new families of orbits may be born. Families that meet at a bifurcation are 
said to be in the same class. 

The geometric theory of dynamical systems focuses on the evolution of steady-state orbits 
through bifurcations as a framework for capturing the qualitative behavior of dynamical systems. 

t i n  addition, nonlinear oscillators may have nonperiodic steady-state orbits. These include quasi-periodic orbits, which have 
discrete-frequency spectra, but not at rational multiples of the drive frequency; and chaotic orbits, which, loosely 
speaking, are steady-state orbits that are neither periodic nor quasi-periodic. 
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A major  achievement o f  the theory has been to show that  for one-parameter  families, at least, the 
bifurcations typically encountered can be classified into a small number  o f  recognized types; the 
type o f  the bifurcation determines, up to homeomorphism,  the behavior  o f  the family near 
the bifurcation poin t . t  

2.1. A sample report by the Interpreter 

Given a one-parameter  family o f  periodically-driven oscillators, the Bifurcation Interpreter  
identifies families o f  stable periodic orbits and classifies the bifurcations th rough  which they evolve. 
The Interpreter 's  report  catalogues the classes o f  orbits and the types o f  the bifurcations. 

As an example, the following form o f  Duffing's equation, 

5i +kYc + x  3 = p  cos t, 

describes a one-parameter  family o f  nonlinear  oscillators for each fixed value o f  k. This family, 
for k = 0.1, was presented to the Bifurcation Interpreter  for  analysis by specifying the equat ion 
(as a system o f  two first-order equations),  a varying parameter  and parameter  interval, and a 
domain  in state-space outside o f  which orbits should be considered to be unbounded:  

• system: 21 = x 2 ,  . ~ 2 = p  COSt - k x 2 - x  ~ (1) 
• fixed parameters:  k = 0.1 
• varying parameter:  p, 1 to 25 
• bounds  on state variables: x~, - 5  to 5; x2, - 1 0  to 10. 

The Bifurcation Interpreter 's  output  is an automatical ly-generated textual report  that  presents 
the results o f  the analysis using the technical terms o f  the dynamics  literature. (The meanings o f  
these terms are explained in Section 3 below.) Here is an excerpt: 

The system was explored for values o fp  between 1 and 25, and l0 classes of stable periodic 
orbits were identified. 

Class A is already present at the start of the parameter range p = 1 with a family of order- l 
orbits A 0. Near p = 2.287, there is a supercritical-pitchfork bifurcation, and A 0 splits into 
symmetric families A1. 0 and AI,I, each of order 1. Ai.0 vanishes at a fold bifurcation near 
p = 3.567. A1. l vanishes similarly. 

Class B appears around p = 3.085 with a family of order-1 orbits B 0 arising from a fold 
bifurcation. As the parameter p increases, B0 undergoes a period-doubling cascade, reaching 
order 2 near p = 4.876, and order 4 near p = 5.441. Although the cascade was not traced past 
the order 4 orbit, there is apparently another period-doubling near p = 5.52, and a chaotic 
orbit was observed at p = 5.688. 

Class D appears around p = 5.642 with a family of order-3 orbits D O arising from a fold 
bifurcation. Near p = 6.691, there is a supercritical-pitchfork bifurcation, and Do splits into 
symmetric families Di,0 and DLI, each of order 3. Near p = 7.992, there is a supercritical- 
pitchfork bifurcation where DI. 0 and D1.1 merge to form a family D 2 of order 3. Nearp = 9.677, 
there is a transcritical bifurcation where D 2 vanishes by exchanging stability with family D s 
of order 3. D 3 vanishes at a bifurcation of undetermined type near p = 9.858. 

~21ass J appears around p = 23.96 as a family of order-5 orbits J0 arising from a fold 
bifurcation. J0 is present at the end of the parameter range at p = 25. 

In addit ion to the text report,  the Interpreter  can generate diagrams, such as Fig. 1, that  present 
its findings in schematic form.:~ As shown in Fig. 1, the horizontal  axis represents the parameter  
range, and ticmarks indicate the values where bifurcations occur. The classes are labeled and 
arrayed vertically to show the parameter  extent over which orbits in each class occur. For  example, 
for values o f  p between P3 ~ 3.1 and P4 ~ 3.6, the system has four coexisting steady-state orbits 
(two in class A, one in B, and one in C); each system trajectory will evolve to one o f  these four  
orbits, depending upon  the initial conditions. Each bifurcation type is indicated by a s tandard 

tGuckenheimer and Holmes [2] present the mathematical foundations of bifurcation theory. Thompson and Stewart [3] 
provide an introduction to dynamical systems theory for scientists and engineers. 

~The graphical-output routines used in the Interpreter program were implemented by Ognen Nastov, under the auspices 
of the MIT Undergraduate Research Opportunities Program. 
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Fig. 1. This diagram, generated automatically by the Bifurcation Interpreter, shows the analysis of the 
system described by equation (1) for k = 0.1. The Interpreter has traced the evolution of 10 classes of 
families of periodic orbits and their bifurcations. Each bifurcation type is identified by a standard 
symbol--the key indicates the Interpreter's symbols for fold bifurcations, supercritical-pitchfork bifur- 
cations and for bifurcations that the Interpreter has failed to identify. The r7 indicate parameter intervals 
over which the figure should be expanded to reveal more detail, as shown in Figs. 2 and 3. The p values 

along the horizontal axis indicate the parameter values at which the bifurcations occur. 

symbol: ---] indicates a fold, the "Y" a pitchfork, and - - ® - -  a bifurcation that the Interpreter was 
unable to identify. The ca denote parameter intervals over which the diagram should be expanded 
in order to reveal further details. Figure 2 shows this expansion for the indicated regions in classes 
B and C, and Fig. 3 shows details of class D. 
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Fig. 2. Expanding the interval from p = 3 to p -- 5.7 shows details of classes B and C from Fig. 1. Each 
class begins as order 1, then doubles to order 2 via supercritical-flip bifurcations. Expanding the interval 
indicated by the rectangles would show further doubling. The Interpreter recognizes this progression as 

a period-doubling cascade, and reports it as such. 
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Fig. 3. Expanding the interval from p = 5.6 to p = 10 shows details of  the class D of  order-3 orbits. 
Starting as a single family, the class splits into a pair near p = 6.7 and these merge again near p = 8. 

Observe that the Interpreter's textual report includes information that is not reflected in the 
diagrams. For instance, the Interpreter has recognized the succession of bifurcations in class B as 
a period-doubling cascade, and noted that the existence of the cascade is consistent with its 
observation of a chaotic orbit at a higher value of the parameter. 

2.2. Comparison with manually -produced reports 

The diagrams and the text generated by the Bifurcation Interpreter are similar to accounts that 
scientists and engineers have published to document their investigations of nonlinear systems. One 
example, shown in Fig. 4, is a diagram presented by Franceschini [4] to report the results of a series 
of simulation studies of fluid flow, modeled using a one-parameter family of nonlinear equations 
parameterized by the Reynolds number. Franceschini describes his diagram as a "graphical 
summary of the phenomenology" of the model, and compares diagrams for different models to 
determine whether they exhibit the same behavior.t" Although the detailed layout of the diagram 
is different from those generated by the Bifurcation Interpreter, the information presented is much 
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Fig. 4. This diagram, reproduced from Ref. [4], is a manually-produced report similar to the diagrams 
that the Bifurcation Interpreter generates automatically. 

tThe Navier-Stokes equations for fluid flow are a system of  partial differential equations. Expanding the solution as a 
Fourier series and truncating the expansion at a fixed order reduces this to a system of  ordinary differential equations. 
One approach to studying the Navier-Stokes equations is to study these finite-mode approximations in the hope that 
their solutions will have the same qualitative properties as those of  the full equations. Franceschini's experiments [4] 
test the validity of  this approach by comparing the qualitative properties of  the 8-mode and 9-mode models. He finds 
that the two models have almost completely different phenomenologies, although both can exhibit turbulence at low 
Reynolds numbers. 
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Fig. 5. Shown here and in Fig. 6 are classes of steady-state orbits automatically reported by the Bifurcation 
Interpreter for the system in equation (1) that are missing from a well-known published catalogue of orbits 
for this system [5l. Plotted here are x(t) and the drive for an order-5 orbit from class J of Fig. 1 

(k = 0.l,p = 24.25). 

the same.f  Incidentally, since the Interpreter  generates its diagrams f rom a symbolic data  structure 
that  it maintains internally (described in Section 3.2 below), it should not  be difficult to extend the 
Interpreter  to automatical ly  contrast  the qualitative behaviors o f  two different systems, as 
Franceschini  does in his paper. 

The Interpreter 's  reports are based upon  numerical experiments conducted at finite resultion, so 
it is possible that  the p rogram m a y  fail to observe orbits that  exist only over small parameter  
intervals or  small regions o f  state space. On  the other  hand,  experiments conducted by people suffer 
the same criticism. Indeed,  one can check the quality o f  the Interpreter 's  observations o f  the system 
in equat ion (1) by compar ing  them with an often-cited study published by Ueda  [5], who has 
catalogued the steady-state solutions o f  this system over the range 0 < k < 0.8, 0 < p < 25 by means 
o f  extensive simulations with analog and digital computers .  In  a series o f  tests with various values 
o f  k, the Interpreter  identified all the orbits in Ueda ' s  catalogue and sometimes observed orbits 
that  are missing f rom the catalogue. For  instance, the order-5 family J shown above in the 
Interpreter 's  report  for k = 0.1 is absent f rom Ueda ' s  catalogue. Also, a l though Ueda  describes the 
order-3 orbit  in class D, he does not  note the split into distinct families between p - 6.7 and p = 8 
that  is indicated in Fig. 3. Figures 5 and 6 illustrate these missing orbits. 

Fig. 6. This is the phase portrait for one of two distinct order-3 orbits in class D (Fig. 1) that coexist at 
the same parameter values (k -- 0.1 p = 7.45), a phenomenon reported by the Bifurcation Interpreter, but 
not noted in the catalogue published in Ref. [5]. The phase portrait of the second orbit is the reflection 
of this one under the symmetry (x, ~) ~ ( -x ,  -~).  The crosses drawn on the orbit indicate the Poincar$ 

points, at which t is a multiple of the period. 

tThe most significant difference between the two types of diagrams is that Fig. 4 indicates unstable periodic orbits (the 
dotted line beginning at the lower left of the figure) and shows regions of chaotic behavior (at the fight-hand sides of 
the main figure and of in ®). The Bifurcation Interpreter does not currently record such information, but could be 
extended to do so. 
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3. W H A T  T H E  I N T E R P R E T E R  C A N  R E C O G N I Z E  

The Interpreter analyzes one-parameter families of dynamical systems. These can be discrete 
dynamical systems, formed by iterating diffeomorphismsfp (p is the family parameter); or they can 
be systems of ordinary differential equations ~ = Hp(x, t), where each Hp is periodic in t with 
period tH.t The periodic continuous case reduces to the discrete case by the standard trick of 
consideringf, to be the period map, which maps each state x to the point at t = tn on the trajectory 
of Hp that starts from x at t = 0. Since Hp is periodic, the successive iterates f~*~(x) are the points 
on the trajectory at times that are multiples of tH. Thus, a trajectory that is periodic with period 
nt ,  corresponds to the periodic point of order-n point of the period map, i.e. a point x such that 
f~ ' (x )  = X. 

Given a system to analyze, a parameter interval Pl ~< P ~< Ph and a bounded domain in state space, 
the Interpreter attempts to determine, for each p in the parameter interval, the periodic points of  
fp that lie within the specified domain. It does this by locating periodic points for a few values of 
p, and tracing the family of periodic points that evolves as p varies. A family may persist until the 
end of the parameter interval; or a family may vanish because the periodic point goes out of  bounds 
(leaves the designated state-space domain); or the family may vanish when the periodic point 
undergoes a bifurcation. 

3.1. Types o f  bifurcations 
A bifurcation of a periodic point x of order n can be recognized computationally by the fact 

that, as p varies, an eigenvalue of Df~")(x), the Jacobian derivative offp at x, crosses the unit circle 
in the complex plane.:~ When the Interpreter encounters a bifurcation, it attempts to classify the 
bifurcation, based upon the eigenvalues of Df~ ")(x) and the pattern of stable and unstable periodic 
points meeting at x. 

Here are the types of bifurcations that the Interpreter recognizes:§ 

• FoM bifurcation 
For values of p to one side of the bifurcation value a stable and an unstable 

periodic point (of the same order) coexist. These two periodic points meet as p 
approaches the bifurcation value; on the other side of the bifurcation, both periodic 
points have vanished.¶ An eigenvalue of Df~")(x) crosses the unit circle at 1. 

• Flip bifurcations 
--Supercriticalflip. A stable periodic point of order n splits to form an unstable periodic 

point of order n and a stable periodic point of order 2n. 
--Subcritiealflip. This is equivalent to a supercritical flip o f f  -~, the inverse o f f :  an 

unstable periodic point of order 2n merges with a stable periodic point of order n to 
form an unstable periodic point of order n. 

An eigenvalue of Df~p")(x) crosses the unit circle at - 1 .  
• Niemark bifurcations 

--Supereritieal Niemark. A stable periodic point vanishes, forming an unstable periodic 
point and a stable limit cycle. 

--Suberitieal Niemark. A stable periodic point meets an unstable limit cycle, resulting 
in an unstable periodic point. 

An eigenvalue of Df~")(x) crosses the unit circle at a value other than 1 or - 1. 
• Transcritieal bifurcation 

A stable periodic point and an unstable periodic point meet and "exchange 
stabilities": on the other side of the bifurcation, the (extrapolated) stable point is now 

tAt  present, the Interpreter has been fully implemented only for systems with a two-dimensional state space x = (x~, x2), 
although most of the underlying algorithms will work in any number of dimensions. See the discussion in Section 5. 

:~So long as no eigenvalue has modulus I, the periodic point x is hyperbolic and thus will not change type with small changes 
in p. See Ref. [2] for details. 

§In referring to the bifurcation types, we have adopted the terminology of Ref. [3]. Various authors use different, and even 
incompatible terminology. For example, the flip is also called a cusp or a pitchfork. 

¶Depending on the direction from which the fold is encountered, it will be observed either as a stable periodic point and 
an unstable periodic point meeting and annihilating each other, or alternatively as the birth of a stable-unstable pair 
of periodic points. Since the Interpreter ordinarily encounters a bifurcation by tracking a stable point into it, we describe 
the bifurcations from that orientation. 
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unstable and the unstable point is stable. An eigenvalue of  Df~")(x) crosses the unit 
circle at 1. 

• Pitchfork bifurcations 
--Supercri t ical  pitchfork. A stable periodic point splits to form two stable periodic 

points and an unstable periodic point, all of  the same order. 
- -Subcri t ical  pitchfork. A stable periodic point merges with two unstable periodic 

points, resulting in an unstable periodic point. 
An eigenvalue of  Df~p")(x) crosses the unit circle at 1. 

These bifurcations are summarized in Fig. 7 by means of bifurcation diagrams, of  the kind 
commonly employed in the dynamics literature. These diagrams show, near each bifurcation, the 
paths of  the periodic points as p varies, projected onto a one-dimensional subspace of  phase space 
(two-dimensional subspace for the Niemark bifurcations). The parabolic paths drawn for most of  
the bifurcations are more than simply schematic. It  can be shown [3] that, for values o f p  very near 
the bifurcation value, the periodic points approach the bifurcations along such parabolic paths. 
The methods by which the Interpreter recognizes bifurcations make use of  this fact (Section 4.4). 

The bifurcations listed here are the typical ones encountered in one-parameter families of  maps, 
in the following sense. It can be shown that the only bifurcations that appear  in generic 
one-parameter  families are the fold, the flip, and the Niemark bifurcations. In addition, the 
transcritical bifurcation is generic for one-parameter families of  maps that are constrained to have 
a common fixed point for all fp; and the pitchfork bifurcations are generic in families of  maps that 
are invariant under a symmetry. See Refs [2, 3] for more details. 

In addition to recognizing individual bifurcations, the Interpreter also notices typical patterns 
of  bifurcations. One such pattern is the period-doubling cascade [6], in which an infinite sequence 
of supercritical-flip bifurcations occurring at a converging sequence of values o f p  produces periodic 
points of  orders n, 2n, 4 n , . . . ,  followed by chaotic orbits at values of  p beyond the accumulation 
point. A second pattern is the symmetric pair, produced when an orbit that is invariant under a 
symmetry of  the system loses its symmetry and splits, at a supercritical-pitchfork bifurcation, into 
two orbits, each of  which is transformed into the other by the symmetry.I" Continued evolution 
of  these orbits produces symmetric pairs of  families and bifurcations. 

fFor example, the Dufling system described in Section 2.1 has the form :~ = H(x, t), where H(-x ,  t + ~) = --H(x, t). One 
can show that this entails a symmetry: for every closed orbit S, the set - S  = { -x[x • S} is also a closed orbit. Thus, 
either S itself is invariant under the symmetry, or is one of a symmetric pair of closed orbits, as in Fig. 6. 
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3.2. The family report 

Although the text and diagrams illustrated in Section 2.1 are the most conspicuous part of 
the Bifurcation Interpreter's output, the bulk of the program is concerned with conducting 
numerical experiments and distilling their results into a data structure called a family report. The 
family report is the basis for generating the text and diagrams. It can also be examined by other 
programs to answer questions about dynamical systems, e.g. to indicate the ranges over which 
multiple families exist or to list the types of bifurcations encountered. 

The family report lists the classes of families in order of appearance with increasing p. For 
instance, the analysis of the Duffing system shown in Fig. 1 has 10 classes. The first of these, class 
A, contains three families, two of which form a symmetric pair: 

( c l - - s :  • 
(aomber8 

( # ~ l y : A . O ]  (o~motric-pa~r #[fmsi ly:A. l .0]  # [ f m s i l y : l . l . 1 ] ) ) ) )  

Each family is represented by a data structure that contains all the information collected about 
the family, such as the name and order of the family, the bifurcations at which the family appears 
and vanishes and the instances of the periodic point that was tracked to form the family. Here is 
the entry for A t,0, the second family in class A. This entry includes the information that A 1,0 is part 
of a symmetric pair, paired with family Au :  

( family: .t. 1.0 
(order 1) 
(appoars #[bifurcation:bif .  1]) 
(vanishes #~bifurcation:bif .5])  
(paired-with ( # [ f a m i l y : £ .  1.1] )) " 
(instances 59 # ( l i s t  of instances . . . ] ) )  

The list of instances describes the individual periodic points. Here is the first point in the list 
for At,0: 

(instance 
(parameter-value 2. 2867) 
(type per i~ l i©)  
(orbit #(1.8851 .39982)) 
( j  acobiam #(#( - .  29979 -9.5576o-2) #(11.327 1.8317) ) ) 
(etsenvtlueo .99865 . 83828) 
(oensltlvlty #(-7.9880 111.496))) 

This is a periodic point at p = 2.2867 and x = (1.8851, 0.3998). Also recorded are the Jacobian and 
the eigenvalues of the period map at this point, and the sensitivity derivative (i.e. the derivative 
with respect to p of the (vector-valued) function p ~--~f(p, x)), which is used in tracking periodic 
points as explained in Section 4.3. 

In addition to the list of classes, the Interpreter generates a list of the bifurcations encountered. 
Here is the bifurcation at which At,0 appears: 

(b£fur©ation: b£f. 1 
(tTpe 8u~rcr i~ iCLl -p i t  chf ork ) 
(pazanotor-ru~e (2.28e4 2.2seT)) 
( fmstl ios-va~Lsh~ (#[~antly: l .  O] )) 
(=an£11es-appeeria~ (# [~sntly: A. 1. O] # [~anily: 1.1.1] )) 
(s~mmotz$c-l~iz (spl i t  to =oz~s s~metrtc l~ t r ) )  
(d~oction l)lU~mn et or-itlcr e u  ~ ) 
(¢~ment8 ((/m2ezzod from merging famil io8)) ) )  

This is a supercritical-pitchfork bifurcation located between p = 2.2864 and p = 2.2867, where 
A 0 vanishes and A,,0 and Al,t appear. The vanishing family splits to form a symmetric pair of 
families with a common head (instance at lowest value of p). The bifurcation is oriented in the 
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Fig. 8. The block diagram shows the major components of the Bifurcation Interpreter, beginning with 
a system specified by algebraic equations and ending with a family report, from which text and diagrams 
are generated. The arrows between blocks indicate the principal output of each module, which is the input 

to the next module. 

"parameter increasing" direction (i.e. the split happens as p increases). Finally, a comment records 
that, in this case, the Interpreter discovered the bifurcation by noticing that two families merged 
[see Fig. 10(b)]. 

Finally, the Interpreter maintains a list of the parameter values at which it found orbits that it 
was not able to classify. Depending on the nearby bifurcations, these might be interpreted as 
chaotic orbits. Given the information in the family report, it should be clear how both the text 
and the diagrams in Section 2.1 can be generated. 

4. HOW THE INTERPRETER WORKS 

Figure 8 shows the major modules in the Bifurcation Interpreter and the information that flows 
from one module to the next. Beginning with equations that describe a dynamical system, and a 
designated parameter range to explore, the Interpreter generates numerical procedures that 
compute the transformation from state to state, the Jacobian of the transformation and the 
sensitivity (the derivative of the transformation with respect to the varying parameter). With the 
aid of these procedures, the Interpreter locates stable periodic points at various parameter values. 
Each periodic point is tracked as the parameter varies, producing a family that generally ends in 
a bifurcation. The Interpreter attempts to classify the bifurcation based upon information obtained 
in the tracking process. Typically, classifying the bifurcation will produce new stable periodic points 
that must themselves be tracked. 

When all known periodic points have been extended to complete families, the Interpreter 
reexamines the bifurcations in the light of more global information, and corrects its previous 
classifications if necessary. Next, bifurcations and families are examined for symmetric pairs and 
period-doubling cascades. The Interpreter consolidates families into classes, assigns names to the 
families and bifurcations and organizes the data into a family report. The family report is the basis 
for generating text and diagrams as exhibited in Section 2.1. 

We now consider each of these steps in detail. 
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4.1. Compiling procedures for Newton's method 

Most of the Interpreter's algorithms rely upon the ability to locate fixed points. This is 
accomplished with the aid of Newton's method. Applying Newton's method to find fixed points 
of a map f requires evaluating both f and the Jacobian derivative Df  at various points x in the 
state space. For a discrete dynamical system, wheref is  specified explicitly by algebraic equations, 
the Interpreter differentiates the equations symbolically to produce expressions for the components 
of the Jacobian matrix [Df(x)],j = Ofi/Oxj. These expressions are compiled into a procedure that 
evaluates the Jacobian, given a numerical value for x. 

For a system of ordinary differential equations 2 --H(x,  t) with H(x, t) periodic in t, f i s  not 
given by an explicit algebraic equation. Rather, f is the period map, evaluated by integrating H 
along the trajectory starting from x. The components of the (transpose of the) Jacobian matrix, 
6,j = [Df(x)]~ = [Df(x)]j, are computed by integrating, along the same trajectory, the associated 
variational system 

d6 v -- OH j 
at -~" ~k ~Xk 6'k' 

with initial conditions 6,~(0) = 0 for i ¢ j  and 6,~(0) = 1 for i =j .  The Interpreter symbolically 
differentiates the expressions for H(x, t) to obtain expressions for the OH'/Oxj and compiles these 
into a procedure for computing the Jacobian by numerical integration. 

For example, Fig. 9 shows the Dulling system of equation (1) as it is actually input to the 
Interpreter, with a specification of the state variables, the parameter and equations for the 
derivatives of the state variables.t The Interpreter produces from this a system-derivative generator. 
This is a procedure which, given values for the parameters k and p, returns a system derivative: 
a procedure which, given a state vector (t, Xl, x2), returns a vector whose components are the 
derivatives with respect to t of the state-vector components. Figure 9 also shows the procedure 
generated for evolving the associated variational system. Given values for k and p, this produces 
a variational-system derivative, which operates on a variational state vector with components 
t, xj, x2 and the 6,j, returning the vector whose components are the time derivatives of t, x¿, x2, 
together with the components of the Jacobian, computed as 

d3~! 
- -  ~ 6 1 2  , 
dt 

d612 __ 3X~611 -- k612 , 
dt 

d621 
- -  = 6 2 2  
dt 

and 

d622 = _ 3x12621 _ k622. 
dt 

The Interpreter generated the expressions for these derivatives by symbolic differentiation. 
The system-derivative procedures generated by the Interpreter can be combined with any 

numerical integrator to evaluate the period map and the Jacobian. Computations for the Duffing 
example described in this paper were carried out using a Bulirsch-Stoer integrator adapted from 
Ref. [8]. 

Having developed procedures for computing maps and Jacobians, the Interpreter can use 
Newton-Raphson iteration to search for periodic points of a map f. Namely, given an approxi- 
mation x to a periodic point of order n for f, attempt to correct x by subtracting from it a small 

tThe input language used here, phrased in terms of constraints, is more general than is required for the purposes of  the 
Interpreter. The same language, and the techniques for generating system derivatives and variational equations, were 
used by Abelson and Sussman to support an electrical-circuit analysis program, as described in Ref. [7]. 
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Fig. 9. The Interpreter manipulates the symbolic expressions that describe the system, in order to generate 
numerical procedures for locating periodic points. Shown here is the actual input that describes the Dufng 
system of equation (1). Below this is a Lisp procedure that evolves the system state, which the Interpreter 
has generated and compiled; and below this is the procedure compiled to evolve the associated variational 
system. Notice that the compiler has performed some common-subexpression removal here (gl, g2 

and g3) to make the computation more efficient. 

vec tor  6 x  such that  x - 6 x  will be equal  to f ( " ) ( x  - 6 x ) .  Linear iz ing this equa t ion  near  x gives an  
a p p r o x i m a t i o n  for  6 x  in terms o f  the Jacob ian  Df¢") (x ) :  

f ( " ) ( x  - 6 ( x ) )  = x - 6 x ,  

f ( " ) ( x )  - D f ( " ) ( x ) a x  ~ x - 5 x  

and  so 

6 x  ~ ( I  - -  D f ( " ) ( x  )) - ' ( x  - f ( " ) ( x ) ) .  

In  terms o f  p rocedures  tha t  c o m p u t e f a n d  D f ,  this c o m p u t a t i o n  can be accompl i shed  by  compu t ing  
the orb i t  o f  x :  

X o = X ,  x , = f ( x , _ l )  i = 1 to n;  (2) 
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and using the recurrence 

Df(°(x) = Df(x,_l )Of (`- ')(x) (3) 

to compute Df(")(x). 
Given an initial approximation x to a periodic pointt one repeatedly updates x to x -  6x, 

looking for convergence. Since Newton's method normally converges rapidly if it converges at all, 
and the update procedure is expensive (computing Jacobians can require integration), the 
Interpreter is quick to abandon an attempt to find a periodic point if the sequence does not appear 
to be converging. In particular, if the second correction 6x (2) is larger than the first correction fx, 
the Interpreter will conclude that the initial guess for the periodic point was bad, and stop the 
search.:~ Newton's method will also fail if I -Df (" ) (x )  becomes singular. In addition, the 
Interpreter's Newton's-method procedure can be called with an arbitrary predicate, which 
successive guesses must satisfy in order for the search to continue. For example, guesses must 
normally remain inside the bounded region in state space that the Interpreter is exploring. Also, 
some of the Interpreter's bifurcation identification procedures require finding periodic points that 
lie within certain specified neighborhoods; these procedures call Newton's method with appropriate 
predicates to enforce these constraints. 

Finally, if the sequence of approximations converges to a periodic point x of the desired order n, 
the Interpreter checks the orbit of x to see whether x in fact has order smaller than n. 

4. I. 1. Sensitivity derivatives. In addition to approximating periodic points in a parametrized 
family of maps, the Interpreter also tracks the loci of the periodic points as the parameter varies. 
This requires computing the infinitesimal change in position of a periodic point x of f with respect 
to p. To see how to compute this, consider first the case where x is a fixed point of the map 
x ~--~f(p, x). For an incremental change fp, compute the corresponding incremental change fix such 
that x + 6x approximates f ( p  + fp, x + 6x) to first order: 

x + f x  = f ( p  + fp, x + fx )  

~-f(p, x) + Dxf(p,  x) + Dpf(p, x) fp  

= x + Dfp(X)fX + DpA(X)fp, 

where Dfp(X) is Jacobian at x of the map fp: x ~-*f(p, x) and Dpfp(x) is the derivative with respect 
to p of the (vector-valued) function p ~-.f(p, x). Subtracting x from both sides of this equation 
and solving for 5x gives 

f x  ,~ (I -- Dfp(x ))-~ D f f  , (x )6p. (4) 

If £ is given by explicit equations (the case of a discrete dynamical system), the Bifurcation 
Interpreter can symbolically differentiate the expressions for £ with respect to p and construct a 
numerical procedure that computes DJp(X). For a system of ordinary differential equations 
5c = Hp(x, t), wherefp is the period map, DJp(X) can be computed by integrating the components 
of dH/dp over the trajectory starting from x. In the case of the Duffing system (1) for example, 
the components of dH/dp to be integrated are obtained by differentiating system (1) with respect 
to p to obtain 

d (dx , ' ~  d x  2 

dt \-@p ] = ~ p  

and 

d _kdx _3x:dX, 
d t \ d p  ] = c ° s t  dp dp" 

Just as in computing Jacobians, the Interpreter uses symbolic algebra to perform this differenti- 
ation. It automatically compiles a sensitivity derivative which can be integrated to compute 
O f f  p(x ).§ 

tSection 4.2 explains how the Interpreter selects initial approximations. 
:l:This technique was suggested to me by Mathew Halfant. 
§This technique for computing sensitivities of fixed points was also used in Ref. [7] for analyzing electrical networks. 
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Tracking an order-n periodic point of f can be treated as tracking a fixed point o f f  t"). However, 
as with locating fixed points, it is convenient to use the recurrence scheme (2, 3) and to compute 
Dpf~")(x) recursively in terms of Dpfp(x) by means of the relation 

D,f~)(x) = Dpfp(x,_l ) + Df(x,_ , )D,f~-  ')(x). 

This equation follows from the chain rule for partial derivatives; 

D,(h ° g)(x) = D,h(g(x)) + Dh(g(x))Dpg(x), 

taking h as fp and g as f~-i) .  
In summary, whenever the Interpreter successfully applies Newton's method to produce a 

periodic point x of order n, it saves x, together with its orbit, the value of p, the Jacobian Df~")(x) 
and the sensitivity derivative Dpf~")(x). 

4.2. Choosing an initial set of periodic points 

After compiling the numerical procedures as described above, the Interpreter computes an initial 
set of periodic points that it will later extend to families. The parameter interval to be explored 
is divided into equal-length subintervals at points p,. For each p,, the Interpreter attempts to find 
the stable periodic points offp,. The algorithm for finding these periodic points produces, at each 
p,, a collection of periodic points and possibly some "unknown orbits", which arise from 
trajectories that do not lead to periodic points.t The Interpreter next compares the collection of 
points discovered at adjacent values p,, p,+ i. If  these are not equivalent-- i.e. if the two collections 
do not contain the same number of periodic points with corresponding orders, and the same 
number of unknown orbits--then the interval from p~ to p~+, is bisected, and periodic points are 
computed at the midpoint. Bisection continues until adjacent values of p either have equivalent 
periodic-point sets, or else are closer than some prespecified minimum distance. 

To compute periodic points at a parameter value p, the Interpreter first guesses approximations 
for the periodic points by means of the "unravelling algorithm" of Hsu and Guttalu [9, 10]. This 
begins by imposing a grid on the region in state space to be examined. Define a cell-to-cell 
transformation by mapping each grid cell C to the cell containing the point obtained by applying 
fp to the midpoint of C, mapping C to a distinguished value "infinity" if the image of the midpoint 
under fp lies outside the grid. Regarding the cells as the nodes of a graph, where each cell is linked 
to its image under the cellular map, produces a directed graph in which each node has at most 
one successor. Use a marking algorithm to traverse the graph and partition the cells into connected 
components of the graph. During the marking, whenever you encounter a cycle of order n starting 
at a cell C, choose the midpoint of C as a guess for an order-n periodic point offp.:~ 

The Interpreter now tries each guess as the starting point for a Newton-Raphson iteration. 
If  the iteration succeeds, the periodic point and its orbit are recorded. If  Newton's method fails 
(e.g. the successive iterates may become unbounded, or the resulting limit point may be unstable, 
or the Jacobian may become singular) the Interpreter uses the guess as a starting point for a 
"trajectory search", which proceeds as follows: 

Given an initial point x = x0, generate the trajectory xl =fp(xo), x2 =fp(X,) . . . . .  As each new 
point xa is generated, check to see if it is close to a point in a previously-generated trajectory, in 
which case abandon the search starting at x. Alternatively, if xa is close to a point in the current 
trajectory, scan backward along the trajectory to find the smallest n such that xa_, is close to Xa.§ 
NOW generate a few more points starting from x,, and check whether the points x~ +l, x, + 2 . . . . .  
remain close, respectively, to x~+,_,,  xa+: . . . . . .  If  so, use Xa as the starting point for a 

tThese unknown orbits may corespond, in actuality, to orbits that are indeed nonperiodic, or to orbits that have extremely 
large period, or possibly to bad numerical properties o f f r  For example, iteratingfp for p extremely close to a bifurcation 
value may lead to unknown orbits. 

J~Note that any path through the graph will end in a cycle, a fixed point (cycle of order 1) or else infinity. The connected 
components of the graph correspond to the "basins of attraction" of these cycles. Regarding the corresponding sets 
of cells as approximations to the actual basins of attraction of f leads to interesting computational methods for 
exploring dynamical systems. These are described in Ref. [9], which also presents more sophisticated variations on the 
unravelling algoritm described above. 

§Trajectory points are stored in a quad tree [l II and also linked in a doubly-linked list to facilitate finding close pairs of 
points and scanning forwards and backwards through the trajectory. 
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Newton-Raphson search for a stable periodic point of order n. If the iteration does not succeed, 
or if xa is not close to any previous trajectory point, then continue evolving the trajectory. If the 
number of  points in a trajectory grows to exceed some maximum, declare the trajectory to be of  
type "unknown" and abandon it. 

As an example, in producing the report on the Duffing system in Section 2.1, the Interpreter's 
parameters were set so that it initially divided the parameter interval from 1 to 25 into subintervals 
of size 0.5. The minimum size for an interval (at which bisection ceased) was 0.1. The state-space 
region - 5  < x < 5, - 10 < y < 10 was partitioned by a grid of  size 0.5 on a side. With these settings, 
the Interpreter ended up scanning for periodic points at 93 values of p. In all, the Hsu-Gutta lu  
algorithm produced 307 guesses for periodic points. Of these, 114 were successfully refined to 
periodic points by Newton-Raphson;  the other 193 became starting points for trajectory searches. 
At many values of p several initial guesses were refined to the same periodic point, and after 
removing duplicates, the Interpreter had in all identified 117 distinct periodic points and 15 
unknown orbits.t 

4.3. Extending periodic points to families 

Each stable periodic point now becomes the "seed point" for a family of  periodic points 
whose position varies with p. The Interpreter tracks the point, extending each family as 
far as possible in the directions of  increasing and decreasing p. During the tracking process, 
families may merge, or they may terminate in bifurcations, which the Interpreter attempts to 
classify. 

To track a stable periodic point x from Ps to Pt, the Interpreter chooses a small increment 8/) 
(respectively, a small decrement 6p if p, > pt) and computes the corresponding first-order change 
6x using equation (4), together with the values of  the Jacobian and the sensitivity derivative that 
were stored along with x, as explained in Section 4.1. The Interpreter then uses Newton-Raphson 
iteration to attempt to correct x + 6x to a stable periodic point o f f  at Ps + 3p. 

In tracking a periodic point at discrete steps like this, one must be careful not to mistakenly 
" jump" to the path of  a nearby periodic point. The Interpreter attempts to guard against this by 
adaptively adjusting the stepsize 6p, always choosing it small enough so that: (1) the magnitude 
of  the computed 6x is small; (2) the actual periodic point discovered by Newton's method is close 
to the first-order prediction x + 6x; and (3) the change in magnitude of  the eigenvalues of the 
Jacobian from x to the new periodic point is small. 

At each step, Newton's method may fail to produce a stable periodic point. The iteration may 
not converge, or the matrix I - Dpf(n)(x) may become singular, so that no periodic point will be 
produced. Alternatively, the periodic point found may be unstable (which can be determined by 
examining the eigenvalues of  the Jacobian). Or, the point may be stable, but with an order less 
than the order of  x. Upon such failures, the Interpreter decreases the size of 6p and tries again. 
When 8p becomes less than some prespecified lower bound, and Newton's method still fails, the 
Interpreter regards the failure as evidence of  a bifurcation at a parameter value betwen p, and 
Ps + tSp. It records the nature of  the failure and uses this information in an attempt to classify the 
bifurcation, as described below in Section 4.4. If  Newton-Raphson succeeds, the Interpreter 
increases the step size 6p and continues tracking toward p,. 

The Interpreter employs this tracking method to extend each family as far as possible--until the 
family terminates in a bifurcation, or the periodic point leaves the bounded region in state space 
that the Interpreter was directed to explore, or the tracker reaches an endpoint of  the parameter 
interval. As each family is generated, it is represented as a list of periodic points in order of  
increasing p. Let the current starting value of  a family be the smallest value o fp  to which the family 
has so far been extended, and the first known instance is the periodic point at that value of  p. 
Similarly, the current ending value and the last known instance give the parameter and the periodic 
point at the largest value of p to which the family has so far been extended. A family is said to 

tNote that the grid size used here was rather large, so one should expect the Hsu~3uttalu algorithm to produce many bad 
guesses for periodic points. Choosing a finer grid, however, would be computationally more expensive. More work needs 
to be done to investigate the tradeoffs here, and to find good ways to pick the initial grid size. Similarly, it is not obvious 
how to choose good sizes for the parameter intervals. Choosing intervals that are large risks overlooking significant 
families of periodic points and bifurcations. 
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Fig. 10. Merging families. (a) If family A extends to meet the first known instance of B, the two families 
are merged to form a single family AB. (b) If A coincides with a point in the middle of B (at a 
synchronization value of the parameter), B is split into two families B~ and B2. A and B~ vanish together 
at a bifurcation somewhere before the synchronization point, and B2 appears there. Note that, in this 
figure, the horizontal direction represents the p-axis, while the vertical direction represents the location 

of the points in state space (projected onto a one-dimensional subset). 

have its vanishing known (respectively, its appearance known) if it has been extended as far as 
possible in the direction of  increasing p (respectively, decreasing p). 

While tracking, the Interpreter must also check for merges among families. This requires some 
care, because individual families are tracked separately, and the points of  different families will in 
general be computed at different parameter  values. Specifically, the Interpreter proceeds as 
follows.t 

The parameter  interval is partitioned at a number of  equal-spaced synchronization values. The 
Interpreter chooses a family, say family A, whose vanishing is not yet known. Let x be the first 
known instance of  A, at parameter  value p,. Choose Pt to be the minimum of: 

(i) the right-most endpoint of  the parameter  interval; 
(ii) the smallest value after p, that is the current starting value of a family whose 

appearance is not yet known; 
(iii) the smallest synchronization value larger than ps; 
(iv) the smallest value larger than p~ at which there is a bifurcation. 

I f  the tracker fails to extend .4 as far as p,, then the type of  failure (point going out of  bounds 
or reaching a bifurcation) shows how .4 vanishes, and the Interpreter accordingly marks the A s 
vanishing as known. I f  the extension to p, is successful, then the Interpreter checks for merges of  
A with other families. There are several cases to consider, depending on how p, was chosen: 

(1) 

(2) 

(3) 

I f  Pt is the endpoint of  the parameter  interval, then the Interpreter marks A as 
persisting to the end of  the interval, and the extension of  A is complete. 
I f  p, is the current starting value of a family B, the Interpreter compares the 
currently tracked point with the first known instance of B. I f  the points are the 
same, then A and B are merged as shown in Fig. 10(a). I f  not, tracking of  .4 
continues from p,. 
I f  p, is a synchronization value, the currently tracked point is compared with the 
points of  other families p,. I f  it matches a point of  some other family B, then 
A and B must merge at some value between Ps and p,. This merge corresponds 
to a bifurcation; and B must actually be two families: Bl (the part  of  B before 
the bifurcation); and B2 (the part  of  B after the bifurcation). At the bifurcation, 
A and B1 vanish and B2 appears. The Interpreter searches the interval between 
Ps and p, to locate the merge point and replaces B by B1 and B2 [see Fig. 10(b)]. 

Locating the precise merge point here is slightly tricky. Families A and B 
coincide at p, and are distinct at Ps, so the merge point can be found by binary 
search. However, the periodic points on A and B have not been computed at the 
same parameter  values between p, and p, and so cannot be compared directly. 

i'For simplicity, we describe the tracking process in the direction of increasing p. Tracking in the direction of decreasing 
p proceeds analogously• 
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(4) 

Comparing the families at intermediate parameter  values thus requires comput-  
ing additional points of  A or B (or both). This is accomplished by tracking from 
existing points at nearby parameter  values.t  
Finally, ifpt is a bifurcation value, the Interpreter checks to see if A vanishes at 
the bifurcation. I f  not, tracking of  A continues at p,. Otherwise, A is compared 
with the other families currently known to vanish at the bifurcation. (This 
comparison may require generating additional periodic points, as in the previous 
paragraph.)  I f  A does coincide with some family B that has already been tracked 
to the bifurcation at p,, then A must in fact merge with B at another bifurcation 
before p,, as in case (3). Alternatively, if A is a new family vanishing at the 
bifurcation, then the Interpreter marks it as such. 

In this way, tracking proceeds until all families have been extended so that their appearance and 
vanishing is known. 

4.4. Identifying bifurcations 

When the periodic-point tracking algorithm fails, the Interpreter assumes that it has encountered 
a bifurcation, and it at tempts to classify the bifurcation. There are three ways in which tracking 
a stable periodic point might fail: (1) Newton-Raphson  iteration fails to converge, so that no new 
periodic point is found at the next parameter  value; (2) the iteration converges, but to an unstable 
periodic point; and (3) the iteration converges to a stable periodic point, but of  lower order than 
the point being tracked. 

Comparing these failure types against the descriptions of  the generic bifurcations given in 
Section 3.1 and Fig. 7 indicates how to begin matching tracking failures against bifurcation types. In 
case (3), for example, the only bifurcation in which a stable periodic point transforms into a stable 
periodic point of  a lower order is the supercritical flip, where a point of  order 2n changes to a point 
of  order n.:l: Accordingly, if the Interpreter encounters a failure of  type (3), it expects that the order 
of  the new point will be half the order of  the old point, and that an eigenvalue of  map is crossing 
the unit circle at - 1. I f  both these conditions hold, the Interpreter will at tempt to identify the 
transition as a supercritical flip. Otherwise, it will report a bifurcation of  unknown type. 

For the Interpreter, "identifying a bifurcation" means finding the complete complement of  stable 
and unstable periodic points that should coalesce at the bifurcation. Thus, at a supercritical flip, 
there is a stable point of  order n to one side of  the bifurcation, and, to the other side, a stable point 
of  order 2n and an unstable point of  order n. I f  the Interpreter has found the two stable points, 
it attempts to locate the expected unstable point, using methods that are described below. I f  it 
succeeds, it reports the bifurcation as a supercritical flip. Otherwise it reports the bifurcation as 
unknown. 

In general, the Interpreter begins its at tempt to classify a bifurcation by examining the 
eigenvalues of  the point near the tracking failure. I f  an eigenvalue crosses the unit circle near - 1, 
the bifurcation (if it is one of  the recognized types) must be a supercritical or a subcritical flip; 
crossing the unit circle near 1 leads to a fold, a transcritical bifurcation, a supercritical pitchfork 
or a subcritical pitchfork; crossing the unit circle off the real axis leads to a supercritical or 
subcritical-Niemark bifurcation. In each case, the Interpreter searches near the bifurcation for 
additional stable and unstable periodic points, until it finds enough points to match the bifurcation 
against one of  the known types.§ 

I f  a recognized local portrait  is found--i .e ,  if the number of  stable and unstable periodic points 
at the bifurcation matches the pattern for one of the known bifurcation types- - the  Interpreter 

tThere is also the possibility that this secondary tracking may fail, since, after all, one is close to a bifurcation. This case 
the Interpreter assumes that a tracking failure here is due to the bifurcation it is searching for. 

SNotice, with reference to Fig. 7, that this transition corresponds to crossing through the supercritical-flip bifurcation from 
right to left. The Interpreter must recognize bifurcations encountered from either direction. 

§In the case of a Niemark bifurcation, there is a stable fixed point to one side of the bifurcation, and, to the other side, 
an unstable fixed point and a limit cycle--a stable limit cycle for a supercritical Niemark and an unstable limit cycle 
for a subcritical Niemark. Currently, the Interpreter looks only for fixed points, not limit cycle. Thus, it cannot 
distinguish a supercritical Niemark from a subcritical Niewmark, and reports any such bifurcation simply as a "Niemark 
bifurcation". 
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records a successful local identification. Otherwise, the Interpreter records the bifurcation type as 
unknown. In either case, the result of  the classification, together with the set of  periodic points 
found by the search is passed to the next phase of the program, which criticizes these local 
identifications in the light of  more global information, as discussed in Section 4.5. 

Finally, any new stable periodic points located during this process become seed points for new 
families, which must be tracked in the direction away from the bifurcation. These are added to 
the collection of  families to be extended using the method of Section 4.3, and the process continues. 

4.4.1. Searching for periodic points near bifurcations. When the Interpreter searches for a new 
periodic point near a bifurcation, it guesses a location for the point, and uses this guess as the 
starting point for a Newton-Raphson iteration, attempting to find the actual new point. 

The guess for the new periodic point depends upon the configuration of periodic points already 
observed near the bifurcation. As Fig. 7 indicates, when one is very close to the bifurcation, the 
periodic points tend to approach it along either parabolic or straight-line paths.t  The Interpreter 
uses this local geometry to extrapolate locations for the unknown periodic points. 

For example, suppose that the Interpreter is investigating a bifurcation at which an eigenvalue 
is approaching 1, and that there are two stable periodic points (of the same order) to one side of  
the bifurcation and one stable periodic point to the other side. Given the possibilities in Fig. 7, 
this ought to be a supercritical-pitchfork bifurcation, and there ought to be another unstable 
periodic point on the same side as the two stable points. Moreover, the local geometry near a 
supercritical-pitchfork indicates that the two stable points are located approximately symmetrically 
with respect to the unstable point. The Interpreter therefore searches for an unstable periodic point 
at the same parameter value as the two stable points, and at their average position in state space. 
This particular search method is called averaging. The same method is used when there are two 
unstable points to one side of  the bifurcation and an stable point to the other side to search for 
a new stable point at the average position of the unstable points. 

In general, each of the Interpreter's search methods is triggered by a particular pattern of  
stable and unstable periodic points. To investigate a bifurcation, the Interpreter tries each 
applicable search method, looking for new periodic points. As new periodic points are discovered, 
different search methods become applicable. If  all applicable search methods have been tried, 
and the pattern of  fixed points is not recognized, the Interpreter reports the bifurcation as 
unknown. 

Here is the rest of the search methods used at bifurcations where an eigenvalue approaches 1. 
For  these bifurcations the periodic points all have the same order. These methods are also 
illustrated schematically in Fig. 11. 

• Reflect 
Pat tern- -a  stable and an unstable periodic point to one side of  the bifurcation. 

Search for a second stable point at the same parameter value by reflecting the stable 
point in the unstable point. (Analogously, search for a second unstable point by 
reflecting the unstable point in the stable point.) 

• Extrapolate across 
Pat tern--a  stable point and an unstable point to one side of the bifurcation, say, 

at parameter value Pa, and an unstable point to the other side of  Pb. Search for 
a stable point at Pb as follows. At Pa find the vector from the unstable point to the 
stable point. At Pb subtract this vector from the unstable point, and search for a 
stable point here. Analogously, given instead a stable point at Pb, search for an 
unstable point by extrapolating from the stable and unstable points at pa. 

• Extrapolate through 
Pattern-- two stable points and one unstable point to one side of  the bifurcation. 

Search for a stable point on the other side, at the same position in state space as 
the unstable point. 

~'These local geometries can be verified by truncating the power-series expansion forf(p, x) near the bifurcation and solving 
for the paths of the periodic points. This is in fact the basic technique for cataloguing the types of generic bifurcations. 
See Refs [2, 3] for details. 

CAMWA 2 0 / ~  
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Fig. 11. These figures indicate the methods used by the Interpreter to search for new stable and unstable 
periodic points near a bifurcation where an eigenvalue approaches 1. Solid circles indicate stable points 
and open circles indicate unstable points. The coordinate system drawn here has the bifurcation at 
the origin. The horizontal axis gives the parameter direction p. The vertical axis represents the 
two-dimensional state space. The curves shown for the extrapolation methods indicate the assumed linear 
or parabolic paths of the periodic points near the bifurcation, which form the basis for the extrapolation. 
Compare this figure with the bifurcation diagrams in Fig. 7 to see the full local geometries that these search 

methods are attempting to complete. 

Quadratic extrapolate 
Pattern--a single stable point to one side of the bifurcation at Pb. Search for an 

unstable point also at Pb, using the fact that, for folds or pitchforks, points very 
close to the bifurcation approach it along parabolic paths. The method requires 
knowing not only the location of the point at Pb, but also the periodic point found 
by the tracker at the previous step to Pb, say at parameter value Pc. Let Pa be the 
parameter value where the tracking failed. Fit a branch of a parabola through the 
points (xpc,pc), (Xpb ,Pb)  and (O, pa). Take, as a guess for the unstable point, the 
point on the opposite branch of the parabola at Pb" 

Here is an example, taken from a test of the Interpreter, which illustrates these search methods 
in action. The test map here is 

, - - T " l -  . 

This map has a transcritical bifurcation at p = 1, (Xl, x2) = (0, 0), which the Interpreter successfully 
identified. In the test, the Interpreter first encountered the bifurcation while tracking a fixed point 
for decreasing p. The tracker found a stable fixed point before the bifurcation at p = 1.0004 and 
an unstable fixed point after the bifurcation at p -- 0.999. Over the transition, an eigenvalue crossed 
the unit circle at 1. The Interpreter first used quadratic extrapolation of the stable point. This 
successfully located an unstable point before the bifurcation. The Interpreter next attempted to find 
a second stable point before the bifurcation by reflecting the stable point in the unstable point. This 
attempt failed. The Interpreter then extrapolated the unstable point across the bifurcation to 
produce a stable point after the bifurcation. This resulted in stable-unstable pairs both before and 
after the bifurcation, and the Interpreter announced this as a transcritical bifurcation. 

4.4.2. Index scan. The search methods described above are computationally inexpensive, in that 
they propose a definite guess for a period-point location and apply Newton-Raphson; no search 
of state space is required. However, these methods are not sufficient. In the case of approaching 
a supercritical-flip bifurcation, for instance, the Interpreter is tracking a stable periodic point of 
order n that suddenly becomes unstable when an eigenvalue crosses the unit circle at - 1 .  There 
should be a stable periodic point of order 2n on the other side of the bifurcation, but there is no 
obvious guess for the location of this point. The best one can do is to search a neighborhood of 
the bifurcation in the two-dimensional state space. 
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Fortunately, the two-dimensional search can be replaced by two one-dimensional searches 
(which is computationally much cheaper) using a method described by Hsu [12], based upon the 
Poincar~ index. I fg  is a map from the plane to the plane and C is a closed curve, define I(g,  C)---the 
index of  g over C - - t o  be the number of  rotations over the path of  the varying direction from x 
to g(x): 

I(g,  C) = ~ d / v ( x ) ,  (5) 

where v(x)  is the vector pointing from x to g(x).  If C is a simple closed curve, then I(g,  C) is equal 
to the sum, over the fixed points x of g enclosed by C, of  the local indices I (g, x),  where 
I(g,  x)  = I(g,  Cx) for Cx a small path enclosing the fixed point x (and no other fixed points of g). 
Moreover, the local index o f a  nondegenerate fixed point x is determined by the Jacobian o fg  at x : t  

- 1 if det(Dg(x) - I)  < 0 

l(g,  x) = 1 if det(Dg(x) - I) > 0. (6) 

The formulas lead to an index scan search method for finding periodic points, essentially as 
described in Ref. [12]. For  example, to find the stable periodic point of  order 2n on the other side 
of  a supercritical-flip bifurcation of a map f ,  begin with the known unstable order-n periodic point 
x, of  f and apply equation (6) with g =f(2n) tO compute the local index o f f  (s") at x, .  Using binary 
search, attempt to find circles Cr of  radius r and Cr + Or of  radius r + fir such that the index around 
Cr, as computed by equation (5), is equal to the local index of  g at xu, and the index around Q + 6, 
is not.:~ There must be another fixed point o f f  ~2") in the annulus between Cr and Cr + 6r" NOW search 
for the fixed point along the annulus, choosing each successive point as the start for a 
Newton-Raphson iteration. 

This search method is much more computationally expensive than the methods described in the 
previous section. The Interpreter resorts to index scanning only when none of  the other methods 
apply, or when they have already been tried and yet the bifurcation has still not been identified. 

Note. In applying equation (5) the Interpreter does not integrate angles directly, but rather 
uses an algorithm due to Leland [13], which computes winding numbers of  counting the varying 
direction's signed crossings with the positive x-axis. 

4.5. Criticizing local results 

At this point in the process, the Interpreter has isolated a collection of  families of  periodic points. 
Each family has been fully extended, and the bifurcations at which the families terminate have been 
tentatively classified. These classifications are based upon purely local information--analysis of 
individual bifurcations, triggered by the tracking failure of individual periodic points. The local 
methods work well when the map fp can be computed very accurately. In dozens of tests cases, 
where fp was given by simple arithmetic formulas, local searches successfully classified all 
bifurcations. However, when fp cannot be so accurately computed--as  in the case of  period map 
that must be numerically integrated--numerical errors can confuse the local methods. Therefore, 
after all bifurcations and families have been found, the Interpreter reexamines its classifications and 
attempts to identify and correct errors. 

The Interpreter begins by removing families that could not be tracked, i.e. that contain only a 
single periodic point that could not be extended. Presumably these are flukes due to numerical error 
or to extremely bad local behavior. Any bifurcation involving such a family has its type reset to 
unknown. Two bifurcations that are connected by such a family are merged, the type of  the merged 
bifurcation is set to unknown. 

The Interpreter next tries to determine whether two bifurcations that appeared to be distinct are 
in reality the same bifurcation. Figure 12 shows an example of  this kind of  error. Bifurcations B~ 

tThese relations are proved by Hsu [12]. Note that the index here is not the same as the instability index (number of 
eigenvalues with magnitude > 1), which also plays a role in dynamical systems theory. 

:~Occasionally, numerical error will make it impossible to start the search by locating a small circle for which the index 
is the same as the local index, in which case the Interpreter will abandon the index scan for this point. Also, the 
Interpreter will not begin to investigate a suspected period doubling if the order of the periodic point exceeds some 
predefined maximum (order 32 for the examples in this paper). 
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Fig. 12. Numerical error can confuse the Interpreter's local identification. Here, three "different" 
bifurcations B~, B 2 and B3, were discovered by tracking three different families of stable periodic points 
to slightly different locations. In fact, this is probably a single supercritieal pitchfork bifurcation, and the 
two unstable periodic points at B t and B2 belong to the same family. The Interpreter reexamines its local 

classifications and attempts to recognize such errors. 

and B2 were encountered by tracking stable points in the direction of  increasing p, and each tracking 
failed when an eigenvalue approached 1. At each bifurcation, the Interpreter found an unstable 
periodic point before the bifurcation, and so classified each bifurcation as a fold. Also, there is a 
nearby bifurcation B 3 that was found by tracking a stable periodic point in the direction of 
decreasing p until an eigenvalue approached 1. At B3 none of the search methods produced a new 
periodic point, and the Interpreter classified B 3 as unknown. In fact, however, these three 
bifurcations are the same one. It is a supercritical pitchfork, and the unstable points at Bj and B 2 
belong to the same family of  unstable points. Due to numerical error, the bifurcations were found 
at slightly different locations--locations sufficiently different to be outside the predefined tolerance 
that the Interpreter uses to check whether a point being tracked has merged into a previously- 
discovered bifurcation. 

One might argue that such errors could be avoided simply by choosing a larger tolerance 
during tracking. But that would lead, in other situations, to merging nearby bifurcations that 
are in fact distinct. Instead, the Interpreter waits until all bifurcations have been located and 
then checks for appropriate merges. Suppose that B was identified as a known type, with all 
required stable and unstable periodic points discovered. Examining the list of  known bifurcations 
in Fig. 7 shows that B cannot possibly merge with another bifurcation to form another one of  
known type--unless B was identified as a fold, in which case B may actually be a pitchfork or a 
transcritical bifurcation at which the Interpreter's search methods failed to discover all the local 
families. 

Thus, the Interpreter reexamines only the folds and unknown bifurcations to find pairs that are 
suspiciously close. During the tracking phase, each bifurcation's parameter value p was localized 
to an interval of  size 6p. The Interpreter uses equation (4) to approximate the change fix in 
periodic-point location corresponding to a parameter change of  size 6p. Two bifurcations are 
merged if their parameter intervals overlap and their periodic points are within a distance of  the 
magnitude of 6x. 

Finally, the Interpreter reexamines all bifurcations that are still classified as unknown, and it 
opportunistically tries to identify them based on very liberal criteria. For example, a stable family 
of  order n, tracked to a bifurcation with eigenvalue approaching - 1, is probably a flip, even if 
the Interpreter was unable to find the point of  order 2n. The Interpreter checks the bifurcation at 
the other end of  the order-n family, and if this is a supercritical flip, it marks the unknown 
bifurcation as probable supercritical flip, on the grounds that chains of  supercritical flips 
(period-doubling cascades) are fairly common. These opportunistic identifications are flagged as 
having been performed at this stage rather than during tracking, since they are presumably less 
reliable than identifications that have been confirmed by finding all the expected local periodic 
points. 

4.6. Generating the family report 

Once bifurcations and families have been isolated and classified, it is a simple matter to produce 
a family report. The Interpreter first scans the bifurcations, and annotates the ones involving 
symmetric pairs or period-doubling cascades. Any chain of  two or more supercritical flips is marked 
as a period-doubling cascade. Symmetric pairs are recognized as evolving from supercritical 
pitchforks whose two branches lead to sequences of bifurcations B ° and B~, where, for each i, B ° 
and B] have the same type and are located at the same value of p. 



The Bifurcation Interpreter 33 

The annotated bifurcations and families can be viewed as a graph, where the nodes are the 
bifurcations and the arcs are the families. The Interpreter separates these into connected 
components of the graph, which form the classes of families. Then it assigns names to the classes 
and to the families and bifurcations within each class, numbered in the direction of increasing p. 
The final family report is a list, for each class, of the families or groups of families in the class. 
The list for class A of the Duiting system analysis, for instance, was shown in Section 3.2. 

The bifurcation data structures also retain information that was generated during the tracking 
and recognition phases. Here, for example, is the first bifurcation in class E of the Duffing system 
(Fig. 1). This is a supercritical pitchfork at which family E0 splits into E,.0 and Eu:  

(bi~urcat ion :b i t .  1 
(parameter-range (21.3493 21.3503)) 
(~ani l i es -vaniahin  K (# [~anily: g. O] ))  
(~amilies-appearing (# [laraily: g. 1. O] # [tastily: g. 1.1] )) 
( id - ingo  

( ( b i f - i d - i n ~ o  (# [ id - in fo]  (cnaOg identi~y saddle b i f u r c a t i o n ) ) )  
( b i f - i d - i n ~ o  (#[id-in~o] (cannot identi~y 8addle b i f u r c a t i o n ) ) ) ) )  

(coamonts ((merged-to-incorporate S[bifurcation:  b i f . 9 ]  ) ) )  
(clusifled-by-crlt ic true) 
(type eupercr it ical-pit chf ork) 
(symmetr ic-pair  ( s p l i t  to forn symmetric pa i r ) )  
(d irec t ion  paraueter-increaain K) ) 

The bif-id-info slot here contains information generated by the local classification algorithm 
(Section 4.4), including pointers to the stable and unstable periodic points discovered by the local 
search, together with a comment that the local recognition algorithm failed--the Interpreter found 
that this was a saddle bifurcation (eigenvalue approaching l) but was unable to identify it. There 
are two bif-id entries here because the bifurcation was formed by merging two bifurcations, each 
with a local identification that failed, as described in Section 4.5. As noted, the final classification 
of this bifurcations as a supercritical flip was accomplished in the critical phase, after the merge. 

Finally, the lists of families and bifurcations are traversed by a simple text generator, or a 
graphics generator, to produce the kind of text and graphical output illustrated in Section 2.1. Not 
all the information in the lists is reflected in this output, but the information remains as part of 
the family report, available for further processing. 

5. DISCUSSION 

The ability to progress beyond raw numerical data to uncover underlying qualitative phenomena 
is sometimes called insight. It is intriguing that a degree of this "insight" can be achieved 
automatically, with only a few simple methods. Although the Bifurcation Interpreter combines 
techniques from numerical computing, symbolic algebra, and knowledge encoding, it draws upon 
each of these areas to only a very limited degree. Conversely, considering each of these areas in 
turn immediately suggests extensions and improvements to the present implementation. 

The most obvious extension is to higher-dimensional systems. Note that the index scan method 
for searching for periodic points near bifurcations (Section 4.4) is the only algorithm in the current 
implementation that relies on the fact that the state space is two-dimensional. Additional 
computational methods for "extending a periodic point through a bifurcation," which may be 
successful in higher dimensions, are discussed by Parker and Chua [14]/f Exploring systems where 
the parameter space has more than one dimension is more challenging; for one thing, the generic 
bifurcations of such systems have not been mathematically classified. But it should be possible to 
extend the Interpreter to map out these higher-dimensional families as well, and to identify the 
bifurcations encountered, at least along codimension-1 subspaces of the parameter space. 

tParker and Chua's INSITE system [14, 15] includes a wide assortment of numerical methods that are useful in the study 
of nonlinear dynamics, including routines that locate individual periodic points and track them to bifurcations, in much 
the same way as the tracking phase of the Interpreter (Section 4.3). 
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In the area of improving the numerical methods, one straightforward extension is to have the 
Interpreter track and report on families of unstable periodic points, in addition to the stable ones. 
This would produce a more complete picture of the dynamical system. A second improvement, in 
the case of ordinary differential equations, is to have the program use information based upon the 
complete trajectories of points rather than just the period map. For instance, in testing for a 
symmetric pair of families, the Interpreter should verify the symmetry of the trajectories. In 
addition, much work needs to be done in choosing the tolerances of the numerical routines--such 
as the minimum distance at which two bifurcations are considered to be distinct. One possible 
approach here is to run the program repeatedly with different tolerances until the high-level 
qualitative report stabilizes. 

The Interpreter's symbolic methods are likewise very restricted. It currently uses symbolic algebra 
only to derive formulas for Jacobians and sensitivities. Another obvious application for symbolic 
processing is to handle symmetries. For instance, one should expect to find pitchfork bifurcations 
only if the system is invariant under a symmetry (as mentioned in Section 3.1). Many such 
symmetries can be identified by examining the defining equations, and, having found a symmetry, 
the Interpreter could use this to avoid redundant computations. More significantly, in the case 
where f is computed by algebraic formulas rather than by numerical integration, one can attempt 
to recognize and classify bifurcations purely symbolically, by deriving the normal forms of the 
maps. Such computations, using the Macsyma symbolic algebra system, have been demonstrated 
by Rand and Keith [16]. 

It is in the area of incorporating more explicit knowledge about dynamics that the most 
important work remains to be done. For instance, beyond identifying collections of fixed points, 
the present Interpreter pays no attention to the geometry of the phase space. Thus, it can hope 
to recognize only those bifurcations that occur at individual fixed points. Dealing with more global 
reorganizations of phase space, such as saddle connections [2], will require a more explicit 
representation of phase-space geometry. Additionally, representing geometric relations between 
nearby trajectories can enable a program to apply powerful consistency constraints in guiding its 
exploration of the phase space. Programs that automatically investigate dynamical systems 
by "looking at" phase-space geometry have been demonstrated, for Hamiltonian systems with 
3 degrees-of-freedom, by Yip [17-19], and for planar vector fields, by Sacks [20]. 

A final important area for further work is to apply the Interpreter to systems that are derived 
from models of physical situations, rather than presented a priori  as equations, and to have the 
program formulate its interpretations in terms of underlying physical phenomena rather than only 
in terms of the bare mathematics. For example, if a nonlinear oscillator describes the rolling motion 
of a ship, then a transition to chaos can be interpreted as the possibility of capsizing [21]. A program 
that describes chemical oscillations by making qualitative investigations of the corresponding 
dynamical system is being developed by Eisenberg [22]. 

The Bifurcation Interpreter, even with its present limitations, lets us imagine a new category of 
programs that formulate numerical results in qualitative terms, thereby enabling their users to 
control computational experiments in terms of high-level behavioral descriptions (see Ref. [23] for 
further examples). Over the past 40 years, increasingly sophisticated numerical tools have radically 
transformed the role of mathematical modeling in science and engineering. Looking forward to 
combining these numerical techniques with symbolic and knowledge-based methods, shows that 
this tranformation has only just begun. 
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