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1. Introduction and preliminaries

Throughout this paper, we assume that E is a real Banach space, E∗ is the dual space of E,
C is a nonempty closed convex subset of E, Fix(T ) is the set of fixed points of mapping T and
J :E → 2E∗

is the normalized duality mapping defined by

J (x) = {
f ∈ E∗, 〈x,f 〉 = ‖x‖‖f ‖, ‖f ‖ = ‖x‖}, x ∈ E. (1.1)

Definition 1.

(1) A mapping f :C → C is said to be a contraction on C with a contractive constant α ∈ (0,1),
if ∥∥f (x) − f (y)

∥∥ � α‖x − y‖, ∀x, y ∈ C.

In the sequel, we always use ΠC to denote the collection of all contractions on C with a
suitable contractive constant α ∈ (0,1). That is

ΠC = {f : C → C, a contraction with a suitable contractive constant}. (1.2)

(2) Let T :C → C be a mapping. T is said to be nonexpansive if

‖T x − Ty‖ � ‖x − y‖, ∀x, y ∈ C.

(3) Suppose that to each x ∈ E, there exists a unique Px ∈ C such that ‖x − Px‖ = d(x,C).
Then C is said to be a Chebyshev set and the mapping P :E → C is called the metric pro-
jection onto C.

(4) Let K be a subset of C. A mapping P of C onto K is said to be sunny, if P(Px +
t (x − Px)) = Px for each x ∈ C and t � 0 with Px + t (x − Px) ∈ C (see, for example,
[4] or [5]).

(5) A subset K of C is called a nonexpansive retract of C, if there exists a nonexpansive retrac-
tion of C onto K .

Definition 2. Let U = {x ∈ E: ‖x‖ = 1}. E is said to be uniformly smooth, if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists and is attained uniformly in x, y ∈ U .

It is well known that the following proposition is true:

Proposition 1. [6] If E is a uniformly smooth Banach space, then the normalized duality mapping
J defined by (1.1) is single-valued and uniformly continuous on each bounded subset of E from
the norm topology of E to the norm topology of E∗.

Let T :C → C be a nonexpansive mapping. For given f ∈ ΠC and for given t ∈ (0,1) define
a contraction mapping Tt :C → C by

Ttx = tf (x) + (1 − t)T x, x ∈ C. (1.3)

By Banach’s contraction principle it yields a unique fixed point zt ∈ C of Tt , i.e., zt is the unique
solution of the equation
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zt = tf (zt ) + (1 − t)T zt . (1.4)

Concerning the convergence problem of {zt }, in 2000, Moudafi [10] by using the viscosity
approximation method proposed by himself proved that if E is a real Hilbert spaces, then the
sequence {zt } converges strongly to a fixed point x∗ of T in C which is the unique solution to
the following variational inequality:

〈
(I − f )x∗, x − x∗〉 � 0, ∀x ∈ Fix(T ). (1.5)

It should be pointed out that Moudafi’s above result is a generalization of the corresponding
result in Browder [2].

In 2004, Xu [14] studied further the viscosity approximation method for a nonexpansive map-
ping and proved the following result:

Theorem. (Xu [14, Theorem 4.1]) Let E be a uniformly smooth Banach space, C be a nonempty
closed convex subset of E, T :C → C be a nonexpansive mapping with Fix(T ) 	= ∅ and f ∈ ΠC .
Then the sequence {zt } defined by (1.4) converges strongly to a fixed point in Fix(T ). If we define
P :ΠC → Fix(T ) by

P(f ) := lim
t→0

xt , f ∈ ΠC, (1.6)

then P(f ) solves the variational inequality

〈
(I − f )P (f ), J

(
p − P(f )

)〉
� 0, ∀p ∈ Fix(T ). (1.7)

In particular, if f = u ∈ C (where u is a given point in C), then (1.6) is reduced to the sunny
nonexpansive retraction of Reich [11] from C onto Fix(T ):

〈
P(u) − u,J

(
p − P(u)

)〉
� 0, ∀p ∈ Fix(T ).

On the other hand, in 1996, Bauschke [1] introduced and studied the following iterative
process for a finite family of nonexpansive mappings T1, T2, . . . , Tr in a Hilbert space:

xn+1 = αn+1u + (1 − αn+1)Tn+1xn, ∀n � 0, (1.8)

where u and x0 are any given two points in C, {αn} is a real sequence in (0, 1) and Tn = Tn(mod r).
Under suitable conditions he proved the convergence of the sequence {xn} to converge to a com-
mon fixed point PF u of T1, T2, . . . , Tr in C, where PF : H → F = ⋂r

i=1 Fix(Ti) is the metric
projection.

The purpose of this paper is by using the viscosity approximation method for a finite family
of nonexpansive mappings {T1, T2, . . . , TN } on C to obtain some sufficient and necessary criteria
for the following iterative sequence:

xn+1 = αn+1f (xn) + (1 − αn+1)Tn+1xn, ∀n � 0. (1.9)

to converging to a common fixed point of T1, T2, . . . , TN in Banach spaces, where {αn} is real
sequence in (0, 1), f is a given mapping in ΠC , x0 ∈ C is any given point and Tn = Tn(modN).
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Special cases. Now we consider some special cases of sequence (1.9):

(1) If E is a Hilbert space, f = u ∈ C is a constant and N = 1, then (1.9) is reduced to the
following iterative sequence:

xn+1 = αn+1u + (1 − αn+1)T xn, ∀n � 0, (1.10)

which was studied in Halpern [7], Lions [9], Wittmann [13]. Under suitable conditions on the
mapping T and the sequence {αn}, some strong convergence theorems for iterative sequence
{xn} to converge to the nearest point projection of u onto Fix(T ) are obtained.

(2) Let E be a Hilbert space, f = u ∈ C be a constant and T1, T2, . . . , TN :C → C be a finite
family of nonexpansive mappings with

⋂N
i=1 Fix(Ti) 	= ∅. Then the iterative sequence {xn}

defined by (1.9) is deduced to (1.8) which was considered by Bauschke [1].
(3) Let E be a uniformly smooth Banach space, C be a nonempty closed convex subset of E,

T :C → C be a nonexpansive mapping with Fix(T ) 	= ∅ and f ∈ ΠC . Then (1.9) is reduced
to the following iterative sequence:

xn+1 = αn+1f (xn) + (1 − αn+1)T xn, ∀n � 0, (1.11)

which was considered in Xu [14].

Summing up the above arguments, we know that (1.9) is a more general sequence which
contains (1.8), (1.10) and (1.11) as its special cases.

The following theorem is the main results in the paper.

Theorem 1. Let E be a uniformly smooth Banach space, C be a nonempty closed convex subset
of E, f ∈ ΠC , Ti , i = 1,2, . . . ,N , be a finite family of nonexpansive mappings of C into itself
such that the set

⋂N
i=1 Fix(Ti) of common fixed points of T1, T2, . . . ,N is nonempty and satisfies

the following condition:

N⋂
i=1

Fix(Ti) = Fix(T1TN · · ·T3T2)

= · · ·
= Fix(TN−1TN−2 · · ·T1TN)

= Fix(TNTN−1 · · ·T1) := F(S),

where

S = TNTN−1 · · ·T1. (1.12)

Suppose further that f ∈ ΠC with p 	= f (p), ∀p ∈ ⋂N
i=1 Fix(Ti), x0 ∈ C is a given point,

{αn} is a sequence in [0,1] and {xn} is the iterative sequence defined by (1.9), then the following
conclusions hold:

(1) {xn} converges strongly to a common fixed point of T1, T2, . . . , TN if and only if
(a) limn→∞ αn = 0;
(b)

∑∞
n=0 αn = ∞;

(c) ‖xn − Sxn‖ → 0 (n → ∞);
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(2) if {xn} converges strongly to some common fixed point z ∈ ⋂N
i=1 F(Ti) and if P(f ) = z =

limn→∞ xn for each f ∈ ΠC , then P(f ) solves the following variational inequality:

〈
(f − I )P (f ), J

(
P(f ) − p

)〉
� 0, ∀p ∈

N⋂
i=1

F(Ti).

In order to prove our results, we need the following lemmas.

Lemma 1. (Goebel and Reich [6, p. 48]) Let C be a nonempty convex subset of a smooth Banach
space E. If C0 ⊂ C and P is a retraction of C onto C0 such that

〈
x − Px,J (Px − y)

〉
� 0,

for all x ∈ C and y ∈ C0, then P : C → C0 is sunny and nonexpansive.

Lemma 2. (Wang [12]) Let {an}, {bn}, {cn} be three nonnegative real sequences satisfying the
following conditions:

an+1 � (1 − λn)an + bn + cn, ∀n � n0,

where n0 is some nonnegative integer, {λn} ⊂ (0,1) with
∑∞

n=0 λn = ∞, bn = o(λn) and∑∞
n=0 cn < ∞, then an → 0 (as n → ∞).

Lemma 3. [3] Let E be a real Banach space and J :E → 2E∗
be the normalized duality mapping,

then for any x, y ∈ E the following holds:

‖x + y‖2 � ‖x‖2 + 2
〈
y, j (x + y)

〉
, ∀j (x + y) ∈ J (x + y).

2. Proof of Theorem 1

Proof of conclusion (1) of Theorem 1

Sufficiency
(I) Let S be the mapping defined by (1.12). It is easy to see that S : C → C is a nonexpansive

mapping. For given f ∈ ΠC , t ∈ (0,1), we define a contraction mapping Tt :C → C by

Ttx = tf (x) + (1 − t)Sx, x ∈ C.

By Banach’s contraction mapping principle it yields a unique fixed point zt ∈ C of Tt which is a
unique solution of the equation

zt = tf (zt ) + (1 − t)Szt . (2.1)

By Theorem 4.1 in Xu [14], zt → z ∈ Fix(S) := ⋂N
i=1 Fix(Ti) which is a solution of the follow-

ing variational inequality:

〈
(I − f )P (f ), J

(
p − P(f )

)〉
� 0, ∀p ∈

N⋂
i=1

Fix(Ti), (2.2)

therefore the sequence {zt } is bounded.
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(II) Now we prove that the sequence {xn} defined by (1.9) is bounded. In fact, for any p ∈⋂N
i=1 Fix(Ti) and for any n � 0 we have

‖xn − p‖ = ∥∥(1 − αn)(Tnxn−1 − p) + αn

(
f (xn−1) − p

)∥∥
� (1 − αn)‖Tnxn−1 − p‖ + αn

∥∥f (xn−1) − p
∥∥

� (1 − αn)‖xn−1 − p‖ + αn

{∥∥f (xn−1) − f (p)
∥∥ + ∥∥f (p) − p

∥∥}
� (1 − αn)‖xn−1 − p‖ + αn

{
α‖xn−1 − p‖ + ∥∥f (p) − p

∥∥}
= (

1 − αn(1 − α)
)‖xn−1 − p‖ + αn

∥∥f (p) − p
∥∥

� max

{
‖xn−1 − p‖, ‖f (p) − p‖

1 − α

}
.

By induction, we can prove that

‖xn − p‖ � max

{
‖x0 − p‖, ‖f (p) − p‖

1 − α

}
, ∀n � 0. (2.3)

This shows that {xn} is bounded, and so f (xn) and {Tn+1xn} both are bounded. Let

M = sup
t�0

sup
n�0

{‖xn − z‖2 + ‖xn − z‖ + ‖zt − xn‖ + ‖zt − xn‖2} < ∞. (2.4)

(III) Now we prove that

lim sup
n→∞

〈
z − f (z), J (z − xn)

〉
� 0, (2.5)

where z = P(f ) is the strong limit of the sequence {zt } defined by (2.1). Indeed, it follows from
(2.1), (1.9), (2.4) and Lemma 3 that

‖zt − xn‖2 = ∥∥(1 − t)(Szt − xn) + t
(
f (zt ) − xn

)∥∥2

� (1 − t)2‖Szt − xn‖2 + 2t
〈
f (zt ) − xn, J (zt − xn)

〉
� (1 − t)2{‖Szt − Sxn‖ + ‖Sxn − xn‖

}2

+ 2t
〈
f (zt ) − zt + zt − xn, J (zt − xn)

〉
� (1 − t)2{‖zt − xn‖ + ‖Sxn − xn‖

}2

+ 2t‖zt − xn‖2 + 2t
〈
f (zt ) − zt , J (zt − xn)

〉
= (1 − t)2{‖zt − xn‖2 + σn(t)

}
+ 2t‖zt − xn‖2 + 2t

〈
f (zt ) − zt , J (zt − xn)

〉
, (2.6)

where

σn(t) := 2‖zt − xn‖ · ‖Sxn − xn‖ + ‖Sxn − xn‖2

� 2M‖Sxn − xn‖ + ‖Sxn − xn‖2, ∀t ∈ (0,1).

By condition (c),

lim
n→∞σn(t) = 0 (2.7)

uniformly in t ∈ (0,1). Hence from (2.6) we have

〈
zt − f (zt ), J (zt − xn)

〉
� t ‖zt − xn‖2 + 1

σn(t) � t
M + 1

σn(t).

2 2t 2 2t
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By using (2.7), we have

lim sup
n→∞

〈
zt − f (zt ), J (zt − xn)

〉
� t

2
M, ∀t ∈ (0,1),

where M is the constant defined by (2.4). And so we have

lim sup
t→0

lim sup
n→∞

〈
zt − f (zt ), J (zt − xn)

〉
� 0. (2.8)

On the other hand, from (2.4) we know that ‖zt − xn‖ � M and ‖xn − z‖ � M , ∀t ∈ (0,1),
n � 0. Take r � 2M and denote Br = {x ∈ X: ‖x‖ � r}. Since X is uniformly smooth, the
normalized duality mapping J is uniformly continuous on the closed ball Br from norm topology
to norm topology. Therefore for any given ε > 0, there exists δ = δ(ε) > 0 such that for any
x, y ∈ Br , if ‖x − y‖ < δ, then∥∥J (x) − J (y)

∥∥ < ε.

In particular, if we take t0 ∈ (0,1) such that ‖zt − z‖ < δ,∀t ∈ (0, t0). From (2.4) we know that
(zt − xn) and (z − xn) ∈ Br , and so∥∥J (zt − xn) − J (z − xn)

∥∥ < ε, ∀t ∈ (0, t0), n � 0.

Therefore for all t ∈ (0, t0) and n � 0 we have〈
z − f (z), J (z − xn)

〉 = 〈
z − f (z), J (z − xn) − J (zt − xn)

〉
+ 〈

z − zt − f (z) + f (zt ), J (zt − xn)
〉

+ 〈
zt − f (zt ), J (zt − xn)

〉
�

∥∥z − f (z)
∥∥ · ∥∥J (z − xn) − J (zt − xn)

∥∥
+ {‖z − zt‖ + ∥∥f (z) − f (zt )

∥∥}‖zt − xn‖
+ 〈

zt − f (zt ), J (zt − xn)
〉

� ε
∥∥z − f (z)

∥∥ + 2r‖z − zt‖ + 〈
zt − f (zt ), J (zt − xn)

〉
. (2.9)

By taking lim sup first with respect to n → ∞ and then to t → 0 and noticing (2.8), we obtain

lim sup
n→∞

〈
z − f (z), J (z − xn)

〉
� ε

∥∥z − f (z)
∥∥.

By the arbitrariness of ε > 0, we have

lim sup
n→∞

〈
z − f (z), J (z − xn)

〉
� 0. (2.10)

The conclusion (2.5) is proved.
Letting γn = max{〈z − f (z), J (z − xn)〉,0} � 0, ∀n � 0, now we prove that

lim
n→∞γn = 0. (2.11)

In fact, from (2.10), for any given ε > 0, there exists a positive integer n1 such that〈
z − f (z), J (z − xn)

〉
< ε, ∀n � n1,

and so 0 � γn < ε ∀n � n1. Since ε > 0 is arbitrary, it implies that

lim γn = 0.

n→∞
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Therefore it follows from (1.9), Lemma 3 and (2.11) that for any z ∈ ⋂N
i=1 F(Ti) we have

‖xn+1 − z‖2 = ∥∥(1 − αn+1)(Tn+1xn − z) + αn+1
(
f (xn) − z

)∥∥2

� (1 − αn+1)
2‖Tn+1xn − z‖2 + 2αn+1

〈
f (xn) − z, J (xn+1 − z)

〉
� (1 − αn+1)

2‖xn − z‖2

+ 2αn+1
〈
f (xn) − f (z) + f (z) − z, J (xn+1 − z)

〉
� (1 − αn+1)

2‖xn − z‖2 + 2αn+1α‖xn − z‖ · ‖xn+1 − z‖
+ 2αn+1

〈
f (z) − z, J (xn+1 − z)

〉
� (1 − αn+1)

2‖xn − z‖2 + αn+1α
{‖xn − z‖2 + ‖xn+1 − z‖2}

+ 2αn+1
〈
f (z) − z, J (xn+1 − z)

〉
. (2.12)

Since the normalized duality mapping J defined by (1.1) is odd, i.e., J (−x) = −J (x), x ∈ E,
therefore we have〈

f (z) − z, J (xn+1 − z)
〉 = 〈

z − f (z), J (z − xn+1)
〉
� γn+1.

Substituting it into (2.12) and simplifying, we have

(1 − ααn+1)‖xn+1 − z‖2

�
(
1 − αn+1(2 − α)

)‖xn − z‖2 + α2
n+1‖xn − z‖2 + 2αn+1γn+1

�
(
1 − αn+1(2 − α)

)‖xn − z‖2 + α2
n+1M + 2αn+1γn+1. (2.13)

Since αn → 0, therefore there exists a positive integer n2 such that

1 − ααn+1 >
1

2
, ∀n � n2.

It follows from (2.13) that

‖xn+1 − z‖2 � 1 − αn+1(2 − α)

1 − ααn+1
‖xn − z‖2

+ 2αn+1{αn+1M + 2γn+1}, ∀n � n2. (2.14)

Again since

1 − αn+1(2 − α)

1 − ααn+1
= 1 − 2αn+1(1 − α)

1 − ααn+1
� 1 − 2αn+1(1 − α),

it follows from (2.14) that

‖xn+1 − z‖2 �
{
1 − 2αn+1(1 − α)

}‖xn − z‖2

+ 2αn+1{αn+1M + 2γn+1}, ∀n � n2. (2.15)

Take an = ‖xn − z‖2, λn = 2αn+1(1 − α), bn = 2αn+1{αn+1M + 2γn+1} and cn = 0, ∀n � n2,
in Lemma 2. By the assumptions, it is know that

∑∞
n=0 λn = ∞, bn = o(λn) and

∑∞
n=0 cn = 0,

hence the conditions in Lemma 2 are satisfied, and so we have

lim
n→∞‖xn − z‖ = 0, i.e., xn → z ∈

N⋂
i=

F(Ti). (2.16)

The sufficiency of conclusion (1) of Theorem 1 is proved.
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Necessity
Suppose that the sequence {xn} defined by (1.9) converges strongly to a fixed point p ∈⋂N

i=1 F(Ti). In view of (1.12), we know that

‖Sxn − xn‖ � ‖Sxn − p‖ + ‖xn − p‖ � 2‖xn − p‖ → 0 (n → ∞).

The necessity of condition (c) is proved.
Since each Ti :C → C, i = 1,2, . . . ,N , is nonexpansive, we get

‖Tn+1xn − p‖ � ‖xn − p‖ → 0, i.e., Tn+1xn → p (as n → ∞).

Again from (1.9) we have that

αn+1
∥∥f (xn) − Tn+1xn

∥∥ = ‖xn+1 − Tn+1xn‖
� ‖xn+1 − p‖ + ‖Tn+1xn − p‖
� ‖xn+1 − p‖ + ‖xn − p‖ → 0 (as n → ∞).

Therefore we have

lim sup
n→∞

αn+1
∥∥f (xn) − Tn+1xn

∥∥ = lim sup
n→∞

αn+1
∥∥f (p) − p

∥∥ = 0.

By the assumption that p 	= f (p), ∀p ∈ ⋂N
i=1 Fix(Ti), this implies that

lim sup
n→∞

αn+1 = 0,

i.e.,

lim
n→∞αn = 0.

The necessity of condition (a) is proved.
Take f = 0, C = {x ∈ E: ‖x‖ � 1} (closed unit ball in E) and Ti = (−I ) :C → C,

∀i = 1,2, . . . ,N , in (1.9), where I is the identity mapping. Since each Ti , i = 1,2, . . . ,N , is
nonexpansive and 0 is the unique common fixed point of T1, T2, . . . , TN in C, hence we have

xn+1 = (−1)(1 − αn+1)xn = (−1)2(1 − αn+1)(1 − αn)xn−1

= · · · = (−1)n+1
n+1∏
i=1

(1 − αi)x0.

If xn → 0 ∈ ⋂N
i=1 Fix(Ti), we have

0 = lim
n→∞‖xn+1 − 0‖ = lim

n→∞

n+1∏
i=1

(1 − αi)‖x0 − 0‖.

This implies that

∞∏
i=1

(1 − αi) = 0, i.e.,
∞∑
i=1

αi = ∞.

The necessity of condition (b) is proved.
Summing up the about argument, the conclusion (1) of Theorem 1 is proved.
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Proof of conclusion (2) of Theorem 1

Indeed, if limn→∞ xn = z = P(f ) for each f ∈ ΠC , then by Theorem 4.1 in Xu [14], we have

lim
n→∞xn = lim

t→0
zt = P(f ) = z ∈

N⋂
i=1

F(Ti) for each f ∈ ΠC,

and

〈
(f − I )P (f ), J

(
P(f ) − y

)〉
� 0, ∀y ∈

N⋂
i=1

F(Ti),

where {zt } is the sequence defined by (2.1).
The proof of Theorem 1 is completed.

3. Applications to some recent theorems

The following theorem can be obtain from Theorem 1 with N = 1 immediately.

Theorem 2. Let E be a uniformly smooth Banach space, C be a nonempty closed convex subset
of E, f ∈ ΠC , T :C → C be a nonexpansive mapping with Fix(T ) 	= ∅. Suppose further that
x0 ∈ C is a given point, {αn} is a sequence in (0,1) and {xn} is the iterative sequence defined by

xn+1 = αn+1f (xn) + (1 − αn+1)T xn. (3.1)

Then the following conclusions hold:

(1) {xn} converges strongly to a common fixed point of T if and only if
(a) limn→∞ αn = 0;
(b)

∑∞
n=0 αn = ∞;

(c) ‖xn − T xn‖ → 0 (n → ∞);
(2) if the sequence {xn} defined by (3.1) converges strongly to some common fixed point z ∈

Fix(T ) and if P(f ) = z = limn→∞ xn for each f ∈ ΠC , then P(f ) solves the following
variational inequality:

〈
(f − I )P (f ), J

(
P(f ) − p

)〉
� 0, ∀p ∈ Fix(T ).

Now we are in a position to apply Theorem 2 to generalize and improve some recent new
results.

Theorem 3. (Xu [10, Theorem 4.2]) Let E be a uniformly smooth Banach space, C be a non-
empty closed convex subset of E, T :C → C be a nonexpansive mapping with F(T ) 	= ∅. Let
f ∈ ΠC with a contractive constant α, x0 ∈ C be any given point, {αn} be a real sequence in
(0,1) and {xn} be the iterative sequence defined by (3.1). If the following conditions are satisfied:

(i) limn→∞ αn = 0;
(ii)

∑∞
n=0 αn = ∞;

(iii)
∑∞

n=0 |αn+1 − αn| < ∞ or limn→∞ αn+1 = 1,

αn
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then the sequence {xn} converges strongly to P(f ) which solves the following variational in-
equality:

〈
(f − I )P (f ), J

(
P(f ) − p

)〉
� 0, ∀p ∈ Fix(T ).

Proof. In order to prove the conclusion of Theorem 3, it suffices to show that under the condi-
tions (i)–(iii) of Theorem 3, we have

‖xn − T xn‖ → 0 (as n → ∞).

In fact, for given f ∈ ΠC with a contractive constant α ∈ (0,1) and for any given p ∈ Fix(T ),
by the same method as given in proof of (2.3), we can prove that

‖xn − p‖ � max

{
‖x0 − p‖, 1

1 − α

∥∥f (p) − p
∥∥}

, ∀n � 0.

This implies that the sequence {xn} is bounded and so the sequence {T xn} and {f (xn)} both are
bounded. Therefore there exists a constant M > 0 such that

M = sup
n�0

∥∥f (xn) − T xn

∥∥ < ∞.

In view of (3.1) we have that

‖xn+1 − xn‖ = ∥∥αn+1f (xn) + (1 − αn+1)T xn − [
αnf (xn−1) + (1 − αn)T xn−1

]∥∥
= ∥∥(1 − αn+1)(T xn − T xn−1)

+ (αn+1 − αn)
(
f (xn−1) − T xn−1

) + αn+1
(
f (xn) − f (xn−1)

)∥∥
� (1 − αn+1)‖xn − xn−1‖ + |αn+1 − αn|

∥∥f (xn−1) − T xn−1
∥∥

+ αn+1α‖xn − xn−1‖
�

(
1 − αn+1(1 − α)

)‖xn − xn−1‖ + |αn+1 − αn|M. (3.2)

If the condition
∑∞

n=0 |αn+1 − αn| < ∞ is satisfied, then taking an = ‖xn − xn−1‖, λn =
αn+1(1 − α), bn = 0 and cn = |αn+1 − αn|M , ∀n � 0, in Lemma 2, we know that all conditions
in Lemma 2 are satisfied. Hence we have that

‖xn+1 − xn‖ → 0 (as n → ∞). (3.3)

If the condition limn→∞ αn+1
αn

= 1 is satisfied, then take

an = ‖xn − xn−1‖,
bn = αn

|αn+1 − αn|M
αn

=
∣∣∣∣1 − αn+1

αn

∣∣∣∣αnM,

cn = 0, ∀n � 0,

in Lemma 2, we know that all conditions in Lemma 2 are satisfied. Hence (3.3) also holds.
Again it follows from (3.1) that

xn+1 − xn = αn+1
(
f (xn) − T xn

) + T xn − xn.

This implies that
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‖T xn − xn‖ � ‖xn+1 − xn‖ + αn+1
∥∥f (xn) − T xn

∥∥
� ‖xn+1 − xn‖ + αn+1M → 0 (as n → ∞).

This completes the proof of Theorem 3. �
The following result can be obtained from Theorem 3 immediately.

Theorem 4. (Wittmann [9, Theorem 2]) Let H be a real Hilbert space, C be a nonempty closed
convex subset of H , T :C → C be a nonexpansive mapping with Fix(T ) 	= ∅. Let u,x0 ∈ C be
any given points, {xn} be the iterative sequence defined by

xn+1 = αn+1u + (1 − αn+1)T xn, ∀n � 0. (3.4)

If {αn} be a sequence in (0,1) satisfying the conditions (i)–(iii) in Theorem 3, then the sequence
{xn} converges strongly to a fixed point z = Pu ∈ F(T ) which is a solution of the following
variational inequality:

〈u − Pu,Pu − y〉 � 0, ∀y ∈ F(T ).

Proof. In fact, in Theorem 3 take f = u, the conclusion of Theorem 4 is obtained from Theo-
rem 3 immediately. �
Remark 1. Theorem 3 not only generalizes and improves the main result in Wittmann [13] and
Xu [15] but also generalizes and improves the main results in Halpern [7] and Lions [9].

Theorem 5. Let E be a uniformly smooth Banach space, C be a nonempty closed convex subset
of E, f ∈ ΠC , Ti , i = 1,2, . . . ,N , be a finite family of nonexpansive mappings of C into itself
with

⋂N
i=1 Fix(Ti) 	= ∅ satisfying the following conditions:

(i) TNTN−1 · · ·T1 = T1TN · · ·T3T2 = · · · = TN−1TN−2 · · ·T1TN ;

(ii)

N⋂
i=1

Fix(Ti) = Fix(T1TN · · ·T3T2)

= · · ·
= Fix(TN−1TN−2 · · ·T1TN)

= Fix(TNTN−1 · · ·T1) := F(S),

where

S = TNTN−1 · · ·T1. (3.5)

Suppose further that x0 ∈ C is a given point, {αn} is a sequence in [0,1] and {xn} is the
iterative sequence defined by (1.9). If the following conditions are satisfied:

(a) limn→∞ αn = 0;
(b)

∑∞
n=0 αn = ∞;

(c)
∑∞

n=0 |αn+N − αn| < ∞,
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then {xn} converges strongly to a common fixed point P(f ) ∈ ⋂N
i=1 Fix(Ti) which solves the

following variational inequality:

〈
(f − I )P (f ), J

(
P(f ) − p

)〉
� 0, ∀p ∈

N⋂
i=1

F(Ti).

Proof. It follows from (2.3) that for any n � 0 and for any p ∈ ⋂N
i=1 F(Ti),

‖xn − p‖ � max

{
‖x0 − p‖, ‖f (p) − p‖

1 − α

}
. (3.6)

This implies that {xn} is bounded, and so {f (xn)}, Tn+1xn both are bounded. Let

M = sup
n�0

{∥∥f (xn)
∥∥ + ‖Tn+1xn‖

}
< ∞. (3.7)

Next we prove that

xn+1 − Tn+1xn → 0 (as n → ∞). (3.8)

Indeed, from (1.9) and (3.7) we have

‖xn+1 − Tn+1xn‖ = αn+1
∥∥f (xn) − Tn+1xn

∥∥ � αn+1M → 0.

This shows that (3.8) is true.
Now we prove that

xn+N − xn → 0 (as n → ∞). (3.9)

Indeed, from (1.9) we have

‖xn+N − xn‖ = ∥∥αn+Nf (xn+N−1) + (1 − αn+N)Tn+Nxn+N−1

− [
αnf (xn−1) + (1 − αnTnxn−1)

]∥∥
= ∥∥(1 − αn+N)[Tn+Nxn+N−1 − Tnxn−1]

+ (αn+N − αn)
[
f (xn−1) − Tnxn−1

]
+ αn+N

[
f (xn+N−1 − f (xn−1)

]∥∥
� (1 − αn+N)‖xn+N−1 − xn−1‖ (since Tn+N = Tn)

+ |αn+N − αn|M + αn+Nα‖xn+N−1 − xn−1‖
= (

1 − αn+N(1 − α)
)‖xn+N−1 − xn−1‖ + |αn+N − αn|M.

Taking an = ‖xn+N−1 − xn−1‖, λn = αn+N(1 − α), bn = 0 and cn = |αn+N − αn|M , we know
that all conditions in Lemma 2 are satisfied. By Lemma 2, ‖xn+N − xn‖ → 0 (as n → ∞). The
desired result is obtained.

Next we prove that

xn − Tn+NTn+N−1 · · ·Tn+1 → 0 (as n → ∞). (3.10)

In view of (3.9), it suffices to show that xn+N − Tn+NTn+N−1 · · ·Tn+1 → 0 (as n → ∞). In
fact, from (3.8) we have

xn+N − Tn+Nxn+N−1 → 0. (1∗)
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Again by (3.8), xn+N−1 − Tn+N−1xn+N−2 → 0. Thus the nonexpansiveness of Tn+N implies
that

Tn+Nxn+N−1 − Tn+NTn+N−1xn+N−2 → 0. (2∗)

Similarly

Tn+NTn+N−1xn+N−2 − Tn+NTn+N−1Tn+N−2xn+N−2 → 0. (3∗)
...

Tn+NTn+N−1 · · ·Tn+2xn+1 − Tn+NTn+N−1Tn+N−2 · · ·Tn+2Tn+1xn → 0. (N∗)

Adding these N sequences yields

xn+N − Tn+NTn+N−1 · · ·Tn+1xn → 0 (as n → ∞).

The desired is proved.
Finally, we prove that

xn − TNTN−1 · · ·T1xn → 0 (as n → ∞). (3.11)

Indeed, it is easy to see that

If n (mod N) = 1, then Tn+NTn+N−1 · · ·Tn+1 = T1TN · · ·T2;
If n (mod N) = 2, then Tn+NTn+N−1 · · ·Tn+1 = T2T1TN · · ·T3;

...

If n (mod N) = N , then Tn+NTn+N−1 · · ·Tn+1 = TNTN−1 · · ·T1.

In view of condition (i),

TNTN−1 · · ·T1 = T1TN · · ·T3T2 = · · · = TN−1TN−2 · · ·T1TN

therefore we have

TNTN−1 · · ·T1 = Tn+NTn+N−1 · · ·Tn+1, ∀n � 1.

This implies that

xn − TNTN−1 · · ·T1xn = xn − Tn+NTn+N−1 · · ·Tn+1xn → 0 (as n → ∞),

i.e.,

‖xn − TNTN−1 · · ·T1xn‖ → 0 (as n → ∞).

Therefore all conditions in Theorem 1 are satisfied. The conclusion of Theorem 5 can be obtained
from Theorem 1 immediately. �
Remark 2. Theorem 5 is an improvement and generalization of Theorem 3.2 in Bauschke [1],
Theorem 3.1 in O’Hara, Pillay and Xu [16] and Theorem 10 in Jung [8].
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