Viscosity approximation methods for a finite family of nonexpansive mappings in Banach spaces ${ }^{*}$

Shih-Sen Chang ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Department of Mathematics, Yibin University, Yibin, Sichuan 644007, China
${ }^{\text {b }}$ Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China
Received 25 July 2005
Available online 4 January 2006
Submitted by T.D. Benavides

Abstract

By using viscosity approximation methods for a finite family of nonexpansive mappings in Banach spaces, some sufficient and necessary conditions for the iterative sequence to converging to a common fixed point are obtained. The results presented in the paper extend and improve some recent results in [H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004) 279-291; H.K. Xu, Remark on an iterative method for nonexpansive mappings, Comm. Appl. Nonlinear Anal. 10 (2003) 67-75; H.H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 202 (1996) 150-159; B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967) 957-961; J.S. Jung, Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 302 (2005) 509-520; P.L. Lions, Approximation de points fixes de contractions', C. R. Acad. Sci. Paris Sér. A 284 (1977) 1357-1359; A. Moudafi, Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl. 241 (2000) 46-55; S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980) 128-292; R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992) 486-491].

© 2005 Elsevier Inc. All rights reserved.
Keywords: Nonexpansive mapping; Common fixed point; Uniformly smooth Banach space; Normalized duality mapping

[^0]
1. Introduction and preliminaries

Throughout this paper, we assume that E is a real Banach space, E^{*} is the dual space of E, C is a nonempty closed convex subset of $E, \operatorname{Fix}(T)$ is the set of fixed points of mapping T and $J: E \rightarrow 2^{E^{*}}$ is the normalized duality mapping defined by

$$
\begin{equation*}
J(x)=\left\{f \in E^{*},\langle x, f\rangle=\|x\|\|f\|,\|f\|=\|x\|\right\}, \quad x \in E . \tag{1.1}
\end{equation*}
$$

Definition 1.

(1) A mapping $f: C \rightarrow C$ is said to be a contraction on C with a contractive constant $\alpha \in(0,1)$, if

$$
\|f(x)-f(y)\| \leqslant \alpha\|x-y\|, \quad \forall x, y \in C .
$$

In the sequel, we always use Π_{C} to denote the collection of all contractions on C with a suitable contractive constant $\alpha \in(0,1)$. That is

$$
\begin{equation*}
\Pi_{C}=\{f: C \rightarrow C, \text { a contraction with a suitable contractive constant }\} . \tag{1.2}
\end{equation*}
$$

(2) Let $T: C \rightarrow C$ be a mapping. T is said to be nonexpansive if

$$
\|T x-T y\| \leqslant\|x-y\|, \quad \forall x, y \in C .
$$

(3) Suppose that to each $x \in E$, there exists a unique $P x \in C$ such that $\|x-P x\|=d(x, C)$. Then C is said to be a Chebyshev set and the mapping $P: E \rightarrow C$ is called the metric projection onto C.
(4) Let K be a subset of C. A mapping P of C onto K is said to be sunny, if $P(P x+$ $t(x-P x))=P x$ for each $x \in C$ and $t \geqslant 0$ with $P x+t(x-P x) \in C$ (see, for example, [4] or [5]).
(5) A subset K of C is called a nonexpansive retract of C, if there exists a nonexpansive retraction of C onto K.

Definition 2. Let $U=\{x \in E:\|x\|=1\}$. E is said to be uniformly smooth, if the limit

$$
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}
$$

exists and is attained uniformly in $x, y \in U$.
It is well known that the following proposition is true:
Proposition 1. [6] If E is a uniformly smooth Banach space, then the normalized duality mapping J defined by (1.1) is single-valued and uniformly continuous on each bounded subset of E from the norm topology of E to the norm topology of E^{*}.

Let $T: C \rightarrow C$ be a nonexpansive mapping. For given $f \in \Pi_{C}$ and for given $t \in(0,1)$ define a contraction mapping $T_{t}: C \rightarrow C$ by

$$
\begin{equation*}
T_{t} x=t f(x)+(1-t) T x, \quad x \in C . \tag{1.3}
\end{equation*}
$$

By Banach's contraction principle it yields a unique fixed point $z_{t} \in C$ of T_{t}, i.e., z_{t} is the unique solution of the equation

$$
\begin{equation*}
z_{t}=t f\left(z_{t}\right)+(1-t) T z_{t} \tag{1.4}
\end{equation*}
$$

Concerning the convergence problem of $\left\{z_{t}\right\}$, in 2000, Moudafi [10] by using the viscosity approximation method proposed by himself proved that if E is a real Hilbert spaces, then the sequence $\left\{z_{t}\right\}$ converges strongly to a fixed point x_{*} of T in C which is the unique solution to the following variational inequality:

$$
\begin{equation*}
\left\langle(I-f) x^{*}, x-x^{*}\right\rangle \geqslant 0, \quad \forall x \in \operatorname{Fix}(T) . \tag{1.5}
\end{equation*}
$$

It should be pointed out that Moudafis above result is a generalization of the corresponding result in Browder [2].

In 2004, Xu [14] studied further the viscosity approximation method for a nonexpansive mapping and proved the following result:

Theorem. (Xu [14, Theorem 4.1]) Let E be a uniformly smooth Banach space, C be a nonempty closed convex subset of $E, T: C \rightarrow C$ be a nonexpansive mapping with $\operatorname{Fix}(T) \neq \emptyset$ and $f \in \Pi_{C}$. Then the sequence $\left\{z_{t}\right\}$ defined by (1.4) converges strongly to a fixed point in $\operatorname{Fix}(T)$. If we define $P: \Pi_{C} \rightarrow \operatorname{Fix}(T)$ by

$$
\begin{equation*}
P(f):=\lim _{t \rightarrow 0} x_{t}, \quad f \in \Pi_{C}, \tag{1.6}
\end{equation*}
$$

then $P(f)$ solves the variational inequality

$$
\begin{equation*}
\langle(I-f) P(f), J(p-P(f))\rangle \geqslant 0, \quad \forall p \in \operatorname{Fix}(T) \tag{1.7}
\end{equation*}
$$

In particular, if $f=u \in C$ (where u is a given point in C), then (1.6) is reduced to the sunny nonexpansive retraction of Reich [11] from C onto $\operatorname{Fix}(T)$:

$$
\langle P(u)-u, J(p-P(u))\rangle \geqslant 0, \quad \forall p \in \operatorname{Fix}(T) .
$$

On the other hand, in 1996, Bauschke [1] introduced and studied the following iterative process for a finite family of nonexpansive mappings $T_{1}, T_{2}, \ldots, T_{r}$ in a Hilbert space:

$$
\begin{equation*}
x_{n+1}=\alpha_{n+1} u+\left(1-\alpha_{n+1}\right) T_{n+1} x_{n}, \quad \forall n \geqslant 0, \tag{1.8}
\end{equation*}
$$

where u and x_{0} are any given two points in $C,\left\{\alpha_{n}\right\}$ is a real sequence in $(0,1)$ and $T_{n}=T_{n(\bmod r)}$. Under suitable conditions he proved the convergence of the sequence $\left\{x_{n}\right\}$ to converge to a common fixed point $P_{F} u$ of $T_{1}, T_{2}, \ldots, T_{r}$ in C, where $P_{F}: H \rightarrow F=\bigcap_{i=1}^{r} \operatorname{Fix}\left(T_{i}\right)$ is the metric projection.

The purpose of this paper is by using the viscosity approximation method for a finite family of nonexpansive mappings $\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$ on C to obtain some sufficient and necessary criteria for the following iterative sequence:

$$
\begin{equation*}
x_{n+1}=\alpha_{n+1} f\left(x_{n}\right)+\left(1-\alpha_{n+1}\right) T_{n+1} x_{n}, \quad \forall n \geqslant 0 . \tag{1.9}
\end{equation*}
$$

to converging to a common fixed point of $T_{1}, T_{2}, \ldots, T_{N}$ in Banach spaces, where $\left\{\alpha_{n}\right\}$ is real sequence in $(0,1), f$ is a given mapping in $\Pi_{C}, x_{0} \in C$ is any given point and $T_{n}=T_{n(\bmod N)}$.

Special cases. Now we consider some special cases of sequence (1.9):
(1) If E is a Hilbert space, $f=u \in C$ is a constant and $N=1$, then (1.9) is reduced to the following iterative sequence:

$$
\begin{equation*}
x_{n+1}=\alpha_{n+1} u+\left(1-\alpha_{n+1}\right) T x_{n}, \quad \forall n \geqslant 0, \tag{1.10}
\end{equation*}
$$

which was studied in Halpern [7], Lions [9], Wittmann [13]. Under suitable conditions on the mapping T and the sequence $\left\{\alpha_{n}\right\}$, some strong convergence theorems for iterative sequence $\left\{x_{n}\right\}$ to converge to the nearest point projection of u onto $\operatorname{Fix}(T)$ are obtained.
(2) Let E be a Hilbert space, $f=u \in C$ be a constant and $T_{1}, T_{2}, \ldots, T_{N}: C \rightarrow C$ be a finite family of nonexpansive mappings with $\bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right) \neq \emptyset$. Then the iterative sequence $\left\{x_{n}\right\}$ defined by (1.9) is deduced to (1.8) which was considered by Bauschke [1].
(3) Let E be a uniformly smooth Banach space, C be a nonempty closed convex subset of E, $T: C \rightarrow C$ be a nonexpansive mapping with $\operatorname{Fix}(T) \neq \emptyset$ and $f \in \Pi_{C}$. Then (1.9) is reduced to the following iterative sequence:

$$
\begin{equation*}
x_{n+1}=\alpha_{n+1} f\left(x_{n}\right)+\left(1-\alpha_{n+1}\right) T x_{n}, \quad \forall n \geqslant 0, \tag{1.11}
\end{equation*}
$$

which was considered in Xu [14].
Summing up the above arguments, we know that (1.9) is a more general sequence which contains (1.8), (1.10) and (1.11) as its special cases.

The following theorem is the main results in the paper.
Theorem 1. Let E be a uniformly smooth Banach space, C be a nonempty closed convex subset of $E, f \in \Pi_{C}, T_{i}, i=1,2, \ldots, N$, be a finite family of nonexpansive mappings of C into itself such that the set $\bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right)$ of common fixed points of T_{1}, T_{2}, \ldots, N is nonempty and satisfies the following condition:

$$
\begin{aligned}
\bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right) & =\operatorname{Fix}\left(T_{1} T_{N} \cdots T_{3} T_{2}\right) \\
& =\cdots \\
& =\operatorname{Fix}\left(T_{N-1} T_{N-2} \cdots T_{1} T_{N}\right) \\
& =\operatorname{Fix}\left(T_{N} T_{N-1} \cdots T_{1}\right):=F(S),
\end{aligned}
$$

where

$$
\begin{equation*}
S=T_{N} T_{N-1} \cdots T_{1} \tag{1.12}
\end{equation*}
$$

Suppose further that $f \in \Pi_{C}$ with $p \neq f(p), \forall p \in \bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right), x_{0} \in C$ is a given point, $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$ and $\left\{x_{n}\right\}$ is the iterative sequence defined by (1.9), then the following conclusions hold:
(1) $\left\{x_{n}\right\}$ converges strongly to a common fixed point of $T_{1}, T_{2}, \ldots, T_{N}$ if and only if
(a) $\lim _{n \rightarrow \infty} \alpha_{n}=0$;
(b) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(c) $\left\|x_{n}-S x_{n}\right\| \rightarrow 0(n \rightarrow \infty)$;
(2) if $\left\{x_{n}\right\}$ converges strongly to some common fixed point $z \in \bigcap_{i=1}^{N} F\left(T_{i}\right)$ and if $P(f)=z=$ $\lim _{n \rightarrow \infty} x_{n}$ for each $f \in \Pi_{C}$, then $P(f)$ solves the following variational inequality:

$$
\langle(f-I) P(f), J(P(f)-p)\rangle \geqslant 0, \quad \forall p \in \bigcap_{i=1}^{N} F\left(T_{i}\right) .
$$

In order to prove our results, we need the following lemmas.
Lemma 1. (Goebel and Reich [6, p. 48]) Let C be a nonempty convex subset of a smooth Banach space E. If $C_{0} \subset C$ and P is a retraction of C onto C_{0} such that

$$
\langle x-P x, J(P x-y)\rangle \geqslant 0,
$$

for all $x \in C$ and $y \in C_{0}$, then $P: C \rightarrow C_{0}$ is sunny and nonexpansive.
Lemma 2. (Wang [12]) Let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ be three nonnegative real sequences satisfying the following conditions:

$$
a_{n+1} \leqslant\left(1-\lambda_{n}\right) a_{n}+b_{n}+c_{n}, \quad \forall n \geqslant n_{0},
$$

where n_{0} is some nonnegative integer, $\left\{\lambda_{n}\right\} \subset(0,1)$ with $\sum_{n=0}^{\infty} \lambda_{n}=\infty, b_{n}=o\left(\lambda_{n}\right)$ and $\sum_{n=0}^{\infty} c_{n}<\infty$, then $a_{n} \rightarrow 0($ as $n \rightarrow \infty)$.

Lemma 3. [3] Let E be a real Banach space and $J: E \rightarrow 2^{E^{*}}$ be the normalized duality mapping, then for any $x, y \in E$ the following holds:

$$
\|x+y\|^{2} \leqslant\|x\|^{2}+2\langle y, j(x+y)\rangle, \quad \forall j(x+y) \in J(x+y) .
$$

2. Proof of Theorem 1

Proof of conclusion (1) of Theorem 1

Sufficiency

(I) Let S be the mapping defined by (1.12). It is easy to see that $S: C \rightarrow C$ is a nonexpansive mapping. For given $f \in \Pi_{C}, t \in(0,1)$, we define a contraction mapping $T_{t}: C \rightarrow C$ by

$$
T_{t} x=t f(x)+(1-t) S x, \quad x \in C .
$$

By Banach's contraction mapping principle it yields a unique fixed point $z_{t} \in C$ of T_{t} which is a unique solution of the equation

$$
\begin{equation*}
z_{t}=t f\left(z_{t}\right)+(1-t) S z_{t} . \tag{2.1}
\end{equation*}
$$

By Theorem 4.1 in Xu [14], $z_{t} \rightarrow z \in \operatorname{Fix}(S):=\bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right)$ which is a solution of the following variational inequality:

$$
\begin{equation*}
\langle(I-f) P(f), J(p-P(f))\rangle \geqslant 0, \quad \forall p \in \bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right), \tag{2.2}
\end{equation*}
$$

therefore the sequence $\left\{z_{t}\right\}$ is bounded.
(II) Now we prove that the sequence $\left\{x_{n}\right\}$ defined by (1.9) is bounded. In fact, for any $p \in$ $\bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right)$ and for any $n \geqslant 0$ we have

$$
\begin{aligned}
\left\|x_{n}-p\right\| & =\left\|\left(1-\alpha_{n}\right)\left(T_{n} x_{n-1}-p\right)+\alpha_{n}\left(f\left(x_{n-1}\right)-p\right)\right\| \\
& \leqslant\left(1-\alpha_{n}\right)\left\|T_{n} x_{n-1}-p\right\|+\alpha_{n}\left\|f\left(x_{n-1}\right)-p\right\| \\
& \leqslant\left(1-\alpha_{n}\right)\left\|x_{n-1}-p\right\|+\alpha_{n}\left\{\left\|f\left(x_{n-1}\right)-f(p)\right\|+\|f(p)-p\|\right\} \\
& \leqslant\left(1-\alpha_{n}\right)\left\|x_{n-1}-p\right\|+\alpha_{n}\left\{\alpha\left\|x_{n-1}-p\right\|+\|f(p)-p\|\right\} \\
& =\left(1-\alpha_{n}(1-\alpha)\right)\left\|x_{n-1}-p\right\|+\alpha_{n}\|f(p)-p\| \\
& \leqslant \max \left\{\left\|x_{n-1}-p\right\|, \frac{\|f(p)-p\|}{1-\alpha}\right\} .
\end{aligned}
$$

By induction, we can prove that

$$
\begin{equation*}
\left\|x_{n}-p\right\| \leqslant \max \left\{\left\|x_{0}-p\right\|, \frac{\|f(p)-p\|}{1-\alpha}\right\}, \quad \forall n \geqslant 0 . \tag{2.3}
\end{equation*}
$$

This shows that $\left\{x_{n}\right\}$ is bounded, and so $f\left(x_{n}\right)$ and $\left\{T_{n+1} x_{n}\right\}$ both are bounded. Let

$$
\begin{equation*}
M=\sup _{t \geqslant 0} \sup _{n \geqslant 0}\left\{\left\|x_{n}-z\right\|^{2}+\left\|x_{n}-z\right\|+\left\|z_{t}-x_{n}\right\|+\left\|z_{t}-x_{n}\right\|^{2}\right\}<\infty . \tag{2.4}
\end{equation*}
$$

(III) Now we prove that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\{z-f(z), J\left(z-x_{n}\right)\right\rangle \leqslant 0 \tag{2.5}
\end{equation*}
$$

where $z=P(f)$ is the strong limit of the sequence $\left\{z_{t}\right\}$ defined by (2.1). Indeed, it follows from (2.1), (1.9), (2.4) and Lemma 3 that

$$
\begin{align*}
\left\|z_{t}-x_{n}\right\|^{2}= & \left\|(1-t)\left(S z_{t}-x_{n}\right)+t\left(f\left(z_{t}\right)-x_{n}\right)\right\|^{2} \\
\leqslant & (1-t)^{2}\left\|S z_{t}-x_{n}\right\|^{2}+2 t\left\langle f\left(z_{t}\right)-x_{n}, J\left(z_{t}-x_{n}\right)\right\rangle \\
\leqslant & (1-t)^{2}\left\{\left\|S z_{t}-S x_{n}\right\|+\left\|S x_{n}-x_{n}\right\|\right\}^{2} \\
& +2 t\left\langle f\left(z_{t}\right)-z_{t}+z_{t}-x_{n}, J\left(z_{t}-x_{n}\right)\right\rangle \\
\leqslant & (1-t)^{2}\left\{\left\|z_{t}-x_{n}\right\|+\left\|S x_{n}-x_{n}\right\|\right\}^{2} \\
& +2 t\left\|z_{t}-x_{n}\right\|^{2}+2 t\left\langle f\left(z_{t}\right)-z_{t}, J\left(z_{t}-x_{n}\right)\right\rangle \\
= & (1-t)^{2}\left\{\left\|z_{t}-x_{n}\right\|^{2}+\sigma_{n}(t)\right\} \\
& +2 t\left\|z_{t}-x_{n}\right\|^{2}+2 t\left\langle f\left(z_{t}\right)-z_{t}, J\left(z_{t}-x_{n}\right)\right\rangle, \tag{2.6}
\end{align*}
$$

where

$$
\begin{aligned}
\sigma_{n}(t) & :=2\left\|z_{t}-x_{n}\right\| \cdot\left\|S x_{n}-x_{n}\right\|+\left\|S x_{n}-x_{n}\right\|^{2} \\
& \leqslant 2 M\left\|S x_{n}-x_{n}\right\|+\left\|S x_{n}-x_{n}\right\|^{2}, \quad \forall t \in(0,1) .
\end{aligned}
$$

By condition (c),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma_{n}(t)=0 \tag{2.7}
\end{equation*}
$$

uniformly in $t \in(0,1)$. Hence from (2.6) we have

$$
\left\langle z_{t}-f\left(z_{t}\right), J\left(z_{t}-x_{n}\right)\right\rangle \leqslant \frac{t}{2}\left\|z_{t}-x_{n}\right\|^{2}+\frac{1}{2 t} \sigma_{n}(t) \leqslant \frac{t}{2} M+\frac{1}{2 t} \sigma_{n}(t)
$$

By using (2.7), we have

$$
\limsup _{n \rightarrow \infty}\left\{z_{t}-f\left(z_{t}\right), J\left(z_{t}-x_{n}\right)\right\rangle \leqslant \frac{t}{2} M, \quad \forall t \in(0,1)
$$

where M is the constant defined by (2.4). And so we have

$$
\begin{equation*}
\limsup _{t \rightarrow 0} \limsup _{n \rightarrow \infty}\left\langle z_{t}-f\left(z_{t}\right), J\left(z_{t}-x_{n}\right)\right\rangle \leqslant 0 \tag{2.8}
\end{equation*}
$$

On the other hand, from (2.4) we know that $\left\|z_{t}-x_{n}\right\| \leqslant M$ and $\left\|x_{n}-z\right\| \leqslant M, \forall t \in(0,1)$, $n \geqslant 0$. Take $r \geqslant 2 M$ and denote $B_{r}=\{x \in X:\|x\| \leqslant r\}$. Since X is uniformly smooth, the normalized duality mapping J is uniformly continuous on the closed ball B_{r} from norm topology to norm topology. Therefore for any given $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)>0$ such that for any $x, y \in B_{r}$, if $\|x-y\|<\delta$, then

$$
\|J(x)-J(y)\|<\varepsilon .
$$

In particular, if we take $t_{0} \in(0,1)$ such that $\left\|z_{t}-z\right\|<\delta, \forall t \in\left(0, t_{0}\right)$. From (2.4) we know that $\left(z_{t}-x_{n}\right)$ and $\left(z-x_{n}\right) \in B_{r}$, and so

$$
\left\|J\left(z_{t}-x_{n}\right)-J\left(z-x_{n}\right)\right\|<\varepsilon, \quad \forall t \in\left(0, t_{0}\right), n \geqslant 0 .
$$

Therefore for all $t \in\left(0, t_{0}\right)$ and $n \geqslant 0$ we have

$$
\begin{align*}
\left\langle z-f(z), J\left(z-x_{n}\right)\right\rangle= & \left\langle z-f(z), J\left(z-x_{n}\right)-J\left(z_{t}-x_{n}\right)\right\rangle \\
& +\left\langle z-z_{t}-f(z)+f\left(z_{t}\right), J\left(z_{t}-x_{n}\right)\right\rangle \\
& +\left\langle z_{t}-f\left(z_{t}\right), J\left(z_{t}-x_{n}\right)\right\rangle \\
\leqslant & \|z-f(z)\| \cdot\left\|J\left(z-x_{n}\right)-J\left(z_{t}-x_{n}\right)\right\| \\
& +\left\{\left\|z-z_{t}\right\|+\left\|f(z)-f\left(z_{t}\right)\right\|\right\}\left\|z_{t}-x_{n}\right\| \\
& +\left\langle z_{t}-f\left(z_{t}\right), J\left(z_{t}-x_{n}\right)\right\rangle \\
\leqslant & \varepsilon\|z-f(z)\|+2 r\left\|z-z_{t}\right\|+\left\langle z_{t}-f\left(z_{t}\right), J\left(z_{t}-x_{n}\right)\right\rangle . \tag{2.9}
\end{align*}
$$

By taking limsup first with respect to $n \rightarrow \infty$ and then to $t \rightarrow 0$ and noticing (2.8), we obtain

$$
\limsup _{n \rightarrow \infty}\left\langle z-f(z), J\left(z-x_{n}\right)\right\rangle \leqslant \varepsilon\|z-f(z)\| .
$$

By the arbitrariness of $\varepsilon>0$, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|z-f(z), J\left(z-x_{n}\right)\right\rangle \leqslant 0 \tag{2.10}
\end{equation*}
$$

The conclusion (2.5) is proved.
Letting $\gamma_{n}=\max \left\{\left\langle z-f(z), J\left(z-x_{n}\right)\right\rangle, 0\right\} \geqslant 0, \forall n \geqslant 0$, now we prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \gamma_{n}=0 \tag{2.11}
\end{equation*}
$$

In fact, from (2.10), for any given $\varepsilon>0$, there exists a positive integer n_{1} such that

$$
\left\langle z-f(z), J\left(z-x_{n}\right)\right\rangle<\varepsilon, \quad \forall n \geqslant n_{1},
$$

and so $0 \leqslant \gamma_{n}<\varepsilon \forall n \geqslant n_{1}$. Since $\varepsilon>0$ is arbitrary, it implies that

$$
\lim _{n \rightarrow \infty} \gamma_{n}=0
$$

Therefore it follows from (1.9), Lemma 3 and (2.11) that for any $z \in \bigcap_{i=1}^{N} F\left(T_{i}\right)$ we have

$$
\begin{align*}
\left\|x_{n+1}-z\right\|^{2}= & \left\|\left(1-\alpha_{n+1}\right)\left(T_{n+1} x_{n}-z\right)+\alpha_{n+1}\left(f\left(x_{n}\right)-z\right)\right\|^{2} \\
\leqslant & \left(1-\alpha_{n+1}\right)^{2}\left\|T_{n+1} x_{n}-z\right\|^{2}+2 \alpha_{n+1}\left\langle f\left(x_{n}\right)-z, J\left(x_{n+1}-z\right)\right\rangle \\
\leqslant & \left(1-\alpha_{n+1}\right)^{2}\left\|x_{n}-z\right\|^{2} \\
& +2 \alpha_{n+1}\left\langle f\left(x_{n}\right)-f(z)+f(z)-z, J\left(x_{n+1}-z\right)\right\rangle \\
\leqslant & \left(1-\alpha_{n+1}\right)^{2}\left\|x_{n}-z\right\|^{2}+2 \alpha_{n+1} \alpha\left\|x_{n}-z\right\| \cdot\left\|x_{n+1}-z\right\| \\
& +2 \alpha_{n+1}\left\langle f(z)-z, J\left(x_{n+1}-z\right)\right\rangle \\
\leqslant & \left(1-\alpha_{n+1}\right)^{2}\left\|x_{n}-z\right\|^{2}+\alpha_{n+1} \alpha\left\{\left\|x_{n}-z\right\|^{2}+\left\|x_{n+1}-z\right\|^{2}\right\} \\
& +2 \alpha_{n+1}\left\langle f(z)-z, J\left(x_{n+1}-z\right)\right\rangle . \tag{2.12}
\end{align*}
$$

Since the normalized duality mapping J defined by (1.1) is odd, i.e., $J(-x)=-J(x), x \in E$, therefore we have

$$
\left\langle f(z)-z, J\left(x_{n+1}-z\right)\right\rangle=\left\langle z-f(z), J\left(z-x_{n+1}\right)\right\rangle \leqslant \gamma_{n+1} .
$$

Substituting it into (2.12) and simplifying, we have

$$
\begin{align*}
& \left(1-\alpha \alpha_{n+1}\right)\left\|x_{n+1}-z\right\|^{2} \\
& \quad \leqslant\left(1-\alpha_{n+1}(2-\alpha)\right)\left\|x_{n}-z\right\|^{2}+\alpha_{n+1}^{2}\left\|x_{n}-z\right\|^{2}+2 \alpha_{n+1} \gamma_{n+1} \\
& \quad \leqslant\left(1-\alpha_{n+1}(2-\alpha)\right)\left\|x_{n}-z\right\|^{2}+\alpha_{n+1}^{2} M+2 \alpha_{n+1} \gamma_{n+1} . \tag{2.13}
\end{align*}
$$

Since $\alpha_{n} \rightarrow 0$, therefore there exists a positive integer n_{2} such that

$$
1-\alpha \alpha_{n+1}>\frac{1}{2}, \quad \forall n \geqslant n_{2} .
$$

It follows from (2.13) that

$$
\begin{align*}
\left\|x_{n+1}-z\right\|^{2} \leqslant & \frac{1-\alpha_{n+1}(2-\alpha)}{1-\alpha \alpha_{n+1}}\left\|x_{n}-z\right\|^{2} \\
& +2 \alpha_{n+1}\left\{\alpha_{n+1} M+2 \gamma_{n+1}\right\}, \quad \forall n \geqslant n_{2} . \tag{2.14}
\end{align*}
$$

Again since

$$
\frac{1-\alpha_{n+1}(2-\alpha)}{1-\alpha \alpha_{n+1}}=1-\frac{2 \alpha_{n+1}(1-\alpha)}{1-\alpha \alpha_{n+1}} \leqslant 1-2 \alpha_{n+1}(1-\alpha)
$$

it follows from (2.14) that

$$
\begin{align*}
\left\|x_{n+1}-z\right\|^{2} \leqslant & \left\{1-2 \alpha_{n+1}(1-\alpha)\right\}\left\|x_{n}-z\right\|^{2} \\
& +2 \alpha_{n+1}\left\{\alpha_{n+1} M+2 \gamma_{n+1}\right\}, \quad \forall n \geqslant n_{2} . \tag{2.15}
\end{align*}
$$

Take $a_{n}=\left\|x_{n}-z\right\|^{2}, \lambda_{n}=2 \alpha_{n+1}(1-\alpha), b_{n}=2 \alpha_{n+1}\left\{\alpha_{n+1} M+2 \gamma_{n+1}\right\}$ and $c_{n}=0, \forall n \geqslant n_{2}$, in Lemma 2. By the assumptions, it is know that $\sum_{n=0}^{\infty} \lambda_{n}=\infty, b_{n}=o\left(\lambda_{n}\right)$ and $\sum_{n=0}^{\infty} c_{n}=0$, hence the conditions in Lemma 2 are satisfied, and so we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-z\right\|=0, \quad \text { i.e., } \quad x_{n} \rightarrow z \in \bigcap_{i=}^{N} F\left(T_{i}\right) . \tag{2.16}
\end{equation*}
$$

The sufficiency of conclusion (1) of Theorem 1 is proved.

Necessity

Suppose that the sequence $\left\{x_{n}\right\}$ defined by (1.9) converges strongly to a fixed point $p \in$ $\bigcap_{i=1}^{N} F\left(T_{i}\right)$. In view of (1.12), we know that

$$
\left\|S x_{n}-x_{n}\right\| \leqslant\left\|S x_{n}-p\right\|+\left\|x_{n}-p\right\| \leqslant 2\left\|x_{n}-p\right\| \rightarrow 0 \quad(n \rightarrow \infty)
$$

The necessity of condition (c) is proved.
Since each $T_{i}: C \rightarrow C, i=1,2, \ldots, N$, is nonexpansive, we get

$$
\left\|T_{n+1} x_{n}-p\right\| \leqslant\left\|x_{n}-p\right\| \rightarrow 0, \quad \text { i.e., } \quad T_{n+1} x_{n} \rightarrow p \quad(\text { as } n \rightarrow \infty)
$$

Again from (1.9) we have that

$$
\begin{aligned}
\alpha_{n+1}\left\|f\left(x_{n}\right)-T_{n+1} x_{n}\right\| & =\left\|x_{n+1}-T_{n+1} x_{n}\right\| \\
& \leqslant\left\|x_{n+1}-p\right\|+\left\|T_{n+1} x_{n}-p\right\| \\
& \leqslant\left\|x_{n+1}-p\right\|+\left\|x_{n}-p\right\| \rightarrow 0 \quad(\text { as } n \rightarrow \infty) .
\end{aligned}
$$

Therefore we have

$$
\limsup _{n \rightarrow \infty} \alpha_{n+1}\left\|f\left(x_{n}\right)-T_{n+1} x_{n}\right\|=\underset{n \rightarrow \infty}{\limsup } \alpha_{n+1}\|f(p)-p\|=0 .
$$

By the assumption that $p \neq f(p), \forall p \in \bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right)$, this implies that

$$
\limsup _{n \rightarrow \infty} \alpha_{n+1}=0
$$

i.e.,

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0
$$

The necessity of condition (a) is proved.
Take $f=0, C=\{x \in E:\|x\| \leqslant 1\}$ (closed unit ball in E) and $T_{i}=(-I): C \rightarrow C$, $\forall i=1,2, \ldots, N$, in (1.9), where I is the identity mapping. Since each $T_{i}, i=1,2, \ldots, N$, is nonexpansive and 0 is the unique common fixed point of $T_{1}, T_{2}, \ldots, T_{N}$ in C, hence we have

$$
\begin{aligned}
x_{n+1} & =(-1)\left(1-\alpha_{n+1}\right) x_{n}=(-1)^{2}\left(1-\alpha_{n+1}\right)\left(1-\alpha_{n}\right) x_{n-1} \\
& =\cdots=(-1)^{n+1} \prod_{i=1}^{n+1}\left(1-\alpha_{i}\right) x_{0} .
\end{aligned}
$$

If $x_{n} \rightarrow 0 \in \bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right)$, we have

$$
0=\lim _{n \rightarrow \infty}\left\|x_{n+1}-0\right\|=\lim _{n \rightarrow \infty} \prod_{i=1}^{n+1}\left(1-\alpha_{i}\right)\left\|x_{0}-0\right\|
$$

This implies that

$$
\prod_{i=1}^{\infty}\left(1-\alpha_{i}\right)=0, \quad \text { i.e., } \quad \sum_{i=1}^{\infty} \alpha_{i}=\infty
$$

The necessity of condition (b) is proved.
Summing up the about argument, the conclusion (1) of Theorem 1 is proved.

Proof of conclusion (2) of Theorem 1

Indeed, if $\lim _{n \rightarrow \infty} x_{n}=z=P(f)$ for each $f \in \Pi_{C}$, then by Theorem 4.1 in Xu [14], we have

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{t \rightarrow 0} z_{t}=P(f)=z \in \bigcap_{i=1}^{N} F\left(T_{i}\right) \quad \text { for each } f \in \Pi_{C},
$$

and

$$
\langle(f-I) P(f), J(P(f)-y)\rangle \geqslant 0, \quad \forall y \in \bigcap_{i=1}^{N} F\left(T_{i}\right),
$$

where $\left\{z_{t}\right\}$ is the sequence defined by (2.1).
The proof of Theorem 1 is completed.

3. Applications to some recent theorems

The following theorem can be obtain from Theorem 1 with $N=1$ immediately.

Theorem 2. Let E be a uniformly smooth Banach space, C be a nonempty closed convex subset of $E, f \in \Pi_{C}, T: C \rightarrow C$ be a nonexpansive mapping with $\operatorname{Fix}(T) \neq \emptyset$. Suppose further that $x_{0} \in C$ is a given point, $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{x_{n}\right\}$ is the iterative sequence defined by

$$
\begin{equation*}
x_{n+1}=\alpha_{n+1} f\left(x_{n}\right)+\left(1-\alpha_{n+1}\right) T x_{n} . \tag{3.1}
\end{equation*}
$$

Then the following conclusions hold:
(1) $\left\{x_{n}\right\}$ converges strongly to a common fixed point of T if and only if
(a) $\lim _{n \rightarrow \infty} \alpha_{n}=0$;
(b) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(c) $\left\|x_{n}-T x_{n}\right\| \rightarrow 0(n \rightarrow \infty)$;
(2) if the sequence $\left\{x_{n}\right\}$ defined by (3.1) converges strongly to some common fixed point $z \in$ $\operatorname{Fix}(T)$ and if $P(f)=z=\lim _{n \rightarrow \infty} x_{n}$ for each $f \in \Pi_{C}$, then $P(f)$ solves the following variational inequality:

$$
\langle(f-I) P(f), J(P(f)-p)\rangle \geqslant 0, \quad \forall p \in \operatorname{Fix}(T)
$$

Now we are in a position to apply Theorem 2 to generalize and improve some recent new results.

Theorem 3. (Xu [10, Theorem 4.2]) Let E be a uniformly smooth Banach space, C be a nonempty closed convex subset of $E, T: C \rightarrow C$ be a nonexpansive mapping with $F(T) \neq \emptyset$. Let $f \in \Pi_{C}$ with a contractive constant $\alpha, x_{0} \in C$ be any given point, $\left\{\alpha_{n}\right\}$ be a real sequence in $(0,1)$ and $\left\{x_{n}\right\}$ be the iterative sequence defined by (3.1). If the following conditions are satisfied:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$;
(ii) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(iii) $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ or $\lim _{n \rightarrow \infty} \frac{\alpha_{n+1}}{\alpha_{n}}=1$,
then the sequence $\left\{x_{n}\right\}$ converges strongly to $P(f)$ which solves the following variational inequality:

$$
\langle(f-I) P(f), J(P(f)-p)\rangle \geqslant 0, \quad \forall p \in \operatorname{Fix}(T) .
$$

Proof. In order to prove the conclusion of Theorem 3, it suffices to show that under the conditions (i)-(iii) of Theorem 3, we have

$$
\left\|x_{n}-T x_{n}\right\| \rightarrow 0 \quad(\text { as } n \rightarrow \infty)
$$

In fact, for given $f \in \Pi_{C}$ with a contractive constant $\alpha \in(0,1)$ and for any given $p \in \operatorname{Fix}(T)$, by the same method as given in proof of (2.3), we can prove that

$$
\left\|x_{n}-p\right\| \leqslant \max \left\{\left\|x_{0}-p\right\|, \frac{1}{1-\alpha}\|f(p)-p\|\right\}, \quad \forall n \geqslant 0
$$

This implies that the sequence $\left\{x_{n}\right\}$ is bounded and so the sequence $\left\{T x_{n}\right\}$ and $\left\{f\left(x_{n}\right)\right\}$ both are bounded. Therefore there exists a constant $M>0$ such that

$$
M=\sup _{n \geqslant 0}\left\|f\left(x_{n}\right)-T x_{n}\right\|<\infty
$$

In view of (3.1) we have that

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\|= & \left\|\alpha_{n+1} f\left(x_{n}\right)+\left(1-\alpha_{n+1}\right) T x_{n}-\left[\alpha_{n} f\left(x_{n-1}\right)+\left(1-\alpha_{n}\right) T x_{n-1}\right]\right\| \\
= & \|\left(1-\alpha_{n+1}\right)\left(T x_{n}-T x_{n-1}\right) \\
& +\left(\alpha_{n+1}-\alpha_{n}\right)\left(f\left(x_{n-1}\right)-T x_{n-1}\right)+\alpha_{n+1}\left(f\left(x_{n}\right)-f\left(x_{n-1}\right)\right) \| \\
\leqslant & \left(1-\alpha_{n+1}\right)\left\|x_{n}-x_{n-1}\right\|+\left|\alpha_{n+1}-\alpha_{n}\right|\left\|f\left(x_{n-1}\right)-T x_{n-1}\right\| \\
& +\alpha_{n+1} \alpha\left\|x_{n}-x_{n-1}\right\| \\
\leqslant & \left(1-\alpha_{n+1}(1-\alpha)\right)\left\|x_{n}-x_{n-1}\right\|+\left|\alpha_{n+1}-\alpha_{n}\right| M . \tag{3.2}
\end{align*}
$$

If the condition $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ is satisfied, then taking $a_{n}=\left\|x_{n}-x_{n-1}\right\|, \lambda_{n}=$ $\alpha_{n+1}(1-\alpha), b_{n}=0$ and $c_{n}=\left|\alpha_{n+1}-\alpha_{n}\right| M, \forall n \geqslant 0$, in Lemma 2, we know that all conditions in Lemma 2 are satisfied. Hence we have that

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\| \rightarrow 0 \quad(\text { as } n \rightarrow \infty) \tag{3.3}
\end{equation*}
$$

If the condition $\lim _{n \rightarrow \infty} \frac{\alpha_{n+1}}{\alpha_{n}}=1$ is satisfied, then take

$$
\begin{aligned}
& a_{n}=\left\|x_{n}-x_{n-1}\right\|, \\
& b_{n}=\alpha_{n} \frac{\left|\alpha_{n+1}-\alpha_{n}\right| M}{\alpha_{n}}=\left|1-\frac{\alpha_{n+1}}{\alpha_{n}}\right| \alpha_{n} M, \\
& c_{n}=0, \quad \forall n \geqslant 0,
\end{aligned}
$$

in Lemma 2, we know that all conditions in Lemma 2 are satisfied. Hence (3.3) also holds.
Again it follows from (3.1) that

$$
x_{n+1}-x_{n}=\alpha_{n+1}\left(f\left(x_{n}\right)-T x_{n}\right)+T x_{n}-x_{n}
$$

This implies that

$$
\begin{aligned}
\left\|T x_{n}-x_{n}\right\| & \leqslant\left\|x_{n+1}-x_{n}\right\|+\alpha_{n+1}\left\|f\left(x_{n}\right)-T x_{n}\right\| \\
& \leqslant\left\|x_{n+1}-x_{n}\right\|+\alpha_{n+1} M \rightarrow 0 \quad(\text { as } n \rightarrow \infty) .
\end{aligned}
$$

This completes the proof of Theorem 3.
The following result can be obtained from Theorem 3 immediately.
Theorem 4. (Wittmann [9, Theorem 2]) Let H be a real Hilbert space, C be a nonempty closed convex subset of $H, T: C \rightarrow C$ be a nonexpansive mapping with $\operatorname{Fix}(T) \neq \emptyset$. Let $u, x_{0} \in C$ be any given points, $\left\{x_{n}\right\}$ be the iterative sequence defined by

$$
\begin{equation*}
x_{n+1}=\alpha_{n+1} u+\left(1-\alpha_{n+1}\right) T x_{n}, \quad \forall n \geqslant 0 . \tag{3.4}
\end{equation*}
$$

If $\left\{\alpha_{n}\right\}$ be a sequence in $(0,1)$ satisfying the conditions (i)-(iii) in Theorem 3, then the sequence $\left\{x_{n}\right\}$ converges strongly to a fixed point $z=P u \in F(T)$ which is a solution of the following variational inequality:

$$
\langle u-P u, P u-y\rangle \geqslant 0, \quad \forall y \in F(T) .
$$

Proof. In fact, in Theorem 3 take $f=u$, the conclusion of Theorem 4 is obtained from Theorem 3 immediately.

Remark 1. Theorem 3 not only generalizes and improves the main result in Wittmann [13] and Xu [15] but also generalizes and improves the main results in Halpern [7] and Lions [9].

Theorem 5. Let E be a uniformly smooth Banach space, C be a nonempty closed convex subset of $E, f \in \Pi_{C}, T_{i}, i=1,2, \ldots, N$, be a finite family of nonexpansive mappings of C into itself with $\bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right) \neq \emptyset$ satisfying the following conditions:
(i) $T_{N} T_{N-1} \cdots T_{1}=T_{1} T_{N} \cdots T_{3} T_{2}=\cdots=T_{N-1} T_{N-2} \cdots T_{1} T_{N}$;
(ii)

$$
\begin{aligned}
\bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right) & =\operatorname{Fix}\left(T_{1} T_{N} \cdots T_{3} T_{2}\right) \\
& =\cdots \\
& =\operatorname{Fix}\left(T_{N-1} T_{N-2} \cdots T_{1} T_{N}\right) \\
& =\operatorname{Fix}\left(T_{N} T_{N-1} \cdots T_{1}\right):=F(S),
\end{aligned}
$$

where

$$
\begin{equation*}
S=T_{N} T_{N-1} \cdots T_{1} . \tag{3.5}
\end{equation*}
$$

Suppose further that $x_{0} \in C$ is a given point, $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$ and $\left\{x_{n}\right\}$ is the iterative sequence defined by (1.9). If the following conditions are satisfied:
(a) $\lim _{n \rightarrow \infty} \alpha_{n}=0$;
(b) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(c) $\sum_{n=0}^{\infty}\left|\alpha_{n+N}-\alpha_{n}\right|<\infty$,
then $\left\{x_{n}\right\}$ converges strongly to a common fixed point $P(f) \in \bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right)$ which solves the following variational inequality:

$$
\langle(f-I) P(f), J(P(f)-p)\rangle \geqslant 0, \quad \forall p \in \bigcap_{i=1}^{N} F\left(T_{i}\right) .
$$

Proof. It follows from (2.3) that for any $n \geqslant 0$ and for any $p \in \bigcap_{i=1}^{N} F\left(T_{i}\right)$,

$$
\begin{equation*}
\left\|x_{n}-p\right\| \leqslant \max \left\{\left\|x_{0}-p\right\|, \frac{\|f(p)-p\|}{1-\alpha}\right\} . \tag{3.6}
\end{equation*}
$$

This implies that $\left\{x_{n}\right\}$ is bounded, and so $\left\{f\left(x_{n}\right)\right\}, T_{n+1} x_{n}$ both are bounded. Let

$$
\begin{equation*}
M=\sup _{n \geqslant 0}\left\{\left\|f\left(x_{n}\right)\right\|+\left\|T_{n+1} x_{n}\right\|\right\}<\infty . \tag{3.7}
\end{equation*}
$$

Next we prove that

$$
\begin{equation*}
x_{n+1}-T_{n+1} x_{n} \rightarrow 0 \quad(\text { as } n \rightarrow \infty) . \tag{3.8}
\end{equation*}
$$

Indeed, from (1.9) and (3.7) we have

$$
\left\|x_{n+1}-T_{n+1} x_{n}\right\|=\alpha_{n+1}\left\|f\left(x_{n}\right)-T_{n+1} x_{n}\right\| \leqslant \alpha_{n+1} M \rightarrow 0 .
$$

This shows that (3.8) is true.
Now we prove that

$$
\begin{equation*}
x_{n+N}-x_{n} \rightarrow 0 \quad(\text { as } n \rightarrow \infty) . \tag{3.9}
\end{equation*}
$$

Indeed, from (1.9) we have

$$
\begin{aligned}
\left\|x_{n+N}-x_{n}\right\|= & \| \alpha_{n+N} f\left(x_{n+N-1}\right)+\left(1-\alpha_{n+N}\right) T_{n+N} x_{n+N-1} \\
& -\left[\alpha_{n} f\left(x_{n-1}\right)+\left(1-\alpha_{n} T_{n} x_{n-1}\right)\right] \| \\
= & \|\left(1-\alpha_{n+N}\right)\left[T_{n+N} x_{n+N-1}-T_{n} x_{n-1}\right] \\
& +\left(\alpha_{n+N}-\alpha_{n}\right)\left[f\left(x_{n-1}\right)-T_{n} x_{n-1}\right] \\
& +\alpha_{n+N}\left[f\left(x_{n+N-1}-f\left(x_{n-1}\right)\right] \|\right. \\
\leqslant & \left(1-\alpha_{n+N}\right)\left\|x_{n+N-1}-x_{n-1}\right\| \quad\left(\text { since } T_{n+N}=T_{n}\right) \\
& +\left|\alpha_{n+N}-\alpha_{n}\right| M+\alpha_{n+N} \alpha\left\|x_{n+N-1}-x_{n-1}\right\| \\
= & \left(1-\alpha_{n+N}(1-\alpha)\right)\left\|x_{n+N-1}-x_{n-1}\right\|+\left|\alpha_{n+N}-\alpha_{n}\right| M .
\end{aligned}
$$

Taking $a_{n}=\left\|x_{n+N-1}-x_{n-1}\right\|, \lambda_{n}=\alpha_{n+N}(1-\alpha), b_{n}=0$ and $c_{n}=\left|\alpha_{n+N}-\alpha_{n}\right| M$, we know that all conditions in Lemma 2 are satisfied. By Lemma 2, $\left\|x_{n+N}-x_{n}\right\| \rightarrow 0$ (as $n \rightarrow \infty$). The desired result is obtained.

Next we prove that

$$
\begin{equation*}
x_{n}-T_{n+N} T_{n+N-1} \cdots T_{n+1} \rightarrow 0 \quad(\text { as } n \rightarrow \infty) . \tag{3.10}
\end{equation*}
$$

In view of (3.9), it suffices to show that $x_{n+N}-T_{n+N} T_{n+N-1} \cdots T_{n+1} \rightarrow 0$ (as $\left.n \rightarrow \infty\right)$. In fact, from (3.8) we have

$$
\begin{equation*}
x_{n+N}-T_{n+N} x_{n+N-1} \rightarrow 0 . \tag{*}
\end{equation*}
$$

Again by (3.8), $x_{n+N-1}-T_{n+N-1} x_{n+N-2} \rightarrow 0$. Thus the nonexpansiveness of T_{n+N} implies that

$$
\begin{equation*}
T_{n+N} x_{n+N-1}-T_{n+N} T_{n+N-1} x_{n+N-2} \rightarrow 0 . \tag{*}
\end{equation*}
$$

Similarly

$$
\begin{align*}
& T_{n+N} T_{n+N-1} x_{n+N-2}-T_{n+N} T_{n+N-1} T_{n+N-2} x_{n+N-2} \rightarrow 0 \tag{*}\\
& \quad \vdots \\
& T_{n+N} T_{n+N-1} \cdots T_{n+2} x_{n+1}-T_{n+N} T_{n+N-1} T_{n+N-2} \cdots T_{n+2} T_{n+1} x_{n} \rightarrow 0 . \tag{*}
\end{align*}
$$

Adding these N sequences yields

$$
x_{n+N}-T_{n+N} T_{n+N-1} \cdots T_{n+1} x_{n} \rightarrow 0 \quad(\text { as } n \rightarrow \infty) .
$$

The desired is proved.
Finally, we prove that

$$
\begin{equation*}
x_{n}-T_{N} T_{N-1} \cdots T_{1} x_{n} \rightarrow 0 \quad(\text { as } n \rightarrow \infty) . \tag{3.11}
\end{equation*}
$$

Indeed, it is easy to see that

```
If }n(\operatorname{mod}N)=1\mathrm{ , then }\mp@subsup{T}{n+N}{}\mp@subsup{T}{n+N-1}{}\cdots\mp@subsup{T}{n+1}{}=\mp@subsup{T}{1}{}\mp@subsup{T}{N}{}\cdots\mp@subsup{T}{2}{}\mathrm{ ;
If }n(\operatorname{mod}N)=2\mathrm{ , then }\mp@subsup{T}{n+N}{}\mp@subsup{T}{n+N-1}{}\cdots\mp@subsup{T}{n+1}{}=\mp@subsup{T}{2}{}\mp@subsup{T}{1}{}\mp@subsup{T}{N}{}\cdots\mp@subsup{T}{3}{}\mathrm{ ;
\vdots
```


In view of condition (i),

$$
T_{N} T_{N-1} \cdots T_{1}=T_{1} T_{N} \cdots T_{3} T_{2}=\cdots=T_{N-1} T_{N-2} \cdots T_{1} T_{N}
$$

therefore we have

$$
T_{N} T_{N-1} \cdots T_{1}=T_{n+N} T_{n+N-1} \cdots T_{n+1}, \quad \forall n \geqslant 1 .
$$

This implies that

$$
x_{n}-T_{N} T_{N-1} \cdots T_{1} x_{n}=x_{n}-T_{n+N} T_{n+N-1} \cdots T_{n+1} x_{n} \rightarrow 0 \quad(\text { as } n \rightarrow \infty),
$$

i.e.,

$$
\left\|x_{n}-T_{N} T_{N-1} \cdots T_{1} x_{n}\right\| \rightarrow 0 \quad(\text { as } n \rightarrow \infty)
$$

Therefore all conditions in Theorem 1 are satisfied. The conclusion of Theorem 5 can be obtained from Theorem 1 immediately.

Remark 2. Theorem 5 is an improvement and generalization of Theorem 3.2 in Bauschke [1], Theorem 3.1 in O'Hara, Pillay and Xu [16] and Theorem 10 in Jung [8].

Acknowledgment

References

[1] H.H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 202 (1996) 150-159.
[2] F.E. Browder, Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Ration. Mech. Anal. 24 (1967) 82-90.
[3] S.S. Chang, Some problems and results in the study of nonlinear analysis, Nonlinear Anal. 30 (7) (1997) 4197-4208.
[4] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
[5] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., vol. 28, Cambridge Univ. Press, 1990.
[6] K. Goebel, S. Reich, Uniform Convexity, Nonexpansive Mappings and Hyperbolic Geometry, Dekker, 1984.
[7] B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967) 957-961.
[8] J.S. Jung, Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 302 (2005) 509-520.
[9] P.L. Lions, Approximation de points fixes de contractions', C. R. Acad. Sci. Paris Sér. A 284 (1977) 1357-1359.
[10] A. Moudafi, Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl. 241 (2000) 46-55.
[11] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980) 128-292.
[12] X. Wang, Fixed point iteration for local strictly pseudo-contractive mappings, Proc. Amer. Math. Soc. 113 (1991) 727-731.
[13] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992) 486-491.
[14] H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004) 279-291.
[15] H.K. Xu, Remark on an iterative method for nonexpansive mappings, Comm. Appl. Nonlinear Anal. 10 (2003) 67-75.
[16] J.G. O'hara, P. Pillay, H.K. Xu, Iterative approaches to convex feasibility problems in Banach spaces, Nonlinear Anal. (2005), in press.

[^0]: * Supported by the Natural Science Foundation of Yibin University (No. 2005Z5).

 E-mail address: sszhang_1@yahoo.com.cn.

