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Abstract
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1. Introduction and preliminaries

Throughout this paper, we assume that E is a real Banach space, E* is the dual space of E,
C is a nonempty closed convex subset of E, Fix(T) is the set of fixed points of mapping 7 and
J : E — 2E" is the normalized duality mapping defined by

Jy={feE* (x, f)=IxIIfI. Ifl=lxll}, xekE. (1.1
Definition 1.

(1) A mapping f:C — C is said to be a contraction on C with a contractive constant « € (0, 1),
if

|fe)—f»| <ellx—yl, Vx,yeC.

In the sequel, we always use II¢c to denote the collection of all contractions on C with a
suitable contractive constant « € (0, 1). That is

IIc ={f: C — C, acontraction with a suitable contractive constant}. (1.2)
(2) Let T :C — C be amapping. T is said to be nonexpansive if
ITx =Tyl <lx—yl, Vx,yeC.

(3) Suppose that to each x € E, there exists a unique Px € C such that ||x — Px|| =d(x, C).
Then C is said to be a Chebyshev set and the mapping P : E — C is called the metric pro-
Jjection onto C.

(4) Let K be a subset of C. A mapping P of C onto K is said to be sunny, if P(Px +
t(x — Px)) = Px for each x € C and r > 0 with Px +t(x — Px) € C (see, for example,
[4] or [5]).

(5) A subset K of C is called a nonexpansive retract of C, if there exists a nonexpansive retrac-
tion of C onto K.

Definition 2. Let U = {x € E: |x|| = 1}. E is said to be uniformly smooth, if the limit

eyl = lixll
Iim ——
t—0 t

exists and is attained uniformly in x, y € U.
It is well known that the following proposition is true:

Proposition 1. [6] If E is a uniformly smooth Banach space, then the normalized duality mapping
J defined by (1.1) is single-valued and uniformly continuous on each bounded subset of E from
the norm topology of E to the norm topology of E*.

Let T : C — C be a nonexpansive mapping. For given f € I1¢ and for given ¢ € (0, 1) define

a contraction mapping 7; : C — C by

Tix=tf(x)+(1—-t)Tx, xeC. (1.3)

By Banach’s contraction principle it yields a unique fixed point z; € C of T3, i.e., z; is the unique
solution of the equation
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letf(Zt)+(1_t)TZt~ (1.4

Concerning the convergence problem of {z;}, in 2000, Moudafi [10] by using the viscosity
approximation method proposed by himself proved that if E is a real Hilbert spaces, then the
sequence {z;} converges strongly to a fixed point x, of T in C which is the unique solution to
the following variational inequality:

(I = f)x*,x—x*)20, VxeFix(T). (1.5)

It should be pointed out that Moudafi’s above result is a generalization of the corresponding
result in Browder [2].

In 2004, Xu [14] studied further the viscosity approximation method for a nonexpansive map-
ping and proved the following result:

Theorem. (Xu [14, Theorem 4.1]) Let E be a uniformly smooth Banach space, C be a nonempty
closed convex subset of E, T : C — C be a nonexpansive mapping with Fix(T) # @ and f € Ic.
Then the sequence {z;} defined by (1.4) converges strongly to a fixed point in Fix(T). If we define
P:Ilc — Fix(T) by

P(f)i=limx. felc. (1.6)
11—
then P(f) solves the variational inequality

(= HPH,I(p—P())) =0, VpeFixT). 1.7

In particular, if f =u € C (where u is a given point in C), then (1.6) is reduced to the sunny
nonexpansive retraction of Reich [11] from C onto Fix(T):

(Pu)—u,J(p—Pw))=>0, VpeFix(T).

On the other hand, in 1996, Bauschke [1] introduced and studied the following iterative
process for a finite family of nonexpansive mappings 711, T2, ..., T, in a Hilbert space:

Xn+1 Zan+]u+(1 _an+l)Tn+]xn, Vn >0, (1.8)

where u and x( are any given two points in C, {«,} is areal sequence in (0, 1) and 7;, = T}; (modr)-
Under suitable conditions he proved the convergence of the sequence {x,} to converge to a com-
mon fixed point Pru of T1,T»,..., T, in C, where Pr : H > F = ﬂle Fix(T;) is the metric
projection.

The purpose of this paper is by using the viscosity approximation method for a finite family
of nonexpansive mappings {71, T, ..., Ty} on C to obtain some sufficient and necessary criteria
for the following iterative sequence:

X1 =1 f () + (I —aps 1) Tpp1x,, Yu 20, (1.9)

to converging to a common fixed point of 77, T3, ..., Ty in Banach spaces, where {w,} is real
sequence in (0, 1), f is a given mapping in I1c, xo € C is any given point and T,, = T}, (mod N) -
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Special cases. Now we consider some special cases of sequence (1.9):

(1) If E is a Hilbert space, f =u € C is a constant and N = 1, then (1.9) is reduced to the
following iterative sequence:

Xnl =y + (1 —ap )Txy, Vn 20, (1.10)

which was studied in Halpern [7], Lions [9], Wittmann [13]. Under suitable conditions on the
mapping 7T and the sequence {¢;,}, some strong convergence theorems for iterative sequence
{x,} to converge to the nearest point projection of u onto Fix(7) are obtained.

(2) Let E be a Hilbert space, f =u € C be a constant and 71, T3, ..., Ty : C — C be a finite
family of nonexpansive mappings with ﬂlNzl Fix(T;) # §. Then the iterative sequence {x,}
defined by (1.9) is deduced to (1.8) which was considered by Bauschke [1].

(3) Let E be a uniformly smooth Banach space, C be a nonempty closed convex subset of E,
T : C — C be a nonexpansive mapping with Fix(T") ## ¥ and f € I1¢. Then (1.9) is reduced
to the following iterative sequence:

X1 =1 f o) + A =y 1)Tx,, Vn 20, (L.11)

which was considered in Xu [14].

Summing up the above arguments, we know that (1.9) is a more general sequence which
contains (1.8), (1.10) and (1.11) as its special cases.
The following theorem is the main results in the paper.

Theorem 1. Let E be a uniformly smooth Banach space, C be a nonempty closed convex subset
of E, fellc, T;, i =1,2,..., N, be a finite family of nonexpansive mappings of C into itself
such that the set ﬂlNz 1 Fix(T;) of common fixed points of T1, T», . .., N is nonempty and satisfies
the following condition:

N
ﬂ Fix(T}) = Fix(T1 Ty - - - T3 T»)
i=1

=Fix(Ty_1Ty—2---T1Tn)
=Fix(TyTy-1---T1) := F(S),
where
S=TyTy_1---Ti. (1.12)

Suppose further that f € I1c with p # f(p), Vp € ﬂlN:] Fix(T;), xo € C is a given point,
{an} is a sequence in [0, 1] and {x,} is the iterative sequence defined by (1.9), then the following
conclusions hold:

(1) {x,} converges strongly to a common fixed point of T1, T», . .., Ty if and only if
(a) lim;_ 0 ay =0;
(b) 3 2 otn = 00
©) llxn — Sxnll = 0 (n — 00);
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(2) if {xn} converges strongly to some common fixed point 7 € ﬂlNzl F(T;)) andif P(f)=z=
lim,,—, oo X, for each f € I1c, then P(f) solves the following variational inequality:

N
((f =DP), J(P(f)=p)) 20, Vpe[FT.

i=1
In order to prove our results, we need the following lemmas.

Lemma 1. (Goebel and Reich [6, p. 48]) Let C be a nonempty convex subset of a smooth Banach
space E. If Co C C and P is a retraction of C onto Cy such that

(x = Px,J(Px—y))>0,

forall x € C and y € Cy, then P : C — Cy is sunny and nonexpansive.

Lemma 2. (Wang [12]) Let {a,}, {bn}, {cn} be three nonnegative real sequences satisfying the
following conditions:

any1 < (1 —=Ap)ap +by +cp, Yn 2ny,
where ng is some nonnegative integer, {A,} C (0, 1) with ZZO:O An = 00, b, = o(\y,) and

Y onsoCn < 00, then ay — 0 (as n — 00).

Lemma 3. (3] Let E be a real Banach space and J : E — 2F " be the normalized duality mapping,
then for any x, y € E the following holds:

I+ ylI> < x> +2{y, j&x + ), Vjix+y)eJ(x+y).
2. Proof of Theorem 1

Proof of conclusion (1) of Theorem 1

Sufficiency
(I) Let S be the mapping defined by (1.12). It is easy to see that S : C — C is a nonexpansive
mapping. For given f € IIc, t € (0, 1), we define a contraction mapping 7; : C — C by
Tix=tf(x)+(1—-1)Sx, xeC.
By Banach’s contraction mapping principle it yields a unique fixed point z; € C of 7; which is a
unique solution of the equation
2 =1f(z) + (1 —1)Sz. 2.1)

By Theorem 4.1 in Xu [14], z; — z € Fix(S) := ﬂlN:l Fix(T;) which is a solution of the follow-
ing variational inequality:

N
(=P I(p—P) =0, ¥pe[ Fix(T), 2.2)

i=1

therefore the sequence {z;} is bounded.
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(I) Now we prove that the sequence {x,} defined by (1.9) is bounded. In fact, for any p €
ﬂlNzl Fix(7;) and for any n > 0 we have
X0 = pll = [ (1 = @) (Tuxn—1 = p) + e (f (u-1) = p) |
<A =) Tuxu—1 = pll + | f (xu-1) = p|
<A =aw)lxn-1 = pll+enf{|[ f @) = £ + | () = P}
S =an)llxn-1 = pll +an{alxu—1 = pll+ | f(p) = p|}
= (1 = (1 = @) ln—1 = pll + e £(p) = |

I.f(p) —pl
< maX{ lxp—1 — pll, =——— 1.
l—«
By induction, we can prove that
If(p)—pl
lxn — Pl < max{”xo -l 1o I Vn > 0. (2.3)

This shows that {x,} is bounded, and so f(x,) and {7,1x,} both are bounded. Let

M = sup sup{llx, — 21> + lln — zll + llz = xall + 120 — x4} < o0. (2.4)
t20 n>0

(IIT) Now we prove that
limsup(z — £ (2), J(z — x4)) <0, (2.5)

n—oo

where z = P(f) is the strong limit of the sequence {z;} defined by (2.1). Indeed, it follows from
(2.1),(1.9), (2.4) and Lemma 3 that

lze = x> = | (1 = (Sz0 = x) +1(f ) — ) |
<A =028z — xull> +2(f 20) = xu. J (@ — xn))
< (= 02{1Sz = Sxa | + 1S — xall}
+26(f(z) — 2 + 2 — X, I (20 — Xn))
<= 02{llze = xall + 1Sx0 — xall}
+ 2tz — X 2+ 2 f (z0) — 20, T (2 — X))
=1 —0{llz — xal* + 0u (1)}
+ 211z — xa 1> +20(f @0) — 20, T (21 — X)), (2.6)
where
on () =21z — Xull - 1Sxn — x|l + S0 — 212
< 2M|[Sxy — xull + [1Sxn — xa 1%, V€ (0, D).
By condition (c),
nl_i)rrgoo,,(t) =0 2.7
uniformly in # € (0, 1). Hence from (2.6) we have

1
(Zt = f(@), J(z _xn)) < LHZI _xn” + 2 —0on(t) < 2M+ 2 Gll(l)'

\S]
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By using (2.7), we have

. t
me@—fmxua—M»<#m Vi € (0, 1),

n—oo

where M is the constant defined by (2.4). And so we have

lim sup lim sup(zt — f(zs), J(zs — xn)) <0. 2.8)

t—0 n—oo
On the other hand, from (2.4) we know that ||z, — x,,|| < M and ||x, — z|]| < M, VYVt € (0, 1),

n > 0. Take r > 2M and denote B, = {x € X: ||x|| < r}. Since X is uniformly smooth, the
normalized duality mapping J is uniformly continuous on the closed ball B, from norm topology
to norm topology. Therefore for any given ¢ > 0, there exists § = §(g) > 0 such that for any
X,y € By, if |x — y|| <, then

[J) =T <e.
In particular, if we take 79 € (0, 1) such that ||z, — z|| < §, Vr € (0, f9). From (2.4) we know that
(z; — x») and (z — x,,) € By, and so

|7z —xn) = J(@—xn)| <&, Vte(0,19), n>0.

Therefore for all ¢ € (0, ty) and n > 0 we have
(2= f@, J@=x))=(z— @), J (@ —xa) = J (& — xn))

+(z—z = Q@+ f @), Tz — xn))
{2 = [z, Tz — xn))

<|z=r@| - |[VG@—x) = I —x)|
+{llz =zl + [ f@ = f @) |}z = 2l
+ <Zt = f(@), J(z —Xn))

<ellz— f@| +2rlz =zl + (2 — F@). T (@ — x0))- (2.9)

By taking lim sup first with respect to n — oo and then to ¢t — 0 and noticing (2.8), we obtain
limsup(z — f(2), J(z —xn)) < |z — f(2)].
n—oQ
By the arbitrariness of ¢ > 0, we have

limsup(z — f(2), J (z — x)) 0. (2.10)

The conclusion (2.5) is proved.
Letting y, = max{{(z — f(z), J(z — x,)), 0} > 0, Vn > 0, now we prove that

lim y, =0. 2.11)

n—o00

In fact, from (2.10), for any given ¢ > 0, there exists a positive integer n such that
(e—f@.J@—xn))<e, Vnz=ny,
and so 0 <y, < & Vn > ny. Since ¢ > 0 is arbitrary, it implies that

lim y, = 0.

n—00
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Therefore it follows from (1.9), Lemma 3 and (2.11) that for any z € ﬂlNzl F(T;) we have

lxn+1 — Z||2 = ” (I —ant1)(Tpt1x0 — 2) + an-l—l(f(xn) - Z) H2

< (= )N 10 — 201 4 2011 (£ (6n) = 2, T (ng1 — 2))
< —apy 1), — 2l
+ 2ap11(f (xn) — f(2) + f(2) — 2, J (Xng1 — 2))
< (=i 1)?lxn = 2l + 21060 = 2l - X1 — 2l
+ 20 41(f (2) — 2. J (g1 — 2))
< (=i 1)?lxn = 2 + anrrafllxn — 2l + s — 2l
+ 20p11(f (@) — 2, J (Xng1 — 2))- (2.12)
Since the normalized duality mapping J defined by (1.1) is odd, i.e., J(—x) = —J(x),x € E,
therefore we have
(f(@) =2 Jn1 —2)) == f(@), J @ = Xp41)) < Vas1.
Substituting it into (2.12) and simplifying, we have

2
(I —aay ) llxpr1 —zll

< (1= 12 = )llxn — 2l + a2 13 — zlI* + 2041Vt 1

< (1= o1 2 — o)) lxn — 2l + o | M + 2041Vt (2.13)
Since «;, — 0, therefore there exists a positive integer n, such that
1
1 —aopy1 > o Vn > no.
It follows from (2.13) that
l—ap412—a)
o1 = 27 € ————— |l — 2l
1 —aopy
+2ap41{an1M + 2ynq1},  Vn Zno. (2.14)
Again since
1— 2— 2 1—
12 —e) o 2an4( a)gl—zmﬁul—ax
I — oyt 1 —aopt

it follows from (2.14) that

I0s1 — zl? < {1 = 2an41(1 — &)}l — 212
+ 201 1{on1M + 2y 41}, Vi 2> no. (2.15)
Take a, =[xy — zl|*, An = 200111 — @), by = 2011 {@n 1M + 2,41} and ¢, =0, Vn > ny,

in Lemma 2. By the assumptions, it is know that > > (&, = 00, b, = 0(A,) and Y > 5 ¢, =0,
hence the conditions in Lemma 2 are satisfied, and so we have

N
lim fx, —zl| =0, ie. x,—>ze( |F(T). (2.16)
n—oo .

=

The sufficiency of conclusion (1) of Theorem 1 is proved.



1410 S.-S. Chang / J. Math. Anal. Appl. 323 (2006) 1402—-1416

Necessity
Suppose that the sequence {x,} defined by (1.9) converges strongly to a fixed point p €
N, F(T;). In view of (1.12), we know that
10 — x|l < WSxp — pll 4 10 — Il <2l — pIl > 0 (n — 00).
The necessity of condition (c) is proved.
Sinceeach 7; : C — C,i =1,2,..., N, is nonexpansive, we get
ITh1x0 — Pl < llXp — pll >0, ie, Thpi1xp— p (asn— 00).

Again from (1.9) we have that

On+1 ”f(xn) = Tht1%xn ” = [Ixp+1 — Tnt1xall
< Mxngr = Pl + 1 Ta1x0 — pl

<
< Mxnpr = pll+llxn — pll = 0 (asn — 00).

Therefore we have

lim sup a4 Hf(xn) — Tht1xn H =limsupoy41 ||f(P) - P” =0.
n—00 n—00

By the assumption that p # f(p), ¥p € (X, Fix(T;), this implies that
limsupoy,+1 =0,
n—oo
ie.,
lim «, =0.
n—o0

The necessity of condition (a) is proved.
Take f =0, C ={x € E: |x|| < 1} (closed unit ball in E) and 7; = (—1):C — C,
Vi=1,2,...,N,in (1.9), where [ is the identity mapping. Since each T;, i =1,2,..., N, is

nonexpansive and 0 is the unique common fixed point of 77, 7>, ..., Ty in C, hence we have
X1 = (=D = & 1)xn = (D1 = o) (1 — )xn1
n+1

= =) ] - e
i=1
If x, — 0 € N, Fix(T;), we have
n+l

0= lim [x,41 — 0] = lim [](1 = e)llxo —O].
n—od n—oo

i=1

This implies that

o (0.0]
1_[(1 —a;)=0, 1ie., ZO&,‘ = 00.
i=1 i=1

The necessity of condition (b) is proved.
Summing up the about argument, the conclusion (1) of Theorem 1 is proved.
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Proof of conclusion (2) of Theorem 1

Indeed, if lim,,— oo X, =z = P(f) foreach f € Ilc, then by Theorem 4.1 in Xu [14], we have

N
lim xn=tli_r)r(1)zt=P(f)=zemF(7}) for each f € I,

n—oo !
i=1

and

N
((f =DPLI(P(f)=y) =0, Vye(|FT,
i=1
where {z;} is the sequence defined by (2.1).
The proof of Theorem 1 is completed.

3. Applications to some recent theorems
The following theorem can be obtain from Theorem 1 with N = 1 immediately.

Theorem 2. Let E be a uniformly smooth Banach space, C be a nonempty closed convex subset
of E, fellc, T:C — C be a nonexpansive mapping with Fix(T) # 3. Suppose further that
xo € C is a given point, {a,} is a sequence in (0, 1) and {x,} is the iterative sequence defined by

Xpp1 =01 f (X)) + (1 — oy )T xy. 3.1

Then the following conclusions hold:

(1) {xn} converges strongly to a common fixed point of T if and only if
(@) lim,0a, =0;
(b) 72 otn = 00
©) llxn = Txnll > 0 (n — 00);

(2) if the sequence {x,} defined by (3.1) converges strongly to some common fixed point z €
Fix(T) and if P(f) =z = lim,_, s x,, for each f € Ilc, then P(f) solves the following
variational inequality:

((f = DP(f). J(P(f) = p)) =0, VpeFix(T).

Now we are in a position to apply Theorem 2 to generalize and improve some recent new
results.

Theorem 3. (Xu [10, Theorem 4.2]) Let E be a uniformly smooth Banach space, C be a non-
empty closed convex subset of E, T :C — C be a nonexpansive mapping with F(T) # (. Let
f € Ic with a contractive constant o, xo € C be any given point, {a,} be a real sequence in
(0, 1) and {x,} be the iterative sequence defined by (3.1). If the following conditions are satisfied:

(1) lim, 00, =0;
(i) Y g an = 005
Un+1 =1

(i) Y o2 lotnt1 — ol < 00 or lim,_ o0 ot
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then the sequence {x,} converges strongly to P(f) which solves the following variational in-
equality:

((f=DPH, J(P(f)—p))=0, VpeFix(T).

Proof. In order to prove the conclusion of Theorem 3, it suffices to show that under the condi-
tions (i)—(iii) of Theorem 3, we have
|xn — Txpll >0 (asn — 00).

In fact, for given f € I1¢ with a contractive constant « € (0, 1) and for any given p € Fix(T),
by the same method as given in proof of (2.3), we can prove that

1
lx, — pll < max{llxo -l me(p) - p| } Vn > 0.

This implies that the sequence {x,} is bounded and so the sequence {T x,} and { f (x,)} both are
bounded. Therefore there exists a constant M > 0 such that

M = sup”f(x,,) —Tx, H < 0.
>0

nz

In view of (3.1) we have that

%041 = Xnll = [[etng1 £ Gn) + A = @ngy DT X — [0t f nm1) + (1 — ) Txp—1 ] |
= | (1 = g 1) (T — Txp—1)
+ (ns1 — @) (f Gnm1) = Txn—1) + g1 (f (o) — £ (1)) ||
<A = angr)lxn = xn—ill + o1 — anl | fn=1) = Toxtn—i |
+ approlx, — xp—1ll
< (1= ang1(1 = ) [1xn — Xp—1ll + letns1 — ctn| M. (3.2)

If the condition ZZio lon41 — ap| < 0o is satisfied, then taking a, = ||x, — xp—1ll, An =
o1 (1 — ), by =0and ¢, = |ap+1 — on|M, Vi > 0, in Lemma 2, we know that all conditions
in Lemma 2 are satisfied. Hence we have that

|Xn4+1 — X2l > 0 (as n — 00). 3.3)

If the condition lim,,_, oo a;“ =1 is satisfied, then take

an = xn — xp—1ll,
loty 41 — o | M _ Ap+1

On

bn =0y ‘1 ClnM,

Qpn
c, =0, Vn=0,

in Lemma 2, we know that all conditions in Lemma 2 are satisfied. Hence (3.3) also holds.
Again it follows from (3.1) that

Xn+1 — Xn = Op+1 (f(xn) - Txn) + Txp — xp.

This implies that
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ITxn — Xl < Nxng1 — Xnll + ot | £ o) — Toxn |
<

lxn+1 — Xnll + ¥ns1M — 0 (asn — 00).

This completes the proof of Theorem 3. O
The following result can be obtained from Theorem 3 immediately.

Theorem 4. (Wittmann [9, Theorem 2]) Let H be a real Hilbert space, C be a nonempty closed
convex subset of H, T : C — C be a nonexpansive mapping with Fix(T) # (. Let u, xo € C be
any given points, {x,} be the iterative sequence defined by

Xn+1 =1t + (1 —apy1)Txn, Vn2=0. 34

If {an} be a sequence in (0, 1) satisfying the conditions (1)-(iii) in Theorem 3, then the sequence
{x,} converges strongly to a fixed point z = Pu € F(T) which is a solution of the following
variational inequality:

(u— Pu, Pu—y)>0, VyeF(T).

Proof. In fact, in Theorem 3 take f = u, the conclusion of Theorem 4 is obtained from Theo-
rem 3 immediately. O

Remark 1. Theorem 3 not only generalizes and improves the main result in Wittmann [13] and
Xu [15] but also generalizes and improves the main results in Halpern [7] and Lions [9].

Theorem 5. Let E be a uniformly smooth Banach space, C be a nonempty closed convex subset
of E, fellc, T;,i=1,2,..., N, be a finite family of nonexpansive mappings of C into itself
with ﬂlNzl Fix(T;) # 0 satisfying the following conditions:

@) InTn---Ti=TTn--- T3 =--- =Ty 1Ty_2---T1 Tn;
(ii)

N
ﬂ Fix(T;) = Fix(Ty Ty - - - T3 T)

i=1

=Fix(Ty_1Ty—2---T1TN)
=Fix(TnTn-1---T1) := F(S),

where

S=TnTn—1---T. 3.5

Suppose further that xo € C is a given point, {o,} is a sequence in [0, 1] and {x,} is the
iterative sequence defined by (1.9). If the following conditions are satisfied:

(a) lim,,_, oo 0ty =0;
(b) ZZOZO oy = 00,
© Yvloloansn — o] < o0,
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then {x,} converges strongly to a common fixed point P(f) € ﬂlNz | Fix(T;) which solves the
following variational inequality:

N
((f =DPU,I(P(f)=p))=0, Vpe[FT).

i=1
Proof. It follows from (2.3) that for any » > 0 and for any p € ﬂlN: | F(T),
||f(P)—P||}. 3.6)

llxn =PIl < maX{leo —rl- =
-«

This implies that {x,} is bounded, and so { f (x,)}, T,,+1x, both are bounded. Let

M = sup{ | f )| + 1 Tug1xall} < 0. (3.7)
n=>0

Next we prove that
Xnt1 — Tny1xn = 0 (asn — 00). 3.8)

Indeed, from (1.9) and (3.7) we have

1Xn+1 — T 1Xnll = g1 ”f(xn) = Tat1%Xn ” <apt1M — 0.
This shows that (3.8) is true.
Now we prove that
XptN — X = 0 (asn — 00). 3.9)

Indeed, from (1.9) we have

lxn4n = Xnll = s £ Gnpn—1) + (1 — & N) Tug NXnN—1

— [ f en—1) + (1 = ey Tyxa—1)] |

= | (1 = ens M TrsnXntn—1 — TuXn—1]
+ (N — an)[ f n—1) = Tuxn—1]
+ N [f Cngn—1 — f 1] |

S (I —ansn) 1 Xn+N—1 — Xn—1l  (since Ty =Tp)
+ lantn — an|M + opy N[ XnpN—1 — Xn—1]]

= (1 —anin(I =) Ixngyn—1 — Xn—1 || + l@nn — oM.

Taking a, = ||xp+N=1 — Xn=1ll, 2n = dn+n (1 — @), b, =0 and ¢, = |ey+n — on|M, we know
that all conditions in Lemma 2 are satisfied. By Lemma 2, ||x,+ x5 — X, || = 0 (as n — 00). The
desired result is obtained.

Next we prove that

Xn — TyaNnTuen—1---Thy1 — 0 (asn — 00). (3.10)

In view of (3.9), it suffices to show that x,+n — TN T+N—1--Th+1 — 0 (as n — 00). In
fact, from (3.8) we have

XpaN — TyynXpyn—1 — 0. (1)
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Again by (3.8), xy4+n—-1 — T4 N—1Xn+N—2 — 0. Thus the nonexpansiveness of 7,y implies
that

Lo NXntN—1 — Tny N a4 N—1Xn+N—2 — 0. (2%)
Similarly

ThinTosn—1%n+N-2 — Tni N T N—1 TN —2Xn4+n -2 — 0. (3

T NToN-1 - Tut2Xnt1 — ToaNTua N1 TuiN-2 - - Tu2 Tpt 10 — 0. (N*)

Adding these N sequences yields

Xn+N — Do NToiN—1 Tyt1Xn = 0 (as n — 00).

The desired is proved.
Finally, we prove that

Xp—TNTy_1---Tix, — 0 (asn — 00). (3.11)

Indeed, it is easy to see that

If n (mod N)=1,then TyyNThin—1-- Tpy1 =T1 TN --- T2;
If n (mod N)=2,then Ty NThin—1-- Thy1 =T2T1 TN ---T3;

If n (mod N) =N, then Ty nTninN—1 Tp+1 =TNTN-1---T1.

In view of condition (i),
INTN_1-- Ty =TTy -T3Th=---=Tn_1Tn_2---Ti Ty
therefore we have
INTN-1---Th =TyyNThaN-1---Tht1, Y21
This implies that
Xn = INTn-1-+Tixp =xp — TynaNTpan—1" Tht1x0n > 0 (as n — 00),
ie.,
lxp = TnTn—1-- - Tix,]| = 0 (asn — 00).

Therefore all conditions in Theorem 1 are satisfied. The conclusion of Theorem 5 can be obtained
from Theorem 1 immediately. O

Remark 2. Theorem 5 is an improvement and generalization of Theorem 3.2 in Bauschke [1],
Theorem 3.1 in O’Hara, Pillay and Xu [16] and Theorem 10 in Jung [8].
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