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Abstract

We present the next-to-next-to-leading order (NNLO) contributions to the main splitting functions for
the evolution of longitudinally polarized parton densities of hadrons in perturbative QCD. The quark—quark
and gluon—quark splitting functions have been obtained by extending our previous all Mellin-N calcula-
tions to the structure function g; in electromagnetic deep-inelastic scattering (DIS). Their quark—gluon and
gluon—gluon counterparts have been derived using third-order fixed-N calculations of structure functions
in graviton-exchange DIS, relations to the unpolarized case and mathematical tools for systems of Dio-
phantine equations. The NNLO corrections to the splitting functions are small outside the region of small
momentum fractions x where they exhibit a large double-logarithmic enhancement, yet the corrections to
the evolution of the parton densities can be unproblematic down to at least x & 1074,
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The splitting functions for the scale dependence (evolution) of parton densities [1-3], or
anomalous dimensions of twist-2 operators [4—10] in the light-cone operator-product expan-
sion (OPE) [11], are important universal (process-independent) quantities in perturbative QCD.
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A little more than ten years ago, we completed the calculation of the third-order (next-to-next-to-
leading order, NNLO) corrections Pl.(kz), i,k = q, g, for the helicity-averaged (unpolarized) case
[12,13].

These calculations were performed in the approach of Refs. [14,15] where physical quanti-
ties, specifically structure functions in inclusive deep-inelastic scattering (DIS), are calculated
via forward amplitudes in dimensional regularization [16—19]. In order to access also the lower
row of the NNLO flavour-singlet splitting-function matrix, i.e., Pg%) and Pg(?, in a third-order
calculation, this procedure requires the inclusion of a process other than standard gauge-boson
exchange DIS. The method of choice, cf. Ref. [20], was to include DIS via a scalar ¢ coupling
directly only to gluons via ¢G4" G, uvs Where Gl " is the gluon field strength tensor, as realized
in the Standard Model by the Higgs boson in the limit of a heavy top quark and five massless
flavours [21,22].

A corresponding calculation was performed six years ago for the structure function g; in
polarized photon-exchange DIS, which is sufficient to extend the determination of the helicity-
dependent (polarized) splitting functions [23-25] to NNLO for the upper-row quantities A Pgq
and A Pye. Since we had no access to the corresponding lower-row splitting functions, these re-
sults were only briefly discussed in Ref. [26]. There is no helicity-sensitive analogue to the above
Higgs-boson exchange in the Standard Model or an effective theory derived from it (initially a
pseudoscalar x with a x&,.p0 Gl "G%? coupling to gluons was tried, which however cannot
probe spin information either, as also x is a scalar under the rotation group).

This leaves only working in supersymmetry, as in Ref. [27] for the determination of the NNLO
quark—gluon antenna function, or considering DIS by graviton exchange. We have chosen to
adopt the second option, which is easier to implement in our setup and offers additional infor-
mation and checks by accessing all four splitting functions A P, as well as their unpolarized
counterparts, and a full set of physical evolution kernels for both the unpolarized and the polar-
ized case.

The basic formalism for graviton-exchange DIS has been developed in Ref. [28]; for a recent
application see also Ref. [29]. There are three structure functions Hj 2 3 in the unpolarized case,
of which three combinations can be formed which are analogous to F> (no gluon contribution
at order ag ), 4 (no quark contribution at order ag) and Fy (neither) in gauge-boson and scalar
DIS. In the polarized case there are two structure functions, Hy and Hg, where Hy = Hy —
Hg and Hg involve only the quark and gluon distributions, respectively, at the leading order,
in perfect analogy with the system (F2, Fy) that we employed for obtaining the unpolarized
splitting functions.

We have performed complete second-order calculations of all these quantities. At three loops,
however, graviton exchange leads to a large number of integrals with a higher numerator com-
plexity than encountered in the calculations for Refs. [12,13,26]. Hence repeating the step from
fixed-N Mellin moments [14,15] to all-N results would require a lot of time and/or consid-
erably improved algorithms. We have therefore resorted to calculating APg(é) and APéé) for
fixed (odd) values of N. Substantial improvement in our diagram handling and in the FORM
[30-32] implementation of the MINCER program [33,34], see Ref. [35], together with the avail-
ability of sufficient computing resources, have enabled us to completely determine APg(g)(N )

for 3 <N <27 and APg(é) (N) for 3 < N <25 (the N =1 moments are not accessible in this
calculation [28]), and both for specific colour factors up to N = 29.

Initially the extension to high moments was intended to facilitate approximate x-space results,
analogous to but much more accurate than those obtained in Ref. [36] based on the moments of
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Ref. [37] for the unpolarized case, which would suffice at all x-values relevant to ‘spin physics’
in the foreseeable future. Similar to the somewhat simpler case of transversity in Ref. [38], how-
ever, it turned out that it is possible to reach values of N for which even the most complicated
parts could be determined completely from the moments and additional endpoint information, in
particular the suppression of P;x(x) — A Pjx(x) by two powers of (1 — x) in the threshold limit
x — 1 in a suitable factorization scheme. The crucial step in this determination is the solution
of systems of Diophantine equations for which we have, besides in-house tools coded in FORM,
made use of a publicly available program [39] using the LLL-based [40] algorithm described in
Ref. [41].

Consequently we are now in the position to present the complete NNLO contributions APi(kz)
to the helicity-difference splitting functions in perturbative QCD. The remainder of this article is
organized as follows: In Section 2 we set up our notations and discuss aspects of the second-order
calculations and results relevant to our determination of the third-order corrections which we turn
to in Section 3. Our N-space results for APi(kz) are presented in Section 4, and the correspond-
ing x-space expressions in Section 5, where we also briefly illustrate the numerical size of the
NNLO contributions to the evolution of polarized parton densities. We summarize our results in
Section 6. Some additional information on scheme transformations and graviton-exchange DIS
is collected in Appendices A—C. A brief account of this research has been presented before in
Ref. [42].

2. Notations and second-order results

The unpolarized and polarized parton densities of a longitudinally polarized nucleon are
given by

file, n?) = (e u?) + f7 (x, 1%) 2.1)
and

Afi(x,1?) = £ (0 1?) = £ (6, 1%) (2.2)
where fi+ and f;” represent the number distributions of the parton type i with positive and
negative helicity, respectively, in a nucleon with positive helicity. Here x denotes the fraction of
the nucleon’s momentum carried by the parton, and p the mass-factorization scale which can be
identified with the coupling-constant renormalization scale without loss of information.

The scale dependence of the quantities in Eqgs. (2.1) and (2.2) is governed by the renor-
malization-group evolution equations

d
T i (o) = [(8) Pie e (7)) ® (8 i (1) ] o) (2.3)
where ® stands for the Mellin convolution in the momentum variable, given by
: d
X
[a ® b](x) = / —ya(y)b<—> 2.4)
J y y

if no 1/(1 — x)y-distribution are involved. The splitting functions (A) P; in Eq. (2.3) admit an
expansion in powers of the strong coupling constant g which we write as

(A) P, n2) = Y al (M) P (x) 2.5)
n=0
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with

_ag(u?)
as = ? (26)

Using symmetries, the system (2.3) of 2n¢ + 1 coupled integro-differential equations, where
ny denotes the numbers of effectively massless flavours, can be reduced to 2ny — 1 scalar flavour
non-singlet equations and the 2 x 2 system

d (Afg) _ ([ APy Aqu) (qu>:
dln/LZ(Afg>_<Aqu APy ® Afy =APR®AS (2.7)

for the polarized gluon density Af, (x, w?) and the flavour-singlet quark distribution

\

Afg(x, u?) Z Afy (x, 1%) + Afz (x, 12)). (2.8)

The quark—quark splitting function A Pyq in Eq. (2.7) can be decomposed as
AP (x) = APL™ (x) + APY (x) (2.9)

into non-singlet and pure singlet components. The former is related by A Pt = P to an unpo-
larized quantity calculated in Ref. [12], the latter starts only at n = 1 and is specific to the present
polarized case. It is often convenient to consider the Mellin transforms of all quantities, given by

1

a(N) =/dxxN_1a(x) (2.10)
0

and an obvious generalization for plus-distributions, since the convolutions (2.4) correspond to
simple products in N-space, [a @ b](N) =a(N)b(N).

The complete next-to-leading order (NLO) contributions APi(kl) for the quantities in Eq. (2.7)
have been derived almost 20 years ago in Ref. [23] in N-space using the OPE and in Refs. [24
25] in x-space, using the lightlike axial-gauge approach of Refs. [2,3]. Some years ago, we
have checked these results, and obtained APq%) and APq(é), by extending the calculations for
Refs. [13,43] to the structure function g in polarized DIS which was first addressed beyond the
first order in Ref. [44]. All these calculations used dimensional regularization, and thus needed
to address the issue of the Dirac matrix ys in D # 4 dimensions which enters via the quark
helicity-difference projector.

The calculations in Ref. [23] used the ‘reading-point’ scheme for ys [45]; those in
Refs. [24,25] were carried out primarily with the ’t Hooft/Veltman prescription [46,47], but
included checks also using the so-called Larin scheme [48,49],

1
pPys.L= gewpap“y”y”y", (2.11)

where the resulting contractions of two e-tensors are evaluated in terms of the D-dimensional
metric. All our calculations have been carried out using the Larin scheme which is equivalent to
the ’t Hooft/Veltman prescription for the present massless case.

Quantities calculated using Eq. (2.11) need to be subjected to a factorization scheme transfor-
mation in order to arrive at expressions in the standard MS scheme [50,51], for example
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81=Cy LAfL =(Cq L Z7WZAfL) = Cy Af (2.12)

where we have switched to a matrix notation in N-space and suppressed all function arguments.
Denoting the perturbative expansion of the transformation matrix by

2 n (n) n Z(({(l]) ()C) Z(('lré) (X)
Z(x, 1 )=1+Zasz (x):l—l—ZaS ( o o ) (2.13)
n=1 n=1 Zgq (X)  Zgg (%)

the transformation (2.12) of the coefficient functions C,, and the parton densities Af leads to

AP =a;,APO + a2 {AP" +[zV, APO] - gz V)
+a{aPP + (2@, AP0 4 [z, AP - [z, APO]ZD
+B0((21)* —22?) - g, zM} + O(a?) (2.14)

for the splitting functions in the MS scheme, where [a, b] denotes the standard matrix commu-
tator. Here By and B; are the leading two coefficients in the expansion of the beta function of
QCD,

dag

T =P == > altBe, (2.15)
£=0
which to NNLO is given by [4,5,52-55]
5 11 2
—Cy — Zny,
0= 3 A3
34 10
B1= 3 3 ?CAnf —2Cfny,
2857 5 1415 , 205 , 19, 1,
Br = 5—4 b — 5—4CAnf — WCFCA’I/' + Crny + 5_4CAnf + ECan (2.16)

with C4 = n, =3 and Cr = (n% —1)/2n¢) =4/3 in SU(ne = 3). fo and B are scheme-
independent in massless perturbative QCD; B, is given in the MS scheme adopted in this article.
The transformation matrix has been determined to NNLO in Ref. [56] as

Zix = 8ik + Sigdiq (aszly) + a2 {z2 +29}) + O(ad). 2.17)

Its non-singlet entries can be fixed by the relation between the corresponding coefficient func-
tions for g1 and the structure function F3 which is known to order ag [57]; the critical part is the
pure-singlet part for which, as far as we know, only that one calculation has been performed so
far. For the convenience of the reader the results are included in Appendix A. For z(({é) = zgé) =0,
Eq. (2.14) leads to the following transformations of the NLO and NNLO splitting functions:

1 _ 1 (1) 0) (1)
APgq" = APy = Pozgg — APgg 2gq s

W _ ApD ©) (1)
APY = AP +APY:

qg %qq
1 _ @ 0) (1) 0 _ O _ [€)]
APy’ = APy — APgg'zqq + (quq APy 'Bo)zgq’
) _ (e)) 0) (1)
APy’ = APy, + APqg 2g (2.18)

and
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2) _ 2 (1))2 2) (D @ 0),(2)
APgg = AP+ ﬂo((zqq) - 2Zqq) —Pizgg — APy Zeq — APy Zgq

@ _Ap® M 1 (©),(2)
APy’ = AP + AP 1 2qg + APgg'2qq -

qg,L*qq
AP = AP — (AP — APQZQ)el) — AP
+(APY — APY + o)zl 2l — (AP — APY +2B0)z0)
+ (AP — AP — B = AP ()2,
APQ =APY, + AP o) + AP D). (2.19)

These expressions are reduced to the standard scheme transformation of Refs. [23-25,56] by
dropping all contributions with z;l) or zé%]) ; it will become clear below why these terms have
been included in Egs. (2.18) and (2.19).

It is instructive to consider the x — 1 threshold limit of the splitting functions. It is expected
that the physical probability of a helicity flip is suppressed by two powers in (1 — x) in this limit
[58]. Hence the differences

(n) _ p(n) (n)
Siv =Py — APy (2.20)

should be suppressed, in a ‘physical’ factorization scheme, by a factor of (1 — x)2, or 1/N? in
N-space, relative to the respective sums which behave (modulo logarithms) as (I —x)~! or N©
for ik = qq, gg and (1 — x)? or N~! for ik = qg, gq. For the scheme-independent leading-order
(LO) splitting functions, the differences (2.20) read

) ) —
8qq (X) =0,
81.(,?)(x) =const- (1 —x)?>+... forik= qg, g9, gg. (2.21)
The corresponding NLO results for the MS splitting functions [23-25] are given by

51 (x) = O((1 —x)*)  for ik = qq, gg (@ = 1), qg (@ =2), (2.22)
8W (x) = 8Cr(Cy — Cp) In(1 44cc 6C3 8c -
oq (¥) =8CF(Ca — CF) In( _x)‘i‘?FA_ F =3 CFny

20 8
—(1- x){ch(CA —Cp)In(1 —x) + (?CFCA + ZCI% 3 F}’lf)}

+0((1 = x)?). (2.23)

Interestingly, as already noted in Ref. [26], all 10 terms in Eq. (2.23) can be removed by includ-

ing the simple additional term zg]) = —APég) in the NLO scheme transformation (2.18). The

splitting functions APcfgl) (x) and APg%) (x) are shown, together with their unpolarized counter-
parts, in Fig. | in the standard scheme, from now on denoted by ‘M’ wherever required, that uses
only Eq. (2.17) and an alternative scheme (‘A’) that also includes this additional term.

The issue of the physical large-x behaviour of the helicity-dependent quark—gluon splitting
can be addressed by studying suitable flavour-singlet physical evolution kernels (or physical
anomalous dimensions) for structure functions in unpolarized and polarized DIS. Graviton-
exchange DIS, for which the basic formalism was worked out in Ref. [28], provides a sufficiently
large set of structure functions. It is convenient to combine and normalize four of these functions
as
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2 : 3 !

AP (x) i \ AP (x)

L — M=A
-1 - «+++ unpol 0
I I N;=3 (x1/160)
o S P i R R B
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Fig. 1. The NLO contributions to the off-diagonal splitting functions in Eq. (2.7), compared to their unpolarized coun-
terparts. The polarized results are shown as published in Refs. [23-25] (‘M’) and after including an additional term

zé}]) = fAPg(g) in the transformation (2.14) from the Larin scheme (‘A’), which removes all (1 — )c)O’l terms from the

quantity (Séll) (x) in Eq. (2.23).

H; C; C; f
H = 2| = 2,9 “2g 11)=¢C 2.24
‘ <H3> (C&q C3,g> (fg) o ( )
with H; = Hy — 4 H3 in the unpolarized case, and
H; C; C; .
Hy=| ;%)= *9 ~4¢ )=cC,A 2.25
P <H6) (C6,q C6,g><fg> paf ( )

with Hy = 2(Hs — Hg) in the polarized case, where we have changed the x" prefactors relative
to Eq. (31) of Ref. [28] such that (Cy);; = (Cp);j = &;; at LO. The corresponding NLO coeffi-
cient functions can be found in Appendix B. The physical-kernel matrices K,, a = u, p (for the
renormalization scale :“%e = (%) are obtained from the coefficient functions, the beta function
(2.15) and the respective unpolarized (P, = P) and polarized (P, = AP) splitting functions,
cf. Eq. (2.7), by

s = (a0 St Cum )€ H = Koy (226)
The expansion of this result to order as3 can be read off from Eq. (2.14) for Z = C,.

We have performed complete two-loop calculations of these structure functions, recover-
ing both the unpolarized and polarized NLO flavour-singlet splitting functions from graviton-
exchange DIS, and used these results to obtain the NLO physical kernels K lEl)(x) and Kél) (x).
The respective off-diagonal elements for the systems (2.24) and (2.25) are compared in Fig. 2.
It is clear, also from the corresponding analytical results, that also the large-x limits of the ker-
nels K 3(%) (x) and Kézlt) (x) corresponding to the splitting functions (A)Pg((;) are consistent with
the expectation of Ref. [58]; hence Eq. (2.23) is indeed a unphysical feature of the standard

transformation to the MS scheme.
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27 o ‘ 127 ‘ 7
[ ) ] [ ) ]
L Klj (X) ] [ I(lJ (X) ]

1+ 1 -

0 0

a1k gk ) ]
r r ij=64 (p) i
i i ij=32 (u) 1

2 - 2+ -
i . N;=3 (+1/160) 1

3 L Y TSI R N BN R
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

X X

Fig. 2. The NLO contributions to the off-diagonal elements of the physical-kernel matrices for the systems (H;, H3)
and (Hy, He) of structure functions in unpolarized and polarized graviton-exchange DIS [28] as defined in and below

Eqgs. (2.24) and (2.25). The factor 1/160 ~ 1/ (4m)? approximately converts the results from our small expansion param-
eter (2.6) to a series in ag.

3. Determination of the third-order corrections

As before, we have calculated inclusive DIS via the optical theorem, which relates the
probe (g)—parton (p) total cross sections (with Q% = —g? > 0 and p? = 0) to forward ampli-
tudes, and a dispersion relation in x that provides the N-th moments from the coefficient of
(2p - q)N [14,15]. For the splitting functions AP&? and APq(? we have extended the three-loop
all-N calculations of Refs. [12,13] to the photon-exchange structure function gj. As discussed in
Ref. [26], a large number of additional integrals, arising from a fairly small set of top-level inte-
grals with higher numerator powers, had to be calculated for this extension; their determination
took several months.

The situation is far worse in the case of graviton-exchange DIS, which is our means to access
also APg%) and APg(é), in terms of both the complexity and the number of new top-level inte-
grals. We have therefore not tried a direct all- N calculation in this case, but managed to set up a
two-step procedure with the same result. The first step is a calculation of fixed-N moments for
the structure functions in polarized graviton-exchange DIS, as in Refs. [ 14,15] using the MINCER
program [33,34], but up to much higher moments in particular for Hg, cf. Eq. (2.25). The sec-
ond step is the determination of the all-N expressions for APg%) and APg(? from the moments
calculated in the first step together with insight into the structure of these functions.

In order to drive the first step to a point where the second became possible, and its results
could be verified by one or two yet higher moments, improvements had to be made in our di-
agram preparation and the MINCER code, see also Ref. [35]. The diagrams were generated, as
before, with a special version of QGRAF [59]. Unlike in our previous calculations, however,
the diagrams with the same group-invariant colour factor, the same topology and subtopology
(see below), and the same flavour structure have been combined in the ‘diagram’ files which are
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(XL

Fig. 3. The NO»5 (left) and LA 14 (right) subtopologies for the forward probe—parton amplitudes. The momentum g of
the probe, with q2 < 0, enters the diagram from the right and leaves on the left. The parton momentum p, with p2 =0,
flows through the fat (in the coloured version: red) lines.

managed, as before, using the database program MINOS [60]. In this way the number of third-
order diagrams has been reduced from 5176 to 1142 and from 15208 to 1249 for the quark and
gluon contributions, respectively, to Hy and Hg. The combined diagrams take roughly as much
time as the most difficult individual diagram in the set, which leads to an overall gain in speed
by a factor of three to five.

The overall most demanding subtopology, in terms of execution time and required disk space,
is NO»s (see Fig. 3), i.e, the most difficult p-flow in the most difficult three-loop topology. Also
notable are the LA14 (also shown in Fig. 3), O4s57, O2,¢ cases, where the momentum p flows
through four internal lines, and the three-line BEs7 and BEg ‘Benz’ cases. The largest diagram
calculated took about 10’ CPU seconds and required 6.7 TB of disk space for the projection
on N. The results for 3 < N < 25 were employed for obtaining the all-N expressions for APg(é)
and APg(?. For checking these expressions, the quark case was computed completely at N = 27
and in the ‘planar limit" C4 — 2Cr — 0 at N = 29, and the gluon case for the C j terms at
N =27 and N = 29. The latter was possible since most of the slowest and largest diagrams do
not contribute to this colour factor, which is the most complicated one in terms of the structure
of the splitting function.

Most of the diagram calculations were performed on the ulggcd cluster in Liverpool, using
TFORM [31,32] with 16 workers on more than 200 cores; the hardest diagrams at the highest val-
ues of N were calculated on a new high-end computer at NIKHEF. For the previous optimization
of MINCER we were also able to use a multi-core workstation at DESY-Zeuthen.

As an example, we show the non-¢3 parts of the moments 3 < N < 25 of the Cg part of APg(é)
in the Larin scheme, i.e., before the transformation of the output of the mass factorization to MS:

N=3: 186505/(3°2%)

N=5: 9473569/(5°3°22)

N=7: —509428539731/(7°5*3%2!1)

N=9: —266884720969207/(7%5°31027)

N=11: —3349566589170829651/(1157%5%3927)

N=13: —751774767290148022507/(13°11473533728)

N=15: —23366819019913026454180147/(13*11%7%5%3%216)

N=17: —305214227818628090680 174 170947/(17° 13*1147454310210)

N=19: —570679648684656807578199791973487/(19°17413*11473573729)

N=21: —2044304092089235762279 148843319979/(19*17#13*11477533%211)
N=23: —289119840113761409530260333250139823739/(23°19*17*13*1147%53%213)
N=25: —1890473255283802937678830745102921869938637/(23*19%17*13%1147451035212y (3.1)

In order to obtain, with certainty, the analytical forms of APég) (N) and AP;? (N) from only
12 moments, we need to make use of additional constraints on the structure of these functions.
At least up to NNLO, the splitting functions can be expressed in terms of harmonic sums [61],
see also Ref. [62], which can be recursively defined by
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N .

+1)f

Sem(N) = ( l.m) 3.2)
i=1

and

N
+1)!
Smymsnomy (N) = Z( L Sy 0. (3.3)

The sum of the absolute values of the indices my defines the weight of the harmonic sum. As-
signing a weight m to the un-summed denominators
m 1
D)= ——— 34
(N + kym

which can be expressed as differences of two harmonic sums of weight m, the N"LO split-
ting functions include terms up to weight 2n 4 1. For example, the anf contribution to

P( )(N) reads

AP (N)| 2, =28pqs(=S-4+25 22 +4813+ 251111 = $112 = 5812,
+48513+282,2—6821,1+68522+7S531—354)
+4S_3(D§ —2Dg +2Dy) + 851, —2(2D} — Do + D)
+81.1,1(5D3 — 2D7 —21/2Dg + 12D)

—2812(2D§ — 2D} — 5Dg + 5D))

—28,1(4D§ +2D7 — 11Dg + 11Dy)
+283(3D§ + 6D7 — 11Dg + 11Dy)

—3¢3(2D§ +4D7 —9Dg + 12Dy) — 6D (S—2 + 1)
+28_,(8D; — 5D — 6D} + 10Dy — 9Dy)

— 81,1(10D3 + 6D} —35/2D§ — 5D} + 29Dy — 36 D)
+28,(4D3 +6D; — 10D} — 4D} +17Dg — 22Dy )

+ 81(7D§ + 4D} — 43/2D3 — 15D3 +99/2D% + 18D}

3

— 78Dg +329/4Dy)
+32D; — 15/2D§ — 3D} +59/8D; + 53/4D;
+77/8D3 +213/8D} — 1357/32D¢ + 777/16 Dy (3.5)

in the standard MS scheme [56], where all harmonic sums are understood to be taken at argu-
ment N. Here we have also made used of the first of the abbreviations

Apgg =2D; — Do, Apgq =2Dg — Dy (3.6)

for the N-dependence of the lowest-order splitting functions, cf. Eq. (4.2) below.

If the unpolarized counterpart of Eq. (3.5) is written down in the same notation, the first two
lines are the same except for the replacement of Apge by pge = 2D2 — 2Dy + Dg. The same
holds for the C4Crny and Ciny contributions. As in other results in massless perturbative QCD,
the number of harmonic sums is reduced by the absence of sums with index —1. This leaves
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Fig. 4. The NNLO differences Séé)(N )= Pg(é) (N) — APg(g)(N ) for the non-ny and n) terms in the M and A schemes

for C4 =3 and Cp = 4/3, compared to the unpolarized result. The symbols show moments calculated using MINCER,
the solid and dashed lines the exact all-N results presented below. As at NLO, cf. Fig. 1, the M-scheme difference turns
negative at large N.

seven sums of weight 3, of which one is missing in Eq. (3.5) but not the corresponding C4 Cgny
and Cjn r expressions. Half of their in principle 28 coefficients with Do ; and Dg,l are fixed by

the 1/N? suppression of the difference Sc(é) in Eq. (2.20), which is found to hold separately for
each harmonic sum. Taking into account the lower-weight sums, this large-N behaviour relates
as many as 24 coefficients to the unpolarized result for each of the three non-ny colour factors.

Another crucial feature of Eq. (3.5) and all other available results for splitting functions is that
all coefficients are integer in a suitable normalization. E.g., after eliminating all terms linear in
Do and D using the 1/N? large-N behaviour, the remaining coefficients in Eq. (3.5) are integers
once factors of 2% 73 have been bracketed out of the terms with sums of weight w < 3. Conse-
quently the equations relating the remaining coefficients to fixed-N moments are Diophantine
equations, and far less that n equations are required to determine » unknown coefficients. While
there are a few additional constraints, on the coefficient of the D(S)’1 and D‘l1 terms correspond-
ing to the In® x and x In>** x small-x logarithms and the remaining coefficients of S 1,1(N), see
below, it is clear that it is vital for the determination of APQ?(N ) to have an extension of the
A-scheme of Fig. 1 to NNLO, in order not to miss out on those 24 large- N constraints.

The double-logarithmic Sy 1,1 and Sy 1,1,1 contributions to APg(g) (N) can be derived from
the calculations of polarized graviton-exchange DIS, without any reference to the unpolarized
results, from the single-log threshold enhancement of the physical kernel K, in Eq. (2.26),
cf. Ref. [63]. An additional scheme transformation that removes those contributions to dgq is
found to be

1
Zgga=—asAPY) — EaZAPg(;?L +0(ad). 3.7)
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The assumption that this remarkably simple transformation leads to Jgq(x) = O((1 — x)?) is
consistent with the results for N < 25 is illustrated in Fig. 4 for the n})- and n} contributions in
QCD.

The physical kernels for the system (Hj, Hg) also allow to settle another issue observed in
Ref. [26], the apparent partial disagreement of the leading small-x logarithm of Ach) (x) with
the old resummation result of Ref. [64]: the In*x contribution to K ¢ agrees perfectly with
that prediction, which clarifies its proper interpretation, see also Refs. [65-67]. Consequently
it should be possible to use the prediction of Ref. [64], via Kz, also for APég) (x). Furthermore
the x In® x and x In* x terms of this function can be fixed by extending the analysis of the small-x
limits of the unfactorized expressions in Ref. [68] to the present case, see also Ref. [69].

Finally we need to briefly address the issue of denominators other than Dy and Dy, as occur-
ring in the eighth line of Eq. (3.5), and with sums to weight 3 in its C4 Cpny counterpart. Due to
the different leading-order structure, there are far fewer such terms here than in the unpolarized
case. Terms with D in AP&?(N), D_1in APéé)(N) and D_;D; in APg(é)(N) do neither affect
the prime-number decomposition of the denominators of the odd-N moments, e.g., the N = 17
moments do not involve a factor 1/19, cf. Eq. (3.1), nor can they lead to an overall pole at N = 1.

We are now ready to turn to the determination of the all-N expressions. The structure of
the critical c;, CACI% and CjCF parts of APg(é) is analogous to Eq. (3.5) discussed in detail
above. With the coefficients of the weight-4 sums fixed by the unpolarized result [13], we are
left with 2 x 32 coefficients of sums at weight 3 and below combined with powers of Dy and
Dy, recall Eq. (3.4), plus at most 11 sums combined with D_;. The large-N suppression of 8;%1)
in the A-scheme and the other endpoint constraints fix 29 or 30 of these coefficients (depending
whether or not D_1S1,1,1(N) is included in the basis set), leaving up to 45 unknown integer
parameters.

We have developed FORM tools for analyzing the prime-number structure of the moments, see
Eq. (3.1), and deriving relations between the remaining parameters using the Chinese remainder
theorem [70]. These tools have proved sufficient, sometimes together with a brute-force scan of
a few variables, for simpler cases. It is however not easy to derive more than about ten relations
for the three difficult n}) parts of APg(é). For these cases we have employed the program provided
in Ref. [39], see also Refs. [40,41] to solve the remaining system of linear Diophantine equa-
tions. Since this program looks for short vectors, it is best for our purposes to eliminate 4 to 6
‘unpleasant’ coefficients, in particular those of low-weight combinations such as D2, Df, D(%S 1
D%Sl, using the moments to N =9 or N = 13, and work with the remaining 6 to 8 equations.

For example, using the moments (3.1) this procedure leads to the result

%AP;?(N)}C; =2Apgq(—S—4+65_2 2 +481,3+2811,11+ 51,12
+381.21 —38513+285,24+285,1.1—2%.2)
—4S_3(2D§ — Do + D) — 88, _2(D} — 2Dy + 2Dy)
+81,1,1(2D5 — 5D} — 6Dy — 3/2D1) — 281 2(D} + 4D — Dy)
— $5,1(4D§ +4D7 — 4Do +7D1) + S3(2D§ + Di + 6Dy — 3/2Dy)
+653(2Dog — D1)(281 —3) —6D_1(S—2+ 1)
— S_5(8D; +4Dj + 18D} — 26Dg + 24Dy)
— $1,1(6D3 + 6D; +4D§ + 5D7 +2Dg — 7/4Dy)
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+28,(D3 +2D7 4+ 10Dy — 4D)
— S1(6D§ + 7D} +4D3 +23/2D7 — 27/2D3 +39/4D3

— 8Dy +23/4D))
—8D) — 12D} +23D§ — 28D} — 39/4D3 — 427/8 D3 — 341/8D}
—767/8D} +2427/16Dg — 4547/32D; (3.8)

in the standard (M) definition of the MS scheme [56], where we have again used the abbrevia-
tions (3.4) and (3.6) and suppressed the argument N of the harmonic sums. The corresponding
expressions for the Cy CI? and CjCF parts are somewhat longer, see below. The n/-dependent
terms are much shorter; their determination does not require the N =23 and N = 25 moments.

Note the simplicity of the coefficients in Eq. (3.8), in particular those of the terms with overall
weights of 5 and 4 and sums of weight 2 or higher, which strongly indicates that the result
is correct even without further checks. In fact, if any erroneous information is entered for an
externally fixed parameters, e.g., a wrong coefficient of D3, orif the set of functions is too small,
e.g., by omitting the term with D_1, then either no solution exists for the system of Diophantine
equations, or only solutions with nonsensically large coefficients (also) for the high-weight terms.

Nevertheless it is, of course, necessary to validate the resulting all-N formulae. For this pur-
pose their predictions at higher values of N have been compared to additional MINCER moments
such as

—APg(j?L (N =27)=4609770383587605432813291530849726335264 810727
/(23*19*17413*1147°5831928) ¢ + .. (3.9)
The diagram calculations for the corresponding result at N = 29 have been carried out only in the
planar limit Cy —2Cr — 0 at ny = 0. As this result combines the three difficult all-N expressions
for the Cg, Cy Cﬁ and Cj Cr colour factors, which have been obtained independently from each
other, it provides another strong check of all these results including Eq. (3.8). Perfect agreement
is found for the not entirely trivial fractions at both values of N.
The overall most difficult case was the ny-independent, i.e., Cj part of APéé). Also here the
harmonic sums beyond weight 3 can be determined from the unpolarized case; the same holds for

all terms not involving any un-summed denominators: these contribute to either the 1/(1 —x)4
of the §(1 — x) terms the large-x limit which are the same for Py; and A Pg,. This reduces the

problem to the same basis set as in the case of APg(é) at ny = 0. The 1/N? suppression of 8,
with respect to Py, however, only removes one instead two coefficients for each harmonic sum
up to weight 3.

Taking into account our additional knowledge of the coefficients of DS from Ref. [64] (this

coefficient is the same for KG(? and APg(é), unlike for the off-diagonal cases), D? and D‘f,
cf. Refs. [68,69], and of Sy 1 1, cf. Ref. [63], this leaves 49 terms with Dy and D plus the func-

tions with the ‘extra’ denominator D_j D corresponding to D_j in the previous case of APg%).
The non-Cr parts of A Py, are non-singlet-like quantities, e.g., they are not affected by scheme
transformations with zee = 0, see Egs. (2.18) and (2.19). Hence we could use some non-singlet
heuristics, see Ref. [38], to reduce the overall basis to 52 functions, which we were able to deter-
mine using our own programs and, in the final step, Ref. [39] with 8 equations at 11 < N <25
for 41 unknowns.

Quite a few of the resulting coefficients are far less simple than those in Eq. (3.8), see
Eq. (4.12) below; on the other hand seven coefficients put in are zero, and there are some ex-
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pected relations. The result has been checked against the MINCER calculations at N = 27 and

N =29 which were finished only after we had obtained APg(é)(N ). Another important check is
the first moment which is not accessible directly [28], but can be obtained by Mellin-inverting
to x-space expressions in terms of harmonic polylogarithms [71] from which arbitrary moments
can be calculated. The results is

APQ(N =1)=p" (3.10)

see Eq. (2.16), as expected from the two previous orders. This result is the same in all factor-

ization schemes considered here also for the Cr terms due to APq('g’)(N = 1) =01n Eq. (2.19),
cf. Ref. [72].

4. The NNLO splitting functions in Mellin space

The analytical odd-N expressions of the splitting functions to NNLO can be written in terms
of harmonic sums [61] as recalled in Eqgs. (3.2) and (3.3) above. Our notation is different from
Section 3 of Refs. [12,13]: here all sums are taken at argument N (which we usually suppress),
for the additional un-summed denominators we employ the abbreviations (3.4), (3.6) and

n={NN+D}),  v={N-Dwv+2)) 7 (4.1)
In this notation the leading-order (LO) contributions [1,6,7] to Eq. (2.7), see also Eq. (2.9), read
APO(N) = Cr(—4S) +2n+3),
APQ(N) =0,
APQ (N) =2ns Apg,.
AP (N) =2Cr Apy,
APQ (N) = Ca(—4S1 +8n+11/3) —2/3ny, (4.2)
and their next-to-leading order (NLO) counterparts of Refs. [23-25] are given by
APV (N) =4CH(—4(5_3 — 2812 — S12— $2.1) — 38> +3/8 —4nS_»
— 218> +2(2n+n* —2D§)S1 — n — 11n* = 5p° + D§ +2D7)
+4CACr(2(S—3 — $3) — 4812+ 11/38, — 67/98) + 17/24
+21S_p +217/18n +35/61* + 2> — 11/3D§)
+4/9Crns (=68 + 108 — 3/4 — 179 — 3n* + 6D}), (4.3)

APD(N) =4Cpnp(—5n +3n* + 21 +4D§ — 4D7), 4.4)
AP (N) =4Crns (2Apgg(S1.1 — $2) — 2(2Dg — D§ — 2D1) S
— 11Dy +9/2D§ — Dy +27/2D; + 4D} — 2D3)

+4Cans (—2Apqg(S—2 + S1,1) +4(Do — D1 — D?)S
+12Dg — D} — 2D} — 11Dy — 12D} — 12D3), (4.5)
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AP (N) =4Ci(—Apgq(2S1,1 — S1) +2(D1 + D) S
—17/2Dg + 2D§ + 2D} + 4Dy + 1/2D7 + D7)
+4CaCr (2Apgq(S1,1 — S—2 — $2) — (10/3Dg + 4D} + 1/3D1) S
+41/9Dg — 4D} + 4D +35/9D; +38/3D7 +6D3)
+8/9Crny (3ApgqS1 —4Dg — Dy —3D7),
AP (N) =4C; (4(S1,—2+ S1.2+ $2,1) — 2(S3 + 5-3) — 67/981 +8/3
—81(S2 + S_2) +8(2n + n> — 2D}) S
+901/18n — 149/3n? — 241° — 32D} + 32D;)
+4/3Canys (10/3S1 — 2 —26/3n +21%)
+4Crng(—1/2 =Ty +5n* + 20> + 6D — 4D3).

365

(4.6)

4.7)

For completeness also including the non-singlet contribution, which is identical to the
function Pn;(z) (N) given (in a different notation) already in Eq. (3.8) of Ref. [12], the po-
larized next-to-next-to-leading (NNLO) quark—quark splitting function APq(é) (N) is the sum

of

AP (N) = 16C3(—128_5 +24S_4 1 +4S_3 2 +4S_32+ 1255 _3
—248 51,2 +44851,_4 — 64851, 3,1+ 16812, 2> — 851,22
—8081,1,-3+96S81,1,-2,1 — 16S1,2,2 — 881,22 — 168131 —8S1 4
+5285,3—568 21 —168521,-2—852,12 — 85221 +453
+ 1283, > — 883,11 + 8832+ 4841 +4S5 — S_4(9+22n)
— 83,16 —=32n) +4n(S—22 —25 2,2 +2831+ S4)
+281,-3(34+20n) +4S1, 213 —12n) + 128513+ 252,23 + 4n)
+2852(3 +2n) + S_3(3n — 4n* — 12DF)
+28_51(5n + 100> +4DF) — 481, _»(7n + 5n* — 4Dj)
—4(S12+ $2,1)(2n +n* —2D3) — S3(13/4 — 41 — 50> + 4D})
— $5(3/8 — 20— 17/20* — 4n* + 2D} + 4Dy)

—S_5(3— 1283+ 21 — 140> — 61° —2D3 + 8D3) +481.1(3n* +1°)

— S1(47/2n + 53/4n* + 487> + 135* — 18D] + 18Dy — 24D;)
+¢3(15/2 + 61+ 61%) +29/32 — 215/8n + 260> + 45n° + 49,
+ 11n° 4+ 175/8Df — 43/2D] + 15/2D§ — 16D;)
+8CFCA(20S_5 —40S_4 1 +4S_3_> —45_32 —205_5 _3
—168_2 2.1 +565_21,-2— 6851 4+ 1288 _31 — 6451 2 >
+ 851,22+ 14451 1,3 —22451,1,-2,1 —3281,13 + 16512, 2

+ 328131 +4481.4 — 8452, 3+ 12082, -2.1 +1652.1,—2 + 20523
— 2083, 244832+ 4841 — 2085+ (89/3 +34n)S_4
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+268/9(S12+ S2,1 +281,2 — S_3) +25_3,1(31/3 —32n)

+48_5 23 +8n) —4nS_22 — 281 _3(31/3 + 361)

— 481 _21(31/3 —28n) —4813(31/3 —4n) — 28, _2(31/3 +4n)
—44/3855 —883.1(1/3 +21) — S4(23/3 +221)

+ 5_3(37/3n + 14n* + 12D) — 25_5,1(53/3n + 300> + 4Df)
+481,2(13n + 100> — 4DF) + S3(13 +26/3n — 10n* — 4 D)

+ S_5(9 — 3643 — 586/9n — 34/3n> + 38/3D} + 8D3)

— $5(151/12 + 350/9n + 46/3n* + 4n* — 44/3 D7)

+ S1(715/9n + 494/9n* + 137/3n* + 8n* — 580/9DF + 16 D] — 24D;))
—¢3(45/2 + 180 + 187%) + 151/32 — 4 — 341/61* — 1805/9n°
—3691/18n* — 5/18n +217/36 D} + 185/9D; + 38D + 16D3)
+8CrCy(—4S_5+8S_41 — 453 _2+4S_5 _3+852 2]

— 168512+ 12814 — 3281 31 + 248122 — 328113

+ 6481121+ 168113 — 168131 — 12814 + 16823 — 328 21

— 8823 +483, 2 +4841 +4S55 —S_4(31/34+6n)

—(11/3 —8n)(2S_3,1 + 83,1 —451,-2,1) —6S_2 _»(14+2n)
+281,-3(11/3+8n) + S1,3(11 = 8n) +22/383 2 + S4(31/3 + 61m)
+S_3(134/9 — 23/3n — 5n%) — 451,-2(67/9 + 30 + 5/21%)

— 1/285(389/9 + n — 9n?) + 1043/545 + S_2,1(38/3n + 20n?)

— S_2(3 = 12¢3 — 302/9n + 4/3n* + 3n° +22/3Dj)

— 81(245/12 + 60+ 7/6n* + 11/6n° — 1/21*) + ¢3(15/2 + 61+ 61*)
— 1657/288 +20521/216n + 4819/54n% + 261/4n> + 11/3n* — 3°
— 2759/54D§ + 44/3D; — 22D;)

+8/3CHns(—8S_4 —8S5_31 +8S1,_3+ 1681 21 + 1651 3

+ 88y 2+ 8822+ 883 —454 —80/3S1._2 —40/381 2 —40/355.1
+45_3(10/3 — ) — 8nS_2,1 — S3(6 + 81) +4S5_2(22/3n + n* — 2D})
+ 52(5/2 +56/3n +4n* — 8D

+ 51(55/4 — 64/3n — 92/3n* — 80 — 1243 + 64/3DZ) + £3(9 + 61)

— 69/8 + 83/24n + 457 /60> +278/3n> + 195* —71/6 D3

+10/3D] — 24Dj)

+8/3CrCans (4S_4 +4S_31 —4S1_3— 88121 — 6813 — 452, >

+ 2831 — 484 +4nS_n.1 +40/381_2 —285_3(10/3 — ) + S3(14 4 3n)
—167/98> — 25_2(22/3n + 1> — 2D3) + $1(209/18 + 2% + 1° + 12¢3)
— 394 6n) +15/2 — 943 /127 — 953 /18> — 121/3n° — 8*
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+389/9D§ — 8D] + 12Dg) + 8/9Crn7(2/3S1 + 10/38, — 253
— 17/8 +34/3n +20/3n* +n° — 22/3D§) (4.8)

and

APZ (N) =8CaCrns(—S_3(5n = 61%) = (1,22 — S1.1.1 + S1.2 — 3¢3) (20 — 4n%)
+4nS_01 — S3(5/2n — Tn?) + S_2(21n — 139* — 141> — 20D} + 16 D)
— 81,1 (11/6n +1/31% —20°) + $2(5n — * — 4n® — 5D} +4Dy)
+ 81(203/9n — 115/99* — 3/2n> — n* — 41/3D + 34/3D; + 2Dy)
+1268/27n — 107/54n% + 93> — 283/3n* — 381> — 575/9D3
+ 1367/18D7 — 83D§ + 32D7) + 8Cins (—(281,1,1 — 2512 — S3 + 6¢3)
x (n—2n%) + S1.1(3/2n — 2n* — 21°)
+28,(7n — 4n* — 21 — 6D§ + 6D;)
—251(45/4n = 3n* = 21n* — Tn* — 6D} + 3D + Dg) + 5n + 3
—175/2n° —39n* — 81° + 7D} — 29/2D] +9D})
+8/3Crn;(S1.1(n —2n°) — S1(44/3n — 31/3n> — 61° — 11D + 10Dp)
+160/9n — 53/9n* — 300 — 8n* — 34/3D} +17/3D3 + 6D}). (4.9)

In N-space the off-diagonal NNLO entries of the matrix (2.7) are given by

AP (N) =8Cins (2Apgg(—S—a 4282 2 +481, 3+ 251111 — S11.2 — 55121
+48513+2852,2—652,1,1+6522+ 7831 —354)
—45_3(2Dg — D} —2D1) — 8S1,—2(Do — D1 —2D})
— S1.1,1(21/2Dg — 5D§ — 12Dy +2D})
+281,2(5D0 —2D§ — 5Dy +2D7) +285,1(11Dg — 4D§ — 11Dy — 2D7)
—285(11Dg — 3D} — 11Dy — 6D}) — 6D2(S—2 + 1)
+25_5(10Dg — 5D} — 9D; — 6D} +8D3)
— 81.1(29Dg — 35/2D} + 10D3 — 36Dy — 5D} + 6D3)
+28,(17Do — 10D§ + 4D; — 22Dy — 4D} + 6D7)
+ 81(=78D¢ + 99/2D} — 43/2D3 + 71Dg + 329/4D + 18D} — 15D7
+4D}) +3¢3(9Dy — 2D — 12Dy — 4D7) — 1357/32D¢ + 77/8 D}
+59/8D3 — 15/2D§ +777/16Dy + 213/8D} +53/4D] — 3D} +32D7)
+ 8CACrng (2Apge(—11/28_4+68S_31 =352 2 —25 5114252,
+681,-3—681,21—6811,2—48511,1,1 — 38112+ 38121+ 813
+382,2+682,1,1 — 6831 +3/284 4+ 38351)
—3Dy(28-3 — 2821 =281 =281, 2 — S — 1)
— S_3(15Dg — 6D} — 18Dy —8D7) +2S_51(5Dg — 2D§ — 8Dy )
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+81.1,1(37/3Dg — D3 — 47/3Dy — 2D})

+881,2(13/4Dg — D} — 4Dy — 2D7)

+3812(11/2Dg — 4D§ — 5Dy — 4D7) — 3S5,1(11/2Dg — 5Dy — 4D7)
+ 83(61/3Dg — D§ — 59/3D; — 18D7)

+ S_2(8Dg — 2D} +2Dj — 11Dy —4D7)

+51,1(317/9D¢ — 41/6D§ — 6D; — 313/9D; — 31D7 —2D5)
+28,(17/18Dg — 5D§ + 6D} — 23/9D; + 10D} + 6D7)

+ 51(1195/27D¢ — 29/9D§ — 11D§ + 8D§ — 1595/27D)
—67/2D7 +3Dj +34D}) — 6¢3(18Dy — 5D§ — 21Dy — 10D7)
+69407/288D¢ — 15259/216D} — 701/72D] + 89/6 D — 4D},
—34927/144Dy — 36461/216D7 — 3359/36D; — 1/3D} + 8D7)
+8C3ny (2Apqe(—3/28_4+28_31 +35_2, 2 +28_211 +251 _3
—2851,21—=8S13+651,1,2+2S1.1,1.1 +4S1.12+ 25121 — S22
—282+383,1 —5/284 — 38351)

— S_3(104/3Dg — 13D§ — 115/3Dy — 14D}) +45_5 1 (2D — D§ — 2Dy)
—6S1,-2(7Dg — 5/3D§ — 1Dy — 6D7)

— S1.1,1(11/6Dg + 4D§ — 11/3Dy — 4D3)

— $,.1(35/6Dy — 23/3D, — 8D7)

— 85(106/3Dg — 25/2D} — 223/6D; — 17D})

— 812(157/6Dg — 8D§ — 73/3D; — 24D})

+3¢3(27Dg — 8D — 30D1 — 16D7) — 3Dy (S_2 + 1)

— S_5(776/9Dg — 21D} — D} —709/9D; — 69D} — 62D3)
—281,1(1/9Dg + 7D} — 4Dj + 65/18Dy —71/6D7 — 12D3)

— $2(36Dg — 12D§ — 35D — 61/3D7 — 16Dy)

+ 51(2515/54D¢ — 91/2D3 + 35/2D3 + 9/2D§ — 4555/108 D,
—59/9D7 +233/6D7 +49D}) — 16099/36 Dy + 2867/27D]
—75/2D3 +82/3D§ — 15D} + 8227/18D;

+8941/27D7 +2143/9D7 + 691/3D} + 158 D7)

+8/9Ckn7 (3Apgg(S1.1.1 — 283) + S1.1(4Do + 3D — 14Dy)

— $5(11Dg — 16Dy) + S1(14/3Dg — 4D§ + 19/6D1) +4193/16 Dy
—3217/12D% +901/4D} — 129D§ + 36D

—2113/8D; +97/12D7 + 151/2D] — 42D} — 72D7)

+ 8/9CA"A;2¢(3Aqu(_2573 =S+ S12—82,1—53)
—25_5(2Dg —7D1) = 251,1(2Do — 7Dy +3D7) + 6D7$>
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— $1(23/3Dg — 4/3Dy — 17D} + 12D3) + 118Dy — 1067/12D§
+99/2D3 — 527/4Dy — 46/3D} + 65D7 — 12(D§ + DY), (4.10)

AP (N) =8C(2Apgq(—S—4+ 652 2+ 4513+ 2S11.1.1+ S1.12+ 35121
—3813+28, 2+28.1.1 — 28,2 —9¢3 4+ 6¢357)
+45_3(Do — 2D} — D) + 881, —2(2Dg — 2Dy — D7)
— 81.1.1(6Dg — 2D + 3/2Dy + 5D7) — 281 5(4Do — D1 + DY)
+485,1(Do — D§ —7/4D1 — D}) —6D_1(S_> + 1)
+ S3(6Dg +2D§ — 3/2D; + D7)
+ 8_2(26Dg — 4D — 24Dy — 18D — 8Dy)
— 81,1(2Dg + 4D} + 6D; — 7/4D1 + 5D} + 6D3) +25,(10Dg — 4Dy
+2D} + D}) + $1(8Do + 27/2D — AD3 — 6D — 23/4D1 — 39/4D3
—23/2D] — 7D}) +2427/16Do — 341/8D§ — 39/4D; + 23Dj — 8D}
—4547/32D — 767/8D} — 427/8D; — 28D} — 12D7)
+ SCAC]%(Aqu(_3S—4 — 1082, 2 +45_21,1 —851,-3+451,2,1
+12811,—2—881.1,1.1 + 651,12+ 285121+ 108513 — 682, 2+ 45211
— 554 — 18381 +27¢3) +9D_1(S—2 + 1) +25_3(6Dg — 3Dy + D7)
—25_51(4Dg — D1 +2D}) — 481, _2(1Dy — 4Dy)
+ S1,1,1(73/3Do + 2D — 23/3D; + DY)
+812(35/3Dg +4D§ — 71/6D; — 8D7)
— 52,1(5/3Dg — 8D§ + 13/6D; + 6D7)
— 83(10Dg + 16D} — 3Dy — 4D7)
+S_2(6Dg — 6D} — 4D3 — Dy + 7D} +2D3)
— 81.1(31/18Dg — 8/3D} +2D; + 137/9D; + 22D} + 14D3)
—4/35,(10Dg + 5/2D% + 6D — 5/4D1 + 67/8D7 +3D3)
+ 51(293/54Do — 64/9D§ + 8/3Dj — 8D§ + 613/108Dy + D}
—39/2D; — 24D}) — 3343/48 D¢ + 11093/216 D} + 365/36D;
—89/3Dg + 16D + 11273/288D; — 3197/216D7 —701/72D;
+8/3D} - 8D7)
+8CICr(Apeq(—115_4 +165_31 +25_5 2 —4S_2 11 +45 2,
+2481,3+4813 — 2081, 2,1 — 1281,1,2 +4S81,1,1,1 —8S1,1,2 — 85121
+1082, 2 — 882,11 + 128522+ 8831 — 384 — 943 + 6¢351)
—6D_1(S_3—S_21 — S1 — S1,-2+3/25_2 +3/2)
+1/35_3(133Dg — 114D§ — 137D, — 39Dy})
—4/35_5,1(10Dg — 12D} — 11Dy — 3D}) +2/3S1,-2(53Dg — 6D}



370 S. Moch et al. / Nuclear Physics B 889 (2014) 351-400

— 40Dy — 15D}) — 81.1,1(55/3D + 4D§ — 55/6D1 — 4D})
+17/683(35D — 18D} — 223/7Dy — 9D7)

+ (S1.2+ $2,1)(7/3Do + 12D} +41/6D; +2D7)

+ S_(124/3Dg — 3D§ — 2D — 173/3D;y — 202/3D} — 31D3)

+ 81,1(25/18Dg + 7D§ + 24D; + 581/36D; + 80/3D7 + 12D3)

+ 55(5/9D + 38/3D% — 32D — 148/9D1 —79/2D} — 18D3)

— 1/351(883/9Dq + 152/3D§ — 29/2D; + 75D — 403/18D; + 1/4D}
+65D; +75/2D}) +1913/6 Dy — 5513/54D3 + 776/9D; — 41D
+30Dj — 3349/12D; — 17843/108 D} — 7373/36D;

—629/3D} —79D7)

+8/3CEns (Apeq(—5S1,1,1 — 4512 — 2821 + 383 + 12¢3)
—6D_1(S—2+ 1) — 6S_(4Dg — 4D} — 5Dy — 2D7)

+ 81,1(41/3Dg — 2D§ — 4/3D; + 6D}) + S2(4Dg + 4Dj + Dy +2D7)
—1/981(31(Do + D) — 48D§ — 36D — 54D3) — 1685/8Dy
+3371/36 D} — 337/6D; + 50D — 24D + 10043 /48D,

+3769/36D7 +829/12D3 + 46D} + 12D3)

+ 8/3CACpny(Apgq(4S—3 —45_21 — 8812+ 581,11 — 5812 — 5521
—283) — 1283Apgq + 6D_1(S_2 + 1) +25_5(10Dy — 6D} — 8Dy — D7)
— 51,1(80/3Dg + 6D} — 37/3D; — 4D})

+2/38,(5D0 + 6D + 5D +9/2D7)

+ 51(91/9Dg +2/3D + 8D; + 118/9D; +55/2D7 + 17D;) +345/4Dy
—248/9D} — 41/3Dj — 643/6D; — 2671/36D7 — 59/6D3 + 14D})
+8/9Ckn7 (3ApgqS1.1 + S1(—4Do — Dy —3D7)

— 6Dy +5Dy — D} —3D3). (4.11)

Finally the polarized third-order gluon—gluon splitting function reads

APQ(N)=16C;(—4S_5+8S 41 +45_3 2+2S 30+4S 5 3—45 5 5
—485 21,2+ 1681 -4 — 1681 31 — 481 22 —481, 22— 245113
+1681,1,-2,1 — 881,13 — 85122 —85122—85131+8S14+ 185 3
— 1282, 21 —882,1,—2 — 852,12 — 88221+ 10523 +4S53 2 — 85311
1085, + 8841 — 4S5+ 11/6(2S_5 2 — S1.3 — S3.1)
—67/9(S_3+ 83— 281 > — 2812 — 285.1) + 1/6S, — 245/248 +79/32
+8n(—4S_4+45 31+ S22+ S22+651,3—451,-21+2513
+28,2+2852+2831—284) —11v(S—3— 8521 —81,2+ 852
— 81+ 1)+ 5_3(33n — 16n* — 24D]) + S3(86/3n — 69> — 24 D7)
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— S1,—2(43n + 320> — 32D) — (S1.2 + $2,1)(32n + 16n* — 32D))

— §_5,1(23n — 16D§) — S_2(802/9n — 338/3n* — 600> — 64D + 64D;)
+ 1,1 (4877 + 161%) + S2(—1745/18n + 173 /30> + 321>

+64D] — 64D;) + S1(487/18n — 17/3n* —761/3n> — T4n*
—365/9D§ — 76/3D; +48Dg) — 1571/54n — 32503 /2167

4 1493/36n° + 1666/3n* + 156n° 4 638/9D — 644/9D;

+ 172Dg — 128D;)

+8C3ns(2/3(S15+ S3,1 — 25-2,_2) +20/9(S_3 — 281, 2

— 2812 =281+ $3) — 1/382 +209/54S, — 233 /144

+453(S1 — 20+ 30%) —v(4S_3 —4S_p1 —4S1 2 — 2S5 — 48 —2)
+S_3(3n+61%) — 4S_5 17— 251 _2(n + 61%)

— S3(11/6n+3n%) + S_2(77/91 — 13/31* + 20°) +4/38,(23/3n — n*)
— 51(901/36n + 166/9n* + 43 /61> + 3n* — 232/9DF + 16/3D3)
—2662/27n + 4375/54n% +169/91° — 17/3n* + 21° + 716/9D}
—704/9D] + 16Dg)

+ 8CaCrny (55/1281 — 241/144 — 2¢5(281 — n + 121%)

— S_3(10n +8n%) +8v(S_3 — S_2,1 — S1,-2 — §1 —5/4(S2+ 1))
+8S5_21n+ S1,—2(4n+ 32n2) =S = S1.2)(2n - 4772)

— S3(n — 14n%) + S1.1(11/6n + 1/3n* — 20*) + 5_5(33n — 20(n* + DY)
—16(n* — D})) + $2(40/3n —29/3n* — 4n* — 15D} + 12Dy)

+ 51(89/18n +202/9n* + 130/31° + 14n* — 3D§ +2D; — 2D

— 1483 /54n + 3845/54n% +169/9n° — 554/3n* — 56n° 4 30D}
—95/6D3 — 35D3 +32Dj)

+8CEny (1/8 + 6¢3(n +2n%) + 8(S—3 — 281, _2)n?

+ (S111 — S1.2) (20 —4n°) = S3(n+61°) + 120(S_2 + 1) — 10S_2n

+ S5(11n — 100> — 41> — 8D +4D3) — S1.1(3/2n — 21* — 21°)

— 81(23/2n + 6n* — 101° — 25* — 14D} + 10D} — 2D}) — 551 + 121
—19/2* = 21n* — 49> + 38D — 75/2D; + 15D})

+2/27Can7 (87/4 + S1(8 — 270 + 48n°) — 3 — 160 — 247°)
+8/27Crn7(33/8 + (S1.1 — 282) (—9n + 1877)

— S1(84n — 51n* — 187> — 81D + 54D3)

— 161 + 657* — 1201° — 36n* — 45D + 54Dy). (4.12)
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All these results refer to the standard transformation to the MS scheme of Ref. [56], see
Eq. (2.17). With the exception of the CAn}% part of Eq. (4.12), which was derived in Ref. [73]
(see also Ref. [74]), Egs. (4.9)—(4.12) are new results of the present article.

The last two equations include the denominator v defined in Eq. (4.1), and are therefore only
valid at N > 3. The first moment of the NNLO quark—gluon splitting function is

APQ (N =1)=3Cr, (4.13)
APy (N =1 =>CrCs = 9C; — SCrny, (4.14)
@ 1607 ., 461 63 41
APQ(N=1)=——CrC;{ — ——CFCs+ —C} + o — 7243 | CrCany
12 4 2 3
107 13
_ ( > 72g3>anf 3 —Cpnj. (4.15)

The corresponding results for the gluon—gluon splitting function are identical to the coefficients
of the beta function recalled in Eq. (2.16). The NLO and NNLO pure-singlet results are related
to Egs. (4.13) and (4.14) by

APP (N =1)=-2n;APJ V(N =1). (4.16)

In the OPE, this relation for the anomalous dimension of the pure-singlet axial current to-
gether with Eq. (3.10) for the first moment of APg(? has been shown in Ref. [49] to be a direct
consequence of the requirement that the axial anomaly [82,83] should preserve the one-loop
character of the operator relation [84]

3" j5 = —2npa;G* G puv 4.17)

in dimensional regularization, where ji = Jysyuw and G’ (5’;” = I/ZSMVQﬁGa’a/g) de-
note the renormalized axial current and the (dual) gluon field-strength tensor. In this context
Egs. (3.10) and (4.16) are thus consistency requirements ensuring the correct renormaliza-
tion of the pure-singlet axial current with the chosen finite renormalization constants Zig, see
Eq. (2.17). Consequently Eq. (4.16) for n = 3, together with Eq. (4.15) and APjS™ (N = 1) =
APég )(N = 1) =0, fixes the first moments of the upper-row splitting functions at order a?.

The quantities given above do not provide the complete set of third-order helicity-difference
splitting functions. Additional even-N functions A P,s’" exist for the quark—antiquark differences

Afip = Afg — Afg, — (Afg — Afg)s (4.18)
nf
A=Y (Afy — M) (4.19)

i=1

that occur in the (so far practically irrelevant) structure functions g3 and g4 in polarized charged-
current DIS which has been analyzed at NLO in Ref. [75]. The corresponding NNLO corrections
may be addressed in a future publication together with the generalization of Refs. [76,77] to
all N. It appears safe to assume A Py ~@ P+(2) as given in Eq. (3.7) of Ref. [12], AP, V(z)
unknown though at this point.
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5. The NNLO splitting functions in x-space

The expressions for the x-space splitting functions in Eq. (2.5) in terms of harmonic polylog-
arithms [71] can be obtained from their N-space counterparts in terms of harmonic sums [601]
by a completely algebraic procedure [71,78] based on the fact that latter functions occur as co-
efficients of the Taylor expansion of the former. Our notation for the harmonic polylogarithms
follows Ref. [71], with the lowest-weight (w = 1) functions H,,(x) given by

Hoy(x) =Inx, Hy(x) =FIn(1 Fx) (6.1
and the higher-weight (w > 2) functions recursively defined as
1 w :
—In% x, ifmy,....,my=0,...,0
Huny...om,y () = { b T (5.2)
15 dzfm, (@) Hm,,....m, (), otherwise
with
1
fox) =—, fr1(x) = . (5.3)
X 1Fx
For chains of indices zero we employ the abbreviated notation
Ho, .. 010, (X)) = Him+1), £0+1),...(X). (5.4)
%...0%10,....0%
Also here we recall, for completeness, the LO and NLO contributions
AP (x) = 2Cp (Apgq(x) +3/28(1 — x)),
APQ (x) =
P<°> (x) =2np(—1+2x),
P“” (x) =2Cr (2 - ),
P<0> (x) =4Ca (Apgg(x) +11/128(1 —x)) — 2/3n; 8(1 — x), (5.5)

and

APED (x) = 4CEH(2Apgq(—x) (&2 + 2H_1 0 — Ho,0) + 2Apgq(x)(Hy 0 + Ha — 3/4Hy)
—9(1 —x) — (14+x)Hoo — 1/2(7+ 11x)Hp + 8(1 — x)
X (3/8 + 683 = 352)) + 4CaCr (— Apgq(—x) (62 +2H_1,0 — Ho,0)
+ Apgq(x)(Ho 0 + 11/6Hy — &2 + 67/18) +26/3(1 — x) + 2(1 + x)Hp
+8(1 = x)(17/24 = 3¢3 4+ 11/382)) + 4/3Crny (— Apgq(x)(5/3 + Ho)
—2(1—x) —8(1 —x)(1/4+202)), (5.6)
AP (x) =4Cpns(—(1 = 30)Hp + 1 — x — 2(1 + x)Ho ). (5.7)
APq(é)(x) =4Cans (2(1 — 20)Hy 1 +4(1 — x)H; — 2(1 + 2x)(H_1,0 + Ho 0)
+ (1 +8x)Hp — 22 + 12 — 11x)
+2Crny(4(1 = 2x)(&2 — 1/2Ho,0 — Hi,0 — Hi,1 — Ha) — 8(1 — x)H;
— 9Hp — 22+ 27x), (5.8)
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AP (x) = 4CpCa (22 — x)(Hy 0+ Hi 1 +Hy) +2(2 +x)(H_1 0 + Ho o)
+ (4 — 13x)Ho — 1/3(10 + x)H; +41/9 +35/9x + 2x8)
+2C2(2(2 — x)(Ho,0 — 2H 1) + 22 + x)H; — (4 — x)Hp — 17 + 8x)
+8/3Crny (2 — x)H; —4/3 — 1/3x), (5.9)

AP (x) = 4CF (2Apge(—x) (&2 + 2H_1 o — Ho,0) — 2Apgg (x)(£2 — Ho,o — 2H 0
—2H; — 67/18) — 19/2(1 — x) + 8(1 + x)Hp 0 + 1/3(29 — 67x)Hp
+8(1 —x)(8/3 +3¢3))
+ 8/3Cang(—5/3Apgg(x) —3(1 — x) — (1 + x)Hp — 8(1 — x))
+2Cpns(—10(1 — x) — 4(1 4+ x)Ho,0 — 2(5 — x)Hg — 8(1 — x)). (5.10)
Here and in Egs. (5.12)—(5.16) we have suppressed the argument x of the polylogarithms and
used

Apgq(x) =2(1 —x)"' =1 —x,

Apgg(x) = (1 —x)7" 41— 2x. (5.11)
Divergences for x — 1 are to be understood as plus-distributions, see Eqs. (4.5)—(4.7) of
Ref. [43].

The polarized NNLO non-singlet and pure singlet quark—quark splitting functions, obtained
by Mellin-inverting Eqs. (4.8) and (4.9) are given by

APL® (x) = 16C2(2Apgq(—x)(9/4¢3 — 7/4¢3 +3H_30 — 16H_2¢ —4H_5 _1 ¢

+13H 500+ 14H 25 —4H_; _20+24H_| 152 —20H_1 _1 0,0
—24H_1 12 —20H_; 0% + 11H_; 0,00 +2H_12,0+ 16H_1 3

+ 7Ho,0¢2 — 3Ho,0,0,0 —3H262 —H3 0 —6Hs —3/2H_2 0 — 3H_1{2
—3/2H_1,0,0 +3H-12 + 3/4Ho¢2 — 3/2H3 + 9/4Hy 0,0 — 18H- {3
+3/4Ho + 13/2Ho¢3) + 2Apgq(x)(9/2085 — H_3,0 + 3H_2{>

+6H_2 10— 3H_2,0,0 — Ho,0,00 +4H1,—2,0 — 2H1,0,0,0 + 2Hi1 2,0
+4H1 3 +Hz,0,0 +2Hz,1,0 + 2H2 2 + 2H3 9 + 2H3 1 + Hy — 3/4Ho
—3Hy,0,0 — 3/2Ha,0 — 3/32Ho + 1/2Ho¢3 + 13/16Hy o + 6H; £3)

— (114 31x)H3 4+ (1 — x)(—25H; — 151/8 —4H_5.0,0 — Ho 02
+3Ho,0,0,0 — 6H1 &2 — 9Hy 0) + (1 +x)(37/10¢5 — 18H_ 1> +24H_ »
+ 14H_1,0,0 + 12H_1,—1,0 — 3H2,0,0 — 2H3,0 — Hs — 6H_ o)
+1/16(—307 +437x)Hg + (1 — 5x)H_2,0 + 6xHp¢3 — 2(1 — 3x)H_3 9
—3(2+45x)Hop 0,0 +3/2(5 4+ 11x)53 — 1/2(5 4+ 13x)Hz o

+ (12 +31x)Hos + 3/4(17 4+ x)&2 — 3/4(25 + x)H,

—1/8(73 — 15x)Ho,0 + 8(1 — x)(29/32 + 9/85> + 17/4¢3

+18/587 — 15¢5 — 20283))

+8C2Cy (Zquq(—x)(—3l/4§3 — 1/4¢} +67/902 4 134/9H_1 o
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—67/9Hp,0 —SH_30+32H 25 +4H 5 10 —21H_200 —30H_2»
+36H_1 1,00+ 4H-1,—20—56H_| —15> +56H_1 12 +42H_1 052

— 17H_1,0,0,0 — 2H-1,2,0 — 32H_ 3 — 13Hp,0¢2 + 5Ho,0,0,0 + 7H2{2
+Hs 0+ 10H, +31/6H_20+31/3H_14 +31/6H_y 00 — 31/3H_1
— 13/12Ho¢> — 89/12Hg 00 + 31/6H; + 42H_ 1 & — 9/4H, — 29/2H0Z3)
+2Apgq(x)(5/6¢3 — 69/20¢5 —H_30—3H 20 — 14H 2 _1 0
+5H_500—4H_22 —4Ho 02 + 5SHo,0.0.0 — 16H; _2.0 — 2H 082

+ 11Hj,0,0,0 + 8Hi,1,0,0 — 8H1,3 — 2H242 + 5H2,0,0 + H3,0 + Ha
+3H_p,0 +41/12Hoz, — 23/12Hg 0,0 + 31/3H).0,0 + 11/3Hs,0 + 2/3H3
— 13/4Hy 0 + 67/9H o+ 67/9H, — 151/48Hy — 17/2Ho g5 — 24H; £3)
+4(1 —2x)H_30+2(1 —x)(379/12 —H_260 —2H_» 1,0 + 3H-2,0,0
+ TH &2 +4Hy 0,0 +26/3H; 0 4 251 /6H)

+2(1+x)(25H_1 & — 14H_| _1.0 — 32H_

— 13H_1,0,0 + 2H2,0 + H2¢2 + 2H,0,0 — 3Ha + 19/3H_1 )

— (64 7x)&5 +2(2 = 3x)HoZs — 53 — Tx)H 2,0 + 2(5 + 3x)Ho 002
+2(9 4 31x)Hz — (33 + 62x)HoZs + 1/18(157 — 557x)Hg o

— (39 4 17x)¢ — 1/2(97 4 39x)¢3 + 1/2(35 + 13x)Ho 0,0

+ 1/72(2627 — 3869x)Hp + (155/3 + 17x)Hy — 8Ho,0,0,0

+8(1 —x)(151/32 = 205/12¢ + 211/623 — 247/3083 + 15¢5 + 2;2;3))

+8CFC}(2Apgq(—x) (11/4¢3 + £3 — 671822 — 67/9H_
+67/18Hp0+H_30—8H_200+4H_200+8H 22+ 16H_| _1%
—8H_1,—1,00 — 16H_1,—1,2 — 11H_1 062 + 3H_1,0,00 + 8H_1 3

+ 3Ho,0¢2 — Ho,0,0,0 — 2H2¢2 —2H4 — 11/6H_3 o — 11/3H_1
—11/6H_1 00+ 11/3H_; 5 + 1/6Hots + 31/12Hy 0.0 — 11/6H;

— 12H_ 143 + 3/4Ho + 4Ho¢3) + 2Apqq(x) (245/48 + 1/2¢3 + 12/5¢5
— 67/18¢ +389/72Ho,0 + H_3.0 +4H_ 1.0 — H_200 +2H_

— Ho,0,0,0 + 6H1, 2,0 — Hi,082 — 3H1,0,0,0 — 4H1,1,0,0 +4H1 3
—2H3.0.0+Hs4 —3/2H_2,0 —31/12Ho¢2 + 31/12Hp,0,0 — 11/4H1,0,0
+ 11/12H3 4+ 1043/216H¢ + 4Ho &3 + 9H1§‘3)

— (1 —x)(74/3H; —391/27 +H_30—H 20, —2H 5 _1.0+H_ 200
+4H15 +4H10,0) — (1 +x)(16H_14 —8H_1,—1,0 —6H_1,0,0
—20H-; 2+ 10/3H_,0 + 28/3Hs + Ha¢2 + 1/2H2,0,0 — 3/2H4)
+1/4(3 4 5x)¢7 — 2HoZ3 + 9(1 + 2x)Hozp — 2(1 + 9x)H3

+2/3(3 + 10x)Hg o — 1/2(5 + 3x)Ho, 002 + (7 — 15x)H_20

+2/3(9 + 14x) 8 + 1/9(43 — 21x)Hy + 1/2(41 + 3x)¢3 — THo.0.0
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+ Ho,0,00 — (1 — x)(1657/288 —5¢5 4+ 194/9¢3 — 562/27¢, + 1/4{22))
+ 8/3C1%nf (4quq(—x)(3/2§3 —5/3¢ —10/3H_10 4+ 5/3Ho.0

—H 20—2H 15 —H_1,0,0+2H_12+ 1/2Hp% + Ho,0,0 — H3)

+ 2Apaq(x)(—=55/16 + 5¢3 + Hota — Ho 0,0 — 4H1,0,0 — 2Ha 0

—2H3 4+ 3/2Hp,0 — 10/3H; o — 10/3H, + 5/8Hyp)

+ (1 —x)(34 —8H; —4H; 0) — (1 +x)(8H-1,0 — 3Ho,0,0)

+1/3(31 4 55x)Ho0 + 1/12(269 4+ 253x)Hp — 8H»

—8(1 —x)(69/8 — 5/2¢, + 17¢3 — 29/5¢3))

+8/3CaCrnys (2Apgq(—x)(—3/2¢3 +5/3¢ + 10/3H_1 o — 5/3Ho0
+H_2,0+2H_18 +H-1,0,0 — 2H-1,2 — 1/2Hp&2 — Ho,0,0 + H3)
+2Apqq(x)(—209/72 — 9/2¢3+ 5/3¢2 — 7/2Ho,0 + Ho2 — Ho.0.0
+3/2H; 0.0 — 1/2H3 — 167/36Hg) — (1 — x)(440/9 — 2H))

+ (I +x)@4H_10+H)+ B —x)5 — (64 5x)Hp,0

—2/3(33 — x)Hy + 8(1 — x)(15/2 — 167/9¢2 + 25/3¢3 + 3/103))
+8/9Ckn} (Apgg(¥)(—1/3 +5/3H + Ho,0) + (1 — x)(13/3 + 2Ho)
—8(1 —x)(17/8 — 10/34 + 2¢3)) (5.12)

AP (x) =4CaCrny (4(1 — x)(5/2H & — 33/4H, 0,0 + 5H1.1,0 + 5Hy 1.1 —4439/54

—H_200 —2H 2 1,0 —3H_2,0,0 — 1/2Hg,0¢2 + 17/2H1,0 + 65/12H 3
+266/9H) —2(1 +x)(H_152 +10H_; 1o+ 17H_ 0,0 +4H_1 >
—2H82 + TH2,0,0 — 4H2,1,0 —4H2 1,1 — 2H3,1 + Hg — 37H_1 o)
H+1/5(117 4 107x)22 — 1/9(427 — 1151x)Hg 0 — 1/27(2257 + 8899x)Hy
—4(1 = 5x)H_3,0 — 43 —4x)Ho,0,0,0 +2(6 +x)Hz20 +2(9 — 19x)H_2 o
4+ 40+ 13x)Hosz +2/3(19 — 11x)Hp 1 + 14/3(25 — 26x)83

—4/3(19 + 37x)Ho 0.0 — 1/3(29 + 47x)HoZa + 1/3(83 + 47x)H;
+1/9(91 — 134x)2 + 1/9(575 + 134x)Ha)

+4CEn; (10(1 — x)(Hy 0.0 — 2Hy 1,0 — 2Hj 11 — 6/5 — 6/5H) g

— 13/10H; ; — 25/2H;) — 4(1 4 x)(37/10¢3 + THo¢3 — 6Ho 002

+ 4Ho,0,0,0 — H2,0,0 +2H2,1,0 + 2Hp,1,1 4+ 4H3,0 + H3 1 4 6Hy)

—4(2 = 3x)Hz,1 +20(2 — x)(Ho¢2 — H3)

—4(4 —Tx)Hz,0 —4(5 — 6x)Hp00 —4(11 —21x)¢3 — (25 — 114x)Hp

— (324 25x)Hp,0 + (64 +27x)(s2 — Hz))

+2/9Ckn7 (4(1 — x)(86/3 + 2H; + 15H, 1) + 8(5 — 4x)(¢2 — H)

+4(23 + 17x)Ho 0 + 24(1 + x)(¢3 + 2HoZs + Ho 0.0 + Ha.y — 2H3)
+4/3(65 —43x)H0). (5.13)



S. Moch et al. / Nuclear Physics B 889 (2014) 351-400 377

Egs. (4.10) and (4.11) result in the third-order gluon—quark and quark—gluon splitting functions

AP (x) =8Cins (1 —2x)(31H g3 4 6Hy, 2,0 + 10H, 022 — 5Hy 0,0,0 + 2H1 182
+2H; 1,00+ 8Hi,1,1,0 —4H1 1,11 +4H1 12 +4H1 20 — 6Hi 3
— 11/6H;1,1) — 1/36(16099 — 16 346x) + 1/18(733 + 12x + 54x%) 5,
+ 1/6(273 — 4x)H; — 1/18(675 — 2356x + 54x%)Hp 0 — (1 — 18x)H_30
+ A +x)BHy 10 +4Hz 1,1 —13H 18 —42H 1 10— 8H_12)
— (1 — 14x)H_28 + 1/20(495 + 538x)27 — 4(1 +2x)(H 22 +5/4H_ 153
+1/2H-1,20—1/2H_y 15 —3H_1 1 —10 —H-1,-1,00 —H-1,-12
+3/4H_1,0,00 —H_121 +H_13) +4Q2+3x)H;3 1 — 1/9(2 4 65x)H; 1
—3/2(3 — 2x)Hs +4(3 — x)Hp.0 + 12(3 + 4x)HpZ3 — 2(5 — 6x)H_2 1 0
+ (54 6x)Ha¢ + 1/2(7 — 31x)Hog + 2(7 — 10x)Ha, 1 +3(7 — 9x)H_2 0
+1/2(7 — 6x)Ho,082 — (13 — 6x)H_2,0,0 — (15 — 16x)Ho,0,0,0
—1/2(25 4 42x)Hy,0,0 + 1/6(35 — 46x)H| 5 4+ 1/2(35 + 31x)H3
+ (36 — 35x)H} o — 2/3(41 4+ 40x)Hg 0.0 + 1/6(91 — 80x)H; £
—1/3(104 + 115x)H_1.0.0 4+ 1/6(157 — 146x)Hy 1 o
—1/6(212 —223x)H; 0,0 — 1/108(11468 + 40643x)Hy
+ 1/2(315 — 268x)¢3 + 5/108(1006 — 911x)H,
+1/9(776 + 709x + 27x*)H_ o)
+8CaCrny(—2(1 —2x)(39/2H1 3 + 3H1,—2,0 + 9Hi 08 — 3/2H1 0,00
+6H1,182 +Hi.1,00+3H1,1,1,0 —4H1.1,1,1 —3H1,12 —6H; 2,1 —6H; 3)
—(59/2 = 31x 4+ 3x%)H & — 4(1 — x)Ha0p — 3(5+ 6x + 2x%)H_,0,0
— (89/6 — 65/3x — 6x%)Hg 0,0 — (701/72 + 1357/36x — 9x*)Hy 0
— (11 =35x — 6x*)H;3 + (1 — 14x)Hz 1,1 — 2(5 + 8x +3x?)H_1
— (8 + 17x +9x*)H_1 0 — 2(1 + 16x + 3x*)H_5,0 — 2(1 — 6x)H_3 0
+ 1/288(69407 — 68990x) + 8(1 +x)H_2 10
— 1/3(370 — 293x +45x%)¢3 — (101/9 + 85/18x + 9x%) ¢,
—1/10(101 4 146x)¢% 4+ 2(1 +2x)(17/2H_13 + 3H_1, 20— 9H_1 102
—6H_1 _1,—1,0+6H_1_1,00+6H_1_12+9H_10{ —11/2H_1 0,00
—2H_12,0—2H-121 —6H_13 — 2H0,0,0,0) — 8(1 + 3x)Hy4
+ 6(1 +4x)Hp, 042 — 4(3 +4x)Hz,0 + (1 +22x)Hz,0,0 — 52 — 7x)Hz o
+2(13 + 16x +3x?)H_1,_10 — 4(1 + 6x)H_5,
—2(3 +8x)(H-,0,0 +H3.1) — 3/2(11 — 10x)(Hy1,0 — Hi 2)
+ (9= 35x — 12x?)Hoa — (17/9 — 46/9x)Hi o + (37/3 — 47/3x)H.1.1
4 (317/9 — 313/9x)H;.1 + (29/9 + 85/18x)H, + (61/3 — 59/3x)Hj 0.0
+4(2+ 7x)H_28 — 12Hp 10 + (23 + 32x + 9x?)H_1 &
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— (41 4+ 22x)Hog3 + (41/6 4+ 46/3x)Ha. 1 + 1/27(1195 — 1433x)H,
+1/216(15259 + 25 645x)Ho)

+8CPny (2(1 —2x)(7/2Ho,0¢2 + TH1£3 + 2H1, 2,0 + TH1 082 — 3H1,0,0,0
+5H1.162 —4H1 100 —Hi1.0 —2Hi 1010 —SHi 12 —6Hi 20

—6H; 21 —7H1,3 —2Hy 10 — 5/2H2,1,1 —4H2 2 —4H3 0 — SH3 1
—7/2Hy — SH_2.0) + 681/16x +2(1 — x)(13H &, — 11H1.0,0 — 5Hy.1 0
— 11H; 5 +4H28) — 4(3/5 — 2x)¢5 — 1357/32 — 2(10 4+ 9x — 3x?)H_1
—4(1+x)(H_18 4+ 2H_1 10+ 2H_10,0) + (59/2 — 18x + 6x2) 2
+4(1+2x)(H-1,—2,0 + 2H-1,—1,0,0 — 1/2H-1,0,0,0) —4(1 +4x)H_20,0
—2(3 = 2x)Hy.0.0 — 7/2(5 — 2x)Ha.1 — 3/2(7 — 8x)Hj 1.1 — 2(10 — x)Hz ¢
—9/2(11 — 4x)Hs + (13 — 14x)Hogs + 1/2(15 — 4x)Ho 0.0

—2(17 — 22x)Hy o + (23/2 — 2x)Ho&a + (25 — 11x)¢3 — (29 — 36x)H) ¢
— (43/2 — 2x)H3 — 1/8(77 — 397x)H + 1/8(59 + 458x — 48x%)Hy g

— (78 — 329/4x)H; — 4x(4H_3,0 — Ho,0,0,0 — 2H-282 — 4H72,71,0)>

+2/9Can? (12(1 — 2x) (Hy & + Hi 0,0 + Hi,10 + Hy 1.1 — Hi2)

+24(1 +2x)H_1,0.0 +48(1 —x)Hp 0,0 — 82— 7x)Hy 1 + 82 +7x)H_1 o
+4(443x)0p +472 — 527x — 4/3(23 — 4x)H; + 2(99 + 68x)Hp o

—36¢3 + 1067/3Ho + 200/3xHg — 12xH,)

+2/9Crn}(12(1 — 2x)(¢3 + 2Hy 0,0 — Hy 1,1 — Ha,1 + 12Ho,0,0,0)

+4(11 — 16x)Hy 0 + 1/4(4193 — 4226x) — 8(2 — 7x) (&2 — Hy.1 — H))
+2/3(28 4+ 19x)H; + 12(43 4 10x)Ho,0.0 + 17(53 + 14x)Hp o

+1/3(3217 — 59x)Hy) (5.14)

AP (x) = 8CCr (4(1 — 20)Hy,1,1 + 1/12(3718 — 3349x) — 1/20(366 + 193x)¢7

+16(14+x)H 22 +22—-11x)H_2 10+ (2 —-9x)H_3

— (106/3 +3x 7! +173/3x)H_1 o — 1/54(1442 — 403:)H,

— (46/3 +3x7 = 121/6x)H1§2 + 2 —x)(TH183 —2H1, 2,0 —4H1,002
+3H1,0,00 —2H1,162 +4H1,1,00 + 8Hi,1,2 + 8Hy 1,10 +4Hp 11,1
+12H; 2,0+ 8H; 2,1 +8H; 3 + 6Hz 10+ 6Hz 2 — 55/6H1 1,1)
—4@2+x)(23/4H_143+5/2H_1, 20— 13/2H_1 —152 —3H_1 —1,-1,0
—4H_13+6H_1 _100+5H_1 _12+5H 108 —11/4H_1 0,00
—H_120—H-121) —7/2(2+5x)Hz,1 — 1/9(5 — 148x)H) o

F4(6— x)Hz 1 +4(8 +x)Hs,0 — (3 — 122/3x)H_0.0 — 2(10 + 7x)Ho 3
— (14 +5x)H260 — (14 +27x)H_2¢, — 1/6(14 +41x)(Hy,1,0 + Hy 2)
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+2(15 — 4x)Ho,0,0.0 + 1/36(50 + 581x)H; 1

+(13/3—=9/x — 4/3x)H_ & + 1/3(38 — 139x)Hs o + (38 + 1 1x)H_2.0.0
— (234 13/2x)Hg.082 — 1/6(47 — 419x)Hot, + 1/6(245 — 223x)H; 0.0
+ (25 + 13/2x)Hy + 2/9(49 4 73x)H, + (21 + 13/2x)Hz,0.0

+ (47 — 5/3x)Ho,0,0 + (40/3 + 6x " +44/3x)H_

— 1/3(161 — 194x)¢3 — 2/9(208 + 73x) 0

+(133/3 4+ 6x~" +137/3x)H_1 0,0 + (106/3 — 6x ' +80/3x)H_1 10
+1/6(29 —419x)H3 + 1/18(1444 — 2351x)Ho 0

+1/108(11998 + 18 649x)Ho)

+8CACA(8/3(1 4+ x)Hz + (2 — 7x)(2H_3,0 — Ha,1.1)

— 1/216(13037 — 4423x)Hg — 1/5(46 +49x)23 — (6 — 9x ' +x)H_1 ¢
—1/48(2911 — 11273/6x) + (2 —x)(3H143 + 10H|, 2.0 + 2H1,082

+ 5Hy,0,0,0 —4Hy, 182 + 10H 1,0,0 — 6Hy,1,1,0 — 8Hy,1,1,1 — 2H112
—4H; 2,1 +2Hz 1,0 +4Hz2 +4H30) + 2+ x)(11H_153 + 6H_1 2
—10H_1, 15— 12H_1 1, —1,0 + 8H-1,—1,00 +4H_1—12 —2H_1 02
+3H_1,0,00—4H_121+6H_10,0) —3(2 —=3x)H_20— (2+7x)H3
—2(4 = 5x)H260 +4(4 — x)Hogs +2(4 + x)(H-1 2 + 2Hp,0,0,0)
—2/36—x)H20—4(T+4x)H_1 —1,0 — 1/3(8 —43x)H> 4

+2(8 —7x)Hz,0,0 +5/3(8 — x)Hy,0 — (10 — 3x)Hy 0,0

+1/6(10+ 13x)H; 2 —2(11 4+ 5x)H_142 — 2/3(13 4+ 4x)Ho &

— 1/18(31 +274x)H | +2/9(32 — 73x)H, + 7/6(32 — 25x)¢3
+1/3(89 — 88x)Ho.0.0 — 1/6(70 — 71x)H, 1.0 + 8Hy

+1/3(73 = 23x)Hy 1.1 + 1/6(74 — 61x)H & — 6x(H_2,00 — H_22
—2H_5 _1,0) — 2/9(59 — 73x)¢2 + 1/108(586 + 613x)H,

+1/72(730 — 821x)Ho,0 — 4Ho,082)

+8CA(8(1 +x)(H_18 +2H_1 _1,0+ 1/2H_1,0,0 + H-2,0,0)
+2331/16 — 4547/32x — 12(1 — x)Ho¢z — 2(13 4+ 3x ! + 12x)H_1 0
+(3493/10x)55 — (2 — 5x)Hz,0,0 + 22 — 3x)Ha02

—2(2 —x)(3/2Hp,0¢2 + 8H &3 + 6H| 2.0 + 2H] 082 — 3H) 18
+3H11,00 +Hi110 —2H11,1,10 +3H1 12 +2Hi 20 +2Hi 21
+1/2Hz,1,1 +H22 +3/2H3 1 —3/2Hs +H_20)
—4Q2+x)H_1,—2,0+2H_1,-1,00 —H_1,082 — 1/2H_1,0,0,0)

— (4 —="Tx)Hy 2 —4(5 —2x)Hy 0 — 2(4 + x)(Ho,0,0,0 + 3/4H1,1,1)

— @4 —x)(Hi1&2 —3/2H1,00 —2H1,1,0) — 1/2(8 —x)H3 — 1/4(8 — 7x)H1 1
+1/2(8 +7x)Ha,1 — (23 +3x)Ho,0,0 — 1/2(254+23x)%2
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—3/8(264+31x)Hp,o — 1/2(27 — 23x)Hy + 1/4(32 — 23x)H;
— (52— 21x)Z3 + 1/8(389 + 721x)Hy
— x(8H_2,—1,0 + 4H_242 + 1/2Ho&2 — 2Hp 9 — 16H_39))
+8/3CACrny (369/4 — 643 /6x —2(10 — 3x ™! 4 8x)H_1 9
—10/3(1 +x)H; 0+ 32 —3x)H21 — 2 —x)(H182 4+ 2H1 00
—5H110—5H11.1 —5H12 —2H20) =42+ x)(2H_152+2H_1 10
—H_1,00—H-12—H3) —1/6(4 +91x)Hs — 4(5 + x)Ho {2
—2(6—5x)H_20—2(23 — 14x)¢3 — 1/3(41 4+ 74x)Hop 0
+ (194/9 4+ 3143/36x)Ho — 1/3(80 — 37x)H; 1
+ 1/9(91 + 118x)H; + 2xHo 0,0 — (58/3 — 91/6x)(2)
+8/3Cns (22 — x)(31/2¢3 + 6H 50 — Hi 22 + 3/2H) 0,0 + 2H 10
—5/2H; 11 +Hi2+Ha o+ 1/2Hz 1 +Hs — 6Ho 0,0.0)
—1/36(3155 + 3893x)Hy — 1733/8 + 10043 /48x — 31/9(1 + x)H;
— (@4 +x)(Hi0+4/3H2) +2(10 + x)Hot2 +4/322 + x) 52
+1/3(41 —4x)Hy 1 — (50 +29x)Ho 0,0 + 6(4 — x ' 4+ 5x)H_1 o
—1/12(674 — 457x)Ho o)
+8/3Crn}((2 — x)H1,1 — 1/3(4 +x)H| —2+5/3x). (5.15)
Finally the x-space expression corresponding to Eq. (4.12) for the polarized NNLO gluon—gluon
splitting function reads

AP (x) = 16C; (4Apge(—x)(—11/855 + H 30— 4H 500 —2H 5 _10+3H 2,
+9/2H 20,0 —3H-183 —2H_1, 20+ 4H_1 182 —6H_1 1,00
—4H_y 12 —9/2H 1052 +4H_1 0,00 + H-1,2,0 +4H_1 3 + 5/4Ho¢3
+2Ho,062 — Ho,0,00 — 1/2H2¢2 — 1/2H3,0 — 2H4 + 11/24H0 (2
+67/36(2 +2H_1,0 — Ho,0)) + 4Apgg(x)(245/96 — 3/40¢7 —H_3 9
+3/2H 28 +H-2 1,0 —H-2,0,0 —H-2,2 — 7/4Ho¢{3 — 2Ho 0{2
+Ho,0,00 —3/2H183 — Hi,—2,0 — 3/2H1,062 + 2H1,0,0,0 + 2H1,1,0,0
+2H; 20+ 2H1 3 —H280 +5/2H2,0.0 + 2H2, 1.0 + 2H22 + 5/2H3 0
+2H3,, 4 2Hy 4 11/12¢3 + 11/12H_p.0 + 11/24H, 90 + 11/24H;
— 67/36(22 — Ho,0 — 2H; o — 2Hy) + 1/24H)
— 1/3(72 — 185x — 22x*)Hptr — 1/3(32 — 161x — 11x*)H_2 9
+4(1 — 5x)H_30 — 1/6(312 — 393x — 55x%)¢3
+ (1 —x)(5579/18 +4H 222+ 8H_5 1.0+ 12H 50,0 — 21/2H 5
+37H100 + 1/18H; — 19/2H; 9) — 1/5(43 4 33x)¢5 — 8(1 4 3x)Hos3
—2(11 4 13x)Ho 042 + (1 +x)(21H_|_1.0 — 25/2H_ 12 + 65H_1 0,0
+23H_ 2 — 4H2¢ + 10H2, 0,0 + 16H3 o + 26H4 — 215/3H_1 )
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—1/9(74 — 97x)Ha + 1/3(77 — 115x)Ha,0 + 1/3(40 — 185x — 11x%)H3
— 1/9(571 +97x)¢ + 1/3(158 — 87x — 11x%)Ho 0,0

4 1/12(1019 — 1489x)Hy,¢ + 1/216(24625 + 40069x)Hy

— 11/6(x " — x?)H & + 28H0,0,0,0

—11/2(x 7" +x?)(Ho18 +2/3H_1 1,0 — 2/3H_1,00 — 2/3H_1 »)
+8(1 — x)(79/32 — 5¢5 + 67/683 + 1/68 — 03 + 11/24¢3))
+8C3ns(2/3Apge(x)(10/382 — 10/3Hg o — 20/3H o — 20/3H,
—209/36 — 8¢3 —2H_5,o — Hy 0,0 — H3 — 1/2Hp)
+2/9Apgg(—x)(10Hp 0 — 1052 — 20H_1,0 — 3Ho{2)

—1/6(51 — 61x — 16x?)Ho¢, — 1/18(146 + 227x + 36x?)Ho o
—1/3(23 +43x —4x?)H_20 — 1/3(1 — 12x + 4x%)Ho 0,0

—2(1 = 5x)H_3,0+2(1 —x)(512/9 +3H_ 28 + 6H_ 5 1.0 —3H 2,00
—11/2H,5, + 11/4H, 0,0 + 1087/72H; — 2H; o) + (1 + x)(TH_ &
+22H_j —1,0 —9H-1,0,0 + 4H_1 2 — 4/3H o — 6H2{2 + 3H2 0,0 + 3Ha
— 19H_1 ) — 2/39(507 — 195x — 65x?)¢3

— 1/18(499 +301x — 36x2)¢2 + 3/10(13 + 23x)¢7

+1/6(5 — 61x — 8x?)H3z — (5 + 3x)Ho 062 + 1/18(157 + 301x)Ha

+ 1/108(2422 4 7609x)Hy — 12Ho¢3 — 2/3(x ™! — x*)H15

—2(x" 4+ x?)(Ho142 +2/3H1, 1,0 — 2/3H_1,00 — 2/3H_12 — H_10)
+2Ho,0,0,0 — 1/38(1 — x)(233/48 + 1083 + &2 + 1/2¢3))

+ 8/3CACrny (4Apgg(x) (383 — 55/16) + 3(1 — x)(8H_2,0,0 — 7507/27
—16H_2¢, —32H_» 1,0 +30H 42 — 29H{ 09,0 — 10H; 1,0 — 10H] 1,
—26/3H; 0 —65/6H; | — 1127/18H}) + 6(1 4+ x)(61/6H_1 o — 11H_ {3
—30H_1 1,0 +3H_1,00 —4H_12 + 6Hp 002 + 8H2%2

— TH2,0,0 — 2H2,1,0 — 2H2,1,1 — 4H3,0 — H3,1 — 6Hy)

+ (125 4 38x — 20x?)¢3 + 1/6(848 + 341x — 108x%) 2,

— 1/18(8363 + 3362x)Hp — (181 + 88x — 8x%)Hy 0,0

— 1/6(1723 — 692x — 108x%)Ho 0 — 3/5(43 + 83x)¢7

— (32 — 43x — 8x%)H3 — 24(3 — 2x)Ho,0,0,0 + 6(9 — x)Ho 3

— (19— 11x)Ha 1 +8(3 + 12x — x%)H_2,0 + (56 — 43x — 16x?)Ho >

— 1/6(482 + 341x)H, — (38 — 37:x)Ha 0 + 4(x ™' — x})Hi 5

+4(x "+ x*)(BH_18 +2H 1 _1,0 — 2H_1,00 — 2H_12 — 9/2H_1 0)
— 48xH_3, — 241/485(1 — x))

+8Cns (81 —x)(Hooto + 1 +2H_5 10 —Ho200 — 2Hi 0
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Fig. 5. The polarized NNLO quark—quark splitting function in the standard MS scheme (M), as given by the sum of
Eqgs. (5.12) and (5.13) for three flavours, multiplied by (1 — x) for display purposes. Also shown are the non-singlet
contribution, the leading-logarithmic small-x part [64], and the splitting function in the alternative scheme (A) with

Eq. (3.7), see also Appendix A.

+ 11/8H1,0,0 +5/4(Hi,1,0 + Hi,1,1) — 7/8H1 0 + 13/16H; | +41/16H;)
+4( +x)(4H-182 +8H-1,—1,0 —4H_1,0,0 + Ho,062 — Ho,0,0,0 — 2H2{2
+3/2H2,0,0 + Ha,1,0 + H2,1,1 + 1/2H3,1 — Ha + 5/2H_1 o)

+ (8 = 19/2x +4x%)¢p — (23 + 3/2x + 4x*)Ho0 + (9 + 13x)¢5

—2(1 =7x)Ho¢z +2(2 —3x)Ha 1 +2(4 — x)(Hos2 — H3)
—2(3+4x)Hp0 + (2 + 19/2x)Hs — 5/2(5 — 2x)Hy — 2(7 — 3x)Hp 0.0
—2(5+21x)¢3 +4(x " +x?)H_1 0 — 16x(2H_5,0 — H_30)

+1/85(1 — x)) +2/27Can? (~8Apgg (x) + 48(1 +x)(¢2 — 1/2Hp 0 — Ho)
—3(1 — x)(33 4+ 41H)) — (56 — 67x)H + 87/45(1 — x))
+2/27Cpn7(—4(1 — x)(146 4+ 90H, o + 45H, | + 78H))

—72(1 4+ x)(¢3 —2Ho&2 + Ho0,0 + 2H2 0 + Hz 1 + 2H3)

+24(13 — 8x) (&2 —Ha) — 12(7 — 23x)Hp0

—52(5 —x)Hp +33/25(1 —x)). (5.16)

The functions (5.12)—(5.16) are shown in Figs. 5-8 for ny = 3 effectively massless quark
flavours. For the numerical evaluation of the harmonic polylogarithms we have made use of
Ref. [79].

Except for the case of A Pyq, the respective first two terms in the expansion of the entries of

the matrix (2.7) powers of (1 — x) are identical to their unpolarized counterparts, i.e., Eq. (2.22)
holds also for the differences 81.(2) (x) defined in Eq. (2.20). The NNLO counterpart to Eq. (2.23)

18
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Fig. 6. As Fig. 5, but for the gluon—quark splitting function (5.14) and its A-scheme analogue. The multiplication with
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Fig. 7. The polarized NNLO quark—gluon splitting function (5.15) for the standard (M) transformation (2.17) [56] from
the Larin scheme and an alternative (A) which also includes Eq. (3.7). As for AP&? (x) shown in the previous figure, the

leading small-x coefficient is different from Ref. [64], which provides the In* x terms of the physical kernels Kz, and
K in these cases.

8% (x) =1n’(1 = x)8Cr (Ca — Cr)*
5 2 28
+1In(1 = x)| SCr(Ca — Cp)(T7Ca = 45Cp) — - Cp(Ca = Cphny

1870 ., 2260 , ;
+In(1 = x)| = =CrCi = = =CiCa + 54}
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Fig. 8. As Fig. 5, including the multiplication with (1 — x), but for the second diagonal NNLO entry of the splitting-
function matrix (2.7) given by Eq. (5.16) in the standard MS scheme.

424 304 , 8 .,
—85Cr(Cy — Cp)(5C4 — 2CF) — TCFCAnf + —Cpny + §Can

9
2068 154 2 466 3 52 ,
+CFCA T - T§2 _CFCA T —30§2 +24CF+?Can
40 632 28
tg Crn} +83Cr(Ca — Cr)(5Ca +4Cr) — CpCang o 3%

+ (1 —x)In*(1 — x)8Cr(Ca — Cr)?
2
+ (1 —x) In? (1 —x)|: Cr(Cp — Cr)(41C4 + 15CF) — ?SCFI’lf(CA — CF)]

1690 1504
+%1—xﬂMl—x)———Q&k——;—@i}+2ﬂ}

16 8 208

+gﬁw+§&ﬁ—&ﬁﬂq—QM%kQ&%—?QQW]
104 34 5 . (574 3
+ (1 — X) CFCA T — —§2 + CFCA T — 42;2 — CF(16 — 32§2)
280 28

+883CF(Cq — Crp)(5C4q +4CF) — CpCany o5 ?42

4 2 8 2 2
—§QW—§@W-H%a—m) (5.17)

All terms shown in this equations are removed by including the additional contribution (2.19) to
the transformation (3.7) from the Larin scheme.

At small-x the polarized splitting functions are double-logarithmically enhanced, i.e., terms
up to In?" x occur at N*LO. Using the notation
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APY () =D n*x + D 10’ x + DP 10’ x + DY Inx + O(1) (5.18)

for the leading logarithmic (LL), next-to-leading logarithmic (NLL) contributions etc at NNLO,
the small-x terms of the non-singlet and pure-singlet splitting function are given by

10
DO = — CrC} +4CECy — ?cﬁ
=1.43210,
a 40 3 20 , 16
DHS — KCFCA 9 CFCA 4CF + ECan - ECFCAnf

= 35.5556 — 3.16049n/,
@) 2 152 2 3
DY = 81+ 140)CrCi — =+ 9682 | CCa — (60 — 10422)Cip

196 80
— —CrC,
9 FCany + — 3 9

2 399.205 — 39.7037n; +0.592592n7,
3442 100 1850 680
DY) = ( 7 T3t 1]2{%>CFCA + (—9 - - 336;3>CFCA
— (286 — 1920, — 224£3)C}
2252 8 568 32 88
— (== --n)cC —— + =0 |CPnp 4+ —Cpn?
( 77 3§2) F Anf+< 9 + 3 Cz) an+27 Fny
= 1465.93 — 172.693n; + 4.34568n7 (5.19)

and

8
DY = —2n;CrCy — gnfq%

~ _12.7407n;,
o 152 0 , 8,
Dps = —TnfCFCA - ?}'ZJCF + §nfCF

12

—91.2593n5 + 1.18519n7,

-
=
&

I

854 92 ,
bs = — 74—4{2 ngCpCy — (64 — 48@'2)71ch — fCF

—379.285n; + 13.6296n7,

3) 9028 116
Dy =—|——+ —¢ — 144%3 |nyCpCy — (100 — 160, + 112¢3)ny CF

12

27 3

520 32
+ 27 §2 nf

—848.741ny + 49.0736nf (5.20)

12

where the respective last lines provide the QCD values rounded to six significant figures.
The corresponding coefficients for Ach) and APg(g) read
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4 4
0 2 2
Dc(lg) =—5n;Cy — g”lfCFCA + = fCF

3
= —50.3333n; + 1.77778n7,
W 328, 178 , 16 , 172 ,
Dqg = —TnfCA — T rCrCa + 10n,Cr + EnfCA + TnfCF

= —389.334n; +30.8148n7,

701 59
Dc(é) =—(150 - 14§2)nfC§ — <§ — 24§2>i’lfCFCA + <7 + 28§2>nfCI%

901
+22n7Ca + —5-njCr
= —1006.28n + 199.481n7,

3) 22936 5 15259
Dq;g =— T — 285, — 28883 |nfCy + T + 728 — 32883 |y CpCy

, 2134, 6434
— (7792, — 1043)ny G + = =nfCa+ ——-nCr

27

= —2603.45n; + 554.840n7 (5.21)
and

16 8 8
DY) =10CrC; + ?q%CA — gc; - gnfcﬁ
= 142.123 — 4.74074n;,
188 356 92 200
(1 __ 'o° 2, 2% 0o Je 3 V0

= 890.272 — 39.5062n;,
3104 365
DY = <T - 92@) CrC? + (T — 16§z> CFCa — (39 +2402)Cp

164 674
_TnfCFCA - 7 fCF

~2212.57 — 206.025n;,

22052 188
3) — e 2
ng = < 27 3 19) 160{3)CFCA

11093 208 , \
— —27 + T{z — 12853 CFCA + (341 — 96(3)CF
L (1984 160 cocn (6742 160 o
27 3 eurCa— 5 T )G
= 4811.85 — 344.947n,. (5.22)

Finally the small-x coefficients (5.18) of the polarized NNLO gluon—gluon splitting function are

56 5 2 4
DY = ?cj +3 Cx — 8npCrCa— §”fcg

=504 —28.3704ny,
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;s 4, 14 56 5 8
og TCA — 5 fCA — TnfCFCA — ?nfCF 9 fCF
= 3792 — 358.963n; — 1.18519n7,

2126 244 3542
Dé2g) — <_3 — 176§2>C§ — (T + 2O§2>nfC§ - (T — 48{2>nfCFCA

8 28
2 2 2
— (92 —1685)nrCr — §nfC iy 1%
=11317.3 - 1915.25n; — 6.8148111%,
47810 976 4844 236
(€)Y s e S 2
Dgg = ( 77 {2 192{3) < 77 Q 96§3>nfCA
(34 172 448

T 144;3>nchcA — (68 — 642 + 16¢3)ny C}

12 , 520 32\,
— 55n5Ca — 27 3% n;Cr
=27129.4 —3944.01ny — 14.728811%. (5.23)

The coefficients DI(I(S)) , D;()(s)) and Dgé), which are identical to the coefficients of the corresponding
physical kernels, agree directly with Refs. [64,67], for D(g) and D(q agreement with Ref. [64]
is obtained after taking into account Eq. (2.26).

The small-x behaviour in the right parts of Figs. 5-8 is due to the above contributions, which
exhibit the usual pattern of alternating LL, NLL etc terms with coefficients strongly increasing
towards lower logarithms. Consequently the leading logarithms alone do not provide a good ap-
proximation for any practically relevant values of x as illustrated in the figures. Yet it is also clear,
from the scale of the ordinates in those right panels and Eq. (5.20)—(5.23), that these logarithms
lead to a huge small-x enhancement that can potentially spoil the stability of the expansion in oy
at x-values that would be accessible to an electron-proton collider with polarized beams.

Given the length and complexity of the exact expressions (5.12)—(5.16), it may be useful to
also have at one’s disposal compact and accurate approximate expressions for the case of QCD,
i.e., C4 =3 and Cr = 4/3. Such approximations can be build up, besides powers of x, from the
non-logarithmic plus distribution and end-point logarithms

Do=1/1—x)4, Li=In(1 —x), Lo=Inx. (5.24)
Due to APII’S_ @ _ Pn_s(z), the result (4.23) of Ref. [12] can be used also here; it is given by

APE® (x) = 1174.898Dg + 1295.4705(1 — x) 4+ 714.1L} + 1860.2 — 3505x
+297.0x% — 433.2x% + LoL (684 +251.2Lo) 4 1465.2Lo +399.2L3
+320/9L3 + 116/81L{
+nyp(—183.187Dg — 173.9335(1 — x) — 5120/81L; — 216.62 + 406.5x
+77.89x% +34.76x> — 1.136x Ly — 65.43LoL; — 172.69L,
—3216/81L3 —256/81L})
+n7(=Do — (51/16 4+ 383 — 5¢2)8 (1 — x) + x(1 —x) "' Lo(3/2Lo + 5)
+ 14+ (1 —x)(6+ 11/2Lo +3/4L3))64/81. (5.25)
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The polarized pure-singlet NNLO splitting function (5.13) can be parametrized as

APZ (x) Znp(1 —x)(—344/27L5 — (90.9198 + 81.50x) L]
— (368.6 — 349.9x) L3 — (739.0 — 232.57L) Lo — 1362.6 4 1617.4x
— 674.8x% + 167.41x> —204.76L1 — 12.61L% — 6.541L3)
+n7(1 —x)((1.1741 — 0.8253x) L + (13.287 4 10.657x) L§ + 45.482L
+49.13 — 30.77x — 4.307x? — 0.5094x> +9.517L; + 1.7805L3).  (5.26)

Sufficiently accurate parametrizations of the corresponding off-diagonal quantities in Egs. (5.14)
and (5.15) are given by

AP (x) =np(—151/3L5 — (385.64 4 73.30x) L — (894.8 — 1145.3x) L
— (1461.2 — 825.4L1) Lo — 2972.4 + 4672x — 1221.6x% — 18.0x°
+278.32L; — 90.26L% — 5.30L3 + 3.784L})
+n7(16/9L5 + (30.739 4 10.186x) L + (196.96 4 179.1x) L§
+(526.3 —47.30L1) Lo + 499.65 — 432.18x — 141.63x% — 11.34x>
—6.256L1 +7.32L} +0.7374L3) (5.27)

and

AP (x) =11512/81L + (888.003 + 175.1x) Lj + (2140 — 850.7x) L§
+ (4046.6 — 1424.8L1) Lo + 6159 — 3825.9x + 1942x* — 742.1x°
+1843.7L; +451.55L3 +59.3L3 +5.143L]
+ny(—128/27L¢ — (39.3872 + 30.023x) Lg — (202.46 + 126.53x) L§
— (308.98 + 16.18L) Lo — 301.07 — 296.0x + 406.13x> — 101.62x>
— 171.78L — 47.86L} — 4.963L3)
+n7(16/27(=124 10x + (8 +2x) L1 + (6 — 3x)L7)). (5.28)

Finally the gluon—gluon splitting function (5.16) can be approximately represented by

AP (x) =2643.521D +4427.7628 (1 — x) + 504L¢ + (3777.5 + 1167x) L;
+ (10902 — 863x)L§ + (23091 — 12292L1) Lo + 30988 — 39925x
+ 13447x? — 4576x° — 13247(1 — x)L; + 3801L;
+ny(—412.172Dg — 528.5368(1 — x) — 766/27L¢ — (357.798 — 131x) L]
— (1877.2 — 613.1x)L{ — (3524 +7932Ly) Lo — 1173.5 + 2648.6x
—2160.8x% 4 1251.7x> — 6746(1 — x)L1 — 295.7L1)
+n7(—16/9Dg + 6.46078(1 — x) — 1.1809L — (6.679 — 15.764x) L
— (13.29 + 16.944L ) Lo — 16.606 + 32.905x — 18.30x*
+2.637x> —0.210Ly). (5.29)
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Fig. 9. The perturbative expansion of the scale derivatives of the polarized singlet-quark and gluon distributions in the
standard MS scheme (M) [56], for the low-scale input distributions in Eq. (5.30) and a rather large value of the strong
coupling as. The results have been multiplied by powers of (1 — x) suitable to clearly display the NLO and NNLO effects
up to rather large x.

These expressions can be readily transformed to Mellin space for any N £ —n,n=0,1,2,...;
the most complex objects needed there are the logarithmic derivatives of Euler’s I"-function.
The n}% contributions in Egs. (5.25) and (5.28) are exact. The same holds for all coefficients of

In* x and, up to the truncation of irrational numbers, those of 1/(1 —x)4 in Egs. (5.25) and (5.29).
The other terms at x < 1 have been fitted to the exact results, evaluated by the FORTRAN code
of Ref. [79], at 107 <x<1- 107 using the MINUIT package [80,81]. Except for x-values
very close to zeros of the splitting functions, the above parametrizations deviate from the exact
results by less than one part in thousand, which should be sufficient for any foreseeable phe-
nomenological application. As in the unpolarized case [12,13], the coefficients of §(1 — x) have
been adjusted in Eq. (5.29) using low integer moments in order to achieve a maximal accuracy
of the parametrization and its convolutions with the polarized gluon distribution. For a brief dis-
cussion of this slightly subtle point the reader is referred to Ref. [13] (penultimate paragraph of
Section 4).

The effect of the new results (5.13)—(5.16) on the evolution of polarized parton densities is
briefly illustrated in Figs. 9 and 10, where the respective first and second lines of Eq. (2.7) have
been evaluated for the schematic, but sufficiently realistic low-scale distributions

Afy(x, 1g) = 0.8x"7(1 = x)* (1 + 3x +2.5x%) — 0.25x*7(1 — x)’,
Afe(x, 1nf) = 1.5x%7(1 — x)° (5.30)

used for the evolution benchmarks in Refs. [85,86], for as(,u(%) = 0.3 and ny = 3. After the
convolution with the distributions (5.30), the NNLO corrections are fairly small down to small x.
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Fig. 10. As Fig. 9, but using a logarithmic scale in x to show the results down to small x.

6. Summary

We have extended the determination of the helicity-difference (polarized) splitting functions
A Pji, which were only known at the first [1,6,7] and second [23-25] order in the strong cou-
pling constant o so far, to the third order (next-to-next-to-leading order, NNLO) in massless
perturbative QCD. These corrections are relevant to the structure function g; in polarized deep-
inelastic scattering (DIS), for which we also confirm the results of Ref. [44] for the NNLO
coefficient functions, and all other observables that are sensitive to the polarized quark and gluon
distributions Af,, + Afz and Af,. The so far practically irrelevant polarized quark—antiquark
differences have not been addressed here; the corresponding splitting functions can be calculated,
e.g., by extending the analysis of weak-interaction structure functions in Ref. [75] to NNLO ac-
curacy.

The calculation of the upper row of the matrix of NNLO flavour-singlet splitting functions,
ie., of AP&? (x) and APé? (x), was carried out via the structure function g; as a direct ex-
tension of our previous calculations of the helicity-averaged (unpolarized) case [12,13], for
an earlier brief account see Ref. [26]. The corresponding lower-row quantities APg%) (x) and

A ng) (x) have been determined in a different manner from graviton-exchange DIS, see Ref. [28],
which includes structure functions sensitive to the polarized gluon distribution at the Born
level.

We have first calculated the relevant structure function at fixed odd moments to N = 25, using
a large-N optimized version [35] of the MINCER program [33,34] in (T)ForMm [31,32]. Exploit-
ing in particular the close relation between the polarized and unpolarized splitting functions for
the highest-weight harmonic sums [61] and for the threshold limit, cf. Ref. [58] — which includes
the so-called supersymmetric relation, see Refs. [3,87], as far as it can be addressed in MS — we
have then been able to determine the all-N expressions of APéé) and APg(é) . It was crucial for
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this step that the coefficients of the harmonic sums are integer, up to low powers of 2 and 3 that
can be removed by a suitable normalization, which allows the use of advanced tools [39-41] for
systems of Diophantine equations; this was observed and exploited before in a comparable but
somewhat simpler situation in Ref. [38]. Finally the results have been validated by comparing
the next two moments of all-N expressions to additional results calculated using MINCER up to
N =29.

Our results have been presented above in N-space and x-space, using the transformation of
Ref. [56] from the so-called Larin scheme for ys [48,49] in dimensional regularization to MS.
This scheme shows an unphysical feature in the threshold limit of the quark—gluon splitting
function A Pyq already at NLO, which can be removed to NNLO by simple additional terms
in the scheme transformation. Yet this situation does not appear to necessitate a change of the
factorization scheme in practical calculations after almost two decades of NLO analyses in QCD
spin physics.

The new functions APl.(kz) (x) are consistent with all known limits and partial results, e.g., for
the leading large-ny terms [73], and expectations. In particular, the first moment of APg(? (x),
which is not directly accessible in graviton-exchange DIS [28] but can be determined from the
x-space results in terms of harmonic polylogarithms [71], is identical to the NNLO coefficient
of the beta function of QCD [54,55] as theoretically required. We have checked our calculations
of graviton-exchange DIS also by re-calculating, and obtaining full agreement for, APq%) and

APq(? to fairly high values odd of N and all unpolarized flavour-singlet NNLO splitting func-
tions at even N < 10. As those results, the present polarized splitting functions lead to fairly
small NNLO corrections, down to low values of x, after the convolution with realistic polarized
quark and gluon distributions, despite a double-logarithmic small-x enhancement that dwarfs
that of the non-singlet cases.

Our results allow NNLO analyses of spin-dependent hard-scattering observables, provided
that the corresponding coefficient functions are known to this accuracy as for the structure func-
tion g1 in DIS [44], for a fixed number of effectively massless flavours ny. The extension to
analyses in the so-called variable flavour-number scheme, where effective theories for different
values of ny are used together, requires non-trivial matching coefficients for the strong coupling
[88] and the parton densities at this order. The latter coefficients have been calculated in Ref. [89]
for the unpolarized case. As far as we know, the corresponding results for the helicity-difference
parton distributions are not yet available in the literature though.

FORM and FORTRAN files of our main analytical results in N-space and x-space, and compact
high-accuracy parametrizations of the functions APl.(kz) (x), can be obtained by downloading the
source of this article from http: //arxiv.org/ or from the authors upon request.
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Appendix A. Transformation to the MS scheme

Here we collect, for completeness, the functions entering the transformation of the split-

ting and coefficient functions from the Larin scheme to MS as discussed in Section 2,
Egs. (2.11)—(2.14) and Egs. (2.17)-(2.19), and Section 3, see Eq. (3.7).
The NLO and NNLO quark—quark elements (2.17) of the transformation matrix Z(x, w?) read

2 () = —8Cr (1 —x), (A1)
22 (x) =8CF((1 = x)(5 — 2H 0 — 2Hz) — 2(1 +x)(2H_1 o — Ho,0 + &2)
+ (1 +2x)Hp) +4CrCa (4(1 4+ x)H_1,0 — 4(Ho,0 — {2)
— (29 +7x)/3Ho — 211/9(1 — x)) + 8/9Crns(1 — x)(3Hp + 5), (A2)
22 (x) = 4Cpny (24 x)Hoo + (3 — x)Ho +2(1 — x)) (A3)

for the standard transformation, above denoted by ‘M’ where required for clarity, of Ref. [56]
where the critical last line has been calculated.

In the alternative (‘A’) form of the transformation, which restores the (1 — x)2 suppression for
x — 1 of the difference or the unpolarized and polarized splitting functions for APg(é) (x) and

APg(é) (x), there are additional quark—gluon entries (3.7) given by

Zaq () = —2Cr(2 =), (A4)
) () = ——AP“)(x)—gc,%(:s(l — X) + 2+ x)Ho), (AS5)

where the last line has been expressed in term of the NLO splitting function (5.8) for brevity.
Furthermore Eq. (A.3) is replaced by

22 () =22 () + 12Crnp (1 — x) (A.6)

which ensures that Eq. (4.16) holds also in the A-scheme.
Appendix B. NLO coefficient functions in graviton-exchange DIS

The (un-)polarized graviton DIS structure function H; of Ref. [28] have been introduced
briefly in Section 2. We have defined combinations of those H; which, at Born level, are ei-
ther given by the flavour-singlet (un-)polarized quark distribution (A) f4 or by the gluon density
(A) fg, cf. Egs. (2.1), (2.2) and (2.8). Their quark and gluon coefficient functions C; q and C; ¢
can be expanded in powers of ag, see Eq. (2.6).

In the unpolarized case, using the definitions H; = Hy — H3 and H; = Hy — 4Hj3,
cf. Eq. (2.24), the leading-order results for the corresponding non-vanishing coefficient func-
tions are

() =5 (1) =iy (0 =8(1 —x). (B.1)

The normalization of the structure functions is chosen such that all dependence on D =4 — 2¢
is removed from the structure functions H; at Born level, i.e., the results in Eq. (B.1) are exact.
The NLO results for the unpolarized graviton-exchange coefficient functions read, at

0% =u?,
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¢ () = 2Cr (= paqg(x) (3/4 +Ho -+ Hi) + 1/4(25 —x) = 8(1 = x)(13/2+202)),
cg;(x) =2/3Ca(7pag(x) +9) — 27 (pqe (x)(29/6 + Ho + Hy) — 5/2), (B.2)
cg;(x) =c§f;(x) — 9xCr,
c;;(x) = C%f;(x) — (2Ca +np)6x(1 — x), (B.3)
c;};u) = 2Cr (— peq(x)(3/4 +Ho + H1) + 1/4(6 + x)),
c§h () = 4Ca (— peg (1) (11/12 + Ho + Hy) + 11/12(2 — x + x7)
—8(1 = x)(34/9 + €2)) +2/3n7 (paa(x) — 2+ x — x> +25/65(1 — x)), (B.4)
where we have used the abbreviations
Pag(0) =2(1=x)"' =1 —x,
Paa(x) =1 —2x +2x2,
Peq(x) = 2t -2 + x,
Pee@) =1 =)' x7l =24 x — 52 (B.5)

The NLO QCD corrections for unpolarized graviton-exchange DIS at NLO have been presented
before in Ref. [29] in terms of the bare structure functions H;, H> and H3 as a Laurent series
in &, i.e., before mass factorization. The results for the coefficient functions in Eq. (B.2) can be
used to construct the corresponding expressions to be compared with Ref. [29]. Accounting, of
course, for the different normalization we find agreement except for the result of the coefficient
function ¢\ as given in Eq. (3.3) of Ref. [29].

3.q
In the polarized case we similarly use H;y = 2(H4 — Heg) and Hg, recall Eq. (2.25) with

cgos(x) =881 —x), () =8g8(1 —x). (B.6)

Again the structure functions are normalized such that there is no dependence in ¢ at this order.
The NLO results for the polarized graviton DIS coefficient functions in the standard MS scheme,
i.e., with the transformation (2.17), are given by

cf-:;(x) = 2Cr (—Apgq(x)(3/4 +Ho +Hy) — 1/4(11 — 17x) — 8(1 — x)(13/2 4+ 202)),

¢ () =32/3Ca(2x — 1) = 20y ((2x — 1)(Ho + Hy) — 1/3(13 = 200)), (B.7)

cg;(x) = Cp(—2Q2 — x)(Ho + Hy) — (10 — 3/x — 7)),
cg;(x) = 4Ca (= Apgg(x)(11/12 4+ Hy 4 Hy) — 1/12(35 — 11/x — 46x)
—8(1—x)(34/9+ 1)) +2/3nf (Apgg(x) + 1 —1/x — 2x +25/65(1 — x)),
(B.8)
in terms of Apgq(x) and Apge(x) defined in Eq. (5.11).
Analogous to our discussion of relations between the unpolarized and polarized splitting func-
tions in N-space in Section 3, is may be interesting to note that all Hy and H; contributions to

Egs. (B.7) and (B.8) are related to those in Egs. (B.2)—(B.4) by replacing pix(x) by their polarized
counterparts Apik(x) with, cf. Eq. (3.6), Apqg(x) =2x — 1 and Apgq(x) =2 — x.
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Appendix C. Calculation of graviton-exchange DIS

Here we present some core ingredients of our diagram calculations, starting with the Feynman
rules as used for graviton-exchange DIS. They have been taken from various sources [90,91]. We
assume all momenta of the gluons and the graviton to be outgoing, while the momenta of the
quarks and ghosts follow the arrows on the lines. The color indices in the fundamental represen-
tation are i and j; color indices in the adjoint representation are represented by the letters a, b,
¢, d, e; the Lorentz indices of the graviton are o and 8 and those of the gluons are ., v, p, 0. We

also use a gauge parameter which is indicated by &.
For completeness we start with the QCD propagators and vertices:

, 0uQv
a’“’OUGQGWb,V —15ab<5uv_‘§ QM' 0 )/QQ

j_>P_i iaij()’/tpﬂ)/P'P

a2y i8w/0-0

i

P>
au 8T v
. P
]
apu
Py .
Ps =8/ (8, (p1 — P2),
cp 4+ 8up(P2 — P +8ou(P3 — P1)v)
P
b,v
au
_ig2(+fabef6de(5up8va — 8uabup)
bv do + £ F9(8,158 py — 8108 po)
+ fadthCE(SMvaap _ 8;/,,08()’\)))
c.p
b . P2
‘\
X TTTOO CH —8f*pa,
/’1’1
a-

The additional vertices involving the graviton are given by
i P
K
P —i=8ij (Ya(p1+ P2)g + v8(P1 + P2

8
o — 2808vu(p1 + P2)*)

(C.1)

(C2)

(C.3)

(C4)

(C.5)

(C.6)

(C.7)

(C.8)
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K
B ngTiﬁjl' (Bap¥p +8puYa — 28apV1)

Q%

au
a,u
P1 K cab
_158 pP1-p2 Caﬁ,uv+Da/3,uv(pls p2)
o,B 1
Ps + E Eaﬁ,uv(Pl , PZ))
b,v
au
_ Efabc('i_c ( _ )
” P1 g2 aB.uv P11 — P2)p
b,v o, B + C(xﬂ,,up(p?’ — P
D3 + Cocﬁ,vp (p2 - p3)u
+ Fup.uvp(P1. P2, P3))
cp

Y .
_lgzz(‘i‘fabefcdeGaﬂ,upva

o

k)
o
=

OC,B + facefbdeGaﬁ,,uvpa
+ fadefbceGaﬁ,uvap)
d,c
b~ N )
»
S K ab [T
~ »0000000000- 0L, B - 158 Cap.uvP1" P2
T
a-
a
AD1
p2 K
b---»—-gooooooooow —ng“”fcaﬂ,wplv
CH

The tensors C, D, E, F and G in Egs. (C.10)—(C.14) are defined by
Caﬂ,;w = 80{;}.8/3\) + (Savgﬁu - Saﬁguv,
Dag v (P1, P2) = 8apP1yP2; — Sav P1gP2, — SanP1yP2p + 8w Pla P28
—8gvP1a P2y — 0puP1v P2 + 00 P1g P20

395

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)
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Eop 10 (p1, p2) =8ap(P1,P1y + P2, P2y + P1uP2y)
—88uP1a Pl — P2 P2y — SavP1gP1y — Sap P2 P2vs
Fop,uvp (P15 P2, P3) = + 8apdup(P2 — P3)g + Savdpup(P3 — P1)g
+ 8apSv (P1 — P2)g + 88ubvp (P2 — P3)a
+3803up(P3 — PDa +38p0uv (P1 — P2)as
Gap.pvpo = Sap(81v8p0 — Spadup)
+ 8880 0vp + 8apdpvduc — Sapdpvdps — 8apdpsduy
+88ubacbvp + 88p8avuc — 88ubavdps — 88p0uc Spy-

(C.15)

In addition we need a ghost contribution in the graviton for the unpolarized calculations. We

call this particle the g-ghost and we need the vertices (w = 3(02—72)):

P2

) 3
zz=z=-== le(SijZVM(pl +p2)ﬂ

i 141
]
i
. .3 a
] ZZzZ:z-=c==z _lingTUy“
au
au Py
. ab 1
=zzzz:zQ iwkKd m(plﬂQv‘i‘PZvQM)
P
b,v
a,u
P Py
b,v --=-=-== 0
P3
Y
au

b,v
Zzzz=z== 0
cp

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)
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Vertices involving both the standard ghost and the g-ghost were not required in our calculation.
We now turn to the projection operators for which we sometimes have more than one choice.
The physical operator for the unpolarized gluon is given by'

M(Q, P) =80 — QcPi/Q- P —QiP/Q- P+ P P,Q-0/Q - P (C21)
in which P - P = 0. One can replace this by §,, and a ghost contribution in the regular way. This
gives more diagrams, but they are easier to compute. For the polarized gluon we use

I (Q, P)=¢pour/Q - P. (C.22)
For the unpolarized and polarized quark the projection operators are
ap)=y* P, (C.23)
and
1
[(P)=ysy" Py = ceanpy y"y", (C24)

The last form of the operator is necessary to deal with the issue of y5 in D dimensions. At a later
stage we then contract the Levi-Civita tensors in terms of the D-dimensional metric.

For the graviton the situation is more complicated as there are several possible currents. We
follow Ref. [28], assuming a target mass of zero, and add the D-dimensional effects as given in
Ref. [29]. Then for unpolarized scattering we have

D
Waipr.copy = Fi Aalﬁlazﬁz + FzAalﬂlﬂlzﬂz + F3A0!|ﬂ1062ﬂ2 (C.25)
and for polarized scattering
6
W pr.arpy = F4Aa1ﬁ1012/32 + F6A0t1/310t2/32 (C.26)
with
(e))
apfraafa 7.[0‘1/317[0‘2/32’
@ > D 5 P~ 5 B =~ = = =
Aalﬁlazﬁz = PmPazGﬂlﬁz + PotlpﬁzGﬂlaz + Pﬁl PotzGOllﬂz + PﬁIPﬂzGOélaz
4 - - - = = 4 — [ —
51 (Py; PpGpyay + P P, Ggroy) + ——= D_1)7 Ga,ﬁ] Gu,p, P - P
3 ol = = = = =
Aa1ﬂ1a2ﬁ2 =Ga10,6p18 + Gy, Garpy — ﬁGalﬁl Garpy

@) 5 B 5 B 5 B 5 B
Ay Brasp, = E1020P P Py +€a18,0P P Poy + €610,0P Py Py +2818,0P Py Py

(6)
ayfron B
Here we have used

= l90!10le1"6/31/32 + 80!1/32QP6/310!2 + eﬁlazQP6a1ﬁ2 + 8,31/32QP60!10!2' (C.27)

_ 1 —_
ﬁaﬂZPaPﬂ_—D GalgP~P

_ Q P
Py o
e 0.0
= QaQﬂ
Gap =848 — . C.28
F=%F" 50 (C.28)

' Here we use Q for the momentum of the probe. Often g is used after which 0% = —¢ - q. In the following part Q - Q
is just the square of the 4-vector Q, which keeps the notation in line with the computer programs.
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When we construct the projection operators we demand I1; A ; = §;;, and after also using the
symmetry in the graviton indices we have for the unpolarized operators

D+1)(D+3 1
I = 256 P+ DD +3) Py Pgy Poy Ppy ——
D(D —-2) Q-0
D+1 Q- P? Q- p*
1024 ———— Py, P, 8p, 8y ——= + 51284,0,88, ) ——= »
+ D(D —2) oy Lo ﬁlﬁ2Q~Q4+ oy ﬁlﬁ2Q.Q5
(D+1) 1 1 Q- P*
IT) =64————— P, Pg P, P 32 Set102 0B fy ——
2 D(D_z) (231 ,Bl o) ﬁzQ'Q3 + D(D—3) oo ﬁl/BZQ.QS
+ 64 b>-D—4 Py, Poyd i
D(D=2)(D—=3) “ g g¥
M3 = 16— Py Py Pay Ppy—— +32—— P, Pos 0P
3= D(D —2) oy g1 Ly ﬂZQ'Q3 D(D —3) o o ﬂl/SZQ.Q4
. p4
+ 16 Q (C.29)

m%az‘sﬂlﬁz 00

For the polarized projection operators the situation is slightly more complicated. In principle
we could work with IT4 and [T but we notice that, if both projections are needed, it is easier to
work with the linear combinations ITp and ITr. These are defined by

D+1 1

= Iip + I,

D(D —-2)(D-3) D(D —2)(D —3)
_ 1
DD —=2)(D-3)

In any case we have a Levi-Civita tensor in the operator, and we contract this with the Levi-Civita
tensor of the quark or the gluon. For the quark we obtain

Py, P, Saye, @ - P?
q o) "o q q oo q
HD=4 l 32Rﬂ1ﬁ2’ HF=4 = 4 Rﬂlﬂz
0-0 0-0

Iy

I (I1p + IF). (C.30)

(C.31)
with

Rglﬂz =y"y"PuQv(vp P, — vp, Pp,) + v" Pu(yp v, — 8p15,)Q - P
+ VMPM(P,Bl 0p, — 0 Pp,), (C.32)

and for the gluon we find

2
[P VECLCY TS T (C.33)
Q- Q3 Fk 0-0* hP
with
. p2
g = J—
R p, = Buprdipy — ‘Sf(ﬂl‘s/\ﬂz)w + (8cp, Ppy Py — 0cpy Pp, P 1)
= (83, Ppy Pic = 61, P Po),
_ Q-P
PK:PK_QKQ.Qs (C34)

where we have again used the symmetry in the graviton indices to simplify the expressions.
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In the polarized case we do not need a ghost contribution, neither for the graviton nor for the
gluon. Propagators for the graviton and the corresponding ghost are not required since we do not
consider internal gravitons.
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