
Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 138 (1995) 141-168

Viability in hybrid systems

Wolf Kohn”, Anil Nerodeb**,‘, Jeffrey B. Remmelc*2, Alexander Yakhnisds3
“Intermetrics Corporation, Bellevue, Washington, USA

bMathematical Sciences Institute, Cornell University, Ithaca. NY 14853, USA

‘Department of Mathematics and Department qf Computer Science, University qf California at San Diego,

San Diego, CA92093, USA

dSciences Institute, Cornell University, Ithaca. NY, 14853, USA

Abstract

Hybrid systems are interacting systems of digital automata and continuous plants subject to
disturbances. The digital automata are used to force the state trajectory of the continuous plant
to obey a performance specification. For the basic concepts and notation for hybrid systems, see
Kohn and Nerode (1993), and other papers in the same volume. Here we introduce tools for
analyzing enforcing viability of all possible plant state trajectories of a hybrid system by suitable
choices of finite state control automata. Thus, the performance specification considered here is
that the state of the plant remain in a prescribed viability set of states at all times (Aubin, 1991).
The tools introduced are local viability graphs and viability graphs for hybrid systems. We
construct control automata which guarantee viability as the fixpoints of certain operators on
graphs. When control and state spaces are compact, the viability set is closed, and a non-empty
closed subset of a viability graph is given with a sturdiness property, one can extract finite state
automata guaranteeing viable trajectories. This paper is a sequel to Kohn and Nerode (1993),
especially Appendix II.

1. Introduction

When we try to control the behavior of a dynamical system evolving in time, the

fundamental problem is to extract control functions c(t) which force the state x(t) of

the dynamical system to remain at all times in a prescribed set, the viability set (VS). In

his book Viability Theory [S], Aubin gathers together the literature on viability of

state trajectories of continuous and discrete dynamical systems and puts it in coherent

*Corresponding author: E-mail: anil(@math.cornell.edu.

‘Supported in part by Army Research Office contract DAAL03-91-C-0027 and by DARPA-US ARMY
AMCCOM (Picatinny Arsenal, NJ) contract DAAAZI-92-C-0013 to ORA Corp.

‘Supported in part by Amy Research Office contract DAAL03-91-C-0027 and NSF grant DMS-9306427.

%upported by DARPA-US ARMY AMCCOM (Picatinny Arsenal, NJ) contract DAAA21-92-C-0013 to

ORA Corp.

0304-3975/95/$09.50 0 1995-Elsevier Science B.V. All rights reserved

SSDI 304-3975(94)00150-2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82265703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

142 W. Kohn et al. / Theoretical Computer Science 138 (1995) I41- 168

form. Aubin points out that many problems of evolutionary theory, economics, and
the sciences are problems of viability, or of enforcing viability by choice of appropriate
control functions. We are interested in the somewhat different case when control can
be forced by a finite state control automaton rather than a traditional feedback
control law. Aubin develops viability theory for continuous time systems. He also
spends a few pages on discrete time systems. Now hybrid systems are interacting
systems of digital automata and continuous plants subject to disturbances. The digital
automata are usually intended to be control automata used to force the state
trajectory of the continuous plant to obey a performance specification. The funda-
mental problem of hybrid systems is to extract, given a continuous plant simultion
model and the performance specification on plant state trajectories, a finite control
automaton which will force the hybrid system to meet the performance specification.
Hybrid systems have mixed continuous time, discrete time states. These states are the
simultaneous states of the continuous plant and of the finite state control automaton.
We wish to capture the conditions under which jinite state control automata exist
which guarantee viability.

Aubin generally emphasizes non-deterministic systems, with many evolutions possible
for given initial conditions, for which set-valued analysis is the appropriate tool. Here we
limit definitions to the deterministic case because generalization of definitions to the
non-deterministic case is both straightforward and notationally opaque. Aubin points out
that there is a dearth of general theorems on the existence of feedback control functions
producing viable solutions to general problems, but that when a specific feedback control
function, plant, and viability set are given in advance, one can fruitfully investigate
whether the feedback control can enforce viability. The situation is similar for viability in
hybrid systems. For hybrid systems we start one step later. Suppose that we are already
given a continuous feedback control function which enforces viable trajectories for
a plant. Then we can fruitfully investigate how to extract a finite automaton which
exhibits controllable and observable behavior and enforces the same viability.

Here is one view of the stages in the extraction of a control policy for ensuring that
a continuous plant obeys its performance specification independent of the particular
brand of control theory used (see Fig. 1).
1. In the first state, identify the space of control policies which meet the viability

constraint.
2. In the second stage, extract from that space a mathematical control policy leading

to an evolution of plant state behavior which has a prescribed optimality property.
This is a mathematically optimal policy in some prescribed sense.

3. In the third stage, since mathematically optimal control policies are not usually
directly implementable in hardware and software, extract and implement an approx-
imation to that optimal policy which still meets the viability constraint and yields
evolutionary behavior sufficiently close to optimal to be satisfactory to the user.
In this paper we investigate for simple hybrid systems only the first stage. In Section

8 we sketch why this development is part of the foundations of Kohn-Nerode
distributed hybrid control [26]. See also [28,29,32,33].

W. Kohn et al. 1 Theoretical Computer Science 138 (1995) 141- 168 143

Disturbance

I

Fig. 1.

2. Simple hybrid systems

All hybrid systems will be simple hybrid systems as defined in [25] with fixed
control intervals [O, A], [A, 241, . . . Here is a brief description of a simple hybrid
system consisting of a continuous plant interacting with a control automaton at times
nA, n=O, l,..., see [25] for more details.

The plant runs open loop inside an interval of time [nA,(n+ l)A] based on the
control function c, and the disturbance d,, supplied at time nA for use in [nA,(n + l)A].
The control automaton receives as input at time nA the current state x of the plant,
then runs open loop with no further inputs till time (n + 1) A. Based on its state at time
(n + l)A, the control automaton transmits a new control function c,,+, to the plant to
be used in the interval [(n + 1) A, (n + 2) At], and so on. We shall assume that our plant
is described by a vector first order ordinary differential equation

i =f(x, c, d)

with parameters, c,d. We assume that

4t)=f(x(t), C(t), J(t))

is such that for any time t,,, for any initial state s(t,,), for any admissible control and
disturbance functions Z(t),d”(t) defined on [0, co], there is a unique solution x(t)
defined on [0, a~] satisfying the differential equation. That is, we assume that there is
a field of solutions over the whole space, each uniquely determined by any one point.
This is mostly for convenience. Generlizations of the methods of this paper to the case
when there are no, many, or limited trajectories for given initial conditions are
notationally cumbersome, but nevertheless can be developed in a relatively straight-
forward manner. We call x(t) the trajectory of the plant state.

To repeat, the control automaton plant receives as input at time nA the current
state x(nA) of the plant based on its operation over the previous interval
[(n- l)A, nd]. At time nA, the plant is in a certain state, the initial plant state for the
next interval of time. The current control function is shifted to the new one imposed by
the control automaton output at that time. So the initial value of Z? for the interval
[nA,(n+ l)A] is not inherited from the previous interval, but is computed from the

144 W. Kohn et al. 1 Theoretical Computer Science 138 (1995) 141- 168

differential equation based on current plant state and the initial value of the new
control function and the new disturbance at nA. At times nA, the vector field generally
changes direction abruptly. This is characteristic of hybrid control.

Abuse of notation. We shall assume that the differential equation describing
our plant is autonomous so that the behavior in any interval of length A is
the translate of behavior in any other interval of length A. Thus we may as
we!! assume that all admissible control functions c(t) and disturbance functions
d(t) are defined on [0, A] and by abuse of notation, translate them by nA

for use on the interval [nA,(n+ l)A]. Hence the differential equation on interval
[nA,(n+ l)A] now reads

z?(t)=f(x(t-nA),c(t-nA),d(t-nd)),

where, from now on, c(t), d(t) both have domain [0, A]. In summary, we have a state
space S for the plant, a set C of admissible control functions on [0, A], a set D of
admissible disturbance functions on [0, A], such that when an admissible control
c=c(t) and disturbance d =d(t) are given, the state trajectory x(t) on the interval
[0, A] is uniquely determined.

A-Plant automara. The continuous plant induces an automaton, which we call
the A-plant automaton associated with the simple hybrid system. It has two
input alphabets, the set D of admissible disturbance functions and the set C
of admissible control functions. Its set of internal states is the set of plant states.
Its state transition function assigns to input letters control c(t) and disturbance
d(t) and automaton current state s,,, the new automaton state x(A) where x(t) is

a plant state trajectory such that x(0)=so and x(t) is the solution of the differential
equation

Proposition 2.1. Suppose we are given disturbancefunction d(t) and controlfunction F(t)

on [0, co]. Suppose that for all integers n>O,

1. d,ED, where d,(t)=d”(t-nd), and

2. c”EC, where c,(t)=?(t-nd).

Suppose that x(t) is the solution to

1 =f (x(t), c”(t), J(t)),

Suppose that the associated A-automaton is started at time 0 in state x(0) with inputs

co,do, and receives inputs c,,,d,, at time nA, and instantaneously changes state at these

times based on its transition function. Then x(nA) is the state of the A-automaton

at time nA.

W. Kohn et al. / Theoretical Computer Science 138 (199.7) 141- 168 145

Example. Here is a A-plant automaton arising from a differential equation

in a different way. Here we allow delays as disturbances, that is, the only disturbances
are delays d in changing from one control function c,, to another cl. Let C, be the
admissible set of control functions on [0, A], let C = C, x VS x C,. Let the set of delays
D = [0, b] for a b < A. We model a delay d 6 b < A before the change from the control c0
used at time 0 to the control cl used at and after time d as follows. Define an associated
A-automaton as follows. The states are the plant states x. One input is a pair
(c,,,cl)~C,x C, and the other input is a disturbance deD. Suppose that the state of the
A-automaton at time 0 is so, the inputs are a pair of controls (co, cl) and disturbance d.

What is the corresponding state transition from time 0 to time A? Define

co1(t)=
i

co(t) for O<t<d,

c,(t-d) for d<tdA.

The new state of the A-automaton at time A is x(A), where x(t) solves

i =./lx(t), co1(t))

with initial condition x(0)=so. We will use this model below for a generalization of
the leaky water tank example of [l].

3. Local viability

We designate a subset VS of plant states as the viability set [S]. We shall usually
assume that VS is closed and compact. A trajectory x(t) over an interval of time [0, A]

is called viable if for all t in that interval, x(t)EVS. Similarly, a trajectory x(t) extending
over [0, co] is viable if for all n B 0, the trajectory x,(t) = x(t - nA) over [0, A] is viable.
Suppose we are given a simple hybrid system with control intervals [nA,(n+ l)A],

n=O,l,..., and viability set VS, with associated A-plant automaton. We give three
definitions of local graphs associated with viability.
1. The abstract local viability graph. The abstract viability graph is an obvious

analogue to the viability kernels of continuous systems in [S]. Non-empty closed
compact subsets of this graph and closed viability sets lead to finite automata that
enforce viability.

2. The sturdy local viability graph. Non-empty closed compact subsets lead to finite
automata that force viability and also are “safe” under small errors in state and
control measurements.

3. The e-sturdy local viability graph. This represents those hybrid systems with
a sensor of plant states with error bounded by a fixed e. This leads to finite state
control automata whose analog to digital converter, or sensor of plant state (see
[25]) has error bounded by e and also enforces viability.

We shall not attempt to develop the last two extensively here.

146 W. Kohn et al. / Theoretical Compuier Science 138 (1995) 14I- 168

3.1. The abstract local viability graph

Nodes. Define the nodes of the local viability graph as those pairs

(C&S&C x vs

such that for any disturbance &ED, the trajectory x(t) determined by do, control c,,
and initial state so, is viable.

Remark.

1. The co should be interpreted as the control used in the current control interval.
2. The so should be interpreted as the state at the beginning of the current control

interval.
3. Disturbances are not directly used in determining controls. Normally, we observe

disturbances only through their effect on plant state. We need to choose controls
that maintain viability of trajectories no matter what disturbance is encountered.

Edges. There is a directed edge from node (co, so) to node (ci,si) if and only if
1. (co,so) and (cl, sr) both nodes of the local viability graph and
2. There is a disturbance ~,ED such that the trajectory x(t) with disturbance do and

control co and initial condition x(0)=so has x(d)=si.

Remark.
1. Condition (2) ensures the d-automaton with inputs do and co is a local so has

a transition to new state sr.
2. Note that in (2) x(t) is a viable trajectory because (co, so) is a local viability node.
3. We call (co,so) the tail, (cl,sl) the head of the directed edge.
4. There may be nodes of the abstract local viability graph that are not tails or heads

of any edges. In the definition of the abstract viability graph below, nodes that are
not tails of edges are dropped at the beginning of the construction.

3.2. The sturdy local viability graph

Suppose again we are given a simple hybrid system with control intervals
[nd,(n+ l)d], n=O, 1, . . . , and viability set VS.

Definition 3.1. Call a pair (co,so)~C x VS sturdy if there exists a neighborhood U of
co in C and neighborhood Vof so in VS such that for every (C, S)E U x V, (F, S) is a node
of the abstract local viability graph.

This says that for any fixed disturbance, varying the initial state and control
preserves the viability of resulting trajectories over [0, A].

Sturdy nodes. The sturdy local viability graph has as nodes those pairs
(co, s~)EC x VS such that (co, so) is a sturdy node.

W. Kohn et al. / Theoretical Computer Science 138 (199s) 141- 168 147

Sturdy edges. The edges of the sturdy viability graph are those edges of the abstract
local viability graph that consists of pairs of sturdy nodes.

Remark.
1. A pair (U, I’) for sturdy pair (c,, sO) should be interpreted as a “latitude” in

knowledge of plant state so and control co permitted that still produces viable
trajectories no matter what acceptable disturbance occurs. This latitude is required
to extract finite state control automata guaranteeing viable trajectories.

2. Here is an explanation of “sturdy”. If arbitrarily small changes in initial control and
state change behavior from viable to non-viable trajectories, the system should not
be regarded as controllable. In the interpretation of [25, Appendix II], the existence
of such a pair (U, V) should be regarded as a physical realizability requirement for
the analog to digital converter for any proposed finite state control automaton.

Sturdy local viability graph. This is a variant of the model in [32]. Assume that S is
a metric space. Suppose we are given a positive real e > 0, interpreted as a bound for
measurement error in plant state in the following sense. The plant state as measured is
always less than e from the true state. This is to represent a fixed bound on
observability of plant state by a fixed sensor. Define the local viability graph with
sensor error bound e as follows.

Nodes. The e-sensor nodes of the e-sensor local viability graph are those pairs
(co, sO)eC x S such that for every disturbance dED, every state S with distance (s, S) < e,
the trajectory over [0, A] satisfying

a(t)=f(x(tXco(t)rd(r)).

with initial condition x(0) = S is viable.

Remark. The difference between this and the definition of sturdy is that e diameter
neighborhoods V of state so are required, while no latitude is allowed for control co
at all.

Edges. The edges of the e-sensor local viability graph are just the edges of the local
viability graph with e-sensor nodes.

All of these graphs can be thought of as abstract non-deterministic automata. Here
is an example.

The local viability automaton. The input alphabet of this automaton is the set of
viable plant states VS. The set of local viability automaton states is the set of controls.
The non-deterministic transition relation maps a pair (cO,sl)~C x VS to a control ci
iff there exists an edge in the abstract local variability graph with tail (co, so) and head
(cl,sl). This is a partially defined transition relation. The interpretation is that co
should be thought of as the control used in the previous control interval which has,

148 W. Kohn et at. / Theoretical Computer Science 138 (1995) 141- 168

due to a disturbance, produced the current plant state sr. Then, with input letter s1
when in local viability automaton state c e, the local viability automaton moves to
local viability automaton state c1 and outputs letter cr.

We note that there is another natural automaton which can be defined from the
local viability graph. For this alternative automaton, the input alphabet is the set of
admissible disturbances D. The set of states for the alternative automaton is the set
VS x C where VS is the set of viable plant states and C is the set of controls. The
non-deterministic transition relation maps a pair (do, (c,,, s,,))E D x (C x VS) to a pair
(cl,sl)~C x VS iff there exists an edge in the abstract local viability graph with tail
(c,,,s,,) and head (cr,si) where s1 =x(d) for the viable trajectory x(t) determined by
disturbance do, control ce, and initial condition x(O)=s,. The interpretation is that
with input letter de in state (c,, se), the automaton moves to state (cr , sl) with output
letter cl. This is also a partially defined transition relation. However we shall not
pursue this alternative automaton because in applications, one does not observe the
disturbance directly but only observes the effect of the disturbance by its effect on the
plant state. Thus the alternative automaton is not implementable in practice.

4. Graph operators and graph kernels

In this section we introduce the tpols needed to discuss viability over [0, cc].
Assume we are given a directed graph T which consists of a non-empty set T of nodes
together with a subset E of T x T of its directed edges such that each node is incident
on at least one edge. It is convenient to identify the graph with its set of edges since the
nodes can be recovered from the edges. If (a, b) is an edge of T, then a is called its tail,
b is called its head. Each subset T’ of T defines a subgraph with edges
E’= E n (T’ x T’). A path is a finite or infinite sequence of edges such that the head of
each edge is the tail of the next. An end node of a graph is a node which is not
the tail of any edge in that graph. Let P(T) denote the power set of T, i.e. the set of all
subsets of T,

Definition 4.1. Suppose graph T is given.
1. Define a monotone decreasing operator F: P(T)-+P(T) by letting F(T’) be

the set of nodes of T’ which are not end nodes of T’ and which are on at least one
edge of 7”.

2. For each ordinal LX, define an operator F” : P(T)-+P(T) by transfinite induction as
(a) F’(T’)=F(T’),
(b) F’+‘(T’)=F(F’(T’)),
(c) F”(T’)= nmKAF’(T’) if 1 is a limit ordinal.

Proposition 4.2. Suppose that T’ E T.
1. Then T’ is a$xed point of F ifand only ifevery node of T’ is the initial node ofsome

infinite path in T’.

W. Kohn et al. / Theoretical Computer Science 138 (1995) IdI- 168 149

2. There is a least ordinal c(such that

Fa+‘(T)=F”(T’).

3. If 01 is the least ordinal such that F’+l (T) = F”(T’), then F”(T’) is the largest fixed

point of F contained in T’.

Proof.
1. F(T’) is T less the end nodes of T’ and the nodes on no edge. Thus if T’ is a fixed

point of F, it has no end nodes, and no nodes which are not part of any edge.
Suppose that F(T’)= T’. Then we can start with any node p. of T and define by
induction an infinite path po,pI,p2, . . . of T’ by choosing pn+ 1 to be a node of T

such that p,, is the tail and pn+I is the head of an edge of T’. Thus every node of
a fixed point T of F begins an infinite path of T’. Conversely, suppose T’ E T and
every node of T’ starts an infinite path of T. The lack of end nodes means T’ is fixed
under F.

2. By transfinite induction, for any tl< /I and any T’ c T,

F”(T’)zFB(T’).

Thus there is a /I smaller than the next infinite cardinal after the cardinal of T,
card(T)+, such that

Otherwise, points in T from the differences (Fa+‘(T’)-F’(T’): c1< card(T)+ }

would be a subset of T of cardinality larger than the cardinal of T, a contradiction.
3. If c1 is the least such /I, then F”(T’) is a fixed point under F. Suppose that T” E T’ is

a fixed point. Then every node of T” begins an infinite path of T”. By transfinite
induction, all nodes on this path will in all Fs(T’), therefore in F”(T’). So the latter
is the largest fixed point within T’. 0

Remark. Proposition 4.2 can also be derived from a strengthening of the Tarski fixed
point theorem for monotone increasing maps on complete partial orders. Simply use
the monotone increasing operator

G(T’)=T-F(T) on P(T).

Proposition 4.3. Suppose that:
(i) The nodes of T are elements of a separable metric space and

(ii) T’ is a subgraph of Tsuch thatfor every ordinal LY andfor every end node of F”(T’)
or node on no edge of F”(T’), there is a neighborhood containing that node and no other
node of F”(T). (Here we interprete F” to be the identity map on P(T).)
Then:
1. The least ordinal c1 such that F”(T)= Fafl(T’) is a countable ordinal.
2. If T’ is closed, then F(T) is closed.

150 W. Kohn et al. 1 Theoretical Computer Science 138 (1995) 141- 168

3. If T’ is closed, then so are all F”(T’)
4. If T’ is closed, then so is the maximal>xed point of F under T’.

Proof. By separability, there is a countable dense subset of the metric space. Due to
(ii), at least one new element of that countable dense subset is eliminated whenever
a node is eliminated, that is, at any a for which F”(T)# F”+‘(T). So the process
terminates at a countable ordinal. Note that (ii) implies that in removing all end nodes
from a closed T, we are intersecting T’ with a closed set, and hence get a closed set,
which is (2). Then (3) follows by transfinite induction, since the intersection of closed
sets is closed, and (4) follows from (3). 0

Remark. One can also prove Proposition 4.3 by an application of Cantor’s argument
for the perfect kernel of a closed set in a separable space. The separability condition is
satisfied in our intended applications.

Dual Scott Topology. The dual Scott topology on the power set P(T) is generated by
the following open sets. For each finite subset TI of T, declare that

[T&(T)1 T,nT,=‘$l

is open. Open sets in the dual Scott topology are precisely arbitrary unions of these
open sets arising from finite subsets of the nodes of T in this way.

Proposition 4.4. Let G : P(T)+P(T) be dejined by G(T’)= T- F(T’). Suppose that G
is continuous in the dual Scott topology. Then F”(T) is the maximal fixed point of F
within T’.

Proof. By Proposition 4.2, it suffices to show that F”(T’) is a fixed point of F. Since
F maps sets into smaller sets,

F(F”(T’))sF”(T’).

So it suffices to show that

T’-F(F”(T’))sT’-F”(T).

Suppose, then, that PE T’- F(F”(T’)). Note that P(T- {p}) is an open set in the dual
Scott topology and F(F”(T’))EP(T- { p}). A ccording to dual Scott continuity, there
is a finite T, 5 T such that whenever T’ is disjoint from TI, then p is not in F(T”). But,
applied to T’= F”(T’)= n,,,Fw(T’) this says that if T, ={pl, . . . ,pk}, then there exist
nl, . . .) nkEu such that pi$Fni(T’). Letting m be the maximum of {nI, . . . , nk}, and
using the fact that F maps sets into smaller sets, we see that TI is disjoint from F”(T’),
sothatpisin T’-F”+‘(T’),andh ence by the monotonicity of F, is in T - F”(T’), as
was to be proved. 0

W. Kohn et al. / Theoretical Computer Science 138 (1995) 141- 168 151

Remark. We can also prove Proposition 4.4 by applying the fixed point theorem for
continuous functions on complete partial orderings directly to G(T) = T- F(T’). The
theorem needed was already in [27], the earliest topological form of Kleene’s second
recursion theorem.

Remark. The fixed point may be an F”(T) for a finite n. This happens for a natural
operator associated with the leaking water automaton A(g,h) defined in Section 6.

5. Viability graphs

We now want to discuss not only the local viability of the trajectory over the
current and next interval of time, but viability of trajectories on [0, co]. With the
apparatus of Section 4, we can define the abstract, sturdy or e-sensor viability graphs
of a simple hybrid system with control intervals [nd,(n+ l)d], n=O, 1, . . . with
viability set VSzS. The intention is that this graph captures all control polices (see
below) which enforce that the simple hybrid system produces only viable trajectories
over [0, co], even when we allow small changes in state so and control co.

Definition 5.1. The abstract (respectively, sturdy, e-sensor) viability graph is the kernel
of the abstract (respectively, sturdy, e-sensor) local viability graph.

Viability automaton. The abstract viability automaton has a transition corresponding
to each edge of the abstract viability graph with tail (co,so) and head (ci,si) as
described above. Any admissible disturbance d over [0, co] determines by restriction
to [nd,(n+ l)d] and translation back to [O,d] a sequence d,ED of disturbances on
[0, A]. If we start at a node (co, so) of the abstract viability graph with disturbance d,

this process produces an “execution sequence” of the abstract viability automaton and
a viable trajectory on [0, co] as long as there is indeed a node in the abstract viability
graph. However, the abstract viability graph may be empty. Moreover, it can be quite
difficult to prove that the abstract viability graph is non-empty. The same remarks
apply to the sturdy and e-sensor viability graphs.

Control policies. In interpreting an edge with tail (co,so) and head (ci,si), what we
envisage is that at the beginning of any control interval, co represents the control used
in the previous interval for the plant physical controller, so represents the plant state
at the start of the previous control interval, cl is a possible choice of control for the
current interval given that the trajectory x(t) determined by co,so, and the admissible
disturbance determined by d has x(A) = sl. With this in mind, a control policy can be
defined as a map on C x S to P(C) which assigns to a pair (co, si) the set of choices of
c1 , any of which is permitted under the control policy. Alternately, a control policy is
simply a subset CP of C x S x C consisting of triples (co,sl,cl). The largest control
policy is the universal policy C x S x C, which permits any choice of cl, the smallest is

152 W. Kohn et al. / Theoretical Computer Science 138 (1995) 141- I68

the null policy, which is devoid of choice. Because edges with tail (c,,, se) and head
(ci, sl)) that make up the edges of the abstract, sturdy, and e-sensor local viability
graphs and viability graphs all lead naturally to triples of the form
(co, si,ci)~C x VS x C, a policy can be interpreted on any of these graphs.

Definition 5.2. An edge of the abstract local viability graph with tail (c,, s,,) and head
(ci, sl) is an abstract policy edge for policy CP if (cn, sl, cl) is in CP. The policy graph
for a policy consists of its policy edges. A path consisting of abstract policy edges is an
abstract policy path for CP. (An abstract policy path is just a path in the abstract local
viability graph that can arise by following the policy.)

Proposition 5.3. The trajectories on [0, CKJ] produced by a control policy and admissible
disturbances on [0, co] are all viable iff all infinite policy paths are abstract policy paths.

Proof. If all infinite policy paths of a control policy are abstract policy paths, then no
matter what the admissible disturbance on [0, co], if a trajectory is produced on
[0, co] by making choices of control solely in accordance with the policy and starting
at a node of the abstract viability graph, that trajectory is always viable. Conversely,
suppose that a control policy allows the choice of an infinite policy path with an edge
not in the abstract viability graph. Then that edge allows us to exhibit an admissible
disturbance for which the trajectory on [0, co] corresponding to that policy path is
not viable. 0

Corollary 5.4. Suppose we are given a simple hybrid system, a A, and a closed viability
set VS. Suppose that S, C are separable metric spaces, and that the set T of nodes of the

abstract (respectively, sturdy, e-sensor) local variability graph is closed. Then the set of
nodes of the abstract (respectively sturdy, e-sensor error) viability graph is also closed.

Proposition 5.5. Suppose that VS is closed. Suppose that for any fixed to with 0 ,< to <A
and any disturbance d in D, the map (~~,c~)+x(t~) with domain S x C is continuous.

Then the set of nodes of the abstract local viability graph is closed.

Proof. We prove that the complement of the set of nodes of the local viability graph is
open. Suppose that (co, so) is not a node of the local abstract viability graph. We need
an open set containing that point and disjoint from that set of nodes.

Suppose that (co,so) is not in the abstract local viability graph. Thus there must
exist a disturbance do such that the trajectory x(t), obtained from so, co, and do, is not
viable. Then for some toe[O,A], the value x(to) is in the open set S-VS. Continuity
and the fact that S -VS is open imply that there exist neighborhoods IJd of cO, Vd of so
such that the image of U,, x V, x {d} under (c, s)+x(to) is a subset of S-VS. In this
case, Ud x Vd is an open set containing (co,so) and every (C,S)EU~ x Vd has the
property that the trajectory x(t) determined by disturbance d, control C, and initial
condition S has x(to) outside VS, so that x is not viable. It then follows that (co,so,cl)

W. Kahn et al. / Theoretiral Computer Science 138 (1995] 141- 168 153

is not in the local viability graph for any cl. Hence, Ud x Vd x C is a neighborhood of
(co, sO, c1) disjoint from the nodes of the local viability graph. This completes the
proof. 0

Remark. It is a mild assumption on the underlying differential equation for the plant
that for any fixed to and d,,, the state x(to) is jointly continuous in initial condition
sons and parameter QEC. This is the source of Proposition 5.5.

Proposition 5.6. Suppose we are given a simple hybrid system, a A, and a closed viability
set VS. Suppose that S, C are separable metric spaces, and that the set T of nodes of the
abstract (respectively, sturdy, e-sensor) local viability graph is closed. Moreover, suppose

that every closed subgraph of T’ of T has the property that for every end node of T’ or
node on no edge of T’, there is a neighborhood containing that node and no other node of
T’. Then the set of nodes of the abstract (respectively, sturdy, e-sensor error) viability
graph is also closed.

Proof. This proposition follows immediately from Proposition 4.3 where T= T’. 0

We end this section with a simple example of where the hypothesis of Proposition
5.6 hold.

Proposition 5.7. Suppose that
1. VS is closed and for any fixed t,, with 0 <to < A and any disturbance d in D, the map

(so,co)+x(to) with domain S x C continuous.
2. C and D are compact and the map (~,,,c~,d,,)-+x(A) with domains S x C x D is

continuous.

Then the set of nodes of the abstract local viability graph T is closed and every closed
subgraph of T’ of T has the property that for every end node of T’ or node on no edge of
T’, there is a neighborhood containing that node and no other node of T’.

Proof. The proof of Proposition 5.5 shows that T is closed. Now suppose that T’ is
a closed subgraph of T. We must show that for any node (cO,sO) in T’ which has the
property that for any disturbance doED, if s1 =x(A) where x(t) is the trajectory
determined by (cO,sO,dO), there is no clgC such that (cr,sr)~T, then there is
neighborhood U containing (co, sO) such that for every (C,,, SO) in U and any disturb-
ance doED, if S,=x(A) where x(t) is the trajectory determined by (CO,Sg,do), then
there is no cr EC such that (cr , S1)~ T’. Let (c,,, so) be such a node and fix a disturbance
d and let sr =x(A) where x(t) is the trajectory determined by (Q,s,,, d). Since T’ is
closed, for each CEC, there is a neighborhood V, x U,G C x S of (c, sr) such that
T’ n (V, x U,) = 8. Thus the set of Vc’s for CEC cover C and since C is compact, we can
find V,,, . . . , V,n which cover C. It follows, that if Ud= nl= 1 U,,, then SUE Ud and
C x Ud is disjoint from T. By the continuity of the map (cO,so,d)+x(A), there is
a neighborhood Jd x Kd x H,cC x S x D of (~,s,,,d) such that for every

154 W. Kohn et al. / Theoretical Computer Science 138 (1995) I41- 168

(c,,s,,~)EJ, x Kd x H,,X(A)EU~ where Z(t) is the trajectory determined by (co,& Ii>.
Now the set of H,‘s for dED cover D and since D is compact, we can find H,, , . . . , Hem

which cover D. But then if U = fir! 1 Jdi x Kdi, it follows that (c,, s,,)E U and for every
(c,s)~U and every disturbance deD, if s=x(d) where x(t) is the trajectory determined
by (c,s,d), then x(d)~Uy! 1 Udi and hence C x {x(d)} is disjoint for T as desired. This
completes the proof and shows that under the hypothesis of the proposition, the
abstract viability graph will be closed. 0

6. Example, the leaky water tank

We use as our example a generalization of the water pump example of [l]. We
generalize it in three ways. First, we allow bounded measurement error e in water
level. Second, we permit a more elaborate dynamics for both refilling the tank and for
the tank leak. Third, we monitor water level only every A units of time. That is, the
system runs open loop inside the control intervals. The plant consists of a water pump
and a leaking water tank. The set of plant states S is the set of pairs s = (y, pmp), y 2 0,
pmp~{ pan, pofl}. Here y is the water level. In pump state pan the pump is on, in pump
state pofs the pump is off. The dynamics of water level and leakage are supplied by

.

‘= i

ii(y) if the pump is on,

_&(y) if the pump is off,
(1)

where fi and f2 are continuous functions such that 0 <be <ft (y) < a0 for all y and
O>-b,>f,(y)>--a, for ally, where~,>b,>Oanda~>b,>O.

Two numbers u, v are given, with 0 <U <v. The water level y(t) is required to be in
the interval [u, v] at all times. It is assumed that the error in measurement m of plant
state y is at most e.

Thus the set of states S of the water level y is

C(y,pmp)Iu-eGyGv+ee, P~~~P~~,P~~S)I

and the set of viable states VS of the water level y is

C(Y,PmP)IudY~v,P~P~{Pon,P~fSJl.

There are only four control orders allowed, namely,

C = {(Pm pan), (Pdx Pan (PW Pa?-), (Pa Pod).

Here is what they do.
1. The control order (pan, pan) means that the pump will simply be instructed to stay

on during the whole interval [0, A]. Thus the control order (pon,pon) on [0, A],

with initial state so at the beginning of the interval and delay d, forces the water
level trajectory y(t) to satisfy

W. Kohn et al. / Theoretical Computer Science 138 11995) 141- 168 155

with Y(O)=s, no matter what the delay. It is easy to check that our inequalities on
fi (y) will ensure that y(t) is a viable trajectory no matter what the delay d < 6 <A if
so is initially in the interval [u, u-uo’ A]. Moreover, if so is initially in the interval
S’(pon, pan, so) = [u + e, v - ao. A -e], the water level trajectory y(t) which satisfies

with y(O)=S where IS-sol <e will also be a viable trajectory on [O, A]. Finally, it
again easily follows from our inequalities on fi that y(A) must lie in the interval

2. The control order (pofi pofs) means that the pump will simply be instructed to stay
off during the whole interval [O, A]. Thus the control order (pofs, pofs) on [0, A]
with initial state so at the beginning of the interval and delay d forces the water level
trajectory y(t) to satisfy

Y=fz(y)

with y(O)=s, no matter what the delay. It is easy to check that our inequalities on
f2(y) will ensure that y(t) is a viable trajectory, no matter what the disturbance
d d b <A if so is initially in the interval [u + ai . A, u]. Moreover, if so is initially in
the interval S’(p~~,pofS,s~)=[u+a, . A+e, u-e], the water level trajectory y(t)
which satisfies

with y(0) = S where 1 S-so 1~ e will also be a viable trajectory on [0, A]. Finally, it
again easily follows from our inequalities on f2(y) that y(A) must lie in the interval

3. The control order (pon,pofS) means that if at the start of the interval the pump is
on, then the pump will be turned off after some delay d < b. Thus the control order
(pm, pofs) on [0, At] with initial state so at the beginning of the interval and delay
d forces the water level trajectory y(t) to satisfy

Y=

i

fi(y) for Obr<d,

f~(y) for d<r<A,

where y(O)=s,. It is easy to check that our inequalities on fi(y) and f2(y) will
ensure that y(t) is a viable trajectory, no matter what the delay d < b if so is initially
in the interval [u+ ai . A, u-u,. b] Moreover, if so is initially in the interval
Si(pon,pofJ;so)=[u+al~At+e,u-u o. b-e], the water level trajectory y(t) which
satisfies

+ PI for OGt<d,
f2(y) for d<tQA

156 W. Kohn et al. 1 Theoretical Computer Science I38 (1995) I4I- I68

with y(0) = ~7 where 1 S-so 1 <e and 0 Q d < b will also be a viable trajectory on [0, A].

Finally, it again easily follows from our inequalities on fi(y) and f2(y) that the y(A)

must lie in the interval

4. The control order (POE pm) means that if at the start of the interval the pump is off,
then the pump will be turned on after some delay d < b. Thus the control order
(pofS,pon) on [0, At] with initial state so at the beginning of the interval and delay
d forces the water level trajectory y(t) to satisfy

I=

i

L(Y) for O<t<d,

fi(y) for dGt<A,

where y(O)=s,. It is easy to check that our inequalities on fi(y) and fi(y) will
ensure that y(t) is a viable trajectory, no matter what the disturbance d < b if so is
initially in the interval [u +ai. b, u--so. A]. Moreover, if so is initially in the
interval Si(pon,pc&so)= [u+q . b+e, ~----a~. A-e], the water level trajectory y(t)

which satisfies

3= MY) for O<t<b,
fl(y) for d<t<A

with y(0) = S where 1 S-so 1 <e and 0 <d < b will also be a viable trajectory on [0, A].

Finally, it again easily follows from our inequalities on fi (y) and f2(y) that the y(A)
must lie in the interval

If we write co =(po& pm), then we will let Sf(co, so) denote Sf(pc& pm, so), etc. With
this notation, we see that ((co, sO),(cl, sl)) is an abstract e-sturdy local viability node if
1. so is in Si(co,so);

2. (cl,sl)ESi(cl,sl);
3. s1 ES/(C~, so) and there is a delay d < b <A such that the trajectory y(t) determined

by co,so, and d has y(A)=s,.

Remark

1. If we endow our finite set of controls C with the discrete topology, then the sturdy
local viability graph is the same as the e-sensor local viability graph and hence the
sturdy viability graph is the same as the e-sensor viability graph.

2. Consider now the special case considered in [l]. This is the case when fi,fi are
constant functions. In this special case, translating the characterization into in-
equalities and manipulating, one can tediously write out the inequalities character-
izing the nodes and branches of the e-sensor local viability graph. Alternatively,
due to the fact that only simplifying linear inequalities are involved, we can avoid
writing this out and derive existence and algorithms from either the real linear
programming algorithm or, equivalently, from the Tarski decision method for

W. Kohn et al. / Theoretical Computer Science 138 (1995) 141- 168 157

dense linearly ordered abelian groups, to see that in principle these inequalities can
be computed. The situation is the same for the condition that an edge be in the
e-sensor viability graph.

Of course if A is too large, the e-sensor viability graph may be empty. We need to
determine those A for which the e-sensor viability graph using A is non-empty.

Instead of a direct attack on this problem, we shall instead define a class of finite
state control automata A(g, h), 0 <g <h. We show there are choices of g, h, A such that
all runs of the automaton A(g,h) yield paths in the e-sensor viability graph, thus
showing the e-sensor viability graph is non-empty and that in this case, viability can
be enforced by a finite state control automaton. The automaton changes state only at
times nA, when a certain test is satisfied by the measurement of plant state m at nA. It

instantaneously changes state and issues to the pump one of the four control orders
c above, executed as described above. The intention is that if c is of the form (pon,?),

then the pump was on at time nA, that is, the state of the pump at that time was son. If
c is of the form (pofl,?), then the pump was off at time nA, that is, the state of the pump
at time nA was sofJ:

We proceed to define an automaton A(g,h) for each pair of real parameters g,h
such that O<g < h. This is the sequential automaton below.
1. The input alphabet is the non-negative reals, regarded as measurements m of plant

state y.
2. The internal states are the two element set {son,sofs}

3. The output alphabet is the set of controls

((pon,pon),(po~poSf),tpon,poff)),(poff,pon)).

4. In real time the automaton does not receive input or change state except at times
nA.

A. Suppose the automaton is in state son at time nA and the measurement of plant
state is m. Then instantaneously,
1. if m P h, the automaton outputs (pon, poff) and shifts its state to SC&
2. if m < h, then the automaton remains in state son and outputs (pon, pon).

B. Suppose that the automaton is in state sofl and receives input measurement m at
time nA. Then, instantaneously,
1. if mdg, then the automaton outputs (pofJ;pon) and shifts to state son, and
2. if m>g, then the automaton remains in state.sofS and outputs (pofl,poff).

We seek values for A and the parameters g, h which ensure that when controls are
chosen by the automaton, the water level y(t) is viable no matter what the distur-
bances 0 < do, d 1, . . . db encountered in the successive intervals [nA,(n + l)d]. This
will prove the e-sensor viability graph is non empty.

Necessary conditions. We can derive necessary conditions on the parameters g and
h to guarantee that the control automaton A(g, h) produces only viable trajectories by

158 W. Kohn et al. / Theoretical Computer Science I38 (1995) I41- 168

analyzing the plant trajectories for given input measurements and states of A(g,h).
Consider the following two cases.

Case 1: Suppose that the plant state is son at time tk= kA and the control automa-
ton at that time receives measurement mk < h. By the assumption on e, if the actual
water level at time tk is y(tk), then

y(G)--e<mk<y(t,)+e.

Thus

mk-edy(t,)6mk+e.

Also suppose that the pump is on at time tk. In this case the automaton remains in
state son and the pump remains on for the next A seconds. Then, since the plant
trajectory y(.) between tk and tk+ I = tk + A must satisfy

it is easy to see that y(t) is a strictly increasing function in this interval and that

Now if we find that the measurement received at time tk+ 1, mk+ 1, is still less than h,
then of course the automaton will continue to be in state son, so that the pump will
remain on, the plant trajectory y(.) between tk+ 1 and tk+2 Will be Stridy inCreaSing,

and y(tk+ 2) d h + aOA + e. We continue on this way until we find the least I > k such
that the measurement received at time tl is greater than or equal to h. By our analysis,
the actual plant state y(tl) will be bounded by h + u,A +e. At that time the automaton
will output (pon,pofS) which in effect orders that the pump be turned off and the state
be switched to state sofJ: What happens to the trajectory y(t) between times tl and
tl+ 1 = tl + A? There exists a zld b < A such that the trajectory satisfies

O<bo<j(t)<uo if tlbtdtl+rl,

O> -b,>j(t)> --a, if tl+zl<tdtl+l.

Then trajectory y(t) over interval [t I , t 1+1] reaches its maximum at time t = tl+zl.

This maximum value is bounded by y(tl) + a0 51 < y(tl) + a, b d h + a0 A + e + a0 b. After
time tl+rl, y(t) is strictly decreasing for the rest of the interval. Pick h so that

h+uob+uoA+e<u.

This ensures that if we use the control automaton A(g,h), the water level never
becomes greater than v. There is also a lower bound imposed on h derived from the
fact that the minimum value of y(t) in the interval [tl, tl+ 1] must be greater than or
equal to u. Since we assume that ml > h, we know that y(tl) 2 h-e. If we assume that
there is no delay in turning the pump off, then y(t) could be strictly decreasing in the
interval. It is easy to see in that situation that y(tl+ 1) could be as small as h-e--al A.
Moreover, it could be that h-e- a, A -e Gg so that ml+ 1 G g. In that situation the
pump will be off and our control automaton will tell the pump to turn on. However,

W. Kahn et ai. f Theoretiral Computer Science I38 (1995) 141- 168 159

there could be a maximum delay of time 6 before the pump turns on and the water
level once again starts to increase. Thus, there could be a further drop of a, b in the
water level during this delay so that the water level could become as small as
h-e-a,A-ua,b. Thus, we must also assume that h-alb-alA-e2u or equiva-
lently that u + a1 b + al A + e < h. In Case 2, we will deal with the case when ml+ I > g.

Case 2: Suppose that at time tk the plant state is sofland the control automaton
receives a measurement mk>g. Again, the actual water level y(tk) satisfies

Assume also that the pump is off at time tk. Then the automaton remains in state SC@
and the pump remains off for the next A time period. Then, since the plant trajectory
y(.) between tk and tk+l = tk+ A must satisfy

y(t) is a strictly decreasing function in this interval and

y(t,+,)>,y(tk)-u,A>m,-a,d-e>g-ulA-e.

If we find that the measurement received at time t k + 1, mk+ 1, is still greater than g, then
the control automaton will continue to be in state sofland the pump will remain off.
The plant trajectory y(.) between tk+l and t k+ 2 will be strictly decreasing, and
y(tk+ 2) >g-a, A -e. We continue on this way until we find the least I> k such that
the measurement received at time t, is less than or equal to g. By our analysis, the
actual plant state y(tr) is bounded below by g-a, A -e. At that point, the automaton
will output (pofs, pan) which in effect issues the order for the pump to be turned on and
the state to be switched to state son. Again we can analyze what happens to the
trajectory y(t) between times tl and t l+ 1 + A. There exists a tI d b -c A such that the
trajectory satisfies

O> -b,>j(t)> --a, if tldt<tr+zl,

O<hl<j(t)buo if tl+71<t<tl+,.

Then the trajectory y(t) over the interval [t , t I 1+1] reaches its minimum at time
t = t1+ 71. This minimum value is bounded below by y(tl)--alzl >y(Q--aI h>

g-a, A -e-u, b. Then, after time tl+ 71, y(t) is strictly increasing. If we pick g so that

g-alb-alA-e>u,

then by using the control automaton, the water level never becomes less than U. There
is also upper bound on g which comes from the fact that the maximum value of y(r) in
the interval [tl, tl + 1] must be less than or equal to u. Since we are assuming that ml =G g,

we know that y(tl) <g + e. If we assume that there is no delay in turning the pump on,
then y(t) could be strictly increasing in the interval. In this situation, y(tl+ 1) could be
as large as g + e+ sod. Note that the case when ml+ 1 <h was handled in Case 1.
However, it could be that g +e+uOd +ea h so that m,, 1 2 h. In that situation, the

160 W. Kohn et al. 1 Theoretical Computer Science 138 (1995) IdI- 168

pump will be on and our controller will tell the pump to turn off. However, there could
be a maximum delay of time b before the pump turns off and the water level once
again starts to decrease. Thus, there could be a further rise of a0 b in the water level
during this delay. The water level could become as large as g + e + a,,d + a,, b. Thus, we
must also assume that g + a,, b + a,,A + e < u or equivalently that g < v - a0 b - a,A - e.

This ends the discussion of necessary conditions. When turned around as sufficient
conditions we get the following proposition.

Proposition 6.1. Suppose we are given a maximum delay of b, a A > b > 0 and a measure-
ment error bound eZ0. Choose the numbers (g, h) so that

Suppose that either the initial water level is between u + e and v-a,, b and the pump is on,
or alternately that the initial water level is between u + aI . b and v-e and the pump is off:
Suppose that initially the pump and the control automaton are both in the “on” state or
both in the “off” state. If the automaton A(g, h) makes a run with the initial conditions,
the water level y(t) is viable no matter what the disturbances.

Proof. Using the facts established in Cases 1 and 2 we can prove Proposition 6.1 in
a straightforward manner. One simply proceeds by induction on k to prove that if we
follow the policy associated with A(g, h), then in each successive interval [tk, tk+ 1], the
trajectory of the plant y(t) will always satisfy u d y < u. See also [29]. Cl

Remark
By picking A > b, we guarantee that if initially the plant state and the initial state of
A(g, h) are such that:
(a) If the initial state of A(g, h) is sofs, then the pump is off, and
(b) if the initial state of A(g, h) is son, then the pump is on,
then at some time before the end of each (nd, (n + 1)A) interval, the automaton state
and the state of the pump will necessarily correspond.
The inequalities on g and h in this proposition automatically impose the following
upper bound on the size of the control interval A:

A<
v-u-b(a,,+aI)-2e

a,+%

To avoid having the pump continually alternating between the states son and sofs
in each pair of successive intervals one should also ensure that there is a sufficient
distance between g and h. However, we will not deal with this issue here.
If we strengthen the hypothesis of Proposition 6.1 to assume that g and h satisfy

W. Kohn et al. / Theoretical Computer Science 138 (1995) 141- 168 161

then we can modify the inequalities in the definition of the A(g, h)-automaton and
Proposition 6.1 will continue to hold. For example, we could change conditions
A-B to read

A*. Suppose the automaton is in state son at time nd and the measurement of plant
state is m. Then instantaneously,
(a) if m>h, the automaton outputs (pan, pofl) and shifts its state to SC& and
(b) if m<h, then the automaton remains in state son and outputs (pon,pon).

B*. Suppose that the automaton is in state sofs and receives input measurement m at
time nA. Then, instantaneously,
(a) if m <g, then the automaton outputs (PO& pon) and shifts to state son, and
(b) if m>g, then the automaton remains in state sofland outputs (PO& poj”).

The non-deterministic automaton NDA(g, h). The argument above succeeds even
though water level y and the measurement m input to automaton A(g, h) in state son
with water level y can differ by up to e. This shows that in the definition of the output
value of A(g, h) when it is in state son and the water level is y where y in the interval
h-e d y < h + e, whether we define that output value as (pan, pon) or (port, pofl) does
not affect viability. Similarly, in the definition of the output value of A(g, h) when it is
in state sofs and the water level is y, if y is in the interval g-edy 6g +e, whether we
define that output value as (pofS,pon) or (pofipofs) does not affect viability. This
allows us to define a non-deterministic automaton NDA(g, h), guaranteeing viability,
which combines the non-deterministic sensor which maps y to m with the sequential
automaton A(g,h), and which has additional allowed transitions for the two cases
alluded to in the previous paragraph. The input alphabet of NDA(g,h) is the set of
water level values. NDA(g,h) is defined as follows.

A. Suppose the automaton NDA(g, h) is in state son at time nA and the water level
is y. Then instantaneously,
1. If y > h + e, the automaton shifts its state to so# with output value cl = (pan, pof).

2. If y < h -e, the automaton remains in state son with output value cl = (pan, pon).

3. If h-e < y < h +e, the automaton may remain in state son with output value
cr =(pon,pon) or shift into state sofSwith output value cl =(pon,pofS).

B. Suppose that the automaton NDA(g, h) is in state sofl at time nA and the water
level is y. Then, instantaneously,
1. If y >g +e, then the automaton remains in state sofj’ with output value

cl =(PdxPofs).

2. If y <g -e, then the automaton shifts to state son with output value cr = (po#, pon).

3. If g-e < y < g + e, then the automaton may equally well remain in state sofs with
output value c1 =(pofs, pofs), or shift to state son with output value cr =(pofi pon).

162 W. Kohn et al. J Theoretical Computer Science 138 (1995) 141- 168

Here is the control policy P(NDA(g,h)) corresponding to the automaton

NDA(g, h). It consists of those triples (c,,,. y, ci) described in the six clauses below, one

for each of the six clauses in the definition of P(NDA(g, h)). The question mark in the

clause is a variable ranging over the two element set {pon,pofS).

1. If y>h+e, then (?,pon),y,(pon,pofS))EP(NDA(g,h)).

2. If y<h--e, then ((?,pon),y,(pon,pon))EP(NDA(g,h)).

3. If h-e$y<h-e, then ((?,pon),y,(pon,pon))EP(NDA(g,h)) and ((?,pon),y,

(pot& Pd-)~P(NDA(g, h)).

4. If y > g +e, then ((?,PcY~), Y, (POX pofS))EP(NDA(g, h)).

5. If y<g+e, then ((?,pofS),y,(pofS,pon))~P(NDA(g,h)).

6. If g-edydg+e, then ((?,pofS),y,(pofJ;pofl))EP(NDA(g,h)) and ((?,P@),Y,

(Pd.xPon))EP(NDA(gY h)).

By the same analysis as above we get the following proposition.

Proposition 6.2. Suppose we are given a maximum delay of b, a A > b > 0 and a measure-

ment error bound e 20. Suppose that the numbers (g, h) satisfy

u+a,~b+al~A+e<g<h<v-a,~b-a,~A-e.

Let

A={(pon,pon)} x Cu,h+elu{(pon,pofS)} x Cs-e,v-aoblu{(pofS1pofS))

x [g-e,v]u{(pon,pon)} x [u+a,b,h+e].

Suppose that (c,, sO) is in A and (c,,, sl, cl) is in P(NDA(g, h)). Then for any admissible
disturbance over interval A, ifx(t) is the trajectory over A for that disturbance starting
from state s,, using control c0 and s1 =x(A), then x(t) is viable and (cl,sl) is also in A.

7. Finite coverings and finite automata

Suppose we are given a simple hybrid system with control intervals

n=O,l,... . As we have said, the abstract viability graph, if non-empty is a non-

deterministic automaton which enforces viability if started on a node of the abstract

viability graph. If we knew how to implement the abstract viability automaton, we

could enforce that all trajectories produced on [0, CD] are viable no matter what the

disturbance as long as the automaton is started in a state s0 with a control c0 such that

there is a node (cO,sO) of the abstract viability graph. But this automaton has been

obtained by a pure mathematical fixed point argument with little constructive con-

tent. This automaton generally has a highly non-constructive transition relation.

We want to investigate cases when there is a finite state control automaton

guaranteeing viable trajectories over [0, co]. In principle, these finite automata are

W. Kohn et al. / Theoretical Computer Science 138 (I99.7) 141- 168 163

implementable. Here we prove a simple theorem ensuring finite automata. It is suited
to applications where the set of controls is finite. Theorems with weaker hypotheses
for the case of compact controls are deferred to a sequel.

Proposition 7.1. Suppose that S is the set of plant states, C is the set of controls, and VS

is the set of viable states. Suppose also that

1. R is a non-empty closed subset of the abstract viability graph.
2. For any (Co, &,)E R and any disturbance deD, ifx(t) is the resulting trajectory, there

exists a CI~C such that (Cl, x(d))~R. (Note in the language of Section 4, this say that

R is a fixed point of the operator F.)
3. The spaces, S, C are compact metric spaces.
4. The viability set VS is a closed subset of S.
5. Let RoRl be, respectively, the projections of R on itsJirst coordinate co and on its

second coordinate so. Assume that R has the following “sturdiness property”.

For any r =(co, so) in R, there exists a pair of open sets U, E C, V, c VS, such that
(co,sO)~Urx V,and(U,nRo)x(VrnRI)~R.
Then there existfinite state control automata which, regarded as control policies, have

infinite policy paths which are policy paths of R. That is, these arefinite state automata
which can produce viable trajectories from certain initial conditions no matter what the
disturbance. (We do not assert that every policy path of R is a policy path for the

automaton.)

Proof. Property (2) ensures that we can construct an R-automaton from R exactly as
we constructed the local viability automaton from the local viability graph. The
R-automaton is an automaton with the desired property, but is usually is not a finite
state automaton. So the object is to replace it by a finite state automaton which
approximates it. We base our construction of a finite automaton which ensures viable
plant trajectories on a choice of bases for the open sets of the topological spaces
involved, see [25, Appendix II]. Suppose that we are given a basis Bs for the open sets
for S and a basis B, for the open sets of C. Suppose that we use the product basis
Bc x Bs as a basis of open sets for the product space C x S. That is, the basis of open
sets for C x S consists of products U x V, where U E Bc and VE Bs. We use as a base for
VS the intersections of the base sets for S with VS and similarly for R. and RI. Note
that RGR~xR,~CXVS.

Note that since the projection of a closed compact set is closed and compact, both
R. and RI are closed and compact. Clearly, R E R. x RI. As r ranges over, the open
sets (Urn R,) x (Vrn RI) of C x VS cover the compact set R. x RI. Therefore, there is
a finite sequene rl, . . . , r,ER such that the (U,lnRo)x(V,,nR,),...,(U,nnRo)x
(V,nnR,)cover RoxRI.

The (U,{ n R,) generate a finite subtopology of the topology on Ro, which we call
the small topology on Ro. Let U 1,. . . , Uk be a list of all distinct non-empty join
irreducibles for the small topology on Ro. We choose the set { U1, . . . , U,} as the set of
states for our desired finite state control automaton. Similarly, the V,, n RI generate

164 W. Kohn ei af. / Theoretical Computer Science 138 (1995) I41- I68

ANALOG WORLD

Distu hmce

I

Plant $7 sensor

Lm AD Converter DA Converter

DIGITAL WORLD

Fig. 2.

a finite topology RI, which we call the small topology on R 1. Let V1, . . . , VP be a list of
all distinct non-empty join irreducibles of the small topology on RI. We choose the set

{V,, ... 9 VP} as the set of input symbols of the finite state control automaton. The set

{c 1, . . . ,c,,} will be our output alphabet for the finite control automaton where

U,, x K, , . . . 2 U,, x Vr, are such that V,, E 4 and rki = (ci, si) for i = 1, . . . , p.

kor ea’ch pair (Vi, Vj”) consisting of an automaton state and an automaton input
symbol, we define the new state and the output as follows. Let U,, x V,, and U,, x V,,

be such that U,,, c Ui and V, C_ Vj. Then the new state of the automaton is th’e join
irreducible that contains cj a;d the output symbol is cj (see Fig. 2).

It is easy to see that this automaton assures viability of the trajectory for any
admissible disturbance when started in state s,, using control c,, for which there is
a (c,,,~) in R, This was our objective, and ends the proof. 0

Remarks
This presentation makes the analog to digital converter of [25] defined on R,,

rather than S, since the intention is to have all execution sequences policy edges of
R. With this in mind, we think of plant state s in R. as being converted by the
analog to digital converter into the join irreducible Vi containing s. This is then an
input symbol to the finite automaton. If one prefers to have the analog to digital
converter defined on all of S, then adds a letter I to the input alphabet for the
automaton and regard any s in the open set S-R0 as converted to 1. In this case,
we should also add _L to the automaton output alphabet to be used when the input
symbol is 1.
Note that the finite automaton constructed in Proposition 7.1 may be non-deter-
ministic since for a given Vj there may be several U,, x Vrr ‘S such that V,, E Vi.

We can easily generalize to cover e-sensor and sturdi viability graphs. ’

W. Kohn et al. / Theoretical Computer Science 138 (1995) 141- 168 165

Example. The leaky water tank revisited. We briefly indicate how the theorem applies
to the leaky water tank example. Our set R is the set A as defined in Proposition 6.2.
S =VS = [u, u] with the standard topology and C = {(pan, pan), (pan, pof), (pofs, pan),

(po&pofs)} with the discrete topology. Clearly, A is a closed subset of C x S. The
non-deterministic automaton NDA(g, h) and corresponding P(NDA(g, h)) shows that
A is a subset of the abstract viability graph which satisfies conditions (2) and (5) of
Proposition 7.1, see [29] for a detailed proof.

8. Viability in autonomous hybrid control

We discuss the relation of viability to Kohn-Nerode autonomous hybrid control
[26] based on relaxed calculus of variations. Disturbances are hereby omitted from
the model. The informal justification for this omission is that small disturbances are
reflected in small deviations in plant state, and that the analog to digital converters of
[25] work correctly in spite of small deviations in plant state. So as long as the plant
state fluctuations resulting from the disturbances are within the error tolerated by the
analog to digital plant sensor, the system still operates as specified. We do not give
detailed conditions for the validity of the control automaton extraction process
outlined below. We do remark that we assume that the Lagrangian L(x, U, c) is lower
semicontinuous and that the control and state spaces are compact [lo]. The purpose
of the outline below is to indicate how to show a viability graph is non-empty in
applications of autonomous hybrid control. We are using this extraction process for
a number of systems, examples to be published in later papers.
1. Corresponding to the autonomous problem, we formulate a non-negative Lagran-

gian L(x, u,c) on plant state trajectories which results from applying possible
control functions c of time to produce the trajectory, in such a way that the smaller
the value of its integral along a trajectory, the better the performance. (Here u plays
the role of z?-.) The original Lagrangian is usually non-convex in u. The performance
specification for the plant is reformulated as the requirement that the plant state
trajectory is viable with respect to a viability set and has an integral within
a prescribed E of its minimum. A control function of time that does this from a given
initial state is called an s-optimal control function. That is all that is required in
actual applications.

2. Second, L(x, a, c) is convexified to get an L**(x, a, c) which is convex in U. The main
existence theorem of the relaxed calculus of variations is applied to such convexi-
fied problems to find a measure-valued control function of time c(t) resulting in
a state trajectory x(t) minimizing the integral of L**(x,u) on the trajectory. This is
a so-called relaxed control function as introduced by Young [36] and Warga [35].
The measures are on the space of control values. Because our control problem is
autonomous, this control function of time for each state can be converted by
Bellman’s dynamic programming method to a control policy, a function of state
that tells what control to use in each state. (Most optimal measure-valued control

166 W. Kohn et al. / Theoretical Computer Science 138 (1995) 141- 168

policies are not directly implementable, a fact that led many experts to neglect
relaxed control for twenty years till Kohn developed his declarative control
[13-17,19-211.)

3. The method of covers used in [25, Appendix II] and in this paper can then be used
to extract a finite cover for this optimal control policy. When this finite cover is
implemented as a finite state control automaton with analog to digital and digital
to analog converters according to [25, Appendix II], the resulting control automa-
ton enforces a control policy which assures &-optimal control. A length A for
control intervals has to be extracted at the same time. The control policy is, in the
language of this paper, a function of state se and previous control co.

4. The control values issued by the finite automaton, finite in number, can be taken as
measures on the space of controls with finite support. Each of these measures
represents a finite chattering control built from a finite set of controls altogether. In
[lo], Caratheodory’s theory on convex sets is used to see that the chattering
control which approximates to the optimal control minimizing the convexification
L**(x,u) corresponds to expressing the absolute minimum for the convexified
problem as a convex combination of some local minima for the original non-
convex problem. See also [7,8].

5. If the optimal policy is jointly continuous in state and control and the viability set has
a non-empty interior, then the viability kernel can often be proved to be non-empty.

6. If a control policy making the system meet performance requirements is obtained
from any other control theory, the same outline can be used to prove viability
kernels non-empty and to prove the existence of finite control automata which
enforce viable trajectories.

7. This is in accord with the heuristic principle that to prove viability kernels
non-empty, whether for conventional [S] or hybrid systems, it is at present usually
necessary to have a construction of feedback control laws to which we can
approximate. But, given this, one still needs compactness and uniformity in
parameters to show that a viability graph is non-empty.

Remark
1. The question as to how, given an E, to choose a A so as to be sure of being able to

compute a finite automaton with A length control intervals which achieves E-
optimality is a major one, see [lo] for a general algorithm with roughly the
hypotheses of [7].

2. In the outline above disturbances are not modelled. When disturbances are
included and the controls are required to succeed no matter what the disturbances,
relaxed control is less well developed subject; see [35], last chapter. But what is
clear is that if one insists that the controls chosen by the control policy not be very
sensitive to small changes in previous state and control, then one is faced with
choosing control automata and a control interval length A which execute a policy
so that the policy edges are in the viability graph. So it seems that it is important to
understand these graphs.

W. Kokn et al. / Tbeorefieal Computer Science 138 1199-f) 141- 168

Acknowledgment

167

We are much indebted to A. Benveniste for several helpful suggestions.

References

[I] R. Alur, C. Courcoubetis, T. Henzinger and Pei-Hsin Ho, Hybrid Automata: an algorithmic approach

to the specification and verification of hybrid systems, in [l 11.

[2] J.P. Aubin, Conoex Analysis and Optimization (Pitman, London, 1982).

[3] J.P. Aubin, Differential Inclusions, Set Values Maps and Viability (Springer, Berlin, 1984).

[4] J.P. Aubin, Set Valued Analysis (Birkhauser, Basel, 1990).

[S] J.P. Aubin, Viability Theory (Birkhauser, Basel, 1991).

[6] J.P. Aubin and 1. Ekeland, Applied Non-Linear Analysis (Wiley, New York, 1984).

[7] 1. Ekeland, Infinite Dimensional Optimization and Convexity, University of Chicago Lecture Notes in

Mathematics (University of Chicago Press, Chicago, 1983.)

[S] I. Ekeland and R. Teman, Convex Analysis and Variational Problems (Elsevier, New York, 1976).

[9] A.F. Filippov, Differential Equations with Discontinuous Right Hand Parr (Kluwer Academic Pub-

lishers, Dordecht, 1988).

[IO] X. Ge, W. Kohn and A. Nerode, Algorithms for chattering approximations to relaxed optimal

controls, MS1 Tech. Report 94-23, 1994.

[l I] R. Grossman, A. Nerode, H. Rischel and A. Ravn (eds.), Hybrid Systems, Springer Lecture Notes in

Computer Science (Springer, Berlin, 1993).

[l2] J. Guckenheimer and A. Nerode, Simulation for hybrid and nonlinear control, in: Proc. IEEE 3fsr

CDC, Vol. 3 (1992) 2981-2983.

[13] W. Kohn, A Declarative theory for rational controllers, in: Proc. 27th CDC (1988) 13&136.

[14] W. Kohn, Hierarchical control systems for autonomous space robots, in: Proc. AIAA (1988).

[I51 W. Kohn, Application of declarative hierarchical methodology for the flight telerobotic services,

Boeing Document G-6630-061, Final Report of NASA-Ames Research Service request 2072, Job

Order T1988 (1988).

[I63 W. Kohn, The rational tree machine: technical description and mathematical foundations, IR and

DBE-499, Tech. Document 905-10107-l. Boeing Computer Services (1989).

[17] W. Kohn, Rational algebras: a constructive approach, IR and DBE-499, Tech. Document D-905-

10107-2 (1989).

[18] W. Kohn, Cruise missile mission planning: a declarative control approach, Boeing Computer Services

Tech. Report (1989).

[19] W. Kohn, Declarative multiplexed rational controllers, in: Proc. 5th IEEE Internat. Symp. Intelligenr

Cont. (1990) 794-803.

[20] W. Kohn, Advanced architecture and methods for knowledge-based planning and declarative control,

Boeing Computer Services Tech. Document IRD BCS-021 in ISMIS 91 (1990).

[Zl] W. Kohn and K. Carlsen, Symbolic design and analysis in control, in: Prof. 1988 Grainger Lecture

Series, U. of Illinois (1989) 40-52.

[22] W. Kohn and A. Murphy, Multiple agent reactive shop control, ISMIS 91.

[23] W. Kohn and A. Nerode, An autonomous control theory: an overview, in: Proc. IEEE CACSD92,

Napa Valley (1992).

[24] W. Kohn and A. Nerode, Multiple agent autonomous control systems, in: Proc. 31st IEEE CDC

Tucson, AZ (1993) 29562966.

[25] W. Kohn and A. Nerode, Models for hybrid systems: automata, topologies, controllability, observ-

ability, in [l I].

[26] W. Kohn and A. Nerode, Multiple agent autonomous control, a hybrid systems architecture, Logical

Methods (Birkhauser, Basel, 1993).

[27] A. Nerode, General topology and partial recursive functionals. in: Summaries of Talks at the AMS

Summer Institute in Matkematicaf Logic, Cornell (1957).

168 W. Kohn et al. j Theoretical Computer Science 138 (1995) 141- 168

[ZS] A. Nerode, J.B. Remmel and A. Yakhnis, Hybrid systems and continuous sensing games in: Proc. 9th

IEEE Co@ on Intelligent Control (1993).

[29] A. Nerode, J.B. Remmel and A. Yakhnis, Hybrid system games: extraction of control automata with

small topologies, MS1 Tech. Report 93-102 (1993).

[30] A. Nerode and A. Yakhnis, Modelling hybrid systems as games, CDC92 (1992) 2947-2952.

[31] A. Nerode and A. Yakhnis, Hybrid games and hybrid systems, MS1 Tech. Report 93-77 (1993).

[32] A. Nerode and A. Yakhnis, Control automata and fixed points of set-valued operators for discrete

sensing hybrid systems, MSI Tech. Report 93-105 (1993).

[33] A. Nerode and A. Yakhnis, An example of extraction of a finite control automaton and A. Nerode’s

AD-converter for a discrete sensing hybrid system, MS1 Tech. Report 93-104 (1993).

[34] L.E. Neustadt, Optimization (Princeton University Press, Princeton, NJ, 1976).

[35] J. Warga, Optimal Control ofDifferential and Functional Equations (Academic Press, New York, 1972).

[36] L.C. Young, Optimal Control Theory (Chelsea, New York, 1980).

