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ABSTRACT Computational modeling of blood flow in microvessels with internal diameter 20–500 mm is a major challenge. It
is because blood in such vessels behaves as a multiphase suspension of deformable particles. A continuum model of blood is
not adequate if the motion of individual red blood cells in the suspension is of interest. At the same time, multiple cells, often a
few thousands in number, must also be considered to account for cell-cell hydrodynamic interaction. Moreover, the red blood
cells (RBCs) are highly deformable. Deformation of the cells must also be considered in the model, as it is a major determinant
of many physiologically significant phenomena, such as formation of a cell-free layer, and the Fahraeus-Lindqvist effect. In this
article, we present two-dimensional computational simulation of blood flow in vessels of size 20–300 mm at discharge
hematocrit of 10–60%, taking into consideration the particulate nature of blood and cell deformation. The numerical model is
based on the immersed boundary method, and the red blood cells are modeled as liquid capsules. A large RBC population
comprising of as many as 2500 cells are simulated. Migration of the cells normal to the wall of the vessel and the formation of
the cell-free layer are studied. Results on the trajectory and velocity traces of the RBCs, and their fluctuations are presented.
Also presented are the results on the plug-flow velocity profile of blood, the apparent viscosity, and the Fahraeus-Lindqvist
effect. The numerical results also allow us to investigate the variation of apparent blood viscosity along the cross-section of a
vessel. The computational results are compared with the experimental results. To the best of our knowledge, this article
presents the first simulation to simultaneously consider a large ensemble of red blood cells and the cell deformation.

INTRODUCTION

Blood is a multiphase fluid that is primarily made of red

blood cells (RBCs), white blood cells, and platelets sus-

pended in plasma. Under normal, healthy conditions, a freely

suspended RBC is a biconcave discoid with 8-mm diameter

and 2-mm thickness. RBCs constitute ;40–45% of the total

blood volume. Being highly deformable particles, RBCs can

easily squeeze through the smallest capillaries having

internal diameter less than their characteristic size. The

particulate nature of the blood and the deformability of

the RBCs determine the overall rheological behavior of the

blood.

In vitro studies on blood flow through narrow tubes have

revealed complex rheological behavior of blood (1–6). In

large vessels with internal diameter .500 mm, blood

behaves as a Newtonian fluid with a constant viscosity. In

vessels ,500 mm, blood behaves as a non-Newtonian fluid.

In such vessels, the viscosity of blood depends on the vessel

diameter. This behavior is known as the Fahraeus-Lindqvist

effect (7). It is characterized by a decrease in the apparent

blood viscosity as the vessel diameter decreases below 500

mm. The minimum apparent viscosity is reached when the

tube diameter is ;8 mm. Upon further decrease in tube

diameter, the apparent viscosity increases very rapidly. The

physical reason behind the Fahraeus-Lindqvist effect is the

formation of a cell-free layer near the wall of the tube (8,9).

The layer is devoid of RBCs and has a reduced local

viscosity. The core of the tube, on the contrary, is rich with

RBCs and has a higher local viscosity (10–13). The extent of

the cell-free layer, which depends on the vessel size and

hematocrit, is a major factor that determines the apparent

viscosity of blood.

The formation of the cell free-layer is due to a migration of

the red blood cells lateral to the mainstream flow and away

from the wall of the vessel. The lateral migration arises due

to the deformation of the red blood cells (14). As per the

theory of viscous fluid mechanics (Stokes flow), a perfectly

rigid particle does not migrate away from the wall, but a

deformable particle does (15). The rate of migration depends

on how easily the particle deforms; an easily deformable

particle in a parabolic flow migrates faster toward the center

of the vessel than a less deformable particle. The rate of

migration also depends on the instantaneous radial location

of the particle in the vessel. In a dilute suspension, individual

RBCs continuously migrate toward the center of the vessel.

In a dense suspension, hydrodynamic interaction between

adjacent cells also affects their motion. The cell-free layer is

formed under a balance between the deformation-induced

lateral migration and the dispersion due to the cell-cell

interaction (14).

Significant progress has been made in understanding the

mechanical behavior of the red blood cells that have pro-

vided a basis for the study of cell deformation. Computa-

tional modeling and simulation of blood flow in microvessels

have focused mainly on two issues: axisymmetric motion of

a single cell in capillary tubes with diameter ,10 mm (17–

19), and the deformation of dilutely suspended cells in

simple (linear) shear flows (20). Nonaxisymmetric motion of
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RBCs in cylindrical capillaries has also been addressed (21).

Development of more realistic simulation of multiple red

blood cells flowing through vessels of diameter 10–500 mm
has remained a major challenge. It is because blood in such

vessels behaves as a multiphase suspension of deformable

particles. While a continuum description of blood is

sufficient for average flow profile, it is not so if the motion

of individual cells and their interaction are concerned. The

size of the RBCs is comparable to the size of the vessels, and

hence each cell must be taken into consideration in the

modeling. At the same time, multiple cells, often of the order

of a few thousands in number, must be considered to real-

istically simulate a microvessel. Any computational model

aimed at understanding blood flow in microvessels must take

into consideration the deformability of the individual red

blood cell, and an ensemble of a large population of cells.

A significant step in the simulations of flowing multiple

RBCs has been achieved by Sun and Munn (22), who used

a Lattice-Boltzmann simulation to address blood flow in

20–40 mm two-dimensional channels and at hematocrit of

10–30%. The simulations were two-dimensional, but the

results showed that apparent viscosity of the suspension

increases with increasing volume fraction of the particles,

which is in agreement with the earlier observations with

suspensions of RBC, and other rigid particles. However, the

RBCs in their simulation were modeled as rigid disks, rather

than deformable particles. Further, the range of channel size

is not large enough to show the nonlinear behavior of the

apparent viscosity with varying channel size. It should also

be noted that at very high volume fractions, which were not

considered by Sun and Munn, rigid particles can stop the

flow. This is not the case with RBCs due to their flexibility.

In this article, we present computational simulation of the

motion of red blood cells flowing through two-dimensional

channels of size 20–300 mm. Similar to the work of Sun

and Munn (22), we consider two-dimensional simulations.

However, the deformability of the cells is included in our

model. Moreover, a large cell population comprising of as

high as 2500 red blood cells are simulated. To the best of

our knowledge, this article presents the first simulation to

consider such a large ensemble of deformable cells, though

in two dimensions. As we will see later, many characteristics

of the RBC motion, formation of the cell-free layer, and the

Fahraeus-Lindqvist effect are quite accurately predicted by

our two-dimensional simulations.

The structure of the article is as follows. In the next

section, we describe the simulation technique, followed by

presentation of the results. First, we describe the motion of

an isolated red blood cell flowing through a vessel, and

address its dynamic behavior, such as lateral migration, tank-

treading, and flipping motion. We then consider simulations

of multiple cells in the range of vessel size 20–300 mm and

discharge hematocrit 10–60%. Number of RBCs considered

in a typical simulation ranges from 5 to 2500. Results on the

trajectory and velocity of individual cells and their fluctu-

ation statistics are presented. The inclusion of deformability

allows us to study the formation of the cell-free layer. Com-

parisons are made with the experimental results (1–4). We

then present the apparent viscosity of blood for varying

hematocrit and vessel diameter, and discuss the Fahraeus-

Lindqvist effect. The numerical results also allow us to inves-

tigate variation of ‘‘local’’ apparent viscosity across the

cross-section of the vessel.

SIMULATION TECHNIQUE

Flow configuration

The flow configuration is described in Fig. 1. The motion of

an ensemble of red blood cells through a two-dimensional

rectangular channel is considered. The undeformed resting

shape of a red blood cell is taken to be a biconcave disk. In

the figure, the flow is along the x direction and from left to

right. The flow is driven by a constant pressure gradient.

No-slip conditions are imposed at the walls of the channel. In

absence of the cells, the velocity profile of the pure plasma is

parabolic and is given by the Poiseuille law. The height of

the channel is denoted by H, which is equivalent to the tube

diameter in case of a three-dimensional flow. The compu-

tation domain is a square segment of sides of length H.
Periodic conditions are imposed at the inflow (left) and

outflow (right) of the domain. The cells that leave the do-

main through the outflow boundary are brought back into the

domain through the inflow boundary.

Immersed boundary method

The simulation technique considered here is the immersed

boundary method developed by Peskin (23), and later ex-

tended by Tryggvason and co-workers (24,25) as the front-

tracking method for deformable interface. The method has

been applied to the simulations of suspension of liquid drops

and bubbles, and deformation of a red blood cell ghost in

a shear flow (20). The method is particularly suitable for

this study, as the red blood cells are modeled as liquid

‘‘capsules.’’ The structure of a red blood cell consists of

hemoglobin solution surrounded by a lipid bilayer mem-

brane. The liquidlike nature of hemoglobin, and the elastic

nature of the membrane give rise to the deformability of the

cell. On a mesoscopic scale, the detailed molecular structure

of the lipid bilayer and the underlying two-dimensional

cytoskeleton network can be neglected. Then, the individual

RBC can be modeled as a liquid capsule, that is, a viscous

liquid drop surrounded by a thin elastic membrane. The

viscosity of the liquid interior (i.e., hemoglobin) of the

capsule is five times higher than that of the exterior liquid

(i.e., plasma).

In the present model, blood plasma and RBC hemo-

globin are assumed to behave as Newtonian fluids. The

Newtonian nature of these fluids is well established (26). The
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non-Newtonian behavior of the whole blood primarily arises

due to deformability of individual RBC. The motion of the

liquids, plasma, and hemoglobin, is governed by the con-

tinuity and Navier-Stokes equations as

= � u ¼ 0; (1)

r
@u
@t

1 u � =u
� �

¼ �=p1= � t1F; (2)

where u(x, t) is the fluid velocity, r is the density, p pressure,
and F is a sourcelike term that arises due to the elastic force

generated in the cell membrane. The viscous stress tensor t is
given by

t ¼ mð=u1 ð=uÞTÞ; (3)

where m(x) is the viscosity of either the plasma or the

hemoglobin solution. For any point within the RBC, m ¼ mr,

and for any point outside the RBC, m ¼ mp, where mr is the

viscosity of the RBC hemoglobin, and mp is the viscosity of

the plasma.

The main idea of the front-tracking method is to use a

single set of equations for both fluids, plasma and hemoglo-

bin, as in Eq. 2. The Navier-Stokes equations for the fluid

flow are solved on a fixed Eulerian grid, and the cell-plasma

interface is tracked in a Lagrangian manner by a set of

moving grid, used to discretize the cell membrane as shown

in Fig. 1. As the cells deform during their motion, the cell

membranes are stretched, and elastic forces are generated on

the membrane. The deformation of individual cell alters the

surrounding flow. The elastic forces at the cell membranes

are coupled to the bulk fluid motion via the source term F in

Eq. 2 as

Fðx; tÞ ¼
Z
@S

fðx9; tÞdðx� x9Þdx9; (4)

where f(x9, t) is the elastic force generated in the membrane.

Here x is the location of an arbitrary point in the flow

domain, x9 is any point on the membrane, and d is the

Delta function, which vanishes everywhere except at the

membrane. Models for computation of f(x9, t) are described
later.

The Navier-Stokes equations are first solved to obtain the

fluid velocity and pressure. Then the cells are advected in a

Lagrangian manner. The velocity of the cell membrane is

obtained by interpolating the velocity of the fluid as

uðx9Þ ¼
Z
S

uðxÞdðx� x9Þdx; (5)

where S denotes the entire flow domain. The membrane is

then advected by

dx9
dt

¼ uðx9Þ: (6)

The d-functions used in Eqs. 4 and 5 are constructed

by multiplying one-dimensional delta functions, such as

d(x – x9) ¼ d(x – x9)d(y – y9), in two dimensions. For num-

erical implementation, a smooth representation of the d-func-
tion is introduced as (24)

Dðx� x9Þ ¼ 1

16D
2

Y2
i¼1

11 cos
p

2D
ðxi � x9iÞ

� �
for

jxi � x9ij# 2D; i ¼ 1; 2

Dðx� x9Þ ¼ 0 otherwise; (7)

where D is the Eulerian grid size. The above representa-

tion approaches the actual delta function as the grid size

approaches zero. The discrete d-function is so constructed

that properties, such as viscosity, vary smoothly over four

Eulerian grid points surrounding the RBC membrane. In dis-

crete form, the integrals in Eqs. 4 and 5 can be written as

FðxjÞ ¼ SiDðxj � x9iÞfðx9iÞ; (8)

uðx9iÞ ¼ SjDðxj � x9iÞuðxjÞ; (9)

where i and j represent the Lagrangian and Eulerian grid

points, respectively. The above representation needs to be

modified if the interface is located close to a solid boundary.

In our simulation, we ensure that the minimum distance

between the solid boundary and the interface is at least four

Eulerian grid size.

FIGURE 1 Schematic of the computational domain, and

the Eulerian and Lagrangian grids.
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Esh ( 2 1)
T2 = t[t2 t 2 - (t[t2)2 .

(14)

As the cells move to new positions, the viscosity /L(x, t)
needs to be updated. Following Tryggvason and Unverdi and
Tryggvason (24,25), this is done by first defining an indicator
function lex) such that

/L(x, t) = /Lp + (/Lr - /Lp)l(x, t). (10)

ratios. The tensions T1 and T2 in the principal directions are
then given by (29)

Esh ( 2 1)
T[ = t[t2 t[ - (t[t2)2 and

(17)

(16)

(15)Esh( 3 )T=3fit-l,
t

Dimensionless parameters, finite difference
scheme, and resolution

In absence of the cells, the maximum velocity of the par
abolic flow at the channel center is denoted by Uel. The gov
erning equations are made dimensionless using the channel
height H as the characteristic length scale, Uel as the velocity
scale, and H/Uel as the timescale. In dimensionless form, the
shear modulus of elasticity of the RBC membrane is given
by E* = /LpUel/Esh, which is the ratio of the viscous force
to the elastic force of the capsule membrane. The dimen
sionless bending stiffness is expressed as E13 = EB /(a2Es),

where i and j denotes two adjacent line segments, and ei and
ej are the unit tangent vectors along them.

The RBC membrane also has a bending resistance. To
include the bending resistance in our simulation, we follow
the approach by Pozrikidis (30). Equation 16 is then mod
ified as

where q = dm/dl is the transverse shear tension, m = EB(K 
K r ) is the bending moment, EB is the bending modulus, K is
the local curvature, K r is the reference curvature in resting
configuration, I is the arc length along the membrane, and n
is the unit normal vector at a Lagrangian marker point on the
cell surface.

For the two-dimensional simulations considered here, the
membrane is a closed curve. A two-dimensional cell is then
equivalent to an actual three-dimensional cell subject to a
stretching in one direction only. That is, T1 # 0, T2 = 0,
where 1 indicates the in-plane direction along the membrane,
and 2 indicates the out-of-plane direction normal to Fig. 1.
The deformation t2 in the out-of-plane direction is not zero.
But since T2 = 0, we can express t2 in terms of tl. Then, for
a two-dimensional cell, we have

where T = T1 and t = tl. For a discretized cell, T is the
tension acting along a line segment connecting two adjacent
Lagrangian grid points on the membrane, and t is the stretch
ratio (undeformed length by deformed length) of the line seg
ment. At any Lagrangian grid point on the membrane, two
line segments meet. The membrane elastic force f is then the
resultant vector of the tensions in the two adjacent segments,

(12)

(11)

(13)

To find the indicator function, we use a Poisson solver as

where

where E s is the shear modulus of elasticity of the membrane,
h is the thickness, and tl and t2 are the principal stretch

and where D is the discrete o-function as given in Eq. 7, n is
the unit normal to the cell surface, and ~s is a discrete line
segment on the cell surface. In this way, the direct solution of
the advection equation for viscosity, and hence the smearing
of viscosity profile across the interface are avoided. Here we
avoid the details of the method, and refer to articles by
Tryggvason and co-workers (24,25).

As mentioned before, red blood cells in this study are mod
eled as liquid "capsules," that is, viscous liquid drops sur
rounded by elastic membranes. The viscosity of the liquid
interior (i.e., hemoglobin) of the capsule is five times higher
than that of the exterior liquid (i.e., plasma). This difference
is taken into account in the immersed boundary method
described above. The deformation of the cells under a dy
namic fluid motion generates an elastic force f(x', t) in the
cell membrane. Computation of this force requires a con
stitutive law for the material of the membrane. Here we
assume that the membrane follows the neo-Hookean law.
Note that the neo-Hookean law does not strictly represent
the behavior of a red blood cell membrane. An RBC mem
brane is strongly resistant to area dilatation. On the contrary,
the neo-Hookean model employed here does allow area
dilatation. Membrane models that restrict area dilatation and
hence are more accurate for the RBC have been developed
(27,28). The present methodology does allow incorporation
of these models. The neo-Hookean model is chosen because
of its simplicity. An accurate modeling of cell deformation
is not the goal of this article. For the present purpose, a cell
model that takes into account deformability is sufficient.
Indeed, it is shown later that the neo-Hookean model can
effectively capture some general characteristics of the RBC
motion in a shear flow, such as the tank-treading motion and
the lateral migration.

For a two-dimensional neo-Hookean membrane of a three
dimensional cell, the strain energy function is given by (20)

RBC model
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where a is a characteristic dimension of the cell. The

Reynolds number of individual RBC, defined as Re¼ rUcla/
mp, is much less than unity.

In the present model, the dimensionless parameters E*
and EB* determine the deformability of the liquid capsule, and

hence of the red blood cell. For a normal, healthy red blood

cell, Es ¼ 0.006 dyn/cm, and EB � 1.8 3 10�12 dyn-cm (6).

Under diseased conditions, e.g., in sickle cell anemia, the

cells lose their deformability. The loss of deformability can

be expressed in our model in terms of higher-than-normal

values of Es and EB. Accordingly, the values of E* and EB*

change as the cell loses its deformability. The value of E*
also depends on the flow velocity Ucl. Note that in presence

of the RBCs, the maximum centerline velocity is signifi-

cantly reduced below Ucl if the pressure gradient is kept

constant (shown later in Plug-Flow Profile). The average

flow velocity in presence of the RBCs is denoted by Um. In

our simulations, Um ranges from ;3 mm/s to 15 mm/s

(Table 2). Accordingly, the values of E* and EB* used in our

simulations ranges from ;0.02–1.0, and 0.0005–0.002,

respectively. The higher values of E* and lower values of EB*

typically represent a normal, deformable RBC, whereas

lower values of E* and higher values of EB* represent a less

deformable RBC. The higher values of E* also represent

higher flow velocities, and vice versa. The range of Um

considered here matches with that in the in vivo experiments

(1,2). A pseudo-shear rate can also be defined as Um/H,
which varies between ;30 and 400 s�1, similar to the range

in Bishop et al. (1,2). In terms of physical time, the

simulations represent 0.1 s of flow, on the average.

The governing equations are discretized spatially using a

finite difference scheme, and temporally using a two-step

time-split scheme. In this method, the momentum equation is

split into an advection-diffusion equation and a Poisson

equation for the pressure. The body-force term is retained in

the advection-diffusion equation. The nonlinear term in this

equation is treated explicitly using a second-order Adams-

Bashforth scheme. To avoid a stability problem, we treat the

viscous terms implicitly using an alternating-direction im-

plicit scheme. In the method, three one-dimensional implicit

equations are obtained, which are solved directly by a

tridiagonal matrix solver. The velocity is not divergence-free

at the end of the advection-diffusion step. The Poisson

equation is then solved to obtain pressure at the next time

level. Using the new pressure, the velocity field is corrected

to make it divergence-free. To reduce expensive computa-

tion, the Poisson equation is Fourier-transformed in the

periodic direction yielding a set of one-dimensional decou-

pled PDEs, which is directly inverted to obtain pressure.

Details of the time-step scheme are given in Bagchi and

Balachandar (31).

The accuracy of the simulations depends on the resolu-

tion of the Eulerian and Lagrangian grids. A detail study of

the resolution and validation of the computational model are

given elsewhere and not repeated here (32). In deciding the

resolution, we make sure that there is a sufficient number of

Eulerian points within each cell area, and in the region

between two adjacent cells. Typically, for a circular cell,

;25 Eulerian points per diameter are found to be sufficient

(33).

The resolution used in the present simulations is given in

Table 1. It varies from 1293 128 Eulerian grids for a 20-mm
channel to 2049 3 2048 grids for a 300-mm channel. The

Lagrangian resolution varies from 128 to 512 marker points

per cell. The Lagrangian resolution is increased as the cell

deformability increases to ensure that strong curvatures in

the cell shape are well resolved. The requirement for a high

Eulerian resolution renders some of our computations very

expensive, even in two dimensions. Efficient algorithm

based on fast Fourier transform, and OpenMP paralleliza-

tion, have been implemented to speed up the computation.

The simulation for a 80-mm channel with 501 3 500

Eulerian resolution takes ;50 CPU hours on 1.6 GHz IBM

p690 processors for 50,000 timesteps.

A typical dimensionless time-step size used is ;0.001. In

the present method, the immersed boundaries are advected

explicitly. In many cases, however, the explicit treatment of

the immersed boundary results in more restrictive stability

conditions than the viscous terms of the Navier-Stokes equa-

tions. For the present simulations, this is not the case due to

the specific constitutive law used.

RESULTS

Motion of an isolated RBC

First we describe the motion of a single, isolated RBC in a

parabolic flow in a rectangular channel of H ¼ 40 mm. The

results are shown in Figs. 2 and 3. The initial resting shape of

the cell is biconcave. At time t¼ 0, the cell is located close to

the wall of the channel. As the flow starts, the cell deforms

TABLE 1 Channel size, discharge, and tube hematocrits, and

Eulerian grid resolutions used in the present simulation

Channel size

(H, mm) Hd % Ht %

Number

of RBC

Eulerian

resolution

20 20 12 3 129 3 128

20 30 20 5 129 3 128

20 45 33 7 129 3 128

20 60 48 10 129 3 128

40 10 6.4 5 249 3 248

40 20 13.5 11 249 3 248

40 45 35 28 249 3 248

40 60 50 40 249 3 248

80 10 7.6 32 501 3 500

80 20 15.7 66 501 3 500

80 45 38 160 501 3 500

80 60 54 227 501 3 500

150 20 18 251 1025 3 1024

150 45 43 600 1025 3 1024

150 60 57 800 1025 3 1024

300 45 44 2500 2049 3 2048
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and moves longitudinally along the flow direction as well as

laterally normal to the flow. Three cases are simulated to

study the role of cell deformability: case a, a normal RBC at

E* ¼ 0.2 and EB* ¼ 0.0005; case b, a less deformable RBC

with E* ¼ 0.02 and EB* ¼ 0.002; and case c, a RBC with

reduced membrane resistance (E* ¼ 1.0, EB* ¼ 0.0005).

As shown in Fig. 2, the RBC in cases a and b undergoes

significant deformation during its motion in the parabolic

flow through the channel. A normal cell, as in case a,
repeatedly attains biconcave shape and elliptic shape. The

biconcave shape is attained when the major axis of the cell is

aligned nearly normal to the flow direction. The elliptic

shape is attained when the major axis is between 0� and 45�
with the flow direction. At reduced membrane resistance, as

in case c, the biconcave shape is completely lost, and the cell

attains a nearly elliptic shape. For the less deformable cell, as

in case b, no significant deformation is observed, and the cell

maintains the biconcave shape throughout its motion.

For an RBC placed in a shear flow, two modes of motion

have been observed by previous researchers, both experi-

mentally and computationally: tank-treading motion and

tumbling motion (14,18,34,35). In the tank-treading mode,

the cell membrane and the interior liquid undergo steady

rotary motion while the cell maintains a fixed orientation

with the flow. In the tumbling motion, the cell flips like a

rigid body. The transition from tank-treading to tumbling

motion occurs as the deformability of cell decreases. Our

results in Fig. 2 reproduce these earlier observations. For the

RBC with reduced membrane resistance, as in case c, only
tank-treading motion is observed. In the figure, an arbitrary

point on the cell surface is marked to show the tank-treading

motion. For the less deformable RBC, as in case b, only
tumbling motion is observed. On the contrary, for the normal

RBC, as shown in case a, simultaneous tumbling and tank-

treading motions are observed. The frequency of tumbling

motion increases as the deformability decreases.

For all cases considered, the RBC is observed to migrate

laterally away from the wall toward the center of the channel

under the action of the parabolic flow. The lateral position of

the center of the RBC is shown in Fig. 3 a. In general, the

migration is a very slow process; for the normal RBC, the

cell travels only 10 mm in the lateral direction while moving

nearly 2500 mm in the longitudinal direction. The rate of

migration depends on the deformability of the cell. Rate of

FIGURE 3 (a) The x-y trajectory, (b) longitudinal velocity, and (c) lateral velocity of the cells shown in Fig. 2. (��� ���) Normal cell (case a in Fig. 2); (——)

less deformable cell (case b); (- - - -) cells with reduced membrane resistance (case c).

FIGURE 2 Motion of an isolated RBC in parabolic flow

through a 40-mm channel. The flow is from left to right and

the center of the channel is shown by (- � - � - � -). (a)
Normal, deformable RBC; (b) less deformable RBC; and

(c) RBC with reduced membrane resistance. A point on the

cell surface is shown to illustrate the tank-treading motion.
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migration is lower for the less deformable RBC as in case b
than in cases a and c in Fig. 2. Interestingly, we also observe
that the migration rate is higher for the normal cell, as in case

a, than that for a cell with reduced membrane resistance, as in

case c. Note that the normal RBC in case a performs both

deformation and tumbling motion. On the contrary, no tum-

bling motion is seen in case c. The results suggest a possible
coupling between deformation and the tumbling motion,

which results in a higher migration rate in case a.
The longitudinal and the lateral velocity components of

the RBC are shown in Fig. 3, b and c. Clearly, the lateral

component is an order-of-magnitude less than the longitu-

dinal component. The velocity components, as well as the

lateral position, show fluctuations for the normal cell and

the less deformable cell. These fluctuations arise due to the

tumbling motion. The lateral velocity may become period-

ically negative due to the tumbling motion as in the case of

the less deformable cell. Within one cycle of oscillation, the

migration velocity becomes maximum when the cell is

aligned nearly at 45� with the flow, and minimum at 135�.
Oscillation increases with decreasing deformability.

The above results represent the dynamics of a red blood cell

in a dilute suspension flowing through a conduit. The results

presented here on the lateral migration of the RBC agree with

the glass tube experiments (14). Clearly, the present compu-

tational model is able to capture the general dynamic behavior

of a red blood cell in a parabolic flow, particularly the tank-

treading and tumbling motion, and the lateral migration. As

mentioned before, the lateral migration leads to the formation

of the cell-free layer, which serves as the primary mechanism

for the Fahraeus-Lindqvist effect. In a nondilute suspension,

the presence of many RBCs affects the motion of individual

cell, and the formation of the cell-free layer. It is of interest in

the next section to study how the motion of individual cell is

affected in presence of neighboring cells.

It should be noted that according to Keller and Skalak

(35), an ellipsoid with an internal-to-external viscosity ratio

of 5 would tumble rather than rotate even at high shear rate.

The results in Fig. 2 c may appear to be in contrast to their

result. In Keller and Skalak (35), the particles are non-

deformable. For a deformable cell, the transition from flip-

ping to tank-treading motion also depends on the aspect

ratio of the cell, and hence the extensional resistance of

the membrane. Note that the neo-Hookean model used here

for the cell membrane does allow continuous extension of

the membrane with increasing shear rate. Ramanujan and

Pozrikidis (36) considered the large-deformation of ellipsoi-

dal and biconcave capsule in shear flow using neo-Hookean

model, and showed that at viscosity ratio of 5, an ellipsoidal

cell performs only oscillatory motion rather than a flipping

motion. Their result indicates that the ellipsoid is eventually

likely to achieve a steady orientation. The biconcave discoid

however showed a flipping motion. If the initial shape is

spherical, the deformed ellipsoidal cell does not show even

an oscillatory motion at viscosity ratio 5.

As far as the deformation of a cell is concerned, the

viscosity ratio and the elastic resistance of the cell membrane

contribute in the same way. That is, an increase in any of

these two parameters would cause less deformation. Since

high viscosity ratio causes transition from tank-treading to

flipping motion, so likely does the higher membrane resis-

tance. Thus allowing the membrane deformability, which is

neglected in Keller and Skalak (35), may delay the transition

from tank-treading to flipping motion only to a viscosity

ratio .5. In fact, if membrane deformability is allowed, as

done in our article, the cell would elongate more at a given

viscosity ratio. Keller and Skalak (35) mentioned that

increasing the elongation promotes a stationary orientation

of the cell. Thus, the result in Fig. 2 c is not completely in

opposite to that of Keller and Skalak (35).

Motion of RBC suspension

We now present the results on the simulation of suspension

of multiple red blood cells. As mentioned before, the size of

the vessel ranges from H ¼ 20–300 mm, and the discharge

hematocrit Hd ¼ 10–60%. The number of red blood cells

considered in our simulations varies from 5 to 2500. Note

that in the simulations, discharge hematocrit is not directly

specified. Instead, we specify the tube hematocrit Ht that

varies from 6 to 57%. In Table 1, we have listed the

discharge hematocrit, corresponding tube hematocrit, and

the number of RBCs in various numerical experiments

considered here. In the subsequent results, both tube and

discharge hematocrits are mentioned. For a given discharge

hematocrit, the tube hematocrit is first obtained as (3)

Ht

Hd

¼ Hd 1 ð1� HdÞ½11 1:7 e
�0:35D � 0:6 e

�0:01D�; (18)

where D [ H is the tube diameter. Once the tube hematocrit

is obtained, the number of red blood cells within the com-

putation domain is found by knowing the cell volume (or,

area, in two dimensions). The computation domain is a

square segment of the channel. The initial shape of the cells

is biconcave, and the cells are initially distributed in a

random manner throughout the domain. The flow starts at

time t ¼ 0 under a constant pressure gradient. In the

simulations, the velocity and pressure fields of the fluid, and

the coordinates, shapes, and velocity of the cells are stored at

frequent time intervals. Instantaneous distributions of the red

blood cells in the vessels are shown in Figs. 4–7 for a few

representative cases. Simulations are performed over suffi-

cient time so that quasi-steady state is reached.

Shown in Fig. 4 are the results for a 20-mm channel. Three

different cases are considered here: suspension of 1), normal

RBCs at Ht ¼ 20% (Hd ¼ 30%); 2), normal RBCs at Ht ¼
48% (Hd ¼ 60%); and 3, less deformable RBCs at Ht ¼
20% (Hd ¼ 30%). Time evolution of the cell distribution is

shown in the figure, and a few cells are marked by numbers.
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First consider case a, for normal RBCs at Ht ¼ 20%. As the

flow develops, the cells migrate toward the center of the

channel, and the regions near the walls become devoid of

RBCs. However, continuous lateral migration is prevented

due to the presence of the neighboring cells. A balance

between the hydrodynamic interactions among the cells and

lateral migration of individual cell is attained, and a cell-free

layer near the wall develops. Significant deformation of the

RBCs is observed. Nearly all cells lose their biconcave

shape. Unlike the case of a single, isolated RBC as con-

sidered in the previous section, none of the cells in sus-

pension performs tumbling motion. The repeated emergence

of the biconcave and elliptic shapes as observed before are

also not seen here. However, the shapes are changing con-

tinuously due to the interaction with the neighboring cells.

The RBCs near the center assume slipper shapes, whereas

those further away from the center assume nearly elliptic

shapes. The slipper shapes of the RBCs in vessels of this

range of size have been observed in experiments and pre-

vious numerical simulations (6,37).

When the tube hematocrit is increased to Ht ¼ 48% (Hd ¼
60%), the cells are more evenly distributed across the

channel. The cell-free layer is not well developed. The con-

tinuously changing shapes of the cells are still observed,

although the slipper shape near the center is less common

now. For less deformable RBCs at Ht ¼ 20%, as in case c,

FIGURE 4 RBC suspension in a 20-mm channel. (a) Normal RBC at Ht ¼ 20% (Hd ¼ 30%); (b) normal RBC at Ht ¼ 48% (Hd ¼ 60%); and (c) less

deformable RBCs at Ht ¼ 20% (Hd ¼ 30%). For each case, three time instances are shown. The mean velocities are (a) 7.5 mm/s; (b) 3.5 mm/s; and (c) 4.7 mm/s.

The third plots for panels a–c represent ;500 ms after the onset of flow.
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the initial biconcave shape of individual cell is retained

through the simulation. The tumbling motion of the cells is

evident here. Tumbling motion results in a higher dispersion

of the cells. As a result, the cell-free layer near the wall is

reduced compared to that for the normal RBCs at the same

Hd. The interface between the cell-free and cell-rich regions

is also not well defined due to the cell-cell interaction.

The results for normal RBCs in 80- and 150-mm channels

are shown in Fig. 5, while those in 300-mm channel are

shown in Fig. 6. In these figures, discharge hematocrit is

kept constant at Hd ¼ 45%. The tube hematocrits are 38%,

43%, and 44%, respectively. As the vessel size increases,

the slipper shape of individual RBC is no longer observed.

However, deformation of red blood cells is evident in all

cases. The figures show that the cells near the wall deform

more and lose their biconcave shape, whereas the cells

near the center deform less and retain the biconcave shape.

This behavior is expected, since the fluid shear rate de-

creases from the wall toward the center. Tumbling motion

of the cells appears to be suppressed. Most cells near the

wall are aligned at an angle with the flow direction, whereas

the cells near the center are nearly vertical or parallel to

the flow.

The results for less deformable cells are shown in Fig. 7

for 80- and 150-mm channels. As expected, less deformable

cells retain their biconcave shape, and perform the tumbling

motion. The tumbling motion is stronger for the cells located

near the wall than those located near the center. This obser-

vation is consistent with the hydrodynamic theory of particle

motion in shear flow. The rate of tumbling is proportional to

the shear rate of the fluid, which decreases from the wall

toward the center of the vessel. However, due to higher

hematocrit, tumbling motion is not as strong as that of an

isolated RBC as was observed in Fig. 2 b. In general, the

direction of the tumbling motion of individual cells in

suspension matches with that of an isolated cell. In the lower

half of the vessel, the cells tumble in the clockwise direction,

whereas in the upper half they tumble counterclockwise,

in accordance with the direction of vorticity of the flow.

However, in some cases, strong cell-cell interaction is

observed to reverse the direction of rotation. The tumbling

motion combined with the cell-cell interaction results in

random orientation of the cells across the channel.

FIGURE 5 Suspension of normal RBCs at Hd ¼ 45% in (a) 80-mm

channel, and in (b) 150-mm channel. The tube hematocrits are 38% and 43%,

respectively. The computation domain contains 160 cells in panel a and 600
cells in panel b. Mean velocities are (a) 5 mm/s, (b) 6.5 mm/s. The figures

represent ;300 ms after the onset of flow.

FIGURE 6 Suspension of normal RBCs in 300-mm channel at Hd ¼ 45%

(Ht ¼ 44%). A total of 2500 cells are simulated in the computation domain

as shown above. Mean velocity is 12 mm/s. The figure represents ;150 ms

after the onset of flow.
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It should be noted that in experiments with flowing RBC

suspension, the biconcave shape is usually not observed. In

the present simulations, we have considered both normal

and hardened cells. The hardened cells, as considered in

Fig. 7, are expected to retain the biconcave shape due to

the high bending-resistance values used to model them. The

normal cell, after sufficient simulation time, would lose its

biconcave shape. This is evident in Fig. 4, a and b. In Fig. 5,
most cells near the channel wall lose the biconcave shape

due to local high shear rate. However, these cells are tum-

bling also. So their shape repeats between biconcave and

elliptic shapes, as it was observed for an isolated cell in

Fig. 2 a. As for Fig. 6, the simulation is performed for a short

time, since this case is computationally expensive. The

two-dimensionality of the problem can also affect the cell

shape as a real three-dimensional cell would deform more

easily and may lose the biconcave shape on a shorter time-

scale than a two-dimensional cell.

RBC trajectory and velocity traces

In our simulations, the position and velocity of all red blood

cells are tracked in time. These data allow us to study the

trajectory and instantaneous velocity of individual red blood

cell in the suspension. The trajectory of a few cells are

shown in Figs. 8 and 9, and the velocity traces are shown

in Fig. 10. The cells were tracked over a longitudinal dis-

tance that ranges from 500 to 2000 mm, depending on the

specific simulation. As evident in the figures, individual

red blood cells exhibit fluctuations in lateral position and

velocity. Fluctuations arise due to the tumbling motion of

individual cells as well as from interaction with neighbor-

ing cells.

First consider a 40-mm channel with normal RBCs, for

which three different hematocrits are considered in Fig. 8:

case a, Hd ¼ 10%; case b, Hd ¼ 20%; and case c, Hd ¼ 60%.

The corresponding tube hematocrits are 6.4, 13.5, and 50%.

In case a, lateral migration of the red blood cells initially

located close to the wall is observed. However, the rate of

migration of a cell in the suspension is much lower than that

of an isolated RBC possibly due to cell-cell interaction.

Moreover, unlike an isolated cell, the cells in suspension do

not migrate continuously. Rather, the trajectories show

random fluctuations due to the cell-cell interaction. A

comparison of the three cases shows that the fluctuations

in the RBC trajectory depend on the hematocrit. For case a at
Hd ¼ 10%, oscillations in the trajectory are similar to those

observed previously in Motion of an Isolated RBC for an

isolated red blood cell. Such small-amplitude, low-frequency

fluctuations are due to the tumbling motion of individual

cells. The cell-cell interaction is less in this case of low Hd.

As Hd increases to 20%, as in case b, the trajectory becomes

more erratic. Large amplitude but less frequent fluctuations

are observed which are due to the increased interaction

between the cells. Upon further increase of Hd to 60%, small

amplitude frequent fluctuations are nearly suppressed. At

this higher hematocrit, the cells move in a nearly stacklike

manner. The tumbling motion of individual cells is nearly

inhibited, and the fluctuations result mostly from the cell-cell

interaction.

The effect of increasing channel size is shown in Fig. 9 d
where the 150-mm channel at Hd ¼ 20% (Ht ¼ 18%) is

considered. Note that for this vessel, only half of the cross

section is shown. A slow migration of the cells away from

the wall is observed. Fluctuations in the lateral position of the

cells indicative of the tumbling motion of individual RBC

and cell-cell interactions are observed. In Fig. 9 a we show

the effect of increasing hematocrit while channel size is kept

constant at 150 mm. The fluctuations in the lateral position

FIGURE 7 Suspension of less deformable RBCs at Hd ¼ 45% in (a)
80-mm channel and (b) 150-mm channel. The tube hematocrits are 38% and

43%, respectively. The computation domain contains 160 cells in panel a

and 600 cells in panel b. Mean velocities are (a) 3.6 mm/s and (b) 4.9 mm/s.

The figures represent 300 ms after the onset of flow.
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appear to diminish at Hd ¼ 45% (Ht ¼ 43%). Finally, for the

300-mm channels as shown in Fig. 9 b for Hd ¼ 45% (Ht ¼
44%), fluctuations in the trajectory are significantly reduced,

and the cells appear to move in a stacklike manner.

The results for less deformable RBCs in a 40-mm channel

are shown in Fig. 9, c and d, for Hd ¼ 20 and 60%, re-

spectively. The tube hematocrits are 13.5 and 50%, respec-

tively. The trajectory at 20% hematocrit now shows more

FIGURE 8 Trajectory of normal red blood cells in suspension flowing

through a vessel. Panels a–c represent a 40-mm channel at Hd ¼ 10, 20, and

60%, respectively. Corresponding tube hematocrits are 6.4, 13.5, and 50%.

(d) 150-mm channel at Hd ¼ 20% (Ht ¼ 18%). For panel d, only half of the

channel is shown.

FIGURE 9 Trajectory of red blood cells in suspension flowing through a

vessel. (a) Normal cells in a 150-mm channel at Hd ¼ 45% (Ht ¼ 43%); (b)
normal cells in a 300-mm channel Hd ¼ 45% (Ht ¼ 44%); (c) less

deformable cells in a 40-mm channel at Hd ¼ 20% (Ht ¼ 13.5%); and (d)

fewer deformable cells in a 40-mm channel at Hd ¼ 60% (Ht ¼ 50%). In

panels a and b, only half of the channel is shown.
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erratic behavior compared to those for the normal RBCs.

This behavior can be explained based on the results pre-

sented in the previous sections. A less deformable cell

performs a strong tumbling motion, which can significantly

affect the motion of the neighboring cells, resulting in

more chaotic trajectory. Interestingly, some cells are seen to

move toward the wall of the vessel, rather than the center.

This anomalous behavior is due to the dispersion of the

RBCs resulting from a strong cell-cell interaction. At higher

hematocrit, as shown in Fig. 9 d, the tumbling motion is

again inhibited, and the cells appear to move in nearly

straight lines as in the case of normal RBCs.

The velocity traces of the RBCs in a 40-mm channel are

shown in Fig. 10 for three cases: case a, normal RBCs at

Hd ¼ 20% (Ht ¼ 13.5%); case b, normal RBCs at Hd ¼ 60%

(Ht ¼ 50%); and case c, less deformable RBCs at Hd ¼ 20%

(Ht ¼ 13.5%). In the figure, cells with higher velocity are

flowing closer to the center. Oscillations in the velocity

traces are larger than those observed earlier for isolated red

blood cell. The increased oscillation is due to the cell-cell

interaction in the suspension. The oscillations significantly

increase as the cells lose deformability, implying increased

dispersion due to cell-cell interaction.

Statistics on RBC motion

Root mean-square (RMS) of the fluctuations in the lateral

position, and the coefficient of variation (CV) of velocity can

be obtained for each red blood cell in the simulations. These

quantities are defined as

RMS ¼
Z t

0

ðyðtÞ � yÞ2 dt=T
� �1=2

; (19)

and

CV ¼
R t

0
ðvðtÞ � vÞ2 dt=T� 	1=2

v
3 100%; (20)

where y(t) and v(t) are the lateral location and velocity of

the center of a red blood cell at any time instant, y and v are
their mean, and T is the time window over which data is

collected. Typically, the RMS and CV are computed over a

time in which the cells travel a longitudinal distance of 500–

2000 mm. Averages on cell statistics are often done using

.300 instantaneous measurements.

RMS fluctuations in lateral positions of the red blood cells

are shown in Fig. 11 for 40- and 80-mm channels, and for

Hd ¼ 10–45%. The corresponding tube hematocrits are also

mentioned in the figure. The numerical results are compared

with the in vivo results (2). In Bishop et al. (2), the velocity

and positions of red blood cells were measured in venules

(45–75 mm diameter) of the rat spinotrapezius muscle. The

numerical results in the figure are shown using various

symbols corresponding to different vessel size and hemat-

ocrit. For the results of Bishop et al. (2), only the range of

their data is indicated. The range of RMS lateral positions

reported in Bishop et al. (2) is;1.5–2.5 mm. In comparison,

our numerical results yield a range of 0.5–3 mm. We also

observe that the RMS values show a weak dependence on the

vessel size. The RMS of fluctuations in the 80-mm channel is

higher than that in the 40-mm vessel. While no universal

pattern in the RMS fluctuation is observed, the results for

H ¼ 40 mm and Hd ¼ 10 and 20% show that the RMS is

higher near the center of the channel, and lower near the wall.

At 45% hematocrit, on the contrary, the RMS near the center

is lower than that near the wall.

The CV of velocity is plotted in Fig. 12. Here also we

compare the simulation results with the in vivo data (2). The

simulation results show the similar pattern as observed in the

in vivo data: the value of the CV is higher near the wall of

FIGURE 10 Velocity traces of red blood cells in suspensionflowing through

a 40-mmchannel. (a) Normal cells atHd¼ 20% (Ht¼ 13.5%); (b) normal cells

at Hd ¼ 60% (Ht ¼ 50%); and (c) less deformable cells at Hd ¼ 20% (Ht ¼
13.5%). Mean velocity of whole blood for various cases can be found from

Table 2. The velocity of RBCs is scaled with the centerline velocity.
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the vessel, and lower near the center. The in vivo data for

Hd ¼ 45% is in the range 12–22%, while the simulation data

is in the range 8–16%, and 4–8% for Hd ¼ 20% and 60%,

respectively. The CV decreases with increasing hematocrit

due to the reduced tumbling motion and cell-cell interaction

in an increasingly close-packed arrangement. In Fig. 12, we

also show the CV for the less deformable cells, which yield a

higher range of 18–24%. This result is expected based on

our earlier observation on the velocity traces for the less

deformable RBCs.

Plug-flow profile

Due to the random motion of the red blood cells, the veloc-

ity of the bulk fluid is constantly changing in time. The

velocity data over the entire computational domain is stored

at frequent intervals during the simulation. They are post-

processed to obtain the average velocity profile of blood. The

mean velocity profile is obtained by averaging nearly 300

instantaneous measurements, and over all grid points along

the x direction.
The time-averaged velocity profiles are shown in Fig. 13

for 20–300-mm channels. The mean velocity (averaged over

the cross-section) in dimensional form for various cases is

given in Table 2. Also shown is the parabolic profile of the

Poiseuille flow, which occurs in pure plasma in absence of

the cells for the same pressure gradient. The effect of vessel

size, hematocrit, and RBC deformability on the velocity

profile is studied here. Consider first the 20-mm channel in

Fig. 13 a, for which three different discharge hematocrits

(20, 45, and 60%) are shown. The values of the tube

hematocrits can be found from Table 1. In presence of the

RBCs, the plug-flow profile can be seen which is character-

ized by a nearly constant velocity near the center of the

channel. As discharge hematocrit increases, the plug-flow

profile becomes more prominent, and extends toward the

wall. The maximum centerline velocity rapidly decreases

with increasing hematocrit. Also shown is the velocity

profile of the blood with less deformable RBCs. Significant

reduction is observed in the centerline velocity compared to

that with the normal RBCs at the same Hd.

The results for 40- and 80-mm channels are shown in Fig.

13, b and c, respectively. Again, the effect of hematocrit and

cell deformability is shown. Overall similar behavior of the

mean velocity is seen here as in the 20-mm channel. The

centerline velocity decreases with increasing Hd and de-

creasing cell deformability. In the 40-mm channel, the

centerline velocity in presence of less deformable cells at

Hd ¼ 60% is only 20% of Ucl. However, unlike the 20-mm
channel, the plug-flow profile is not very prominent for the

larger channels. For the 40-mm channel, the profiles are blunt

with reduced centerline velocity for Hd ¼ 20%. A plug-flow-

like profile is observed only at higher Hd. Same is the case

for 80-mm channel; at low Hd, the velocity profile is nearly

parabolic, and at higher Hd, it is plug-flow type.

The results for 150- and 300-mm channels are shown in

Fig. 13 d. The plug-flow profile is clearly absent in these

larger vessels. The velocity profiles appear to be nearly

parabolic, but with significantly reduced centerline velocity.

The numerical observation here is in agreement with the in

vivo observation (1,2) and analytical prediction (13). In

Bishop et al. (1,2), a fully plug-flow profile was not seen for

FIGURE 12 Coefficient of variation of red blood cell velocity in a 40-mm

channel. Symbols are the present numerical simulations. Thick lines are the

best fit through the numerical data. Thin line is the best fit from experimental

results (2).

FIGURE 11 RMS fluctuations in lateral position of red blood cells in sus-

pension. Symbols are present numerical simulations. Range of data obtained

from the experiments (2) is also shown.
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normal blood in 45–75 mm venules at Hd ¼ 40–50%.

However, the profiles were blunt with reduced centerline

velocity as observed here. The in vivo data (1,2) were fit with

the equation u/Umax ¼ 1 – (r/R)K. Here the exponent K ¼ 2

gives a parabola. When K . 3, a clear plug-flow profile is

obtained. In the experiments (1,2) for normal blood, K lies

between 2.1 and 2.2 indicating a blunt profile with reduced

centerline velocity. The present numerical data were fit with

u/Umax ¼ 1 – (r/R)K. It is observed that the numerical data

also produce the value of K in the same range as in Bishop

et al. (1,2). Sharan and Popel (13) showed that the bluntness

of the velocity profile decreases with increasing vessel size

and decreasing Hd, in agreement with our numerical results.

Cell-free layer

As discussed earlier, the major factor that contributes to the

Fahraeus-Lindqvist effect is the formation of a cell-free layer

near the wall of a vessel. Since deformability of the cells is

taken into consideration in our computational model, the

formation of the cell-free layer can be directly studied.

Knowledge about the thickness of the cell-free layer is

important, since in many two-phase models of blood flow it

is taken as an empirical constant. Note that in our simula-

tions, the red blood cells are initially distributed in a random

manner throughout the vessel. As the flow starts, individual

cells migrate away from the wall of the channel due to the

effect of hydrodynamic shear. However, interaction from the

neighboring cells also affects their motion. The cells are

repeatedly dispersed toward the wall by such interaction.

Eventually a quasi-steady state is reached, and the cell-free

layer is formed under a balance of the shear-induced migra-

tion and cell-cell interaction.

To obtain the cell-free layer, we first calculate the cell

number density distribution across the channel. Following

Durlofsky and Brady (38) and Zhou and Pozrikidis (39), we

divide the channel into several horizontal zones, count the

number of cells in each zone, and normalize by the total

number of cells. The instantaneous results are then averaged

over time. The interface between the cell-free and cell-rich

layers is identified as when the number density reaches zero

closest to the wall. The thickness of the cell-free layer as

obtained from our simulations is presented in Fig. 14. Here the

dimensionless thickness d/(H/2), where d is the dimensional

FIGURE 13 Average velocity profile

of blood. Dotted line is the parabolic

flow. Thick lines represent suspension

of normal, deformable RBCs, and thin

lines represent suspension of less de-

formable RBCs. (– – – –) Hd ¼ 20%;

( – � – � –) Hd ¼ 45%; and (– � � – � � –)
Hd ¼ 60%. In plot d, the solid line

represents the 300-mm channel at Hd ¼
45%. The corresponding tube hemato-

crit can be found from Table 1. Mean

velocities are listed in Table 2.
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thickness, is plotted. The effect of vessel size, hematocrit,

and cell deformability on the cell-free layer thickness is

presented. The in vitro data from Bugliarello and Sevilla (4)

and the analytical prediction by Sharan and Popel (13) are

also presented, and they show good agreement with the

numerical data. The dimensionless thickness of the cell-free

layer decreases with increasing vessel size, and increasing

hematocrit. For a 20-mm channel with Hd ¼ 20%, the cell-

free layer covers almost half of the channel. For a 150-mm
channel at Hd ¼ 10%, the layer covers only 10% of the cross

section. A significant decrease in the cell-free layer is ob-

served for blood with less deformable RBCs. At 20% he-

matocrit, the layer occupies only ;10% of the cross section

in a 40-mm vessel.

Apparent viscosity of blood

Since in a microvessel, blood does not behave as a Newto-

nian fluid, the viscosity of the whole blood is expressed in

terms of an apparent viscosity, which is defined as

mapp ¼
p

128

DPD
4

QL
; (21)

where D is the tube diameter, Q is the volumetric flow rate,

and DP/L is the pressure gradient. The apparent viscosity

depends on the hematocrit, and vessel size. The Fahraeus-

Lindqvist effect refers to the decrease in mapp as the vessel

size decreases from 500 to 10 mm. In dimensionless form, a

relative apparent viscosity is expressed as

mrel ¼
mapp

mp

¼ Qp

Q
; (22)

where Qp is the flow rate of the parabolic (Poiseuille) flow in

absence of the cells.

The relative apparent viscosity computed from the pres-

ent simulations is shown in Fig. 15 for the diameter range

20–300 mm, and hematocrit rangeHd¼ 20–60%. The results

from our simulations are compared with the experimental

results given in Pries et al. (3). Based on a comprehensive

database for viscosity of blood in narrow glass tubes, Pries

et al. (3) gave an empirical expression that takes into account

both the effect of vessel diameter and hematocrit. Relative

viscosity obtained using their expression is shown in the

figure as three solid lines representingHd¼ 20, 45, and 60%.

The numerical results are shown using symbols, which agree

very well with the experimental fit of Pries et al. (3). The

nonlinear decrease in mrel as the vessel size drops from 300

to 20 mm is correctly reproduced by our simulations. The

increase in mrel with increasing Hd is also correctly predicted

by our simulations. It should be mentioned that mrel in our

simulations appears to be sensitive, though weakly, to the

mean flow velocity Um. In the simulation Um is not specified

a priori, rather it is obtained posteriori. Due to the sensitivity

of mrel to Um, the actual number of simulations performed is

much more than the number of data shown in the figure to

obtain a closest match with the empirical fit of Pries et al. (3).

Local variation of mrel

Flow of blood in microvessels is often described by a two-

phase model (13,40,41). In such models, the tube is divided

into two regions: a cylindrical core region, and an annular

cell-free region. The viscosity of the cell-free layer is usually

taken to be equal to that of the plasma. It is noted in Sharan

and Popel (13) that the interface between the cell-rich core

region and the cell-free layer is not smooth. It is rather rough

FIGURE 14 Dimensionless cell-free layer d/(H/2). Lines are analytical

modeling (13), and open symbols are in vitro data (4). Solid symbols are the

results from the present numerical simulation.

TABLE 2 Mean blood velocity and shear rate in some

representative cases considered in the simulations

Channel size

(H, mm) Hd %

RBC

type

Mean velocity

(mm/s)

Shear

rate (s�1)

20 30 Normal 7.5 375

20 45 Normal 5.7 285

20 60 Normal 3.5 175

20 30 Rigid 4.7 235

40 20 Normal 13 325

40 45 Normal 9.5 237

40 60 Normal 7.2 180

40 20 Rigid 7.9 197

40 45 Rigid 6.5 163

40 60 Rigid 6.0 150

80 20 Normal 7.5 94

80 45 Normal 5.0 63

80 60 Normal 3.2 40

80 45 Rigid 3.6 45

150 20 Normal 10.2 68

150 45 Normal 6.5 43

150 45 Rigid 4.9 33

300 45 Normal 12 40
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due to the presence of the red blood cells. Sharan and Popel

(13) showed that the apparent viscosity in the cell-free layer

is higher than the plasma viscosity. They hypothesized that

this was due to the rough interface.

In reality, the interface between the core region and the

cell-free layer may not be well defined. The RBCs are

continuously dispersed toward the wall due to the hydrody-

namic interaction with neighboring cells, as it was observed

in the present simulations. The interaction also results in

heterogeneous cell distribution. Thus the ‘‘effective’’ viscosity

of blood, defined as m(y)/mp, is expected to vary across the

cross-section of the vessel. Damiano (10) used a semiem-

pirical model in which the effective viscosity is assumed to

decrease from a maximum value in the core to a minimum

value near the wall. The effective viscosity near the wall

corresponds to the plasma viscosity. Subsequently, mPIV
measurements (11,12) provided experimental verification on

such a ‘‘local’’ variation of viscosity across the blood vessel.

The cross-sectional variation of viscosity can be extracted

from the present simulations following the approach described

in Long et al. (12) andDamiano et al. (11). For a two-dimensional

flow of viscous fluid in a channel, with or without cells, the

axial momentum equation can be simplified as

@txy
@y

¼ dP

dx
; (23)

where txy is the shear stress. Since the pressure gradient is

constant, the above equation can be integrated to give

txy ¼ y
dP

dx
: (24)

The constitutive relationship between the local shear stress

and rate of strain can then be invoked as

txy ¼ _gðyÞmðyÞ; (25)

where _gðyÞ and m(y) are the shear rate and blood viscosity

that vary along the cross-section of the channel. The above

two relations give

mðyÞ ¼ y

_g

dP

dx
; (26)

which is used to obtain m(y) in our simulations.

Simulation results on m(y)/mp are shown in Fig. 16. First

we note that m(y) is equal to the plasma viscosity very close

to the wall, and it is higher than the plasma viscosity near the

center of the vessel. This behavior is in agreement with the

assumptions made in the macroscopic two-phase models of

blood as mentioned above. However, over the cross section

of the vessel, m(y) shows a strongly nonmonotonic behavior,

unlike the monotonic variation assumed in Damiano (10).

Most strikingly, m(y) shows a strong peak near the wall. The
exact location and magnitude of the peak depends on the

vessel size and hematocrit. For a 40-mm vessel at Hd ¼ 10%,

the peak occurs at y/H¼ 0.65 with a magnitude of m(y)/mp¼
2.5. The peak moves further toward the wall and the

magnitude increases to m(y)/mp ¼ 19 as the hematocrit

increases to 60%.

Earlier in Fig. 14 we presented the thickness of the cell-

free layer obtained from our simulations. These results can

be used to obtain the location of the interface between the

cell-free layer and the cell-rich core region. The location of

the peak in m(y) as observed in Fig. 16 matches with the

location of the interface between the cell-free layer and the

cell-rich core region. Thus our results suggest that the local

viscosity of blood is the maximum at the interface. This

FIGURE 15 The Fahraeus-Lindqvist effect: the relative viscosity of blood

as a function of vessel size and discharge hematocrit. The three solid lines

represent the empirical expression given in Pries et al. (3) based on in vitro

data. The symbols are the data from the present numerical simulation. The

tube hematocrit values for a channel size are given in Table 1.

FIGURE 16 The variation of local effective viscosity along the wall-

normal direction across the channel. Here y/(H/2) ¼ 0 is the center of the

channel, and y/(H/2) ¼ 1 is the wall. The asterisk denotes less deformable

cells. All other cases are for normal cells.
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result is consistent with the proposition made in Sharan and

Popel (13), that the roughness of the interface results in a

higher local viscosity.

Fig. 16 also shows that as the hematocrit increases, the

location of the peak moves toward the wall. It is because

the cell-free layer shrinks, and the interface moves toward

the wall as Hd increases. The increase in Hd also results in an

increase in the peak magnitude of m(y). It is because the

number of RBCs at the interface increases with increasingHd

resulting in increased roughness of the interface, and hence

higher local dissipation.

From the present results, one can also estimate the effec-

tive viscosity of the cell-free layer mrel, cfl and that of the core

region mrel, core. We note that for a given pressure drop, using

Eq. 26 one can write

mrelðyÞ ¼
mðyÞ
mp

¼ _gpðyÞ
_gðiÞ ; (27)

where mrel(y) is the local variation of relative viscosity across
the channel, and _gpðyÞ is the shear rate variation across the

channel in a Poiseuille flow. The above equation for local

viscosity can be integrated across the channel and then scaled

by the channel size to give the relative apparent viscosity of

whole blood. This method can be viewed as an alternative

way to find the apparent viscosity when the local variation of

viscosity is known. The result is of course the same as the

one obtained directly from Eqs. 21 and 22. Following this

argument, one can say that if the integration of Eq. 26 is

performed over a section of the channel, then the result

would represent the contribution of that section to the

effective viscosity. Thus we compute the relative viscosities

of the core and cell-free layers as

mrel;core ¼
Z l

0

mrelðy�Þdy�; (28)

mrel;cfl ¼
Z 1

l

mrelðy�Þdy�; (29)

where l ¼ 1 � d/(H/2) and y* ¼ y/H. The method is

appropriate in our case since the local variation of viscosity

across the channel is known from the simulation data (Fig.

16). These results are shown in Table 3 for a 40-mm channel

at various Hd. Also shown are the estimates given in Sharan

and Popel (13). First we note that mrel, cfl is.1, implying that

the effective viscosity in the cell-free layer is higher than the

plasma viscosity, as mentioned in Sharan and Popel (13). In

general, our results show that mrel, cfl is,mrel, core. However,

the numerical results give higher values of mrel, cfl than those

predicted by Sharan and Popel (13).

DISCUSSION AND CONCLUSION

This article presents two-dimensional numerical simulation

of blood flow in 20–300-mm channels taking into consid-

eration the particulate nature of blood. The objective is to

study the characteristics of the motion of individual red

blood cell in suspension, and how the collective motion of

many cells leads to the development of the cell free layer,

plug-flow profile, the apparent blood viscosity, and the

Fahraeus-Lindqvist effect. The numerical model is based on

the immersed boundary method, and the red blood cells are

modeled as liquid capsules of biconcave shapes. The cells in

our model are free to deform in an external shear flow. As

many as 2500 cells are considered in the simulation.

Computational simulation of suspension of multiple deform-

able particles is a major challenge. To the best of our

knowledge, this article presents the first computational study

that takes into consideration such a large number of cells and

the cell deformation. Though two-dimensional in nature, the

present simulation can successfully predict many aspects of

the RBC motion and blood flow in microvessels in vitro. The

model also allows us to study the effect of the loss of cell

deformability, as it is the case in many blood disorders, such

as sickle cell anemia.

First, we present results on the dynamics of red blood cells

in dilute suspension, and discuss the tank-treading and

tumbling motion, and the lateral migration. The motion of a

single, isolated red blood cell in a 40-mm channel is studied

at varying degree of cell deformation. A normal, easily

deformable RBC is observed to undergo simultaneous

tumbling and tank-treading motion. A less deformable

RBC, on the contrary, undergoes only tumbling motion. A

normal cell repeatedly attains biconcave and elliptic shapes

during its motion at moderate shear rates. At high shear rates

the RBC loses its biconcave shape, and attains an elliptic

shape oriented at an angle with the flow. The RBC is

observed to migrate laterally away from the wall and toward

the center of the channel. The rate of migration depends on

the deformability of the cell; a normal, deformable cell

migrates faster than a less deformable cell. The rate of

migration also depends on the instantaneous location of

the cell. It is higher when the RBC is located near the

wall, and it decreases as the cell moves closer to the center.

The numerical results on the isolated RBC correspond to the

motion of a cell in a dilute suspension, and are in agreement

with the experimental observation (14).

We then consider the motion of a suspension of red blood

cells flowing through 20–300-mm channels at discharge

hematocrit 10–60%. The number of RBCs considered in a

typical simulation varies from 5 to 2500. The motion of

TABLE 3 Core versus cell-free layer viscosity for

40-mm channel

HD% mrel

mrel, core

(Present)

mrel, cfl

(Present)

mrel, cfl (Sharan

and Popel (13))

10 1.15 1.18 1.02 —

20 1.4 1.42 1.35 1.25

60 2.66 2.7 2.03 1.35
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individual cells in the suspension depends on the channel size,

hematocrit, and cell deformability. In small vessels, the cells

near the center assume a slipper shape. As the vessel size

increases, the slipper shape is no longer seen. In large vessels,

the cells near the wall deform significantly, while those near

the center deform less. Normal cells in a suspension do not

show a significant tumbling motion. Rather, they are mostly

aligned at a regular anglewith the flow. Less deformable cells,

on the contrary, show evidence of tumbling resulting in

increased dispersion of the cells and random alignment.

Tumbling motion is suppressed as the discharge hematocrit

increases.

Individual RBC exhibits fluctuations in its position and

velocity. At low hematocrit, when cell-cell interaction is less,

fluctuations arise due to the tumbling motion of individual

cells, which increase with increasing rigidity. As hematocrit

increases, fluctuations increase due to increased cell-cell

interaction. Upon further increase in hematocrit, fluctuations

are suppressed, as the close-packed cells move in a stacklike

manner. RMS and CV of fluctuations obtained in the sim-

ulations are in good agreement with the in vivo measure-

ment (2).

The effect of vessel size, hematocrit, and cell deformabil-

ity on the plug-flow velocity profile is studied. The presence

of the cells significantly reduces the centerline velocity

compared to the Poiseuille flow. A clear plug-flow profile is

seen for 20-mm vessels, whereas a parabolic, but blunt, pro-

file with a strongly reduced centerline velocity is observed

for vessels of larger size. The bluntness of the velocity profile

reduces with increasing vessel size, and decreasing hemat-

ocrit, in agreement with Sharan and Popel (13). An empirical

fit of the numerical data with the equation u/Umax ¼ 1 –

(y/(H/2))K yields the value of K in the range 2.1–2.2, similar

to that in Bishop et al. (2), for 40–300-mm vessels.

The inclusion of cell deformation in the numerical model

allows us to study the formation of the cell-free layer near the

wall of a vessel. We observe that RBCs in a dense sus-

pension, unlike those in a dilute suspension, do not migrate

continuously toward the center of the channel. The migration

is strongly inhibited by cell-cell interaction as the hematocrit

increases. A cell-free layer is formed under a balance

between the lateral migration of individual cell, and the

dispersive effect of cell-cell interaction. The ratio of the

thickness of the cell-free layer to the vessel size decreases

with increasing vessel size, discharge hematocrit, and cell

deformability. The numerical data is in good agreement with

the analytical prediction (13), and experimental results (4).

The apparent viscosity of blood is computed from the

simulations as a function of vessel size (20–300 mm) and

discharge hematocrit (20–60%). It is in agreement with the

empirical correlation (3) based on in vitro measurements. The

numerical results correctly predict the Fahraeus-Lindqvist

effect. We also study the local variation of the effective

viscosity of blood as a function of the wall-normal direction

across the vessel. The effective viscosity is shown to vary in

a nonmonotonic manner across the vessel. It is equal to the

plasma viscosity close to the wall, and higher near the center.

However, it sharply increases at the edge of the cell-free

layer. The result supports the proposition of Sharan and

Popel (13) that the interface between the cell-free region and

the cell-rich region results in an increased energy dissipation.

As in Sharan and Popel (13), we observe that the effective

viscosity of the cell-free layer is higher than the plasma

viscosity. However, the numerical result gives higher values

of cell-free layer effective viscosity than those given in

Sharan and Popel (13).

It should be mentioned that there are several limitations

to the simulations presented here. First, the simulations are

two-dimensional, while the actual problem of RBC deforma-

tion and cell-cell interaction is inherently three-dimensional.

Also, Eq. 18 is based on empirical fit to the in vitro data, and

is not strictly applicable to the two-dimensional case. For a

given discharge hematocrit, the tube hematocrit depends on

the velocity profile and the distribution of red blood cells.

Thus the results presented here must be taken cautiously

while comparing quantitatively with experiments. Neverthe-

less, the article is a significant improvement in computational

modeling of blood flow in small vessels in comparison to the

previous studies (22), which considered two-dimensional

simulations of rigid ellipsoids as models for RBC, and up to

a few tens of cells in number. The present study takes the

mesoscale simulation of blood flow to the next level of

improvement by considering the deformability of the RBC

using a simple model and O(103) cells in number. A fully

three-dimensional simulation of multiple RBC motion is

computationally very challenging, and is not forthcoming.

The second limitation of the RBC model is that it does

not include the viscous resistance of the cell membrane. The

viscosity mm of the RBC membrane is ;0.001 dyn s/cm

(42). Two dimensionless parameters can be formed using

mm. First is mm/mpa, which is ;100 for a normal RBC. The

second parameter, also called Deborah number (43,44), is

defined as mm _g=Es. For the present case, the Deborah number

is more relevant than the first parameter, as it represents the

ratio of the viscous resistance to the elastic resistance of the

cell membrane. For a shear rate in the range 1–100 s�1, this

number ranges from 0.01 to 1, implying that the viscous

resistance is less or of the order of, but not significantly

higher than, the elastic resistance. In an earlier article (32),

we have performed numerical experiments using one and

two RBCs by including viscoelasticity in our model. This

requires an additional body force term, like F in Eq. 2, in

the Navier-Stokes equation. Our previous simulations sug-

gest that inclusion of viscoelasticity does not significantly

alter the results for the current parametric range of interest

(32).

The agreement between the computational and experi-

mental results for apparent viscosity is rather remarkable and

probably coincidental given the two-dimensional nature of

the simulations, while the predicted values of the cell-free
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layer are smaller than those reported in the experiment of

Bugliarello and Sevilla. We note that while there is abundant

experimental data available on the apparent viscosity of

blood in narrow tubes, relatively fewer articles report data on

the cell-free layer thickness. The error bar for the experi-

mental data of Bugliarello and Sevilla is rather large. The

impact of the cell-free layer thickness is different in a tube

flow than in a two-dimensional channel. The relative vis-

cosity based on the two-layer model of blood flow in a tube is

given by (6)

mrel ¼
1

1� l
4ð1� mp=mcoreÞ

: (30)

For a two-dimensional channel, the exponent of l is 3

instead of 4. It should also be mentioned that the cell-free

layer viscosity may not be equal to the plasma viscosity, as

our simulations show. Further, the cell-free layer viscosity

and the core viscosity may not be identical in tube and

channel flows, and hence they may contribute differently in

circular and rectangular geometry.

Further, the neo-Hookean law used to represent the RBC

membrane in our model allows continuous stretching of the

membrane as the shear rate increases. The real membrane

behaves as a nearly incompressible surface, and the RBC

deforms without area stretching. Thus above a shear rate, the

cells are maximally deformed, and the effective viscosity is

independent of the shear rate. Our two-dimensional model

does not capture this behavior as the cells continue to

elongate with increasing shear rate. Alternatively, one can

consider the variation of effective viscosity with increasing

tube diameter. The effective viscosity is independent of the

tube diameter beyond ;600 mm. Simulating blood flow in

vessels of this size using our model is computationally very

expensive. However, the asymptotic trend in effective

viscosity as shown in Fig. 15 suggests that our model would

correctly predict that the effective viscosity is independent of

the channel size for larger channels.

The new contribution of the article is that it takes the

mesoscale simulation of blood flow to the next step by

including deformability of the cells and a large number of

them. Specific new results include the effect of less de-

formable (e.g., sickle) RBC on the statistics of the motion,

and cell-free layer thickness, apart from the local variation of

the viscosity. The simulation tool can be applied to a number

of other problems related to microcirculation. One example

is margination, rolling, and adhesion dynamics of white

blood cells under varying hematocrit and channel size in

presence of normal and sickle RBC suspension. The model

can also be extended to consider aggregation of red blood

cells (32), dispersion of platelets, solute, and drug particles

by random motion of the RBCs.

We greatly acknowledge computational support on the IBM p690 at the

National Center for Supercomputing Applications at Urbana, Illinois.
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