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SUMMARY

As acute infections resolve, effector CD8+ T
cells differentiate into interleukin-7 receptorlo

(IL-7Rlo) short-lived effector cells (SLECs) and
IL-7Rhi memory precursor effector cells (MPECs)
capable of generating long-lived memory CD8+

T cells. By using another SLEC marker,
KLRG1, we found that KLRG1hi effector cells be-
gan appearing early during infection and were
committed to downregulating IL-7R. Unlike
IL-7Rhi MPECs, KLRG1hi IL-7Rlo SLECs relied
on IL-15, but IL-15 could not sustain their long-
term maintenance or homeostatic turnover.
The decision between SLEC and MPEC fates
was regulated by the amount of inflammatory
cytokines (i.e., IL-12) present during T cell prim-
ing. According to the amount of inflammation,
a gradient of T-bet was created in which high
T-bet expression induced SLECs and low ex-
pression promoted MPECs. These results eluci-
date a mechanism by which the innate immune
system sets the relative amounts of a lineage-
determining transcription factor in activated
CD8+ T cells and, correspondingly, regulates
their memory cell potential.

INTRODUCTION

In response to acute viral or bacterial infections, antigen-

specific CD8+ T cells rapidly expand and differentiate

into effector cells to help clear infection. Subsequently,

most effector cells die, leaving behind a few memory

CD8+ T cells that protect from reinfection. Conceptually,

effector CD8+ T cells can be divided into at least two sub-

sets, memory precursor effector cells (MPECs) that can

become long-lived memory CD8+ T cells and short-lived

effector cells (SLECs) that do not. Currently, it is not well

known when during their differentiation the effector cells
make the critical decision to become MPECs or SLECs

or what factors control this process.

Historically, identification of MPECs and SLECs within

the effector CD8+ T cell population has proven difficult be-

cause most of the T cell attributes first studied (e.g., CD44hi

and CD11ahi) were acquired uniformly by effector CD8+ T

cells (Dutton et al., 1998). However, further analyses

have found subsets of CD8+ T cells that differentially ex-

press the IL-7 receptor alpha-chain (IL-7R), L-selectin

(CD62L), CCR7, Killer cell lectin-like receptor G1 (KLRG1),

CD27 and CD28, and others, that, depending on the attri-

bute examined, differ according to their localization, effec-

tor functions, or potential to become protective memory

CD8+ T cells (de Bree et al., 2005; Huster et al., 2004;

Kaech et al., 2003; Sallusto et al., 1999; Schluns et al.,

2000; Voehringer et al., 2001; Wherry et al., 2003). Never-

theless, a greater understanding of how these different

subsets form during infection is needed.

IL-7R has been identified as a marker of MPECs after

acute infections, because at the peak of effector CD8+

T cell expansion, �5%–20% of antigen-specific CD8+

T cells express IL-7R (referred to as IL-7Rhi) and have

a substantially greater potential to form memory CD8+ T

cells when compared to IL-7Rlo effector CD8+ T cells

(Huster et al., 2004; Kaech et al., 2003; Schluns et al.,

2000). This finding raises two pertinent questions: when

during infection do the activated CD8+ T cells commit to

becoming IL-7Rhi MPECs or IL-7Rlo SLECs and what

signals regulate this decision?

An effector CD8+ T cell will see many signals during in-

fection that could affect its gene expression and longevity.

Some signals that can influence this process are the

strength and duration of antigenic stimulation, costimula-

tion, CD4+ T cell help, and inflammatory cytokines (e.g.,

IL-12, IFN-a and IFN-b, IFN-g; Bachmann et al., 2004;

Badovinac and Harty, 2006; Khanolkar et al., 2004; Kolu-

mam et al., 2005; Lang et al., 2005; Mescher et al., 2006;

Wherry et al., 2003). Because of spatial and temporal dif-

ferences in antigen load and local cytokine milieus, it is

likely that two individual effector CD8+ T cells will be ex-

posed to unique sets of signals and this will lead them to

differentiate to varying degrees or along separate cell

lineages. Similarly, in the specification of developing
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CD4+ T cells, differential exposure to cytokines and anti-

genic stimuli can instruct cell-fate decisions toward T

helper 1 (Th1), Th2, Th17, or Treg lineages (Weaver et al.,

2006). Because of their profound effects, these lineage-

determining cytokines are now referred to as signal 3 dur-

ing T cell priming (Mescher et al., 2006).

This study investigated how and when IL-7Rhi MPECs

and IL-7Rlo SLECs formed during a primary immune re-

sponse to an acute viral infection. We found that the NK

cell inhibitory receptor KLRG1 can serve as an early indi-

cator of effector CD8+ T cells committed to adopting an

SLEC fate. Moreover, a critical determinant of the SLEC

or MPEC fate decision was the amount of inflammation

the CD8+ T cells were exposed to at the time of priming,

and in particular IL-12 was an instructive signal in this pro-

cess. IL-12 could modulate the expression of the tran-

scription factor T-bet (encoded by Tbx21) in a dose-

dependent manner and, in accordance, we identified that

the relative amounts of T-bet regulated the SLEC or

MPEC fate decision. High amounts of T-bet induced

KLRG1hi IL-7Rlo SLECs, but lower amounts promoted

the development of KLRG1lo IL-7Rhi MPECs. Our data

presented here detail a model of how inflammatory cyto-

kines, through a gradient of T-bet expression, regulate

the formation of memory CD8+ T cells.

RESULTS

KLRG1 Is a Marker of Short-Lived Effector CD8+

T Cells
To understand how MPECs and SLECs formed and ac-

quired different cell fates during acute viral infection, we

transferred �1 3 104 Thy1.1+ naive P14 (LCMV GP33-41

specific) T cell receptor (TCR) transgenic (tg) CD8+ T cells

into naive wild-type (WT) recipients to make ‘‘P14 chimeric

mice’’ that were subsequently infected with LCMV. Next,

we compared day 7 IL-7Rhi and IL-7Rlo P14 effector

CD8+ T cells with Affymetrix GeneChips. Of the �400

genes that differed substantially between IL-7Rhi and IL-

7Rlo effector CD8+ T cells, the expression of several NK

cell receptors (KLRG1, Ly49c, KLRE1, 2B4, and Ly49h)

was increased in IL-7Rlo SLECs (Figure 1A). However,

this phenotype did not extend to other NK cell receptors

such as NKG2A/C, NKG2D, and CD94 (data not shown).

We focused on KLRG1 because of the large differential

in its mRNA and protein expression (Figures 1A and 1B).

Moreover, previous reports showed that KLRG1 was

a marker of ‘‘terminally differentiated’’ mature NK cells,

CD8+ and CD4+ T effector memory (TEM), and mast cells

(Chtanova et al., 2005; Kaech et al., 2003; Ortega et al.,

1991; Robbins et al., 2005; Voehringer et al., 2001). It is

possible that KLRG1 expression may indicate a common

program of terminal differentiation in these cell types.

We examined day 8 LCMV-specific endogenous and

P14 CD8+ T cells in the blood, spleen, liver, lung, and

inguinal lymph node (LN) and found mostly KLRG1hi

IL-7Rlo effector CD8+ T cells (Figure 1B; Figures S1 and

S3 in the Supplemental Data available online; and data

not shown). During ‘‘the contraction phase’’ (days 8–30
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postinfection, pi), KLRG1hi IL-7Rlo cells sharply declined

in number (�40-fold decrease) and continued to gradually

decay thereafter (t1/2 �65–80 days; Figure 1C; Figure S1).

In contrast, the magnitude of KLRG1lo IL-7Rhi effector cell

contraction was considerably less between days 8 and 30

pi (�4-fold decrease), and after that, KLRG1lo IL-7Rhi cell

numbers remained stable in all tissues except for the lung.

Consequentially, KLRG1lo IL-7Rhi CD8+ T cells predomi-

nate the memory cell population at later times (Figures

1B and 1C). Notably, KLRG1hi memory cells were reduced

in their ability to homeostatically turn over, which likely

contributed to their decline over time (Figure 1D).

To confirm that KLRG1hi IL-7Rlo CD8+ T cell decline was

due to death rather than conversion, equal numbers of

FACS-sorted day 8 P14 KLRG1hi IL-7Rlo and KLRG1lo

IL-7Rhi effector cells were transferred into day 8 infected

recipients and followed for 2–3 months after transfer.

There was little to no evidence of conversion between

donor KLRG1hi IL-7Rlo and KLRG1lo IL-7Rhi cells during

this time and �8-fold more KLRG1lo IL-7Rhi cells survived

(Figure S2 and data not shown). Therefore, similar to pre-

vious results (Huster et al., 2004; Kaech et al., 2003), these

data showed that the short-lived fate of KLRG1hi IL-7Rlo

effector CD8+ T cells was relatively fixed after acute

infection.

KLRG1hi IL-7Rlo CD8+ T Cells Require IL-15
for Survival
Although KLRG1hi IL-7Rlo cells were relatively short-lived,

we examined whether IL-15 sustains their survival be-

cause they cannot receive IL-7 signals and together, IL-

7 and IL-15 promote memory CD8+ T cell longevity and

self-renewal (Hand et al., 2007; Schluns and Lefrancois,

2003). We tested the generation and survival of SLECs

and MPECs after LCMV infection in WT and IL15�/�

mice. KLRG1hi IL-7Rlo and KLRG1lo IL-7Rhi cells had

formed equally in both groups of mice (day 8 pi), but sub-

sequently the KLRG1hi IL-7Rlo cells in the IL15�/� mice

rapidly disappeared (Figure 1E and data not shown). Sim-

ilar to previous work, this suggested that IL-15 was

required for KLRG1hi IL-7Rlo cell survival after infection

(Yajima et al., 2006). To test this directly, equal numbers

of day 8 KLRG1hi IL-7Rlo and KLRG1lo IL-7Rhi P14 effector

CD8+ T cells were sorted and transferred into WT and

IL15�/�mice. Although the KLRG1lo IL-7Rhi cells survived

equally well in the IL15�/� and WT animals, in the absence

of IL-15, >90% of the transferred KLRG1hi IL-7Rlo cells rap-

idly died (Figure 1F). Thus, SLECs could not re-express

IL-7R to survive in IL15�/� mice, and consequentially

they were acutely dependent on IL-15. In light of the data

in Figures 1C and 1D, this shows that SLECs can see

IL-15, but it was insufficient to maintain their long-term

survival or HT.

KLRG1 Marks Cells Early during Infection
that Are Committed to Becoming IL-7Rlo SLECs
To determine when SLECs and MPECs emerged during

infection, we followed KLRG1 expression on LCMV-spe-

cific endogenous and P14 effector CD8+ T cells during
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Figure 1. KLRG1hi IL-7Rlo Effector CD8+ T Cells Are Short Lived and Require IL-15 for Survival

(A) The mRNA of IL-7Rhi and IL-7Rlo Thy1.1+ effector CD8+ T cells from P14 chimeric mice were compared on day 7 of LCMV infection by Affymetrix

GeneChips. Table shows the increase in expression for selected NK receptors (IL-7Rlo > IL-7Rhi cells) and are the average of three independent

experiments.

(B and C) Analysis of MPEC and SLEC subsets after LCMV infection of P14 chimeric mice. Data are representative of at least five independent

experiments including at least four animals per time point.

(B) Plots are gated on Thy1.1+ P14 T cells and show expression of KLRG1 and IL-7R in blood over time.

(C) Line graphs show KLRG1hi IL-7Rlo (squares) and KLRG1lo IL-7Rhi (triangles) P14 CD8+ T cell numbers in the spleen, liver, lung, inguinal lymph node

(LN), and total from all tissues. The magnitude of contraction between days 8–40 and 8–75 is indicated.

(D) CFSE-labeled P14 memory CD8+ T cells from day�40 pi were transferred into naive mice and then analyzed for CFSE and KLRG1 expression 4–6

weeks later. Data are representative of five independent experiments.

(E) WT and IL15�/� mice were infected with LCMV, and Db GP33-41 MHC class I tetramer+ CD8+ T cells were analyzed for KLRG1 expression 8, 15,

and 30 days pi. Similar data were observed for NP396-404-specific CD8+ T cells (data not shown). Data are representative of three independent

experiments.

(F) KLRG1hi IL-7Rlo or KLRG1lo IL-7Rhi P14 CD8+ T cells were sorted day 8 pi and transferred in equal numbers into WT or IL15�/� recipients for 10–15

days. Bar graph shows the average number of donor cells (mean ± SEM) recovered from IL15�/� recipients normalized to the number recovered from

WT recipients for the KLRG1hi IL-7Rlo (white bar, n = 3) and KLRG1lo IL-7Rhi (black bar, n = 3) cell populations. Data are representative of three

independent experiments.
Immunity 27, 281–295, August 2007 ª2007 Elsevier Inc. 283
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LCMV infection. KLRG1hi effector CD8+ T cells first ap-

peared 4–5 days pi and after at least 7–10 cell divisions,

and these cells progressively increased in number and

frequency until the peak of expansion (7–8 days pi) in all

tissues examined (Figure 2A; Figure S3; data not shown;

note: ‘‘KLRG1lo’’ includes both intermediate and low

expression). Next, we examined IL-7R expression on

KLRG1hi and KLRG1lo effector CD8+ T cells during infec-

tion. By days 4–5 pi, IL-7R expression was decreased

compared to naive CD8+ T cells but was indistinguishable

between KLRG1hi and KLRG1lo cells (Figure 2B; note his-

tograms in bottom row). Between days 6 and 8 pi, IL-7R

expression gradually increased on the KLRG1lo cells and

decreased on the KLRG1hi cells, albeit �10% were IL-

7Rhi (Figure 2B). Thus, between days 5 and 8 pi, KLRG1hi

and KLRG1lo effector CD8+ T cells appeared to differenti-

ate and mature along two distinct cell lineages: KLRG1hi

IL-7Rlo SLECs and KLRG1lo IL-7Rhi MPECs.

Despite similar IL-7R protein expression, day 5 KLRG1hi

effector CD8+ T cells expressed�1/3 the amount of IL-7R

mRNA compared to KLRG1lo cells (Figure 2C). This sug-

gested that by day 5, KLRG1hi cells were already repres-

sing Il7r transcription to a greater degree and raised the

possibility that they were already fully committed to

becoming IL-7Rlo SLECs. To test this question, we trans-

ferred equal numbers of purified day 5 KLRG1hi and

KLRG1lo effector CD8+ T cells into day 5 infected animals

and followed their development 4 and >60 days later. Both

donor cell populations had similar engraftment and con-

tinued clonal expansion. On day 9 pi, almost all donor

KLRG1hi cells were IL-7Rlo (Figure 2D). In contrast,

�20%–30% of the donor KLRG1lo cells became KLRG1hi

IL-7Rlo cells between days 5 and 9 pi, but many remaining

KLRG1lo became IL-7Rhi (Figure 2D). Approximately 60

days later, these cells gave rise to �5-fold more memory

CD8+ T cells than did donor KLRG1hi cells (Figure S4).

Thus, as early as day 5 pi, KLRG1 upregulation marks

a critical developmental decision in which effector CD8+

T cells have committed to a shortened lifespan.

KLRG1hi and KLRG1lo Effector CD8+ T Cells
Have Similar Functional Properties
To determine other phenotypic and functional differences

between KLRG1hi and KLRG1lo effector CD8+ T cells, we

compared their expression of several effector and mem-

ory markers, functional capabilities, and rates of division

during LCMV infection. The expression of most proteins

on day 5 and 8 KLRG1hi and KLRG1lo cells was similar, al-

though KLRG1lo cells expressed more CD27, IL-7R, and

IL-2 and IL-15Rb-chain (CD122) at day 8 (Figure 3A).

Functionally, day 5 and 8 KLRG1hi and KLRG1lo effector

CD8+ T cells had comparable cytotoxic activity and ability

to produce IFN-g when restimulated (Figures 3B and 3C).

However,�2- to 4-fold more KLRG1lo cells produced IL-2

at all time points examined (Figure 3C). Note that KLRG1

expression does not change during 5 hr stimulation as-

says (data not shown). Lastly, KLRG1hi and KLRG1lo

effector cells had comparable rates of proliferation be-

tween days 4 and 8 pi, although we consistently observed
284 Immunity 27, 281–295, August 2007 ª2007 Elsevier Inc.
a slightly greater fraction of KLRG1hi cells in cycle at most

times (Figure 3D). Therefore, KLRG1hi and KLRG1lo effec-

tor cells appeared functionally and phenotypically similar

during LCMV infection and were distinguished only by

small differences in expression of CD27 and IL-7R and

their ability to produce IL-2 that evolved between days 5

and 8 pi. Given their similarities, we tested whether

KLRG1 functioned in SLEC or MPEC lineage commitment

by using an shRNAi retrovirus (RV) to ‘‘knock down’’ Klrg1

in effector CD8+ T cells during infection. shKlrg1 efficiently

decreased KLRG1 expression but had no other noticeable

effects on SLEC formation or cytokine production, sug-

gesting that KLRG1 does not control MPEC and SLEC

fate decisions (Figure S5).

Truncating Infection Impairs KLRG1hi IL-7Rlo

SLEC Formation
Next, we studied how SLEC and MPEC fate decisions are

regulated. One hypothesis was that excessive exposure of

effector CD8+ T cells to antigenic or inflammatory stimula-

tion during infection diminished their memory cell devel-

opmental potential and drove their development into

KLRG1hi IL-7Rlo SLECs. We tested this by shortening

the duration of Listeria infection with antibiotic treatment.

P14 chimeric mice infected with Listeria expressing

GP33-41 (LM-GP33) were either left untreated (No Rx) or

treated with ampicillin (Amp Rx) on day 1 pi to stop infec-

tion. Amp Rx specifically decreased the number of SLECs

formed during LM-GP33 infection because similar num-

bers of MPECs, and subsequently memory CD8+ T cells,

formed in both groups of animals (Figure 4A and data

not shown). Therefore, shortening the duration of infection

had a greater impact on the formation of KLRG1hi IL-7Rlo

SLECs. In addition, increasing the intraclonal competition

for antigenic and inflammatory signals by increasing the

precursor frequency of naive P14 CD8+ T cells during in-

fection led to a corresponding decrease in the formation

of KLRG1hi IL-7Rlo effector CD8+ T cells (Figure S6).

Inflammatory Signals Regulate Development or
KLRG1hi IL-7Rlo Effector Cells
The above experiment did not discriminate how the dura-

tion of infection regulated SLEC generation because

Amp Rx reduced both antigenic and inflammatory signals.

To examine the role of antigenic stimulation specifically,

we used three recombinant vaccinia virus strains (referred

to as rVVhp), each expressing different amounts of the

LCMV epitope GP33-41 via hairpin-mediated attenuation of

protein expression (Wherry et al., 1999). In such, GP33-41

abundance is varied whereas the kinetics of infection and

viral titers are not. In accordance with previous results

(Wherry et al., 1999), the frequency and number of P14

effector CD8+ T cells at day 7 pi was proportional to antigen

abundance (Figure 4B and data not shown). However, the

frequencies of KLRG1hi IL-7Rlo and KLRG1lo IL-7Rhi cells

formed were not greatly affected by antigen abundance

(Figure 4B).

Next, we investigated how exposure to inflammation

affected SLEC development by varying the amount of
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Figure 2. KLRG1 Marks Effector CD8+ T Cells Committed to an SLEC Fate

(A and B) P14 chimeric mice were infected with LCMV, and on days 4–8 pi the Thy1.1+ P14 effector CD8+ T cells were analyzed for expression of (A)

KLRG1 and (B) KLRG1 and IL-7R. (B) Bottom row, histograms show IL-7R expression on KLRG1hi (filled) or KLRG1lo (open) P14 CD8+ T cells. IL-7R

MFI is shown (KLRG1lo/KLRG1hi). Data are representative of at least three experiments.

(C) Bar graph shows the average IL-7R mRNA expression (normalized to the ribosomal gene L9, mean ± SEM) in the indicated cell populations

(n = 3–5) measured by real-time PCR. **p < 0.001. Data represent the cumulative result of 3–5 independent samples.

(D) Day 5 pi KLRG1hi and KLRG1lo P14 CD8+ T cells were sorted and transferred in equal number back into day 5 LCMV infected recipients and

analyzed 4 days post transfer (pt) for KLRG1 and IL-7R expression. Data are representative of at least three independent experiments.
‘‘bystander’’ inflammation that P14 CD8+ T cells were

exposed to during priming. P14 chimeric mice were immu-

nized with LPS-matured dendritic cells (DCs) loaded with
GP33-41 peptide (referred to as DC-33) with or without

increasing different doses of a Listeria strain that does not

express GP33-41 (referred to as LM). Concurrent DC-33
Immunity 27, 281–295, August 2007 ª2007 Elsevier Inc. 285
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Figure 3. Phenotypic and Functional Comparisons between KLRG1hi and KLRG1lo Effector CD8+ T Cells

(A) Histograms show expression of the indicated proteins on KLRG1hi (filled) and KLRG1lo (open) P14 CD8+ T cells on days 5 and 8 pi. The MFI of

KLRG1lo/KLRG1hi cells is shown. Data are representative of more than four independent experiments.

(B) In vivo CTL assay comparing day 5 and 8 KLRG1hi (black, n = 2) and KLRG1lo (white, n = 2) P14 effector CD8+ T cells. The average percent killing

(mean ± SEM) over 4 hr was normalized to the effector:target (E:T) ratio. Data are representative of two independent experiments.
286 Immunity 27, 281–295, August 2007 ª2007 Elsevier Inc.
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immunization with ‘‘high-dose’’ LM infection resulted in

�60%–75% KLRG1hi IL-7Rlo effector CD8+ T cells. How-

ever, as the LM dose was lowered, there was a corre-

sponding decrease in the frequency of KLRG1hi IL-7Rlo

cells; in the absence of any overt inflammation, mostly

KLRG1lo IL-7Rhi effector CD8+ T cells formed (Figure 4C).

Therefore, the percentage of effector CD8+ T cells that be-

came KLRG1hi IL-7Rlo SLECs was proportional to the

amount or duration of inflammation.

LM infection produces many inflammatory cytokines, so

the effect of a simpler adjuvant, CpG oligodeoxynucleoti-

des (ODNs), was tested. Naive P14 CD8+ T cells were

stimulated with GP33-41 peptide-loaded splenocytes with

and without CpG ODN for 24–48 hr, transferred into naive

recipients, and analyzed 5 days later. Without CpG, few

KLRG1hi IL-7Rlo effector CD8+ T cells formed, but with

CpG, �25%–50% of the effector cells became KLRG1hi

and IL-7Rlo (Figure 4D). CpG ODN is a potent generator

of both type I and II interferons and IL-12 (Krieg, 2002;

and data not shown); therefore, we examined the effects

of CD8+ T cell priming with IL-12 and IFN-g directly. Prim-

ing P14 CD8+ T cells with IL-12+IFN-g or IL-12, but not

IFN-g alone, generated KLRG1hi IL-7Rlo effector cells (Fig-

ure 4D). Thus, IL-12 was a critical signal that could induce

the formation of KLRG1hi IL-7Rlo effector CD8+ T cells.

IL-12, but Not IFN-g, Induces T-bet Expression in a
Dose-Dependent Manner
The transcription factor T-bet is critical for Th1 CD4+ T cell

differentiation and terminal maturation of KLRG1hi NK

cells (Robbins et al., 2005; Szabo et al., 2000). T-bet ex-

pression is also regulated by IFN-g and IL-12 (Weaver

et al., 2006), so we tested whether T-bet was involved in

the SLEC or MPEC fate decision. First, we examined

whether IL-12 or IFN-g could induce T-bet expression in

early activated CD8+ T cells by using flow cytometry.

IL-12, but surprisingly not IFN-g, could induce T-bet to

markedly higher levels than peptide alone, and the amount

of T-bet induced directly corresponded to the concentra-

tion of IL-12 in the media (Figures 4E and 4F). These data

extend from previous work (Takemoto et al., 2006) by

showing that T-bet expression in activated CD8+ T cells

could be controlled by IL-12 in a dose-dependent manner.

T-bet Controls Formation of KLRG1hi IL-7Rlo

Effector CD8+ T Cells
Because IL-12 induced T-bet expression and SLEC forma-

tion, we tested whether T-bet was necessary for SLEC

development. Therefore, we infected WT and Tbx21�/�

mice directly with LCMV (Figure 5A) or, to examine the cell-

autonomous role of T-bet, we transferred small numbers

of WT and Tbx21�/� P14 CD8+ T cells into WT mice that
were subsequently infected with LCMV (Figure 5B). Com-

pared to WT effector CD8+ T cells, <10% of Tbx21�/� ef-

fector cells were KLRG1hi and IL-7Rlo (Figures 5A and

5B). This likely accounted for the �4- to 9-fold reduction

in the total number of Tbx21�/� effector cells. Interestingly,

similar numbers of KLRG1lo IL-7Rhi MPECs formed in WT

and Tbx21�/�mice (Figure 5C). Similar to a previous study,

Tbx21�/� effector CD8+ T cells expressed relatively normal

amounts of Granzyme B and IFN-g, but IL-2 production

was greatly elevated (Juedes et al., 2004; data not shown).

Most Tbx21�/� effector CD8+ T cells were CD27hi and ex-

pressed lower amounts of Ly49c, KLRE1, CD244 (2B4)

mRNA, suggesting that multiple SLEC-associated attri-

butes were dependent on T-bet (data not shown). These

data suggested that T-bet plays a necessary cell-intrinsic

role in SLEC formation. In support of this, IL-12 induction

of KLRG1hi IL-7Rlo effector CD8+ T cells required T-bet

(Figure 5D).

Next, we determined whether T-bet expression was

sufficient for KLRG1hi IL-7Rlo effector CD8+ T cell genera-

tion by transducing activated WT P14 CD8+ T cells with

MSCV RV expressing T-bet and GFP or GFP alone and

transferring them into naive recipients. Transduction of

cells with control MSCV RV did not induce KLRG1hi IL-

7Rlo effector CD8+ T cells; however, if T-bet was overex-

pressed, >50% of the cells became KLRG1hi IL-7Rlo

SLECs by day 5 after transfer (Figure 5E). Strikingly,

>80%–90% of the WT or Tbx21�/�P14 CD8+ T cells trans-

duced with T-bet RV became KLRG1hi and IL-7Rlo when

transferred into LCMV-infected recipients (Figure 5F). Fur-

thermore, most KLRG1hi IL-7Rlo effector CD8+ T cells

formed by T-bet overexpression were short-lived and

contracted by day 30+ after transfer (Figure 5E; data not

shown). Together with that above, these data show that

T-bet is necessary and (with overexpression) sufficient

to specify a population of naturally arising short-lived

KLRG1hi IL-7Rlo effector CD8+ T cells.

A Gradient of T-bet Expression Specifies a SLEC
or MPEC Fate
In light of the T-bet RV overexpression data, we next ex-

amined whether KLRG1hi IL-7Rlo effector CD8+ T cells

naturally express more T-bet than KLRG1lo IL-7Rhi cells.

DNA microarrays and real-time PCR showed that T-bet

mRNA was increased �1.5- to 2-fold in IL-7Rlo SLECs

compared to IL-7Rhi MPECs at day 7 pi, and immunoblot-

ting confirmed that KLRG1hi IL-7Rlo effector CD8+ T cells

contained �3- to 4-fold more T-bet protein than did

KLRG1lo IL-7Rhi cells (Figures 1A and 6A; data not shown).

Although T-bet expression was lower in MPECs, we

tested whether it functions in these cells. By comparing

WT and Tbx21�/� ‘‘MPECs’’ with Affymetrix GeneChips,
(C) Splenocytes from day 5 and 8 LCMV-infected P14 chimeric were stimulated with GP33-41 peptide and analyzed for IFN-g and IL-2 production by

intracellular cytokine staining. Histograms show IFN-g (left and center) and IL-2 (right) production by KLRG1hi (filled) and KLRG1lo (open) Thy1.1+ P14

CD8+ T cells. IL-2 plots are gated on IFN-g-producing cells. Similar results were found in endogenous LCMV-specific CD8+ T cells stimulated with

NP396-404, GP33-41, and GP276-284. Data are representative of more than three independent experiments.

(D) Histograms show the percent of KLRG1hi (top) and KLRG1lo cells (bottom) P14 CD8+ T cells in S, G2, and M phases of the cell cycle on day 5 pi with

7-AAD. Data are representative of three independent experiments.
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Figure 4. Inflammation Regulates KLRG1hi IL-7Rlo SLEC Formation

(A) P14 chimeric mice were infected with LM-GP33 and 1 day pi were either left untreated (No Rx, black bars, n = 3) or treated with ampicillin (Amp Rx,

white bars, n = 3). FACS plots show KLRG1 and IL-7R expression and bar graphs show the average number of total or KLRG1lo IL-7Rhi MPECs (mean

± SEM) on day 7 pi. Data are representative of five independent experiments.

(B) P14 chimeric mice were infected with rVVhp -0, -17, or -19 (see text), and 8 days pi, Thy1.1+ P14 CD8+ T cells were analyzed for KLRG1 and IL-7R

expression. Data are representative of three independent experiments.
288 Immunity 27, 281–295, August 2007 ª2007 Elsevier Inc.
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we found that T-bet regulated�20% of the MPEC-specific

genes (data not shown). Moreover, although Tbx21�/� ef-

fector cells initially expressed relatively normal amounts of

CD122 at day 5 pi, T-bet was required for sustained

CD122 expression after this time point (Figure 6B). Thus,

low amounts of T-bet were necessary for normal MPEC

development. This finding suggested a model in which

T-bet functions distinctly in SLECs and in MPECs: high

T-bet amounts induced terminal SLEC differentiation,

whereas low amounts promoted MPEC development.

To directly test whether the amount of T-bet expression

dictates SLEC or MPEC formation, we varied the amount

of T-bet in LCMV-specific effector CD8+ T cells during in-

fection by two separate methods. First, we examined the

effects of Tbx21 gene dosage by comparing Tbx21+/+,

Tbx21+/�, and Tbx21�/� P14 CD8+ T cells for their ability

to form SLECs and MPECs 7 days pi and memory cells

�50 days pi. These experiments showed that as the T-

bet copy number decreased, so did the frequency and

number of KLRG1hi IL-7Rlo SLECs (Figure 6C; Figure S7).

Conversely, the frequency of KLRG1lo IL-7Rhi ‘‘MPECs’’ in-

creased (Tbx21�/� > Tbx21+/� > Tbx21+/+); however, sim-

ilar numbers formed in all three groups of effector CD8+

T cells (Figure 6C; Figure S7). These data show that

a 50% decrease in T-bet expression affects the lineage

commitment of SLECs considerably more than MPECs.

After clearance of LCMV infection, the magnitude of

Tbx21+/+, Tbx21+/�, and Tbx21�/� effector CD8+ T cell

contraction was proportionally decreased according to

T-bet copy number, but similar sized memory CD8+

T cell populations were yielded (as may have been pre-

dicted by MPEC numbers; Figure S7). Thus, at the popula-

tion level, Tbx21+/� and Tbx21�/� effector cells appeared

more efficient at generating memory CD8+ T cells, but it

is likely that this effect was due to their impaired SLEC

formation rather than to increased MPEC formation. It

may be that during LCMV infection, the number of MPECs

formed is capped by other mechanisms. Importantly, the

lowered expression of T-bet in Tbx21+/�P14 cells was suf-

ficient to maintain CD122 expression as well as to partially

suppress IL-2 production in the memory CD8+ T cells

(Figure 6D; data not shown). It is not known yet whether

the Tbx21�/� memory CD8+ T cells, with reduced CD122

expression, will be maintained long-term or gradually de-

cay as in IL15�/� mice (Schluns and Lefrancois, 2003).

Tbx21�/� memory CD8+ T cells express higher amounts

of IL-7R compared to WT cells (Figure 6C), and therefore,

it is possible that IL-7 may compensate for reduced
CD122 expression as described previously (Kieper et al.,

2002; data not shown).

We also regulated T-bet activity (via its nuclear localiza-

tion) by fusing it to the estrogen receptor a (T-bet:ER;

Matsuda et al., 2007). Tbx21�/� P14 CD8+ T cells were

reconstituted with T-bet:ER RV and transferred into

LCMV-infected recipients that were subsequently treated

with different doses of tamoxifen (Tm) during infection.

After 7 days, we found that the frequency of KLRG1hi

IL-7Rlo SLECs directly correlated with the amount of ta-

moxifen administered, ranging from �10% to >60% at

the lowest and highest Tm doses, respectively (Figure 6D).

As expected, all doses of Tm rescued Tbx21�/� MPEC

CD122 expression, showing again that low amounts of

T-bet were required for normal MPEC gene expression

(data not shown). Together, these data suggested a model

(Figure S8) in which IL-12 (and likely other cytokines)

regulate T-bet expression in a dose-dependent manner

during infection to influence the memory T cell potential

of effector CD8 T cells.

DISCUSSION

During acute viral or bacterial infections, effector CD8+

T cells undergo a complex and coordinated differentiation

program, part of which involves the generation of at least

two effector cell subsets that have different fates and

memory cell developmental potential (Badovinac et al.,

2004; Huster et al., 2004; Kaech et al., 2003). This study

was designed to investigate how and when during

infection these cell-fate decisions occur. We found that

inflammatory signals (like IL-12) present during CD8+ T

cell priming can dictate a T-bet expression gradient and

regulate effector CD8+ T cell-fate determination. Higher

amounts of T-bet induced a terminally differentiated SLEC

state, associated with increased KLRG1 expression and

stable IL-7R repression, and acute dependence on IL-15

for survival, but not long-term persistence or homeostatic

turnover. In contrast, effector cells expressing lower

amounts of T-bet remained KLRG1lo and some were

capable of becoming IL-7Rhi MPECs that responded to

both IL-7 and IL-15 and developed into long-lived, self-

renewing memory CD8+ T cells.

To date, KLRG1 is the best-described SLEC marker

during acute infection, although it is unlikely that it plays

a significant role in their formation. In humans and mice,

most acute infections result in mainly KLRG1lo IL-7Rhi

memory CD8+ T cells, but chronic or latent viral infections
(C) P14 chimeric mice were concurrently immunized with DC-33 and varying doses of Listeria (not expressing GP33-41). FACS plots show KLRG1 and

IL-7R expression on day 7 P14 effector CD8+ T cells. Data are representative of four independent experiments.

(D) Purified naive Thy1.1+ P14 CD8+ T cells were stimulated with GP33-41 peptide-loaded cells ± CpG ODN or the indicated cytokines for 24–48 hr and

then transferred into naive recipients. Thy1.1+ P14 CD8+ T cells were analyzed for KLRG1 and IL-7R expression 5–6 days pt. Data are representative

of at least three independent experiments.

(E and F) Naive WT or Tbx21�/� P14 CD8+ T cells were stimulated as in (D) with IL-12 or IFN-g or both (E) or decreasing concentrations of IL-12 (F).

Data are representative of three independent experiments.

(E) Histograms show T-bet expression in WT (open) or Tbx21�/� (filled) Thy1.1+ CD44hi CD8+ T cells, and the T-bet MFI is indicated. Data are

representative of at least three independent experiments.

(F) Line graph shows the MFI of T-bet with either peptide alone (dashed), the indicated concentration of IL-12 (solid), or Tbx21�/� P14 CD8+ T cells +

IL-12 (gray).
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Figure 5. T-bet Expression Is Necessary and Sufficient for Development of KLRG1hi SLECs

(A) WT or Tbx21�/�mice or (B) WT mice containing�1 3 104 WT or Tbx21�/� P14 CD8+ T cells were infected with LCMV and analyzed 7–8 days later

for IL-7R and KLRG1 expression on GP33-41-specific CD8+ T cells (A) or Thy1.1+ P14 CD8+ splenocytes (B). Similar data to (A) were observed with

NP396-404-specific CD8+ T cells (data not shown). Data in (A) and (B) are representative of more than four independent experiments.

(C) Bar graph compares the average total combined number of endogenous GP33-41 and NP396-404-specific CD8+ T cells (mean ± SEM) between WT

(black, n = 3) or Tbx21�/� (white, n = 5) animals on day 8 of LCMV infection. Data represent the cumulative results of three independent experiments.

Note similar numbers of IL-7Rhi effector cells in WT and Tbx21�/� animals. **p < 0.001, *p < 0.01.

(D) As in Figure 4D, WT or Tbx21�/� Thy1.1+ P14 CD8+ T cells were stimulated with IL-12, transferred into naive recipients, and analyzed for KLRG1

and IL-7R expression 5–6 days later. Data are representative of at least three independent experiments.

(E) WT P14 CD8+ T cells were transduced with control (MSCV) or T-bet-expressing RVs, transferred into naive recipients, and analyzed 5 or 30+ days

later for KLRG1 and IL-7R expression on Thy1.1+ GFP+ CD8+ T cells. Data are representative of four independent experiments.

(F) WT or Tbx21�/� P14 CD8+ T cells were transduced with MSCV or T-bet RVs and transferred into recipients that were subsequently infected with

LCMV. Seven days later, Thy1.1+ GFP+ splenocytes were analyzed for IL-7R and KLRG1 expression. Data are representative of more than five

independent experiments.
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Figure 6. T-bet Functions in Both MPECs and SLECs According to an Expression Gradient

(A) Naive and day 8 KLRG1hi IL-7Rlo SLECs or KLRG1lo IL-7Rhi MPECs were sorted and the amount of T-bet and GRp94 protein was examined by

immunoblotting. Data are representative of three independent experiments.

(B) WT and Tbx21�/� P14 CD8+ T cells were analyzed 5, 8, and 30 days pi for CD122 expression. MFI for CD122 is indicated on plots. Data are

representative of more than five independent experiments.

(C) Tbx21+/+, Tbx21+/�, or Tbx21�/� P14 CD8+ T cells were analyzed 7 and 50+ days pi for KLRG1 and IL-7R expression and T-bet expression (bottom

histogram plot). Data are representative of three independent experiments.

(D) Tbx21+/+, Tbx21+/�, or Tbx21�/� P14 memory CD8+ T cells were analyzed 50+ days pi for CD122 expression. Data are representative of three

independent experiments.

(E) Tbx21�/� P14 CD8+ T cells were transduced with T-bet RV or one expressing T-bet fused to the estrogen receptor (T-bet:ER) and transferred into

mice subsequently infected with LCMV. Mice were treated with 0–8 mg of tamoxifen (Tm) during infection, and on day 7 pi, GFP+ donor splenocytes

were analyzed for expression of KLRG1 and IL-7R. Data are representative of four independent experiments.
can produce greater frequencies of KLRG1hi IL-7Rlo virus-

specific CD8+ T cells that are likely to be continually gen-

erated because of repeated exposure to viral antigens and

inflammatory cytokines (Ibegbu et al., 2005; Lang et al.,

2005; Sierro et al., 2005; van Leeuwen et al., 2006; Wherry

et al., 2004). Furthermore, consecutive waves of infection

generate mostly KLRG1hi TEM CD8+ T cells, some of which

express IL-7R and are long lived (Jabbari and Harty, 2006;

Masopust et al., 2006; Voehringer et al., 2001). Therefore,

it is important to emphasize that the strong correlation

between KLRG1 expression and reduced CD8+ T cell

longevity may not hold true for CD8+ T cells that have en-

countered antigen with inflammation repeatedly or persis-

tently, especially if they coexpress IL-7R, as seen in a small
number of KLRG1hi IL-7Rhi primary effector CD8+ T cells

that appear long-lived. Moreover, it is important to em-

phasize that KLRG1hi memory CD8+ T cells have a re-

duced proliferative capacity and this calls into question

their contribution to long-term immunologic protection

(Voehringer et al., 2001).

The ‘‘decreasing potential model’’ for the development

of memory CD8+ T cells suggests that ‘‘memory T cells

can only arise under conditions in which the antigenic

load is limited and the stimulation of precursors ceases

before a point of no return’’ (Ahmed and Gray, 1996). In

support of this model, we and others found that altering

the overall amount of stimulation per CD8+ T cell (either

by modulating TCR tg CD8+ T cell precursor frequency
Immunity 27, 281–295, August 2007 ª2007 Elsevier Inc. 291



Immunity

Memory CD8+ T Cell Potential Modulated by T-bet
or by shortening or lengthening the duration of infection

that T cells are exposed to) can profoundly affect the types

of effector T cells produced or their longevity (Bachmann

et al., 2006; Badovinac et al., 2004, 2005, 2007; D’Souza

and Hedrick, 2006; Jelley-Gibbs et al., 2005; Lang et al.,

2005). We further explored this model by separating anti-

genic and inflammatory signals. Although these findings

do not rule out the possibility that excessive or persistent

antigenic stimulation might affect SLEC or MPEC fate,

they show that inflammatory signals (e.g., IL-12), through

regulation of T-bet expression, play a dominant role in reg-

ulating memory cell potential. The findings presented here

provide the decreasing potential model with both an early

molecular signature (KLRG1) as well as a mechanism

(IL-12 / T-bet / reduced longevity) for identifying and

generating SLECs during primary immune responses to

infection. In support of this, effector CD8+ T cells from

Il12�/�mice have reduced amounts of T-bet and generate

more memory CD8+ T cells (Pearce and Shen, 2007; Take-

moto et al., 2006; W.C. and S.M.K., unpublished data).

Moreover, it is worth noting that during infection, IL-12 is

primarily produced by activated mature CD8a+ dendritic

cells (DCs), but over time their production of IL-12 declines

(Langenkamp et al., 2000). Because a larger number of

‘‘newly’’ activated DCs are present early during infection,

perhaps, the timing of when a naive CD8+ T cell encoun-

ters a DC is critical in determining IL-12 exposure and

SLEC or MPEC fate.

How does T-bet regulate the SLEC or MPEC fate deci-

sion? Similar to Th1 CD4+ T cells (Szabo et al., 2000), T-

bet may serve as the ‘‘master regulator’’ of CD8+ T cell

SLEC lineage commitment. However, unlike its asymmet-

ric role in Th1 or Th2 specification, we believe that a gradi-

ent of T-bet is critical with low levels promoting MPECs

and high levels inducing SLECs. A similar model has

been described for PU.1 regulation of macrophage versus

neutrophil development (Dahl et al., 2003). Accordingly, T-

bet-influenced expression of �50% of the SLEC-specific

genes compared to �20% of the MPEC-specific genes

(data not shown). These data showed a heightened de-

pendence on T-bet for lineage-specific gene expression

in SLECs. Thus, we propose that the increased abun-

dance of T-bet in SLECs is necessary for proper expres-

sion of these SLEC-specific genes and this explains why

SLEC development is more overtly affected by T-bet defi-

ciency. Additionally, T-bet regulates IL-12Rb2 expression,

and this positive-feedback loop can make T cells more

receptive to IL-12 signals; however, it is also possible

that IL-12 and T-bet act in parallel to provide separate

signals to control SLEC and MPEC development.

Signals from IL-12 not only enhance T-bet expression,

but might also repress Eomesodermin (Eomes), another

T-box family member whose function can overlap with

T-bet in CD8+ T cells, leading to the speculation that T-

bet and Eomes might direct SLEC and MPEC develop-

ment, respectively (Takemoto et al., 2006). However, it is

certainly more complicated than that because KLRG1hi

and KLRG1lo effector cells expressed similar amounts of

eomes mRNA, and T-bet was required for normal MPEC
292 Immunity 27, 281–295, August 2007 ª2007 Elsevier Inc.
gene expression (data not shown). Previous work showed

that in naive mice, T-bet deficiency did not affect CD122

expression in polyclonal memory CD8+ T cells (Intlekofer

et al., 2005). However, as shown here for antigen-specific

memory CD8+ T cells and as described previously for NKT

cells, T-bet acts in a nonredundant manner to sustain

CD122 expression (Matsuda et al., 2007; Townsend

et al., 2004).

Murine cytomegalovirus (MCMV) and Listeria infection

produce copious amounts of IL-12p70, whereas LCMV

produces very little (Dalod et al., 2002), yet similar frequen-

cies of IL-7Rlo SLECs form during these infections (Huster

et al., 2004; Kaech et al., 2003; Sierro et al., 2005). There-

fore, we predict that other inflammatory cytokines besides

IL-12, which induce T-bet (Agnello et al., 2003), will also

influence memory cell developmental potential. IFN-g

alone was insufficient to induce T-bet or KLRG1hi IL-7Rlo

cells, and this was surprising because IFN-g induces T-

bet in CD4+ T cells and recent work has suggested that

IFN-g programs effector T cell contraction and represses

IL-7R expression (Badovinac et al., 2000, 2004). Still, it is

possible that IFN-g is necessary, but not sufficient, be-

cause fewer KLRG1hi IL-7Rlo SLECs formed in Ifng�/�

mice during LCMV infection (data not shown). In support

of this, in vivo CpG mediated IL-12p70 production and

SLEC formation requires IFN-g (data not shown). Accord-

ingly, IL-12 treatment of Ifng�/�mice was sufficient to res-

cue CpG-mediated KLRG1hi IL-7Rlo effector CD8+ T cell

induction, indicating that IFN-g is necessary for optimal

IL-12 production during immunization and infection (W.C.

and S.M.K., unpublished data). Moreover, our data sug-

gest an alternative explanation for the proposed program-

ming of effector CD8+ T cell contraction by inflammation:

instead of inflammation directly controlling effector CD8+

T cell contraction per se, we suggest that inflammation

induces the formation of, what would naturally be, a

short-lived subset of effector cells.

Although exposure to inflammatory cytokines may re-

duce effector CD8+ T cell longevity, signals from IL-12

and type I and II IFNs also play a critical role in enhancing

effector CD8+ T cell expansion and function (Mescher

et al., 2006). Thus, we are not proposing that better mem-

ory CD8+ T cells will develop in the absence of inflamma-

tion, but rather that low exposure to inflammatory signals

may promote development of functional effector cells

that have greater memory potential. In contrast, excessive

or prolonged exposure to inflammatory signals during in-

fection or immunization may generate potent effector cells,

but as a trade-off, their memory cell potential is decreased.

This model offers a reliable mechanism to maintain T cell

homeostasis because it allows the T cell response to be

made in proportion to the amount and/or duration of infec-

tion, while simultaneously, it ensures restoration of normal

T cell numbers once infection and inflammation ceases.

Perhaps this is why KLRG1hi effector cells become depen-

dent on IL-15, a cytokine modulated by type 1 inflamma-

tory cytokines (Doherty et al., 1996). In the future, it may

become possible to tailor larger and more durable memory

T cell populations by modulating the types and levels of
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inflammatory signals that they receive at the time of T cell

priming, but this remains to be investigated.

EXPERIMENTAL PROCEDURES

Mice, Infections, and Treatments

Thy1.1+ P14 TCR tg mice have been described previously (Kaech

et al., 2003). To make ‘‘P14 chimeric mice,’’ �1 3 104 Thy1.1+ WT,

Tbx21+/�, or Tbx21�/� CD8+ T cells were transferred into naive

Thy1.2+ C57BL/6 (B6) mice (National Cancer Institute, Frederick,

MD, and Jackson Laboratories, Bar Harbor, ME). IL15�/� mice were

obtained from M. Caligiuri (Ohio State University, Columbus, OH).

Tbx21�/� mice were obtained from L. Glimcher (Harvard School of

Medicine, Cambridge, MA) and crossed to P14 tg mice. All animal ex-

periments were done with approved Institutional Animal Care and Use

Committee protocols. Details of infections and treatments are found in

Supplemental Experimental Procedures.

CFSE, 7-AAD Labeling, Surface and Intracellular Staining,

and Antibodies

Lymphocyte isolation, CFSE labeling (Invitrogen, Eugene, OR), LCMV

peptide stimulations, production of MHC class I tetramers, and surface

and intracellular staining was performed as described (Kaech et al.,

2003). 7-AAD staining was performed according to manufacturer’s

directions (BD Biosciences, San Diego, CA). All antibodies were pur-

chased from E-biosciences (San Diego, CA) except anti-Granzyme

B-PE (Caltag, Burlingame, CA), Bcl-2-FITC (BD), and T-bet 647 (Santa

Cruz Biotechnology, Santa Cruz, CA). Anti-KLRG1 (2F1) hybridoma

was a generous gift from D. Raulet (University of California, Berkley,

CA) and was conjugated to Alexa 647 (Invitrogen, Eugene, OR). For

T-bet staining, cells were permeabilized with 0.01% Triton X-100 in

PBS + 0.5% FBS followed by intracellular staining. All flow cytometry

was analyzed on a FACSCalibur (BD) with FloJo software (Treestar,

San Carlos, CA).

Cell Isolations, Separations, and Adoptive Transfer

Details of these procedures are found in Supplemental Experimental

Procedures.

In Vitro T Cell Stimulations for In Vivo Transfer and

DC Immunization

DCs and naive WT B6 splenocytes were loaded with GP33-41 peptide

and either �1 3 106 peptide-loaded splenocytes were cultured with

�5 3 104 MACS purified naive P14 CD8+ T cells for 48 hr ± 12.5 mg/

mL CpG oligodeoxynucleotide 1826 (Badovinac et al., 2005), 10 ng/

mL IL-12 (R&D Systems Inc., Minneapolis, MN), and/or 100 ng/mL

IFN-g (R&D Systems). For in vivo transfers, �4 3 105 activated P14

CD8+ T cells from cultures stimulated for 24–48 hr with 100 ng/mL

peptide-loaded splenocytes ± cytokines were i.v. transferred into

naive recipients and analyzed 5–6 days later. Details of DC preparation

and P14 T cell stimulations are found in Supplemental Experimental

Procedures.

Retroviral Constructs and Transduction

T-bet and GFP-MSCV vectors were obtained from L. Glimcher (Szabo

et al., 2000). shKlrg1-pSM2c RNAi vector (Open Biosystems, Hunts-

ville, AL) was subcloned into LMP vector via XhoI and EcoRI. Genera-

tion of the T-bet:ER MSCV vector has been described previously

(Matsuda et al., 2007). Details of the retroviral transduction are found

in Supplemental Experimental Procedures.

In Vivo CTL and Homeostatic Turnover Assay

Details of these procedures are found in Supplemental Experimental

Procedures.
Gene-Expression, Real-Time PCR, and Immunoblotting

Analyses

Gene-expression analysis on IL-7Rhi and IL-7Rlo P14 effector CD8+

T cells was performed with Affymetrix Mouse 430 2.0 Array chips

(Affymetrix, Santa Clara, CA). Details for the cell isolation, RNA prepa-

ration, gene-expression analysis, and immunoblotting are found in

Supplemental Experimental Procedures.

Statistical Analyses

Where indicated, p values were determined by a two-tailed unpaired

Student’s t test. p values < 0.05 were considered significant. All graphs

show averages of the mean ± SEM.

Supplemental Data

Eight figures and Experimental Procedures are available at http://

www.immunity.com/cgi/content/full/27/2/281/DC1/.
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