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Abstract

Statistical Reasoning is affected by various sources of Uncertainty: randomness, imprecision, vagueness, partial igno-
rance, etc. Traditional statistical paradigms (such as Statistical Inference, Exploratory Data Analysis, Statistical Learning)
are not capable to account for the complex action of Uncertainty in real life applications of Statistical Reasoning. A con-
ceptual framework, called ‘‘Informational Paradigm’’, is introduced in order to analyze the role of Information and Uncer-
tainty in these complex contexts. Regression Analysis is taken as the reference problem for developing the discussion.
Three basic sources of Uncertainty are considered in this respect: (1) uncertainty about the relationship between response
and explanatory variables; (2) uncertainty about the relationship between the observed data and the ‘‘universe’’ of possible
data; (3) uncertainty about the observed values of the variables (imprecision, vagueness). Some of the available methods
for coping with these different types of Uncertainty are discussed in an orderly way, from the simpler cases where only one
source at a time is dealt with, to the more complex ones where all sources act together. Probabilistic and Fuzzy-Possibilistic
tools are exploited, in this connection. In spite of the recent relevant contributions in this domain, the weaknesses and defi-
ciencies of the current procedures for managing Uncertainty in Regression Analysis, as well as in other areas of Statistics,
are emphasized. The elements of a generalized system of Statistical Reasoning, capable to deal with the various sources of
Uncertainty, are finally introduced and the lines for future investigation in this perspective are indicated.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Statistical Reasoning is a specific, albeit relevant, instance of Approximate Reasoning or Reasoning under
Partial Knowledge. Its distinctive features include: (1) applicability to ‘‘collective phenomena’’ (namely phe-
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nomena which are characteristic of a set of observational instances, rather than of a single one); (2) reference
to one or more ‘‘variables’’ as observed (or observable) on different ‘‘statistical units’’ (statistical data); (3)
presence of several sources of Uncertainty, related to both the observational set up and the models utilized
for analyzing the data; (4) uncertain conclusions of the reasoning process.

In the past century’s literature, a few theoretical frameworks for developing Statistical Reasoning have been
proposed. These range from the classical Inferential Paradigm, including the Bayesian approach (e.g., [1,2]) to
the Descriptive-Exploratory Paradigm of the French school of thought usually referred to as ‘‘Analyse des
Données’’ (e.g., [3]), to the more recent Statistical Learning Paradigm (e.g., [4,5]). However, all of the above
frameworks do not allow for a complete treatment of the various sources of Uncertainty affecting the Statis-
tical Reasoning process. In fact, the main source of Uncertainty possibly investigated in the mentioned con-
texts is ‘‘randomness’’ (quite often limited to the ‘‘data generation process’’ managed by means of appropriate
probabilistic models). A broader view is taken by the Bayesian-subjectivistic approach which generalizes the
use of probabilistic tools for managing uncertainties related to modeling assumptions (the so-called ‘‘prior
information’’). Then, the computation of posterior probability distributions, via the Bayes formula, allows
the control of the uncertainty associated with the conclusions of the reasoning process. In spite of the increas-
ing utilization of this approach in many applicative fields, still the need for a more inclusive treatment of
Uncertainty in Statistical Reasoning is widely felt, by both theoretical statisticians and researchers in the var-
ious substantive domains. The main sources of Uncertainty that appear to be overlooked, in this connection,
are ‘‘Imprecision’’ and ‘‘Vagueness’’. In a rather theoretical perspective the former notion of Uncertainty in
the inferential process has been considered in the works of Dempster and Shafer, leading to the ‘‘Theory of
Evidence’’ [6,7]. The use of ‘‘imprecise probabilities’’, in this respect, allows us to express the uncertainty asso-
ciated with the selection of probability models or with the inferential conclusions of a statistical analysis (see
also [8,9], and, in the specific field of Regression Analysis, [10]). Nevertheless, there remain unsolved problems
concerning, for instance, the handling of Imprecision arising from the measurement tools utilized in analyzing
real world phenomena. More generally, the Uncertainty stemming from the use of vague definitions or vague
assessments in developing a statistical analysis should be carefully considered when evaluating the plausibility
of the final inferences.

The basic contribution of Zadeh [11] introducing the notion of ‘‘Fuzzy Set’’ has opened the way to a new
development of logical, mathematical and statistical thinking. In close connection with Probability Theory,
Fuzzy Set Theory may provide the necessary tools for a generalized treatment of Uncertainty in Statistics,
as we will try to argue in this paper.

Given a universe of reference, say U, a fuzzy set, ~A, is defined in U by means of its membership function:
l~AðuÞ 2 ½0; 1� 8u 2 U : ð1:1Þ
An equivalent way of characterizing ~A is based on the notion of a-level sets. These are defined as follows:
½~A�a ¼ fu 2 U : l~AðuÞP ag 8a 2 ð0; 1�: ð1:2Þ
On the basis of (1.2), the membership function of ~A can be expressed in the following way:
l~AðuÞ ¼ sup
a

aIf½~A�agðuÞ; ð1:3Þ
where we denote by I{Æ} the usual characteristic function of a (crisp) set. The set
S ¼ fu 2 U : l~AðuÞ > 0g

is called the support of ~A. Usually, normalized fuzzy sets are utilized, verifying:
9u 2 S : l~AðuÞ ¼ 1:
When U � R and we consider convex compact fuzzy sets ~X , i.e. satisfying:
½~X �a ¼ closed and bounded interval 8a 2 ð0; 1�;

we get the important class of fuzzy intervals and, in particular, fuzzy numbers if l~X ðxÞ ¼ 1 only for a single
point x = x0 in the support of ~X .
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A useful parametric family of fuzzy numbers is provided by the LR fuzzy numbers, ~X , whose membership
function is given by
1 Fo
degree
l~X ðuÞ ¼
L c�u

l

� �
; u 6 c;

1; u ¼ c;

R u�c
r

� �
; u P c;

8><
>:
where L and R are, respectively, the left and right ‘‘shape’’ functions, namely decreasing upper semicontinuous
functions, satisfying: L(0) = R(0) = 1, L(1) = R(1) = 0, L(z) = R(z) = 0 "z > 1. The parameters c, l, r are
respectively the center, left spread and right spread of ~X .

It is interesting to notice that the notion of fuzziness may be related to that of (graded) possibility (see [12,
Chapters 5 and 8]). In fact, (1.1) can be interpreted as the ‘‘degree of possibility’’ of u, when we assume the
viewpoint represented by the concept underlying the fuzzy set ~A.1

By means of this link, the logical and mathematical machinery of the theory of Fuzzy Sets may be usefully
carried over into the framework of Possibility Theory (see, e.g., [13]), providing us with a powerful approach
to cope with Uncertainty, using a non-additive measure (less restrictive than a probability measure).

In order to accommodate Fuzzy-Possibilistic and Probabilistic theories within the framework of Statistical
Reasoning, we need a new Paradigm which could make this perspective conceptually meaningful. The previ-
ous paradigms do not seem to suit this purpose, due to their restricted conception of Uncertainty and Infor-
mation. We propose the ‘‘Informational Paradigm’’ [14,15] as a more general epistemological framework for
looking at Statistical Methodology in view of managing different types of Uncertainty affecting the processing
of (statistical) Information.

Essentially, the Informational Paradigm looks at the Statistical Reasoning process as a logical system pro-
ducing Information from Information. The elements entering this process are ‘‘informational ingredients’’,
which can be distinguished in two categories: empirical and theoretical ingredients. The former ones, denoted
by E, refer to (statistical) data collected from the real world in given observational or experimental contexts.
The latter ones concern the various assumptions adopted in the reasoning process and the processed informa-
tion constituting the output of the system (‘‘Informational Gain’’). These are indicated by the symbols A, Ap

and P, according to whether they refer to basic (initial) assumptions, processing assumptions and processed
information.

Each informational ingredient has a twofold nature. While it provides some kind of information, ‘‘cover-
ing’’ to some extent a lack of knowledge, at the same time it is affected by some sources of uncertainty (impre-
cision, vagueness, randomness, partial ignorance, etc.). Thus, Uncertainty and Information (in a Statistical
Reasoning System) are inevitably linked with each other (Klir [12] expresses this in terms of ‘‘information-
related uncertainty and uncertainty-related information’’). In this connection, it is interesting to remark that
three key contributions to this topic have been recently published by different Authors such as Bandemer [16],
Klir [12] and Zadeh [17]. In particular, Klir and Zadeh make an important step toward the construction of a
general conceptual, theoretical and technical frame for handling Uncertainty and Information in processes of
Knowledge acquisition. The former Author utilizes the denomination ‘‘Generalized Information Theory’’,
while the latter prefers to put the emphasis on the Uncertainty side, using the denomination ‘‘Generalized The-
ory of Uncertainty’’. Nonetheless, starting from different viewpoints, both tend to formalize a logical system
capable to integrate Information and Uncertainty (see, e.g., the remarks in Chapter 10, note 10.7 of [12]).

Another noticeable line of thought aiming at unifying the treatment of Uncertainty and Information Pro-
cessing under partial knowledge is witnessed by the works of Coletti and Scozzafava concerning the use of
conditional probability in a coherent setting, in the spirit of De Finetti’s subjectivistic approach (see, e.g.,
[18]). In this case conditional probability, looked on as a function of the conditioning ‘‘event’’, defines a gen-
eral informational tool interpretable in Fuzzy-Possibilistic terms. It acts within an inferential system ruled by
probability laws, whose intrinsic nature allows the assessment of uncertainty in probabilistic terms. However,
r instance, if ~A expresses the concept of ‘‘tall’’ (as referred to the height of a man), and u = 1.80 m, (1.1) = 0.75 may express the
of possibility that a height of 1.80 m characterizes what we mean by a ‘‘tall man’’.
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the capability of this theory to encapsulate the Statistical Reasoning process, in its various forms, is still to be
verified.

Our approach differs from the above mentioned theories in that it uses the word ‘‘Information’’ in a rather
intuitive and qualitative fashion. In fact, the main objective of this paper is to provide a logical systematization
of the Statistical Reasoning process, whereby the ‘‘Informational matter’’ is elaborated in presence of several
types of Uncertainty associated with the various employed ingredients and with the substantive problem at
hand. This systematization should allow us to capture the weaknesses and deficiencies of the thus far available
systems and, therefore, to suggest the lines of future research, in view of setting up an ‘‘integrated system of
Uncertainty Management in Statistical Reasoning’’.

In order to accomplish the above task, we illustrate our point of view by referring to the general problem of
Regression Analysis in Statistics. In this respect, we must specify a few points characterizing our treatment of
Regression in the present context.

First, the discussion of Regression methods is kept within the domain of classical parametric regression
with particular reference to parameter estimation and predictive use of the model. Second, it is organized
according to an increasing level of complexity as to the management of the various sources of Uncertainty.
Third, at each successive step of this illustration only some specific relevant methods are taken into account,
in view of characterizing the way of dealing with the given stage of complexity. Of course, in the extremely rich
literature concerning Regression Analysis, there exist numerous other methods of both parametric and non-
parametric type, which will not be discussed here essentially because they would not add further substantial
contributions to the line of thought underlying this paper. So, for instance, alternative non-parametric
approaches to Regression are not dealt with, in spite of their methodological and practical importance in real
life applications. Among them we mention: regression trees, neural networks, spline regression, techniques
based on the use of wavelets, predictive regression methods based on ‘‘boosting’’ and ‘‘bagging’’ (see, for
instance [5,19,20]).

The paper is organized in the following way. In Section 2, we characterize the Regression Problem in terms
of Information and Uncertainty, according to the Informational Paradigm. Then, in Section 3, we define in
detail the essential informational ingredients of the Statistical Reasoning process underlying Regression Anal-
ysis. The related Uncertainty is dealt with at the most elementary levels (namely, levels 0 and 1). In particular,
at level 1, the linear regression model is assumed and the classical Least Squares estimation procedure is con-
sidered. It is underlined that, in this framework, there does not exist a proper system of Uncertainty Prop-
agation. Section 4 is devoted to level 2 Regression Analysis. This is associated to the management of
uncertainty stemming from the possible imprecision or vagueness of the response variable. This uncertainty
is expressed by means of a suitable parametric family of fuzzy sets. The parameters of this family are appro-
priately regressed on the explanatory variables, and estimated on the basis of a Least Squares criterion
applied to a distance between fuzzy sets. A ‘‘side model’’ exploiting fuzzy arithmetic relationships is then con-
sidered in order to complete the uncertainty analysis concerning the regression coefficients. In Section 5, level
3 Regression Analysis is discussed. This concerns the management of uncertainty due to the relationship
between the observed data and the ‘‘universe’’ of possible data and to its influence on the estimation of
the regression coefficients and on the predictive use of the regression model. The classical probabilistic
approach is first taken into consideration, along with its own Uncertainty Propagation system. Then, the pos-
sibilistic perspective is investigated. This involves the use of fuzzy regression coefficients whose estimation is
based on the principles of ‘‘minimum fuzziness’’ of the response variable and of ‘‘possibilistic containment’’
of the observed data. Section 6, devoted to level 4 Regression Analysis, deals with the more complex case
where Uncertainty is jointly due to the imprecision/vagueness of the response variable and to its randomness
(uncertainty caused by the data generation process). The notion of Fuzzy Random Variable is utilized in this
context. A procedure, based on works [21–23] for estimating the regression coefficients, is described, along
with the associated process of Uncertainty propagation. Some important limitations concerning the inferen-
tial system and the management of Uncertainty, at level 4 of Regression Analysis, are stressed. This is dis-
cussed in a broader perspective in Section 7. The conceptual and methodological elements of a generalized
system of Statistical Reasoning, capable to manage the various sources of Uncertainty, are pointed out in
view of stimulating specific investigations aimed at overcoming the deficiencies of the currently available
methodology.
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2. Information and uncertainty in the Regression Problem

The basic problem in Regression Analysis is the study of the relationship (say RÞ between a variable Y

(‘‘Response’’) and a set of variables X1, . . . ,Xp (‘‘Predictive’’ or ‘‘Explanatory’’ variables).
In abstract terms, we shall denote this relationship by
RðY ; X 1; . . . ;X pÞ: ð2:1Þ
Notice that R is a ‘‘dependence’’ relationship: Y is thought of as a variable whose behaviour depends on the
behaviour of X1, . . . ,Xp. In this sense, R is an asymmetrical relationship.

The study of R has two main objectives:

(i) determining the ‘‘structure’’ of R;
(ii) using R for ‘‘predicting’’ Y, conditionally on knowing the ‘‘evaluation’’ of (X1, . . . ,Xp).

In Statistical Reasoning, an ‘‘observational setting’’ for the above problem is laid out. This consists in mak-
ing available a set of ‘‘evaluations’’ of Y and (X1, . . . ,Xp) in n ‘‘observational instances’’:
½eviðY Þ; eviðX 1; . . . ;X pÞ�; i ¼ 1; . . . ; n;
where evi(Æ) denotes an evaluation of the variables in the argument, obtained on instance i. This evaluation
consists of an assessment of the concerned variables, which may take the form of numerical values, linguistic
expressions (such as ‘‘good’’, ‘‘medium’’, etc.), sets of numerical values (e.g., intervals on the real line), etc.

In general any given ‘‘problem’’, in scientific investigation as well as in decision making and also in every-
day life, involves: (a) some kind of ‘‘Information’’; (b) some kind of associated ‘‘Uncertainty’’. The embedding
of the problem in a specific ‘‘Statistical Reasoning System’’ adds more information and more uncertainties at
the same time.

As mentioned in Section 1, with reference to the Informational Paradigm, the information getting through
the system can be represented as a set of ‘‘informational ingredients’’ (whose nature may be empirical or the-
oretical). Each informational ingredient has a twofold link with uncertainty: on one hand it ‘‘covers’’ a part of
uncertainty in the system (e.g., an observed datum partially covers ignorance about the physical world); on the
other hand, however, it adds some kind of uncertainty in the system (e.g., the datum may be imprecise or
vaguely defined). Thus, we may state that each informational ingredient adds uncertainty (related to itself),
while covering some piece of uncertainty in the system.

The interplay between information and uncertainty in a Statistical Reasoning System yields two related
propagation processes: (a) propagation of information (from initial information (E,A), to processed informa-
tion (P)); (b) propagation of uncertainty (through the various uncertainty evaluations ev[U(Æ)] related to the
different informational ingredients processed in the system).

A suitable Statistical Reasoning System should include an appropriate management of both information
and uncertainty propagation processes.

In this connection, it should be noticed that the management of uncertainty involves in itself processing
some kind of information (e.g., specific measures of uncertainty) to which there is inevitably associated some
further uncertainty. Therefore, in order to avoid a paradox of ‘‘regressio ad infinitum’’, we convene to stop at
some specified point the investigation of uncertainty, accepting a ‘‘residual’’ amount of ignored uncertainty in
our reasoning process.

In the sequel we will specifically focus upon the management of uncertainty in the Regression Problem. Into
the involved systems of information propagation will not be given a specific insight; they will be rather looked
at as the necessary support for the propagation of uncertainty. We will examine the uncertainty management
in the Regression Problem in a gradual manner, by distinguishing different successive ‘‘levels’’ of dealing with
uncertainty in the regression framework, starting from basic uncertainties concerning the initial ingredients E

and A and then deepening our insight into these ones along with managing the uncertainties linked with the
processing assumptions (Ap) and other pieces of information fed into the system.
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3. Management of uncertainty in Regression Analysis: levels 0 and 1

3.1. Level 0

Information

At level 0, the only Information we assume concerns the theoretical ingredient A. We denote this by A01,
where the subscript 0 refers to the ‘‘level’’ and 1 to the ordering of the various initial theoretical assumptions
we are going to introduce:

A01: we assume the ‘‘existence’’ of a ‘‘Relationship’’, R, between a phenomenon Y and p phenomena
X1, . . . ,Xp.
Notice that no empirical information is available at this stage (E01 = ;).
Uncertainties

U01: this uncertainty is related to R. In fact, at level 0, we do not formulate specific assumptions about the
type and form of R.

U02: this concerns the ‘‘observational instances’’ of R. Since E01 is empty, we have a complete uncertainty in
this respect.
We may observe that both U01 and U02 represent a state of total ignorance. The only information at our
disposal, at this starting level, concerns the logical existence of R.

3.2. Level 1

Level 1 is the initial stage of any procedure of statistical data analysis, namely the collection of data.
Information

Using the previously introduced notation for the informational ingredients and the corresponding uncer-
tainties, we now consider the empirical information consisting of the statistical data and correspondingly
update the set of uncertainties:

E11: we get n ‘‘observational instances’’ concerning the evaluations made on Y,X1, . . . ,Xp in n instances (the
data D):
D ¼ f½eviðY Þ; eviðX 1Þ; . . . ; eviðX pÞ�; i ¼ 1; . . . ; ng:

Uncertainties

U11 (�U01): initial uncertainty w.r.t. R.
U12: this is related to the relationship between D and the ‘‘universe’’ of ‘‘possible’’ instances (is D a

sample from some population? What kind of sample is it? How is D generated? Etc.).
U13: this uncertainty is associated with the evaluations made in D (e.g., these may be numerical and

precise, quantitative but imprecise, linguistically expressed, vague).

Now, in order to cope with the above uncertainties while exploiting the empirical information E11, we have
to introduce a series of assumptions, including the ‘‘basic’’ ones (concerning the initial theoretical and empir-
ical information, i.e. A01 and E11) and some processing assumptions allowing us to manipulate the so far avail-
able informational material. The above mentioned series of assumptions constitutes a piece of further
theoretical information (beside A01), characterizing level 1 of analysis.

Theoretical information (at level 1)

Basic assumptions

A11 (�A01): logical existence of R.
A12: the n observational instances in E11 are just ‘‘cases’’ of possible observations. No particular

structure is assumed for the ‘‘universe’’ (see uncertainty U12).
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A13: the data in D are assumed to be numerical and precise (i.e. we assume to deal with a crisp
response and crisp explanatory variables) (see uncertainty U13).

A14: some kind of ‘‘form’’ is given to R (see uncertainty U11). A typical example, which we will take
into consideration in the sequel, is the following linear regression model:
Y ffi gðx;#Þ; gð�; �Þ 2 R; ð3:1Þ
where the class R of functions is given by
R ¼ fgðx;#Þ ¼ ½fðxÞ�0# : fðxÞ ¼ ½f1ðxÞ; . . . ; fkðxÞ�0;# 2 Rkg ð3:2Þ
and f1(x), . . . , fk(x) are given ‘‘design functions’’, namely appropriately chosen functions of the
explanatory variables. Notice that the members of class R are uniquely identified by the vector
of parameters #.
By assuming A12 and A13 we are practically ‘‘nullifying’’ the corresponding uncertainties U12 and U13. In
fact, in the former case, we avoid introducing a model accounting for the relationship between observed and
possible data (e.g., a data generation model). Of course, this will have relevant consequences on the possibility
of managing the uncertainty propagation process, as we will see later. Likewise, in the latter case, we avoid
doubting of the reliability of the measurements of variables Y and Xj’s. However, this assumption may not
stand several real life situations, where vagueness and imprecision inevitably affect our observational set up.

Differently from A12 and A13, assumption A14 covers to some extent uncertainty U11. But, at the same time,
it introduces two further components of uncertainty: the first one refers to the approximation ffi in (3.1); the
other one concerns the specific values of vector #.

Nonetheless, after having introduced some Processing Assumptions, we can see that U11 is effectively
reduced, conditionally on the informational ingredients fed into the considered Statistical Reasoning System.
We denote by a superscript ‘‘r’’ the reduced uncertainties. So, in our case, we have
U r
11 ¼ ðU 11 j A11;A12;A13;A14;E11; Processing AssumptionsÞ ð3:3Þ
as the residual uncertainty about R. We observe that U r
11 has two components: one is ‘‘internal’’ w.r.t. the set

of assumptions; the other one is ‘‘external’’. The internal component is related to the uncertainties associated
to the introduced assumptions (e.g., the ‘‘true’’ value of #, or the measure of the approximation ffi, or the
validity of A12 whose failure may produce a bias in the outputs of the system). The external component refers
to the plausibility of A14, which strongly restricts the universe of possible relationships in R.

Whileas a partial evaluation of the internal component is feasible within the given reasoning system, in
order to assess (at least approximately) the external component we should widen the statistical system, cov-
ering, to some degree, the gap between A14 and R (for instance, by considering a larger class of relationships
including, for example, nonlinear regression models, neural networks, regression trees, etc.).

Processing assumptions

Under the above mentioned Basic Assumptions, and with particular reference to A14, involving model (3.1),
we introduce the following Processing Assumptions, allowing us to cope with the two components of (internal)
uncertainty linked with A14 (namely those referring respectively to ffi and #):

Ap
11: we use a Least Squares (LS) ‘‘fitting criterion’’ which allows us to ‘‘quantify’’ the approximation in ‘‘ffi’’

and, at the same time, to produce an ‘‘estimate of #:
min
#

Xn

i¼1

d2½yi; gðxi;#Þ�: ð3:4Þ
Ap
12: we adopt a specific ‘‘distance’’, d, to be plugged into (3.4).

Now, the informational set up for Regression Analysis at level 1 is completed. This consists of the following
set of theoretical and empirical ingredients:
I1 ¼ ðA11;A12;A13;A14;E11; Ap
11;A

p
12Þ: ð3:5Þ



R. Coppi / Internat. J. Approx. Reason. 47 (2008) 284–305 291
Two kinds of Processed Information can be drawn from I1. The first one, which we call P11, refers to the esti-
mate of # given I1 (usually denominated ‘‘LS estimate’’). The second one, denoted by P12, concerns the pre-
diction of the unknown value yh in a new observational instance, h, for which we know only the value taken by
the explanatory vector: xh.

Processed information (at level 1)

P11: given I1, the inference on # is expressed by the following ‘‘point estimate’’
#̂ ¼ ðF0FÞ�1
F0y; ð3:6Þ

where

F ¼

f1ðx1Þ � � � fkðx1Þ
..
. ..

.

f1ðxnÞ � � � fkðxnÞ

2
664

3
775

is the design matrix.

P12: given I1 and xh, we get the following conditional estimate (predicted value) of yh:
ðŷhjI1; xh; P 11:Þ ¼ f 0h#̂; ð3:7Þ
where f 0h ¼ ½f1ðxhÞ; . . . ; fkðxhÞ�.
As mentioned before, both P11 and P12 are affected by uncertainty, as a result of the propagation of uncer-
tainty through the Statistical Reasoning System of level 1. We denote these uncertainties, respectively, by
UðP 11jI1Þ ð3:8Þ

and
UðP 12jI1; xh; P 11Þ: ð3:9Þ

It is clear that (3.8) and (3.9) are two sub-components of the internal component of the residual uncertainty
U r

11.
Given the informational ingredients of level 1 we are not able to make an evaluation of the uncertainties in

(3.8) and (3.9). Even the Gauss–Markov theorem, concerning the BLUE (Best Linear Unbiased Estimator)
property of the LS estimate of #, cannot be used in this context, since assumption A12 excludes thinking in
terms of sample and population and, consequently, of sampling distribution of #̂.

Summing up, at level 1 of Regression Analysis, we are allowed to reduce to some extent the uncertainty
about R, using P11, and also the predictive uncertainty, using P12. However, we cannot evaluate the uncer-
tainty concerning these two elements of processed information. As a matter of fact, assumption A12 prevents
us from using a data generation model which would enable us to manage the uncertainty propagation process
by means of the classical mechanism: sampling model! sampling distribution of the statistics used for infer-
ential purposes (e.g., estimators of the parameters) ! measures of uncertainty based on these sampling dis-
tributions (e.g., the standard errors). On the other hand, there do not exist, within I1, alternative
possibilities for making other evaluations of (3.8) and (3.9).

We can conclude that, within the Statistical Reasoning System of level 1, there does not exist a system for
managing the uncertainty propagation process. Under this point of view level 1 Regression Analysis consti-
tutes an incomplete system of statistical reasoning, even if we restrict the scope of uncertainty management
to the evaluation of uncertainty concerning processed information P11 and P12 (and thus overlooking many
other important sources of uncertainty as outlined in this section).
4. Management of uncertainty in Regression Analysis: level 2

At level 2 of Regression Analysis we relax the basic assumption A13 of level 1, allowing for imprecision/
vagueness in the measurement of the response variable Y (see uncertainty U13). Although it would be possible
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to relax also the assumption of crispness of the explanatory variables, we limit ourselves to arguing in terms of
imprecisely/vaguely observed Y, without loosing in generality for our present purposes. Moreover, we keep
the remaining basic assumptions of level 1, along with the empirical information E11 and the same basic uncer-
tainties U11, U12, U13.

Therefore, the initial informational set up of level 2 is as follows:
Empirical information

E21 � E11.
Theoretical information

A21 � A11 � A01.
A22 � A12.

A23: the data in D may be imprecise or vague. In particular we assume that Y is observed imprecisely or
vaguely, whileas the Xj’s are observed precisely (crisp variables). Furthermore, we assume that: "i, evi

(Y) is a fuzzy variable defined on R, whose values belong to F1
c , namely the space of convex and com-

pact fuzzy numbers (see [24]). Thus, our data become
fð~yi; x1i; . . . ; xpiÞ : ~yi 2F1
c ; xi 2 Rp; i ¼ 1; . . . ; ng:
The above initial information is not sufficient for carrying out the analysis. To this purpose we have to intro-
duce more ingredients (basic and processing assumptions). The literature on fuzzy Regression Analysis dealing
with fuzzy response variables is rich of proposals. In this Section, we will restrict our considerations to an
approach proposed by Coppi et al. [25], in a fuzzy Least Squares framework. We will only give an outline
of the informational structure of this approach (informational ingredients and their treatment, management
of the various sources of uncertainty). Consequently, we will not review the great variety of techniques that
have been so far proposed, either in the LS or in the possibilistic perspectives, or even in a hybrid line of
thought (see, for instance, [26]). The reader interested in getting a deeper insight into this methodological area
(corresponding to level 2 of Regression Analysis) is addressed to the specific literature (e.g., see, for an over-
view, [27]).
4.1. Fuzzy least squares regression [25]

Assumption A23, concerning the imprecision/vagueness of the response variable, is further specified in the
following way:

A023: the fuzzy observations ~yi (i = 1, . . . ,n) are assumed to belong to the LR family of fuzzy numbers. More-
over, we look at them in a non-interactive way, considering the set of n membership functions:
~yi � ðyi; li; riÞLR; i ¼ 1; . . . ; n; ð4:1Þ
where yi, li, ri are, respectively, the observed centers, left spreads and right spreads of the response var-
iable, and LR denotes the ‘‘shape’’ of the specific LR membership function selected for our data. There-
fore the Empirical Information E021, in this case, can be summarized by means of three vectors:
y 0 = (y1, . . . ,yn): centers-vector,
l 0 = (l1, . . . , ln): left spreads-vector,
r 0 = (r1, . . . , rn): right spreads-vector,
and by appropriate measures of the ‘‘shape’’ of the LR membership function. In the procedure we are
illustrating (see [25]), these measures are given by

k ¼
Z 1

0

L�1ðxÞdx and q ¼
Z 1

0

R�1ðxÞdx

(e.g., k = q = 1/2 for triangular membership functions).
Consequently, in the analysis, the data are represented by

ðy; l; r; k; qÞ: ð4:2Þ
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Notice that E021 is inevitably affected by theoretical information concerning the type and shape of the
membership function. However, it should be recognized that hardly we can think of a ‘‘purely’’ empirical
information since any observation of the real world is necessarily conditional on some measurement de-
vice whose justification relies on theoretical assumptions.
In order to cope with uncertainty U11 (about RÞ, we again make an assumption of type A14 by regressing
the parameters of the response variable on the explanatory variables. This is formulated in the following Basic
Assumption:

A24: the relationship R is expressed by means of regression equations involving the data represented in (4.2).
Specifically, we assume:
y ffi Fa ¼ y�; ð4:3Þ
l ffi ðFaÞbþ 1nd ¼ l�; ð4:4Þ
r ffi ðFaÞg þ 1nh ¼ r�; ð4:5Þ

where a, b, g, d, h are unknown parameters, F is an appropriate design matrix of functions of the explan-
atory variables, and y*, l*, r* denote the theoretical values of the centers, left and right spreads of the
response variable in the n observations.
The uncertainty about R (i.e. U11) is now decomposed in two parts: (1) the uncertainty concerning model 4.3,
4.4 and 4.5, represented by the ignorance of the values taken by parameters (a,b,g,d,h) and by the approxima-
tion (ffi) of the model w.r.t. the data; (2) the residual uncertainty (not furtherly analyzed). The former compo-
nent of uncertainty is managed by means of the Least Squares criterion, allowing us to minimize the
approximation uncertainty while providing the estimates of the parameters. As usual, this requires the intro-
duction of two processing assumptions, related, respectively, to an appropriate metric and a fitting criterion.

Processing assumptions

Ap
21: the distance between observed and theoretical (modeled) data is provided by the following Euclidean dis-

tance [28]:
D2
LR½ðy; l; rÞLR; ðy�; l

�; r�ÞLR� ¼ ky� y�k2 þ kðy� klÞ � ðy� � kl�Þk2 þ kðyþ qrÞ � ðy� þ qr�Þk2

¼ D2
LR½ð�Þ; ð�Þja; b; g; d; h�: ð4:6Þ
Ap
22: the fitting criterion is the Least Squares criterion based on distance (4.6):
min
a;b;g;d;h

D2
LR½ð�Þ; ð�Þja; b; g; d; h�: ð4:7Þ
The Informational set up at level 2, according to the present approach, is I2 ¼ ðA21;A22;A
0
23;A24;E021; Ap

21;A
p
22Þ.

Processed information

P21: conditional on I2, we get the iterative LS estimates â; b̂; ĝ; d̂; ĥ, which solve problem (4.7) (see [25]).
P22: conditional on I2, P21 and xh, we get a fuzzy estimate of ~yh, given by
~̂yh � ðŷh; l̂h; r̂hÞLR; ð4:8Þ
where

ŷh ¼ f 0ha; ð4:9Þ

l̂h ¼ ŷhb̂þ d̂; ð4:10Þ

r̂h ¼ ŷhĝ þ ĥ; ð4:11Þ

in which f 0h ¼ ½f1ðxhÞ; . . . ; fkðxhÞ�.
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An Uncertainty Propagation process is feasible in the above framework, enabling us to evaluate the uncer-
tainty pertaining to Processed Information P21 and P22.

Uncertainty Evaluation (w.r.t. Processed Information)

ev½UðP 21jI2Þ�: the following implicit fuzzy regression model underlies model (4.3)–(4.5):
~yð�Þi ¼ ~b1 � f1ðxiÞ � � � � � ~bk � fkðxiÞ; i ¼ 1; . . . ; n;
where � and Æ denote, respectively, the addition of fuzzy numbers and the multiplication of a fuzzy number by
a scalar, and ~bj (j = 1, . . . ,k) are fuzzy regression coefficients. If we assume that these parameters are expressed
in terms of LR fuzzy numbers as follows:
~bj � ðbj; rj; sjÞLR; j ¼ 1; . . . ; k;
where bj, rj and sj are, respectively, the center, left spread and right spread of the jth coefficient, then by using
fuzzy arithmetic the following relationships are derived from the above implicit model:
y ¼ Fb; ð4:12Þ
l ¼ jFjr; ð4:13Þ
r ¼ jFjs; ð4:14Þ
where jFj denotes the matrix of absolute values jfijj. It is obvious that system (4.12)–(4.14) may not be verified
by the estimates (4.9)–(4.11). However, we can use the relationships in (4.12)–(4.14) in order to get an estimate
of b, r and s which is ‘‘compatible’’ with the estimates (4.9)–(4.11). In fact, by assuming that the latter esti-
mates ‘‘approximate’’ (up to a residual quantity) the fuzzy arithmetic relationships represented by system
(4.12)–(4.14), in the following way:
y ¼ Fbþ e1; ð4:15Þ
l ¼ jFjrþ e2; ð4:16Þ
r ¼ jFjsþ e3; ð4:17Þ
the above mentioned ‘‘compatibility’’ may be expressed in terms of Least Squares estimates of b,r,s from sys-
tem (4.15)–(4.17), using ŷ; l̂; r̂ given by (4.9)–(4.11). Thus, we can easily see that b̂ ¼ â. Moreover, the estimates
of the spreads r and s can be obtained by constrained LS satisfying the non-negativity constraints:
r̂ P 0; ŝ P 0, utilizing the NNLS algorithm [29]. The above illustrated procedure allows us to assess the
uncertainty concerning the estimate â (derived from (4.7)), by means of its estimated spreads r̂ and ŝ. No sim-
ilar uncertainty analysis is so far available for the remaining parameters b, d, g and h.
ev½UðP 22jI2; P 21; xhÞ�: the assessment of the uncertainty related to the predictive use of the Regression Model is
quite straightforward. In fact, it is implied in the fuzzy estimate (4.8), whose membership function evaluates
the uncertainty about P22:
l~̂yh
ðzÞ ¼

L ŷh�z
l̂h

� �
; z < ŷh;

1; z ¼ ŷh;

R z�ŷh
r̂h

� �
; z > ŷh:

8>>><
>>>:
5. Management of uncertainty in Regression Analysis: level 3

At level 3 of Regression Analysis we try to manage Uncertainties U11 and U12, namely about R and about
the link between the data (D) and the ‘‘Universe’’ of possible data. Instead, we overlook Uncertainty U13, by
assuming (as at level 1) that the data in D are precisely observed (data crispness). For achieving the above task,
we will adopt two different viewpoints: the traditional inferential probabilistic approach on one hand and, on
the other hand, the ‘‘possibilistic’’ perspective. While the former approach is embedded in Probability Theory,
whereby Uncertainty is managed by means of probabilistic tools; the former one is derived from Possibility
Theory (see, for instance, [13]) and utilizes Fuzzy-Possibilistic tools for coping with the relevant Uncertainties.



R. Coppi / Internat. J. Approx. Reason. 47 (2008) 284–305 295
5.1. Approach 1 (classical probabilistic regression)

Basic assumptions

A31 � A11.

A32: the link between the data in D and the Universe of potential data is formalized by means of a ‘‘stochastic
data generation process’’, represented by a family of Probability Distributions over the Sample Space
(i.e. the space of all possible samples which can be drawn from the Universe in the given observational
set up). The explanatory variables X1, . . . ,Xp are assumed to be non-stochastic (i.e. we consider the anal-
ysis conditional on fixed design points). Instead, the response variable Y is assumed to be stochastic. The
following statistical model is considered:
A3
f� n; }g; ð5:1Þ
where � n represents the sample space for y, and } the family of Probability Distributions on � n.
Notice that, through }, we are able to measure (in probabilistic terms) the Uncertainty U12 specifically
related to the ‘‘origin’’ of D. Consequently, we are also enabled to assess the Uncertainty stemming from
the predictive use of Regression. This is, in fact, connected with the ‘‘Generalization Horizon’’ of the
inferential results obtained by means of this Approach. The ‘‘Generalization Horizon’’ is, here, essen-
tially based on the data generation process.

3 � A13.
A34: the relationship R is expressed in terms of ‘‘Conditional Expectation’’ of the response variable. Namely:
EðY jx; p 2 }Þ ¼ gðxÞ; g 2 G; ð5:2Þ
where G is a suitable class of (Regression) Functions.
In a classical semi-parametric model we set

G � R � fgðx;#Þ ¼ ½fðxÞ�0#;# 2 RkÞ�; ð5:3Þ
as in level 1 analysis (see A14).
Notice that, in the above setting, the dominant Assumption is A32. This affects the way R is formulated (in
terms of expectation) and, consequently, the associated ‘‘Uncertainty Propagation System’’, which is based on
classical Statistical Inference.

A widely used specification of Assumptions A32, A34 is the following ‘‘model for semi-parametric regression
analysis’’:
} ¼ pðyj#; r; . . .Þ;# 2 Rk; r 2 Rþ
� �

;

pðyj�Þ ¼
Q

i
pðyij�Þ;

EðY jx;#Þ ¼ ½fðxÞ�0#;
Ry ¼ r2In;

8>>>>><
>>>>>:

ð5:4Þ
where p 2 } depends on the relevant k + 1 parameters (#,r) and on other (possibly infinite) parameters which
are not of interest for inferential purposes. Moreover, the assumptions of stochastic independence among the
various observations, along with that of same variance of the response variable are made.

In order to utilize model (5.4) for getting useful Information and evaluating the respective Uncertainties, we
introduce the two usual processing assumptions, in the Least Squares perspective.

Processing assumptions

Ap
31: use of a Distance on � n, e.g., the usual Euclidean distance.

Ap
32: adoption of a Fitting Criterion, e.g., the LS criterion.
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The resulting Informational set up at level 3, according to approach 1 is
I3;1 ¼ ðA31;A32;A33;A34;E31 � E11; Model ð5:4Þ; Ap
31;A

p
32Þ: ð5:5Þ
Processed information

P31: under I3;1, we get the following LS estimates of the relevant parameters in model (5.4):
#̂ ¼ ðF0FÞ�1
F0y; ð5:6Þ

r̂2 ¼ ðn� pÞ�1
X

i

ðyi � ŷiÞ2; ð5:7Þ

where ŷi ¼ f 0i#̂; i ¼ 1; . . . ; n; ðf 0i ¼ ½f1ðxiÞ; . . . ; fkðxiÞ�Þ.

P32: conditional on I3;1, P31 and xh, we get the following predicted value of the response variable in unit h:
ðŷhjI31; P 31; xhÞ ¼ f 0h#̂: ð5:8Þ
Uncertainty evaluation

ev½UðP 31jI3;1Þ�: under I3;1 it is not possible to make a specific assessment of this uncertainty. Nonetheless,
the Gauss–Markov theorem guarantees that #̂ is the Best Linear Unbiased Estimator (BLUE) of #, thus
ensuring that Uð#̂jI3;1Þ is somehow minimized (in a specific class of estimators).
ev½UðP 32jI3;1; P 31; xhÞ�: in this case we may use the estimate r̂2 for assessing the uncertainty associated to the
prediction of yh.

Notice that more powerful evaluations of Uncertainties related to Processed Information can be obtained if
we restrict } to a Parametric Family, such as the Multinormal with Independent Homoscedastic Components
(Regression Model under Normal Theory). In this case, the classical Processing Assumption consists in the use
of the Maximum Likelihood Principle leading to ML estimators, Likelihood Ratio Tests, and Confidence
Intervals. Thus, the above Uncertainties can be evaluated (in probabilistic terms) by means of standard errors,
confidence intervals, significance levels, etc.

Therefore, by specifying Assumptions A32, A34 according to the Normal theory, we obtain a more complete
Uncertainty Propagation process, which propagates in probabilistic terms (following the classical inferential
rules of the ‘‘repeated sampling’’ inferential system, see [1]), the sampling uncertainty related to the data gen-
eration process to the uncertainties concerning the Processed Information.

However, it should be underlined that, in the above framework (even under Normal Theory) the ‘‘Gener-
alization Uncertainty’’ linked to the validity of the estimated relationship R beyond the design points X is not
considered.

As a matter of fact, the Uncertainty about R affects immediately the Predictive Uncertainty in both the
‘‘conditional’’ perspective [Yj(X1, . . . ,Xp)] and the ‘‘unconditional one (Y,X1, . . . ,Xp). The classical probabilis-
tic regression approach can cope with the conditional perspective of Uncertainty U11, but not with the uncon-
ditional one. Dealing with the latter would require the introduction of a Family of Joint probability
Distributions on the sampling space of the random vector (y,x), consequently modifying the Basic Assump-
tion A32 (see, for instance, [30]).

Approach 2 (possibilistic regression)

The pioneering work of Tanaka et al. [31] has introduced Possibilistic Thinking in the field of Regression
Analysis. Since then, numerous contributions have been made in the possibilistic perspective in the domain of
Regression (see, e.g., [32]) as well as in other statistical areas, such as Cluster Analysis, Principal Components,
Multidimensional Scaling (see, for instance, [33]). Here, we will only give a hint to the basic ideas underlying
the Possibilistic Approach, as applied to level 3 Regression Analysis. This will obviously be done following the
lines of the Informational Paradigm, emphasizing the relevant Informational ingredients and the process of
Uncertainty management in the Possibilistic system of Statistical Reasoning.
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Basic assumptions

A031 � A11.

A032: the data in D are through of as being realizations of a ‘‘Universe of Possibilities’’, which is not formal-
ized. The link between D and this Universe is expressed through the (possibilistic) ‘‘Data Covering Prin-
ciple’’ (see later).

A033 � A13 (the data are supposed to be crisp).

A034: a ‘‘Possibilistic Relationship’’ between Y and X1, . . . ,Xp is assumed. This is represented by a class of
regression functions with Fuzzy Parameters:
R0 ¼ fgðx j ~#Þ; ~# 2Fk
cg: ð5:9Þ

A commonly used class for g is the linear one

gðx j ~#Þ ¼ x1 � ~#1 � � � � � xp � ~#p ð5:10Þ
where we set k = p. The Possibilistic Regression Model is

~y ¼ gðx j ~#Þ: ð5:11Þ
It must be underlined that the approximation ffi, typical of the regression models so far considered, is
now incorporated within the fuzziness of regression model (5.11). Moreover, the (fuzzy) uncertainty
about the Regression Coefficients (expressed by the membership functions pertaining to the ~#j’s), prop-

agates to the (fuzzy) uncertainty concerning the crisp response variable Y, via the Fuzziness Propagation
System (including the extension principle, the fuzzy arithmetic operations, etc.; see [24]).
The information consisting of A031–A034 and of E031 � E11 (the crisp data in D) must be integrated by specific
processing assumptions, in order to get ‘‘good’’ estimates of ~# and to manage the Uncertainty Propagation
process.

Processing assumptions

A0p31: the criterion of ‘‘Minimum Fuzziness’’ of the estimated response variable is adopted.
A0p32: the ‘‘Possibilistic Data Covering Principle’’ is applied, consisting in ensuring, at a given ‘‘Possibilistic

Confidence Level’’, that all the observed responses are ‘‘contained’’ in the estimated ones (where the
notion of fuzzy insiemistic containment is utilized).

A0p33: a given level of ‘‘Possibilistic Confidence’’ is chosen.
A0p33: a parametric form for the membership functions of the (unknown) fuzzy regression parameters ~#j,

j = 1, . . . ,p, is assumed. In particular, the LR fuzzy numbers are utilized in this connection:
~#j � ð#j; cj; djÞLR; j ¼ 1; . . . ; p; ð5:12Þ
where #j, cj, dj denote, respectively, the centers, the left and right spreads.
Thus, the Informational set up for Possibilistic Regression Analysis at level 3 is provided by
I3;2 ¼ ðA031;A
0
32;A

0
33;A

0
34;E

0
31; A0p31;A

0p
32;A

0p
33;A

0p
34Þ:
We briefly describe the Procedure for elaborating I3;2.

1. By the Extension Principle, the (assumed) fuzziness of the regression parameters is ‘‘propagated’’ to the
fuzziness of the estimated response ~y, as follows:
~y � ðy�; l; rÞLR ð5:13Þ
with

y� ¼ #0x;
l ¼ c0jxj;
r ¼ d0jxj:

8<
: ð5:14Þ
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Therefore, the h-level set of ~y is given by

½~y�h ¼ ½#
0x� L�1ðhÞc0jxj;#0xþ R�1ðhÞd0jxj�: ð5:15Þ

2. On the basis of (5.13), (5.14), the overall fuzziness of the (theoretical) response variable (for the entire col-
lective of observations) is
F ¼
Xn

i¼1

ðcþ dÞ0jxij: ð5:16Þ
3. The observed (crisp) responses, yi, must be contained in the h-level set (5.15) of the corresponding theoret-
ical (fuzzy) response ~yi, giving the following constraints:
Ci �
fyi P #0xi � L�1ðhÞc0jxijg;
fyi 6 #

0xi þ R�1ðhÞd0jxijg;
i ¼ 1; . . . ; n:

(
ð5:17Þ
4. The following Linear Programming problem must then be solved:
min
#;c;d

F ;

under constraints Ci ði ¼ 1; . . . ; nÞ; c P 0; d P 0:

(
ð5:18Þ
Processed information

P 031: the solution of problem (5.18) provides the estimates of the Fuzzy Parameters
~̂#j � ð#̂j; ĉj; d̂jÞLR; j ¼ 1; . . . ; p: ð5:19Þ

P 022: under I3;2, P 031 and xh, we get the following fuzzy predicted value of the response variable for unit h:
~̂yh � ð#̂0xh; ĉ
0jxhj; d̂0jxhjÞLR: ð5:20Þ
Uncertainty evaluation (w.r.t. P 021, P 022Þ

ev½UðP 031jI3;2Þ�: the uncertainty concerning the Regression Coefficients in model (5.10) is immediately
expressed by means of the membership functions l ~̂#j

ð�Þ, j = 1, . . . ,p pertaining to estimates (5.19).
ev½UðP 032jI3;2; P 031; xhÞ�: also the uncertainty associated with the prediction of the response variable, having
observed xh, is naturally represented by the membership function l~̂yh

ð�Þ of the fuzzy estimate (5.20).

More generally, if we look at the basic Uncertainties U11 (w.r.t. RÞ and U12 (w.r.t. the relationship between
observed data D and Universe of possible data), we can make the following remarks.

(1) By means of P 031 we manage the parametric component of U11, conditionally on model (5.10).
(2) ev½UðP 031jI3;2Þ� allows us to assess the uncertainty concerning the piece of Information P 031 which

‘‘covers’’ a part of U11, according to remark (1).
(3) The residual part of Uncertainty U11, stemming from the ignorance about the validity of model (5.10) as

representative of relationship R, is, in some sense, ‘‘covered’’ by adopting the Possibilistic Data Covering
Principle (at least at the possibilistic confidence level h). In fact, as long as the data from the real world
fall under our observation, the fuzziness incorporated in model (5.10) allows us to account for the
observed relationship between Yand X1, . . . ,Xp by suitably enlarging (if necessary) the spreads of the
estimated parameters ~̂#j (j = 1, . . . ,p) (see, for instance, the considerations made in [34] in this
connection).

(4) As to uncertainty U12, in the above illustrated possibilistic framework we do not formalize the link
between the data in D and the universe of possible data by means of a ‘‘data generation model’’, as
we do in the probabilistic approach. However, the possibilistic evaluations of the uncertainties related
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to the estimated parameters ~̂#j (j = 1, . . . ,p) and to the conditional predictors ~̂yh can provide us with an
appraisal of U12. What we lack, in the possibilistic approach that we are examining, is the capability of

evaluating the possible variation of the estimates ~̂#j (and consequently of the predicted values based on
them) due to the observation process, namely to the acquisition of new Empirical Information from the
real world.
6. Management of uncertainty in Regression Analysis: level 4

At level 4 of Regression Analysis we try to manage simultaneously all of the three types of basic Uncertain-
ties U11, U12 and U13. Therefore, as compared with level 3, we now allow for imprecise or vague data, taking
into consideration, in particular, fuzzy data. In the sequel, we start the discussion of this case adopting the
approach of Näther [23] (see, also, [21,22]).

Basic assumptions

A41 � A11.

A42: the observational instances are generated by a stochastic mechanism.
A43: Yis evaluated as a Fuzzy Random Variable, while X1, . . . ,Xp are observed crisply.
A44: starting from the class R of regression functions considered at level 1 (see (3.2)), we fuzzify the elements

of R through the ‘‘fuzzification’’ of #. Therefore, we consider the class of linear regression functions with
fuzzy parameters
fR� ¼ ½fðxÞ�0~#; ~# 2Fk
cg: ð6:1Þ
In order to make Assumptions A42, A43, A44 work together we need to formalize a stochastic mechanism
having fuzzy outcomes. In this perspective, we may adopt the notion of Fuzzy Random Variable (FRV),
as proposed in [35] (see also [36]). We should underline that there exist in the literature other approaches which
could be considered in order to manage probabilistic uncertainty concerning fuzzy statistical data (see, for
instance, [37,38]). However, it is not in the scope of the present paper the problem of illustrating and compar-
ing the different ways of formalizing probability models for fuzzy statistical variables. Our aim, in the present
context, consists rather in pointing out the necessity of combining probability and fuzziness for managing
uncertainty in statistical analysis.
Definition 1 (Fuzzy Random Variable [35,36]). Let (X,A,P) be a Probability Space. Then
~Y jX!Fd
c

is a FRV on Rd if for any a 2 [0,1], the a-level set ½~Y �a is a convex compact random set.

We also need to define at least the first two moments (mean and variance) of a FRV. The following defi-
nitions are usually adopted in our context.

Definition 2 (Aumann’s Expectation). Using Aumann’s integral, we define the Expectation of ~Y as follows:
Eð~Y Þ 2 Id
c is such that 8a 2 ½0; 1� : ½Eð~Y Þ�a ¼ Eð½~Y �aÞ;
where Eð½~Y �aÞ ¼ fEðuÞ : uðxÞ 2 ½~Y �aðxÞP � a:e:; u 2 L1ðX;A;PÞg.

Definition 3 (Variance). We define the variance of a d-dimensional FRV, using the support function, in the
following way:
varð~Y Þ ¼ d
Z 1

0

Z
Sd�1

varS ~Y ðu; aÞvðduÞda:
In particular, for d=1 and assuming that ~Y is an LR symmetric fuzzy variable, namely
~Y � ðy; sÞL; ð6:2Þ
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where y and s are, respectively, the center and the spread, we have
Eð~Y Þ � ½EðyÞ;EðsÞ�L; ð6:3Þ
varð~Y Þ ¼ vary þ L2var s; ð6:4Þ
where L2 ¼
R 1

0
½L�1ðaÞ�2 da.

In the light of the previous definitions and of formula (6.3), and recalling the classical Linear Regression
Model for crisp response, we can now set up the following ‘‘Componentwise Fuzzy Linear Regression
Model’’:
A45 :

Eð~yijxiÞ � ðEðyiÞ;EðsiÞÞL;
EðyiÞ ¼ ½fðxiÞ�0#; # 2 Rk;

EðsiÞ ¼ ½hðxiÞ�0c; c 2 Rk0:

8><
>: i ¼ 1; . . . ; n; ð6:5Þ
Model (6.5) is constituted by two different linear models, for the centers and the spreads, respectively. Notice
that, for the Spread Model, the following constraints are imposed:
½hðxiÞ�0c > 0 8i;
xi 2 C 	 Rp 8i;

(
ð6:6Þ
where C is the domain of interest for the Regression Model.
For the analysis of model (6.5)–(6.6) we introduce the following assumptions:
Processing assumptions

Ap
41: we focus on the class of Linear Unbiased Estimators of # and c.

Ap
42: we restrict the membership function of the response variable to be L-symmetric (see (6.2)).

Ap
43: we adopt the classical optimality principle of ‘‘Minimum Variance’’ in the class of Linear Unbiased Esti-

mators, therefore aiming at getting the BLUE estimators of # and c.

Summing up, the Informational set up for Regression Analysis at level 4, in the above described framework
is provided by
I4 ¼ ðA41;A42;A43;A44;A45;E41; Ap
41;A

p
42;A

p
43Þ;
where
E41 :
~y0 ¼ ð~y1; . . . ; ~yi; . . . ; ~ynÞ
X

�
� D; ð6:7Þ
with ~yi � ðyi; siÞL; i ¼ 1; . . . ; n.
Under I4, we consider two Linear Estimators, respectively of # and c:
#̂ ¼ Ky;

ĉ ¼ Cs; ½hðxÞ�0ĉ > 0; 8x 2 C:

(

Unbiasedness of #̂ and ĉ implies
KF ¼ Ik; CH ¼ Ik0 ; where H ¼

h0ðx1Þ
..
.

h0ðxnÞ

2
664

3
775:
Processed information

P41: under I4, and adopting the classical LS criterion, the following componentwise BLUE estimates of the
parameters of model (6.5)–(6.6) are obtained (see [23]):
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#̂� ¼ ðF0R�1
y FÞF0R�1

y y;
n

ð6:8Þn
ĉ� ¼ ðH0R�1

s HÞH0R�1
s s; ð6:9Þ

where R�1
y and R�1

s are, respectively, the inverses of the covariance matrices of the observed centers and
spreads of the response variable.
P42: under I4, P41 and xh, the predicted value of the response variable of unit h (conditionally on having
observed xh), is provided by
~̂yh � ð½fðxhÞ�0#̂�; ½hðxhÞ�0ĉ�ÞL: ð6:10Þ
Uncertainty evaluation

ev½UðP 41jI4Þ�: since we expressed the Fuzzy Regression Model in terms of two crisp regression models
involving crisp parameters, we are not able to express the uncertainty about #̂� and ĉ� in fuzzy terms. Fur-
thermore, we have no information about the sampling distribution of #̂� and ĉ� (since we have not specified
the form of the Probability Distribution of ~Y Þ and then we cannot determine standard errors or confidence
intervals. Therefore, our uncertainty evaluation is restricted to the guarantee that #̂� and ĉ� have the BLUE
property.
ev½UðP 42jI4; P 41; xhÞ�: the uncertainty about the conditional prediction of ~yh is immediately expressed by the
membership function of ~̂yh. However, there remains the stochastic uncertainty about the estimates
#̂� and ĉ�, beside the uncertainty concerning the choice of the L-symmetric membership function for ~̂yh.

In a more general perspective, we can make the following remarks concerning the illustrated approach.

(1) Uncertainty U12 (about the relationship between data and Universe) is managed by the semi-parametric
family }(#,c, . . .) of Probability Distributions on rn

c . In this respect, we are in the same situation as the
one described at level 3, Approach 1, of Regression Analysis (see Section 5.1).

(2) Uncertainty U13 (about the evaluation of the response variable Y) is managed by assuming the L-sym-
metric family of membership functions for the observed responses ~yi’s.

(3) Uncertainty U11 (about RÞ is managed by means of the double regression model for the centers and
spreads of the response variable (6.5), (6.6). Within this model, and with reference to the class of linear
estimators, #̂� and ĉ� ‘‘optimally’’ cover this Uncertainty. However, due to lack of information about
sampling distributions, no further insight into U11 is possible from a probabilistic viewpoint. Nor it is
possible from a fuzzy viewpoint due to the already underlined characteristics of model (6.5), (6.6).

(4) With reference to U12, the ‘‘Generalization Power’’ of the present approach is limited to the observed
points xi 2 C (i = 1, . . . ,n). Enlarging the ‘‘Generalization Horizon’’ to the Universe of possible points
in C, would require the consideration of a Joint Probability Distribution for response and explanatory
variables (see [23]).

(5) Although the approach to level 4 analysis, so far illustrated, constitutes a step forward in view of the
construction of a ‘‘complete’’ system of Statistical Reasoning in the field of Regression Analysis (i.e.
a system allowing for the management of the main sources of Uncertainty, as described in this paper),
the following weaknesses should be underlined:
1. The restriction to L-symmetric membership functions;
2. The restriction of the analysis to the Estimation problem;
3. The splitting of the Regression Model into two separate Models. This may involve failing to achieve a

‘‘global’’ optimum, as well as other limitations in Uncertainty evaluation as previously pointed out;
4. The adoption of a theoretically restrictive inferential approach (the BLUE theory), which may turn

out to be inappropriate in a ‘‘General Uncertainty Management’’ framework;
5. Incompleteness of the Uncertainty Propagation System. In fact, in the present approach Probability

and Fuzziness are juxtaposed rather than integrated. This is witnessed by the lack of probability state-
ments on most of the informational ingredients (except for the fuzzy response variable) and, con-
versely, by the lack of fuzzy statements on probabilistic ingredients.



7. Final considerations
In the previous Sections, after having embedded the Regression Problem in the framework of the Informa-
tional Paradigm, we have illustrated various procedures of Statistical Reasoning for coping with the different
sources of Uncertainty affecting the implementation of Regression Analysis.

Arguing in a formalized, albeit schematic, way, we may summarize the above mentioned Informational
process by means of an Informational Function with five arguments:
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IðE;A;Ap; P ; UÞ; ð7:1Þ

where E, empirical data; A, basic assumptions; Ap, processing assumptions; P, processed information (output
of the reasoning process); U, uncertainty.

Notice that U acts on each of the four informational ingredients (or their combinations) and on additional
theoretical ingredients pertaining to the specific problem at hand (in the case of Regression: relationship
between Data and Universe, relationship between response and explanatory variables, etc.). Thus, we can con-
sider the following Uncertainty Functions: U(E), U(A), U(Ap), U(P), U [ f (E,A,Ap,P)], U (theoretical ingredi-
ents of the problem).

Moreover, U may arise from different sources: randomness, imprecision, vagueness, partial or total igno-
rance, granularity of concepts, etc.. Basically, so far, three different theoretical approaches to coping with
the above types of uncertainty have been proposed in the literature:

(1) Probability theory and the associated classical inferential techniques (either in the ‘‘repeated sampling’’
or in the ‘‘likelihood principles’’ frameworks); (2) Fuzzy-Possibilistic theory and the relative procedures for
statistical analysis (see, e.g., [39]); (3) Interval Analysis as applied to Statistical Reasoning (see, for instance,
[8]).

In the present paper, we focused, in particular, on approaches 1 and 2. In this respect, our (not exhaustive)
analysis has emphasized that, up to now, the main lines of research in the field of Regression Analysis have
either selected one specific approach to the management of uncertainty or, when considering both approaches
1 and 2, have proceeded by ‘‘juxtaposing’’ them. Namely, different roles have been assigned to the probabi-
listic and fuzzy ingredients of the analysis. In fact, in Section 6, we have shown some regression procedures
where the empirical data are fuzzy but the models for analyzing them have a stochastic nature.

However, even in the specific perspective of ‘‘juxtaposing’’ the approaches to the management of uncer-
tainty in a given Statistical Reasoning System, we can point out several topics needing a deeper insight.
The following is just a first list.

(1) Definition and construction of Parametric Families of Fuzzy Random Variables (e.g., families playing
the role of the Gaussian family, or, more generally, of the exponential family in the classical crisp con-
text; it should be underlined, in this connection, that some Authors have suggested notions of ‘‘Normal’’
FRV’s (e.g., [40]), which unfortunately, do not appear to have produced fruitful results in terms of infer-
ential techniques based on them).

(2) Setting up ‘‘complete’’ inferential procedures for FRV’s, including point and interval estimation, testing
procedures and so on. As a matter of fact, at least in the Regression framework, the available techniques
are restricted to point estimation (without assessment of the respective uncertainty) and to testing
hypotheses in some simple cases. Of course, in this respect, we should look not only for ‘‘exact’’ or
‘‘asymptotic’’ theory and techniques, but also for more pragmatic approaches as those based on resam-
pling (for a systematic approach utilizing ‘‘bootstrap’’ techniques for drawing inference on FRV’s see
[41–43]).

(3) More extensive use of the fuzzification of theoretical ingredients. For instance, with reference to U(Ap) in
Regression Analysis, we may consider the following extensions of the domain of Fuzzy Theory in
Regression Analysis: (a) fuzzification of the ‘‘entries’’ of the different explanatory variables in the
Regression Model (namely, we may think of a ‘‘membership degree’’ of an explanatory variable in
the Model); (b) fuzzification of the ‘‘entries’’ of nonlinear effects of the explanatory variables (e.g., prod-
ucts), with the same criterion as in (a). Furthermore, in a theoretical perspective, the following aspects
connected with the inferential use of the notion of FRV deserve a particular attention:
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(4) Definition of key-notions of the probabilistic inferential reasoning such as: sufficiency, likelihood, etc.
(5) Development of a theory allowing the definition of ‘‘optimal’’ inferential procedures which could match

the well known classical theories of efficient estimators, uniformly most powerful tests, and so on.
(6) As a consequence of (5), construction of ‘‘optimal’’ inferential procedures, based on statistical models

for FRV’s.

So far, we considered the ‘‘juxtaposition’’ approach, with particular reference to the probabilistic analysis
of fuzzy data. However, a more general development can be envisaged, leading to a closer interaction among
the various ways of dealing with uncertainty in Statistical Reasoning, and more specifically between Fuzziness
and Randomness. In order to illustrate this point, let us briefly recall the classical probabilistic (parametric)
model for statistical inference:
fSn; pðx j #Þ;# 2 Hg; ð7:2Þ
where x 2 Sn = sample space; p(ÆjÆ) = family of probability distributions on Sn (sampling model);
# 2 H = parameter space.

The information contained in x, concerning the unknown parameter vector #, is expressed by the Likeli-
hood Function:
lð#jxÞ / pðxj#Þ: ð7:3Þ

Often, like in the case of Regression Analysis, some or all of the parameters in # are reparametrized in

terms of new parameters, say u 2 U, expressing more directly the information we want to capture (e.g., the
regression coefficients, given a set of explanatory variables). This may be represented by a ‘‘side statistical
model’’: M(xju). The likelihood for u can be immediately derived from (7.3).

Now, using the notion of FRV’s the following extension to the fuzzy setting could be envisaged:
fFn; pðxj#1; c1Þ; #1 2 H1; c1 2 C1g; ð7:4Þ
fMF ðxj#1; c1; #2; c2Þ; #2 2 H2; c2 2 C2g; ð7:5Þ
where

rn sample space of fuzzy values
x fuzzy observed data
#1 crisp parameters of sampling model
c1 fuzzy parameters of sampling model
MF fuzzy model for x (e.g., fuzzy regression model, fuzzy clustering model (see, e.g., [44] in a non-prob-

abilistic setting), fuzzy latent structure model (see, e.g., [15] in a non-probabilistic setting)
#2 crisp parameters of MF (e.g., crisp regression coefficients, crisp cluster prototypes, crisp factor load-

ings)
c2 fuzzy parameters of MF (e.g., fuzzy regression coefficients, fuzzy cluster prototypes, fuzzy factor

scores).

Further generalizations of model (7.4)–(7.5) might be considered. For instance, imprecise probabilities for
p(ÆjÆ) could be adopted (see, e.g., [9] for a treatment of imprecise probabilities). This would allow us to manage
a specific source of uncertainty due to ignorance about the form of the probability model for our data gen-
erating process. Of course, it is quite a difficult task to give sound inferential foundations to statistical infer-
ence in this setting. One basic theoretical problem concerns the following question: is there a sensible
counterpart of the notion of ‘‘likelihood function’’ in this framework? Should we consider a sort of ‘‘confi-
dence function’’ embodying both the random and fuzzy uncertainties?

Before giving a satisfactory answer to the above question and to the more general foundational problem
concerning the construction of an ‘‘integrated system of uncertainty management in Statistical Reasoning’’,
some partial steps in this direction can be taken. An example is provided by some proposals concerning
the fuzzification of inferential statements, such as fuzzy confidence intervals, fuzzy significance levels, fuzzy
statistical decisions (see, e.g., [33]). An important theoretical and methodological feature of the above
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mentioned integrated approach to uncertainty management is constituted by the ‘‘Uncertainty Propagation
Systems’’. With reference to model (7.4)–(7.5), these should allow us to consistently propagate the various
forms of uncertainty from the original informational inputs through the final inferential conclusions. Some
pioneering attempts in this direction have been made (e.g., [45–47]). There is still much room for wide range
investigations in view of establishing a ‘‘Generalized Management of Uncertainty in Statistical Reasoning’’,
capable to integrate and expand the results and acquisitions of Probability Theory, Fuzzy-Possibilistic Think-
ing and Interval Analysis.
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