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A connected topology F is said to be maximal connected if ?# strictly finer 
than Y implies that % is disconnected. In this paper, it is shown that the number 
of homeomorphism classes of maximal connected topologies defined on a set 
with n points is equal to twice the number of n point trees minus the number 
of n point trees possessing a symmetry line. An enumeration of a class of topolog- 
ies, called critical connected topologies, which includes the maximal connected 
spaces is then carried out with the help of Polya’s theorem. Another result is 
that a chain of connected n point T,, topologies, linearly ordered by strict 
fineness, can contain a maximum of $(n” - 3n + 4) topologies, and, moreover, 
this number is the best possible upper bound for the length of such a chain. 

1. INTRODUCTION AND PROBLEM DEFINITION 

A topology 9 on a set N is said to be maximal connected 8 it is con- 
nected, and if each space on the set N that is strictly finer than F is 
disconnected. Maximal connected topologies were introduced by 
J. P. Thomas in [I], where he raised the question of enumerating the 
maximal connected spaces definable on a finite set. In the present article, 
this and related questions are answered and some of the results of [l] are 
obtained (for finite spaces) in a slightly different way by considering the 
enumeration problem for a larger class of spaces. 

It is shown in [l] that maximal connected spaces are necessarily TO . In 
this article, all spaces under consideration are assumed to be finite and T,, . 
The notation / A 1 will be used to specify the cardinality of the set A. If 
F and % are topologies, then the relation Y > % will express the fact 
that F is finer than 92, and F > %2 will mean that F is strictly finer than 
%. All n point topologies will be assumed to have been defined on the set 
N of cardinality n. If F is a topology on N and 01 E N, then a*(F), or less 

* The results of this paper are presented, with compliments, to Kalpana and Alpana 
Das. 
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explicitly 01*, when there is no risk of confusion, will denote the minimal 
open set of Y that contains 01, i.e., a*(Y) = n (0 I (II E 0 E Y}. It is a 
consequence of the T, property that there exists a non-empty subset of N, 
henceforth denoted by F(9), such that 01* = 01 iff 01 E F(Y). 

A n point topology .Y partitions N uniquely into pairwise disjoint 
subsets F,(Y), F,(F),..., F,(Y), m < n, where &(Y) = F(Y) and the 
Fi(Y) for i > 1 are determined recursively by setting FJY) = F(q), % 
being the topology induced by r on the set N - E;(Y) u ... u Fi-r(Y), 
and terminating the process at that value m of i for which 
N - F&Y-) u ... u F,JY) = %. 7 is then called a m level topology and 
the ordered sequence of integers / F,(r)\ . . . . . ) F,(Y)1 is called the level 
distribution of Y. Conversely, corresponding to every ordered partition 
N r ,..., N,, of N, there exists a nz level space 9 on N such that Ni = F,(r), 
i < m. One example of such a topology is described most simply by specify- 
ing that 01* = orifa:ENrandol*= N,U . ..~N._,+olifol~N~,l<i~tn. 
If 9 is a topology and 01 E Fi(F) then 01 is a point of level i in r. A space 
with only level 1 points is clearly discrete. A topology 7 is level connected 
provided it is connected and 01* = OL + u{/I* / /3 E 01* n Fi-,(Y)} for 
every point a: of level i > 1. The example that was described just above is 
an instance of a level connected space. There exist connected spaces that 
are not level connected. For example, the connected space { %, {a}, {b}, 
{b, c}, {a, b, c}, {a, b, c, d)) is not level connected since d* # d u c*. A 
level connected topology Y is defined to be critical connected iff there 
does not exist a level connected space % such that the level distributions of 
9 and %! are identical and SY > Y. Using a slightly different language, 
the critical connected spaces with level distribution n, ,..., n, are the 
maximal elements of the collection of all level connected topologies with 
level distribution n1 ,..., n, , under the ordering relation of strict fineness. 
The main aim of this paper is to enumerate the homeomorphism classes 
of critical connected topologies. This enumeration is carried out with 
the help of certain results in the theory of finite trees. 

An n point, m colored, 1 < m < n, descriptor graph 9 is a graph on 
the point set N, where each of the points has assigned to it one of the m 
given colors 1, 2,..., m. cy+ will denote the color of the point 01 in the graph 
9. The line set of 9 must satisfy the following requirements: 

(1) Each point 01 with OL+ > 1 is adjacent to at least one point /3 with 
p+ = a!+- 1. 

(2) Any two adjacent points have different colors. 

(3) If a+ > pi + 1 and there exists a path of lines 



186 DAS 

between ct and p where OI+ > yl+ > y2+ > *es > Yi+ > /3+, then there 
does nof exist a line (01, /3) connecting 01 and /L 

A point /3 is said to be accessible to the point 01 if p+ < 01+ and either 01 and 
/3 are adjacent, or there exists a path (01, rl)(rl , yz) **. (rl , /3), i > 1, with 
a+ > yl+ > ..* > yi+ > /I+. Define, for each 01 E N, CL*(%) = 01 + {/3 1 p 
accessible to a}. It is easy to verify that the set {~~*(y”>l CL E N} satisfies the 
requirements for the collection of minimal open neighborhoods of the 
points of a TO topology on N. The topology described by the descriptor 
graph B, is denoted T(B), and is defined to be that TO topology F on N for 
which a*(F) = 01*(g) for each LX E N. Clearly, the color of any point in B 
is identical to its level in T(9). Hence an m colored descriptor 
graph describes an m-level topology. It should be observed that 
a* = a+ u@* 1 p+ < 01+ and /3 is adjacent to a}. 

2. BASIC PROPOSITIONS 

LEMMA 1. Let F be a topology on N. Then there exists one, and only 
one, n-point descriptor graph which describes F. 

Comment. This uniquely defined graph is called the descriptor graph 
of Y and is denoted by G(F). 

Proof. Assume that .F is an m-level topology. The existence of the 
graph G(F) will be demonstrated by actual construction according to the 
following “program”: 

START 1. Assign the color i to each point of Fi(F), for all i < m. 

2. Set the value of a variable p equal to 1. 

3. If p = m, then go to 10; otherwise go to 4. 

4. Increase p by I. 

5. Draw all possible lines (a, p) such that 01 E F,(F), /3 E F,-,(F) 
and /3 E CL.*. 

6. Set the value of a variable k equal to p - 2. 

7. If k = 0, then go to 3; otherwise go to 8. 

8. Draw all possible lines (01, /3) such that 01 E F,,(F), /? E F&F), 
/3 E 01* but p is not accessible to 01 in the graph as it now 
stands prior to the execution of this instruction. 

9. Reduce k by 1 and go to 7. 

END 10. Construction of G(F) is complete. 
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It is a straightforward matter to prove that the graph G(F) constructed 
above is in fact a descriptor graph. Moreover G(F), by condition 3 in the 
definition of descriptor graphs, has the minimum number of adjacencies 
needed to characterize F. That G(F) is the only possible descriptor 
graph which describes 5 can also be easily demonstrated. 

The results in the next lemma, presented without proof, will be useful in 
the subsequent discussions: 

LEMMA 2. (a) A topology F is homeomorphic to a topology 92 tjf there 
exists an isomorphism between the descriptor graphs G(F) and G(‘?@) which 
preserves adjacencies as well as colors. 

(b) If 9 and @ are topologies, then F 3 92 tjf a*(F) C LX*(%) ,for all 
a! E N, and F > % tfl in addition to the previous condition, y*(F) C y*(e) 
for at least one y E N. 

(c) rf 9 and ~2’ are descriptor graphs such that every point has the same 
color in both graphs, and if the line set of 9 is a proper subset of the line 
set of X, then T(Y) > T(Z). 

(d) A descriptor graph describes a level connected space ty the graph is 
connected and 1 OI+ - fi+ 1 = 1 for any pair of adjacent points 01, ,8. 

(e) IfF and @ are level connected spaces with identical level distributions 
and ifF > 92, then the line set of G(F) is a proper subset of the line set of 
WV. 

(f) A topology Zr is connected ifs the descriptor graph G(F) is connected. 

LEMMA 3. If F is a connected topology such that there does not exist 
any connected topology % > F, where 02~ and F have identical level 
distributions, then G(Y) is a tree. The statement remains valid if the term 
“connected” is replaced by level “connected.” 

Proof. Since 7 is connected, the level of F is at least 2. If 9 = G(Y) is 
not a tree, then there exists an a!, with ill+ > 1, and a cycle (01, /3J *** (~3, , a) 
such that a+, /&+ < OI+. Let 2 be the graph in which each point retains 
the color it had in ‘9, and suppose that the line set of H is obtained from 
9 by deleting the line (ar, &J if pl+ = Al+ - 1. Otherwise the line set of &’ 
is obtained by removing the line (01, a). Since 9 is a descriptor graph, 
therefore, in either case, 01 is adjacent in &’ to at least one y such that 
yf = CX+ - 1. Clearly, X is also a descriptor graph. As each point has 
the same color in both graphs, therefore the level distributions of F and 
& = F(X) are identical. Since X has been obtained from 9 by removing 
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a single line from a cycle, X is connected. Lemma 2c and f now imply that 
% is connected and @ > F. This contradicts the hypothesis of the lemma, 
and so G(F) is a tree. The second part of the proposition is established 
by observing that, as a consequence of Lemma 2d, the constructed 
space &is level connected if F is level connected. 

LEMMA 4. A topology 9 is critical connected ifs G(T) is a tree in 
which / a+ - p+ 1 = 1 for any pair of adjacent points 01, /3. 

Proof. The “only if” part is a restatement of Lemma 3. To prove 
sufficiency, assume that the level connected space % has the same level 
distribution as .F and % > F. By Lemma 2d, F is level connected. 
Therefore a consequence of Lemma 2e is that the line set of G(e) can be 
obtained by deleting some lines from the tree G(F). Therefore G(4Y) is 
disconnected and so, by Lemma 2f, & is also disconnected. Hence 9 is 
critical connected. 

Comment. It should be observed, however, that a tree can be colored 
such that, for any pair of adjacent points (Y, /3, / ol+ - ,&+ / = 1 and still 
fail to be a descriptor graph. 

LEMMA 5. If T is a maximal connected topology, then the level of Y is 
equal to 2. 

Proof. Let m, m > 2, be the level of F and suppose that 01 is a point 
of level m in F. Then two situations are possible: 

(A) There exists only one p E&-~(F) such that /3 E 01*. In this event, 
let y be any point of Fmez(T) such that y E p*, 

(B) 1 01* n F+,(T)] > 2. In this situation, let /3, y be arbitrary points 
of Fmel(Y) and F,,&T), respectively, such that /3 E CX* and y E B*. 

In either case, because (01, /3)(p, y) is a path in G(F) between OL and y and 
01+ > /3+ > yf, therefore 01 and y are not adjacent. Let @ be the topology 
whose descriptor graph is obtained from G(F) by deleting the line (01, ,Q, 
then adding the line ((II, y) and finally, in case (A) assigning the color 
m - 1 to (II, and in case (B) allowing 01 to retain its original color m. Then 
C% is connected and % > F’, so that F cannot be maximal connected. 
Since a level 1 topology is always discrete, the result follows. 

Comment. The arguments used in the proofs of Lemmas 3 and 5 
provide a constructive technique for finding a maximal connected topology 
finer than any given connected topology. 
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THEOREM 1. A topology is maximal connected ifs its descriptor graph is 
a bicoIored tree. 

Proof. First, it will be shown that, if 9 is a connected topology of 
level 2, and % is a connected space strictly finer than 9, then the level 
distributions of 9 and @ are the same. Clearly &(Y) C Fl(@). Suppose 
01 E Fl(@) but cy $ F,(F). Since %? is connected, there exists a p E N - Fl(@!) 
such that 01 E p*(e). As N - Fl(@) C N - Fl(Y) = F,(Y), therefore 
both 01, fi E F,(5) so that o! 4 /3*(Y). Therefore /3*(%Y) $ /3*(Y), which is 
impossible since +‘/ is finer than Y. Hence Fr(Y) = r;;(e). Therefore 
F,(e) c F3(Y). Now suppose that F,(e) CF,(Y), i.e., the level of @ is 
greater than 2. Then there exists a /I such that /3 E FZ(Y) and 
/3 E N - f;l(%) u FZ(%). By the second condition, there exists an 01 E F,(a) 
such that 01 E p*(e). Clearly, (Y E F,(Y) so that cy 6 /3*(Y) and so 
/I*(@) $ ,8*(Y), which again contradicts the fact that % > Y. Therefore 
the level distributions of Y and @ are identical. Since all connected level 
2 spaces are level connected, this result and Lemma 5 imply that a topology 
is maximal connected iff it is a critical connected, level 2 space. Theorem 1 
now follows as a direct consequence of Lemma 4. 

Comment. Theorem 1 is a completely equivalent restatement, using 
a different jargon, of Theorem (5) in [I] specialized to the case of finite 
topologies. 

THEOREM 2. The number of homeomorphism classes of maximal 
connected n-point topologies is equal to twice the number of n-point trees 
minus the number of n-point trees having a symmetry line. 

Proof. Every uncolored tree without a symmetry line can be bicolored 
to produce precisely two non-isomorphic descriptor graphs. For the case 
of a tree possessing a single central point, one descriptor graph has its 
central point colored 1, and the other has its center colored 2. For the case 
of a bicentral tree possessing two non-similar points cy and /3 as the central 
points, one graph has 01+ = 1, p+ = 2 and the other graph has 01+ = 2 
and ,B+ = 1. Since adjacent points cannot have the same color, and only 
the two colors 1 and 2 are to be used, it is clear that the colors of the 
centers uniquely determine the colors of the remaining points. In the case 
of a bicentral tree possessing two similar central points CL and /3, the 
colorings with CY+ = 1, p+ = 2 and cy+ = 2, /3+ = 1 produce two iso- 
morphic descriptor graphs. Since each descriptor graph describes a 
topology, the proposition now follows as a consequence of Theorem 1. 

In [2], tree diagrams for trees on up to 10 points are provided. Using 
these diagrams, the number of homeomorphism classes of maximal con- 
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netted topologies on 2 to 10 points can be computed, using Theorem 2, to 
be 1, 2, 3, 6, 10, 22,42, 94, and 203, respectively. 

The problem of enumerating critical connected topologies, not 
necessarily of level 2, will now be examined. The approach to this problem 
will be very similar to the one used in [2] for counting uncolored trees. 

The word descriptor tree will from now on mean a descriptor graph 
which is a tree, and which is so colored that j CX+ - /3+ / = 1 for any pair 
of adjacent points 01 and /3. As in [2], a rooted tree is a tree with one 
distinguished point, called the root. The distance between two points in a 
tree is the number of lines in the path joining them. The diameter of a tree 
is the greatest distance between any two points. The root-diameter of a 
rooted tree is the greatest distance between the root and all other points. 
The cycle index, Z(S,) of the symmetric group of degree IZ is: 

where the sum is taken over all partitions (j) = j, , j, ,..., j, ,..., j, such 
that 1 j, + 2j, + ... + kj, + *a* + nj, = n. If g(xl ,..., xj ,...) is a power 
series in the symbols x1 ,..., xj ,..., then Z(S, , g) denotes the function 
obtained from Z(S,J by replacing each indeterminatef, by g(qk,..., x/,...). 
Further, Z(S, , g) = 1 + Czz1 Z(S, , g). The enumeration theorem of 
P6lya, as stated in [2], will be used. 

Two new terms-complete rooted tree and incomplete rooted tree-will 
now be defined by providing recursive prescriptions for constructing the 
class of these objects. A rooted tree with root color c and root diameter 0 
consists of a single point, the root, colored c. The tree is complete if c = 1. 
If c > 1, then the tree is incomplete. There do not exist complete rooted 
trees with root color higher than 1 and root diamter 0. Neither do there 
exist incomplete rooted trees with root color 1 and root diameter 0. A 
rooted tree with root color c and root diameter d 3 1 is constructed by 
connecting a point, the root, of color c to the roots of an arbitrary finite 
collection T of complete and incomplete trees such that every tree of T has 
root diameter < d - 1 and T contains at least one tree with root diameter 
d - 1. The constructed tree is incomplete if c > 1 and all the trees of T 
have root color c + 1. It is complete if either c = 1 and all the trees of T 
have root color 2, or c > 1 and T satisfies the following three conditions: 

(#l) At least one tree of T is a complete tree with a root colored c - 1, 

(#2) All the trees of T with root color c - 1 are complete, 

(#3) Each tree in Thas either c - 1 or c + 1 as the color of its root. 
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If complete rooted trees with root color c - 1 and root diameter < d - 1 
do not exist, then complete rooted trees with root color c and root dia- 
meter d also do not exist. 

Let rnl..., *... (c, d, +) and rn,...ni... (c, d, -) be, respectively, the number 
of complete and incomplete rooted trees with root color c, root diameter 
< d, and ni points colored i. The counting series for these objects are 
R(c, d, &) = C r,l...,i...(c, d, i) x,“l *a* x:i *** , where the summations 
are over all possible finite non-negative integer sequences n, ,.. ., ni ,. . . . Let 
Q(c, a) = R(c, d, +) + R(c, d, -) = the counting series for the total 
number of rooted complete and incomplete trees with root color c and 
root diameter < d. For d > 1, the counting series for complete and in- 
complete trees with root color c and root diameter = dare R*(c, d, &) = 
R(c, d, &) - R(c, d - 1, k> and Q*(c, d) = Q(c, d) - Q(c, d - 1). 
Obviously, R*(c, 0, &) = R(c, 0, &) and Q*(c, 0) = Q(c, 0). 

Using Pblya’s theorem and the definition of a complete rooted tree, it is 
evident that: 

R(l, 0, +) = x1. 

R(c,O, +) = Oforc > 1. 

R(1, d, +> = xJZ(S, , Q(2, d - l))] for d 3 1. 

R(c, 4 +> = xc [ f ZCL , 
m=l 

Wc-W-L+))] x LWm,Q(c+ Ld-1Nl 

fort > 1 andd> 1. 

From the definition of an incomplete rooted tree, it follows that: 

R(l, 0, -) = 0. 

R(c, 0, -) = x, for c > 1. 

R(1, d, -) = 0 for d > 1. 

R(c, d, -) = x,[Z(& , Q(c + 1, d - l))] for c > 1 and d 3 1. 

A branch (01, /I) of a tree, determined by a point 01 and a line (01, /3), is 
defined to be that subtree which contains 01 and all points reachable by 
paths from cy whose first line is (01, /I). Now let Y be a critical connected 
topology. Suppose that, for the moment, the tree G(Y) is rooted at some 
arbitrary point 01. It is a straightforward matter to prove that: 

(1) If the color of 01 is 1, then the branch (a, /I) is a complete rooted tree 
for every /3 adjacent to a. 
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(2) If 01+ > 1, /3 is adjacent to a: and 
(a) /I+ = a+ + 1, then the branch (01, 8) is an incomplete rooted 
tree with root color (Y+, 

(b) /3+ = OI+ - 1, then the branch (01, /3) is a complete rooted tree 
with root color 01+. 

Conversely, it is also true that every complete or incomplete rooted tree 
with root diameter 3 1, is isomorphic to a branch at the root of some 
descriptor tree rooted at a suitable point. It is therefore evident that the 
collection of bicentral descriptor trees possessing the diameter 2v + 1 and 
central points colored c and c + 1 is identical to the collection of trees 
that can be constructed by connecting the root of a complete rooted tree 
with root color c and root diameter v to the root of another tree, which may 
be either complete or incomplete, with root color c + 1 and root diameter 
v. It is also evident that the collection of descriptor trees possessing the 
diameter 2v and a single central point colored c is precisely the set of trees 
that can be constructed by connecting a point of color c to the roots of an 
arbitrary finite collection T of complete and incomplete trees, with T 
satisfying the requirements #I to #3 as well as the two conditions: 
(a) each tree of T has root diameter < v - 1 and (b) T contains at least 
two trees of root diameter v - 1. Let Vzvfl(c, c + 1) be the counting 
series involving the symbols x1 ,..., xi ,... such that the coefficient of 
Xl”1 . . . $i e.0 is equal to the number of bicentral descriptor trees possessing 
the diameter 2v + 1, ni points colored i, and center points colored c and 
c + 1. Also, let Vzy(c) be a similar counting series for descriptor trees 
with diameter 2v and a single central point colored c. 

From the considerations of the last paragraph, it follows that: 

v2”+1(c, c + 1) = RX(c, v, +) e*cc + 1, 4 v 3 0. 

VO(l) = x1 . 

V,(c) = 0 if c > 1. 

Vz(l) = x1x22 + XIX23 + . * * + XIXZn + *.* . 

V2(2) = X2[(X12 + Xl3 + *.*)(I + x3 + xz2 + *..) + --%(x3 + x32 + . ..)I. 

V,(c) = 0 if c > 2. 

v2dl) = x, [ f Z&n, Q*P, v - l))] x LW, , Q(2, v - 2))1, v 2 2. 
m=2 

Vet = XJL~~(C) ~~~(4 + -WC) M;,(C) + J%(C) Kdck c > 1 and 
v > 2, where: 
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L,“(C) = [ f .wm 3 R*tc - 1, v - 1, +))I x [Z(S, ) R(c - 1) v - 2, +))I, 
m=2 

L&(c) = R*(c - 1, v - 1, +> x [Z(S, , R(c - 1, v - 2, +))I, 

-G”(C) = f ZCL , NC - 1, v - 2, +>I, 
Yl1=1 

ML(c) = [ f Wm, Q*<c + 1, v - l,)] x MS,, Q(c + 1, v - 31. 
In=1 

M&(c) = [f -Wm, Q*tc+ 1,~ - W] x PVL, Qtc + 1,~ - 91. 
in=2 

As a consequence of Lemma 2a, the counting series for critical connected 
topologies is therefore 

The coefficient of $1 a** XT” .** in this series is the number of homeo- 
morphism classes of critical connected topologies with level distribution 
n, )...) Izi ).... This completes the formal solution to the problem enu- 
merating critical connected spaces. The counting series for the various 
types of descriptor trees on up to 7 points appear at the end of this article. 
The counting series, up to the first few terms, in x and y which displays 
the number of homeomorphism classes of n-point critical connected 
spaces with level m as the coefficient of xmyn is found to be: 

x2y2 + 2x2y3 + 3x2y4 + 6x2y5 + 10x2y6 + 22x2y7 + **a (maximal 

+ x”y” + 3x3y4 + 9x3y5 + 22x3y6 + 64x3y7 + .** connected 

+ x4y4 + 4x4y5 + 14x4y6 + 44x4y7 + .a* spaces) 

+ x”y” + 5x5y6 + 2ox5y7 + . . . 

+ x6y6 + 6x6y7 + -.a 

+ x’y’ + *-* 

so that y2 + 3y3 + 7y4 + 20y5 + 52y6 + 157~’ + ..a 

is the counting series, up to the first seven terms, which displays the total 
number of homeomorphism classes of n-point critical connected spaces 
as the coefficient of yn. 
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Having enumerated the maximal connected topologies, it is natural to 
try to count those spaces for which the connectedness requirement has 
been slightly relaxed. For example, define the connectivity of a topology to 
be 0 iff it is maximal connected. Then recursively define the connectivity 
of a connected space Y to be k iff any connected topology strictly finer 
than Y has connectivity at most k - 1. One can now enquire about the 
number of n-point topologies with a specified connectivity. The sub- 
stitution of connectedness in place of level-connectedness in the definition 
of a critical connected space also provides a class of enumeration problems. 
A discussion on the enumeration of finite topologies with connectivity 1, 
together with certain related topics, will appear elsewhere. The rest of this 
paper is devoted to setting up a simple procedure (Lemma 7) which will 
allow the determination of the connectivity of a given topology. 

For any topology 9 on N, the quantity .Y* is defined by the relation 

9-* = 1) a*(q, ci E N. 
cc 

THEOREM 3. Let F and Y” be topologies on N andsuppose that F > 7”. 
Then the situation 9- > @ > V, for some space % on N, occurs @ 

Proof. Suppose that 7 > % > V for some space Q. Then clearly, 
a.*(F) C a*(%) C a*(Y) for all 01 E N, #I*(Y) C j3*(@) for at least one 
/3 E N, and r*(e) C r*(V) for at least one y E N. Therefore @* - Y* 3 1 
and Y* - Q* > 1, so that V* - Y* > 2. Now suppose that Y > V 
and V* - Y* > 2. This ensures that S = {a / LX*(~) C a*(V)> is non- 
void. (A) Let /I be the only point in S, in case S contains a single point and 
(B) in case S contains more than one point, let ,f3 be any point of S such 
that, if y E S - j3, then j3 # y*(Y). Such a ,8 will always exist because 
of the T,, nature of the spaces under consideration. Then R = 
p*(V) - /3*(Y) # o. Therefore there exists a 6 E R such that 
6*(Y)n(R-6)=ac.Nowdefined=or*(~)ifcll#/3and~=/?*(Y)+6. 
Then there exists a topology %Z defined by the requirement that a*(@) = d 
for all 01 E N. To prove this, it is sufficient to show that, if /-L E x, then 
p C x for all p, h E N. First suppose that both ~1 and X are different from 8. 
Then 

Similarly, if TV # 6, then p E p implies that p C /?. As Y > V, therefore 
6*(Y) C S*(V) and so 8 E R + 8 E p*(v) --f s*pq c p*(T) --+ 6*(n c 
/3*(V). Also, it is clear that (6*(r) - 8) n (/3*(V) - p*(Y)) = ~3. 
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Therefore S*(Y) - S _C /3*(Y), which is equivalent to 8 - S C/?*(Y) 
and hence s” C fl. Finally, suppose that X # fi and fl E A. Then /? E A*(Y). 
Therefore, in either of the cases, A and B, h $ S. Hence h*(V) = 
A*(Y) = A. Therefore /3 E x*(F) + p E A*(v) -+ p*(v) c h*(v) + 
/3*(Y) u R C X*(9’“) --+ /? C x. The existence of % has thus been established. 
It will now be demonstrated that % is a TO topology. To prove this, it is 
sufficient to show that, if ~1 # X, then p E x implies A $ p for all p, h E N. 
First suppose that p, A, /3 are all different. Then ~1 E x -+ p E h*(Y) -+ 
X @p*(Y) + h IF. Similarly, if /3 # p # 6, then p E p implies that 
/3 $ p. Now S E R, i.e., S E /3*(V), so that the To property of V implies 
/I 6 S*(V), and, since Y 3 V, /3 6 S*(Y) = 6. Finally suppose that 
X # /3 and /3 E ii. Then /3 E h*(r) and so, as a consequence of 
the last result, p $ S*(Y), it follows that h # 6. Therefore p E x -+ 
~~B*P->-~~8. H ence 9Y is a T,, space. From the definition of @ it is 
clear that Y 3 @ 3 V. Now 1 r*(%)l = I y*(Y)1 for all y #B and 
I8*w)l = I B*v-I + 1, so that a’* = Y* + 1. Therefore Y > % > V. 
This completes the proof. 

For the next two theorems assume, for the sake of concreteness, that the 
n-point set N = {1,2 ,..., n}. 

THEOREM 4. Zf Y is a maximal connected space on a set of n points, then 
.F* = 2n - 1. 

Proof. An inductive proof is presented. The two possible connected 
2 point spaces are both homeomorphic to V = { 0, {l}, (1,2}}. Clearly 
V* = 3 and so the result in question is true for n = 2. Now assume, as 
the hypothesis of induction, that the theorem holds for all n point maximal 
connected spaces. It is an obvious consequence of Theorem 1 that the 
descriptor tree of any n + 1 point maximal connected space .Y can be 
obtained from the descriptor tree of a suitable n point maximal connected 
space @ by either (A) connecting a point 01 colored 1 to a suitable point /3 
with color 2 in G(e) or (B) connecting a point a: colored 2 to a suitable 
point /3 with color 1 in G(e). Remembering that in a bicolored descriptor 
tree a point p is accessible to a point h iff CL+ = 1, A+ = 2 and p, X are 
adjacent, it becomes evident that, in case (A), / a*(F)1 = 1, / /3*(9JI = 
I B*WI + 1 an , in case(B), / a*(Y)/ = 2, I p*(Y)1 = ( /3*(@)/ . For any d 
other point y # (Y, p, I r*(Y)1 = I r*(s)1 in both cases. Therefore, in any 
case, Y* = a* + 2. Hence, by the induction hypothesis, 

F* = 2(n + 1) - 1. 

THEOREM 5. A chain of connected n point TO topologies, linearly ordered 
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by strict Jineness, can contain a maximum of $(n” - 3n + 4) topologies. 
Moreover, there exist chains of connected n point T,, spaces with this length. 

Proof. It is a straightforward matter to show that, if Y is a TO space 
on N, then Y is finer than a space homeomorphic to % = ( a, {I}, { 1,2},...; 
(1, 2 ,..., i} ,..., N}. Thus a!, in a sense, represents the coarsest possible TO 
space on N. Further, a connected space which is not maximal connected is 
bounded above by some maximal connected space. Therefore a typical 
chain of connected TO spaces whose length cannot be increased further 
looks like: 

some homeomorphic image of % = Y1 < Y2 < *.* < Ymml < Ym = 
some maximal connected space. 

An implication of Theorem 3 is that &* - Yf+, = 1 for i = I,..., m - 1. 
Since @* = 1 + 2 + *.. + n = $z(n + l), it follows from Theorem 4 
that m = +n(n + 1) - (2n - 1) + 1 = $(n” - 3n + 4). The existence 
of such chains with length $(n” - 3n + 4) is now an obvious consequence 
of Theorem 4. 

The next two results follow immediately from the discussions of the 
previous three Theorems. 

LEMMA 6. A necessary condition for an n point space 7 to be a connected 
T,, space is that 2n - 1 < Y* < Qn(n + 1) 

LEMMA 7. The connectivity of a given connected n point TO topology 9 
isF*-2n+ 1. 

3. COUNTING SERIES 

There now follow the counting series for the various kinds of descriptor 
trees on up to 7 points: 

V,(l, 2) = x,x, . 

Vl(c, c + 1) = 0 if c > 1. 

Vs(l ) 2) = (x12x22 + x1x22x3) + (x12x23 + x13x22 + x,x22x32 + x1x23x3 
+ X13X33X3) + (x,2x24 + x,3xz3 + x~4x22 + x,x23x33 

+ x,x23x32 + xlx,4x3 + x,2x22x32 + x12x23x3 + X13X23X3) 

+ (X,2X25 + X13Xz4 + X14Xz3 + X15X3’ + X,X22X34 

+ x1x23x33 + x,x24x32 + x1x25x3 + x12x22x33 + x,2x23x,2 

+ X,3X34X3 + x13x33x33 + x,3x23x3 + x,4x22x3) + *** . 
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VS(2,3) = (-%x2x,x,) + (x1x2x3x42 + x1x2x32x4 + x12x2x3x4) 

+ (x1X3x3X43 + X1X2x32X42 + X,X2X33X4 + X12X2X3X42 

+ x12x2x32x4 + $3x,x3x,) + (x,$4x,x,4 + x1x2x32x43 

+ X1X3X33X42 + X1X2X34Xq + Xl2X2X3X43 + X12X2X32Xp2 

+ X12X2X33X4 + X13X2X3x42 + X13X2X,2X4 + X14X2X3Xp) 

. . . + . 

V3(c, c + 1) = 0 if c > 2. 

V-,(1,2) = (x13x23 + X,2X33x3 + X1X22X33x4 + X,2X32X3x4) + (2X13x24 

+ 2x,4x23 + 2x13x23x32 + 2Xl2X24X3 + 3X,3X23X3 

+ x1x22x32x42 + 2xlx2”x3”x4 + xlx23x32x4 + x12x22x3x42 

+ 3X,2X,2X,2X4 + X,2X23X3X4 + 2Xl3X22X3X4) + *‘- . 

V,(2, 3) = (x12x23x3 + X,X32X3X4X5) + (2X,2X33x32 + X,2X24x3 

+ 2X13X2”X3 + X12X32X33X4 + Xl2X23X3X4 + X1X2X~Xp2X5 

+ x$22x3x4x52 + x$22x3x42x5 + x,x22x32x4x5 + X,X23X3X4x5 

+ x12x22x3x4x,) + **. . 

v,(3, 4> = xlx,~3x4~,~6 + (x,~,~3~4~,~62 + xlx2x3x4x62x6 

+ x$2x3x42x5x3 + x,x2x32~4x5x, + x,2x2x3x4x5x,) + -** . 

V5(c, c + 1) = 0 if c > 3. 

Descriptor trees with < 7 points are not involved in any other non-zero 
V2v+lk c + 11, 

V,(l) = XIX22 + XIX23 + XIX24 + XIX25 + x,x26 $- ... . 

v2(2) = (x12x2 + x1x2x3) + (x,3x2 + x1x2x32 + x12x2x3) + (xl”x2 

+ X1X2X33 + X12&$32 + X13X2X3) + (X15X2 + X1X2x34 

+ x12x2x33 + xl3x2x32 + x14x2x3) + (Xl”Xz + X1X2x35 

+ X12X3X34 + X13X3X33 + X,4X3x32 + X15X2X3) + *** . 

V,(c) = 0 if c > 2. 

V,(l) = (X13Xz2 + X1X32x32 + X12X22XJ + (X13Xz3 + X14X2’ 

+ X1X22x33 + X1X23x32 + 2X,2X22X32 + X1~X2~x.3 

+ ~XI~X~“X,> + (X13X2” + 2X14X,3 + 2X,5X22 + 2X,X22X34 

+ 2XlX23X33 + X,X24X32 + 3X,2X22X32 + 3X,2X23X32 

+ X12Xcj4X3 + 4X13Xz2X,2 + 3X,3X23x3 + 3X,4X~2X3) + “’ . 
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V*(2) = (Xl’X2’ + XIX~‘X~X~) + (X12X24 + X13X33 + X12Xz3X3 

$- X,X3X32x42 + X1X22X3x42 + XlX32X32X4 + XlXs3X3X4 

+ X,2X22X3x4) + (2X12X,5 + 2Xl3X34 + X14Xz3 + X,2X33X32 

+ X12X24x3 + X,3X23X3 + X1X2X32x43 + X1X3X33X42 

+ X,X22X3x43 + 2X,X3”X3”X4” + X,X32X33x4 f XlX23X3X42 

+ X,X,3X32X4 + x&4x,x, + X,2X,X32X42 + X,2X,3X3X42 

+ X,2X22X32X4 $- 2X,2X33X3x4 $ X13X3”X3X4) $ .‘. . 

V4(3) = (X12X22x3 + X,X3X3X4X5) + (X12X22x32 + X13X32x3 

+ x,2x22x,& + x$2x3&,x52 + x,x,x,x,2x, + x,x&2x& 

+ X,2X2X3X4X5) + (2Xl2X22X33 + 2X,3X22X32 + X,3X33x3 

+ 2X,4X,2X3 + X,2X,2X3X42 + X,2X,2X32X4 + X,3X32X3X4 

+ X,X,X3X4X53 + 2X1X3X3X43X52 + X,X,X3X43X5 

+ X,X3X32X4X52 + X,X2X32X42X5 + X1X3X33X4X5 

+ X,2X2X3X4x52 + X,2X3X3X42x5 + X,2X3X32X4x5 

+ X,2X,2X3X4X5 + X,3X,X3X4X5) + ‘*’ . 

V4(c) = 0 if c > 3. 

VJl) = Xl3X34 + X,X32X32x42 + X,2X23X3X~ + ‘*’ . 

v,(2) = x1*xz3 + 2Xl2X23X32 + 2Xl3X33X3 + XlX32X32X4X5 

+ x,3x23x3x4x5 + ... . 

v,(3) = X12X24X, + XlX32X3X4X5X, + “- . 

V,(4) = X,2X22X32x4 + X,X3X3X4X5X3X7 + s-e . 

Vs(c) = 0 if c > 4. 

Descriptor trees with < 7 points are not involved in any other non-zero 
V2”(C). 
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