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INTRODUCTION 

In [34] Tachikawa and the author studied colocalization and localization 
for torsion theories in abelian categories and relations between them. In this 
paper we consider somewhat concrete cases and prove equivalances between 
colocalization and localization in abelian categories which generalize the 
Gabriel-Popescu theorem and results of Fuller [7] and Kato [ 121. 

Let R and S be rings with identities and Mod-R and Mod-S the categories 
of unitary right R-, S-modules, respectively. Recently the Morita theorem 
has been generalized by many authors to equivalences between full 
subcategories of Mod-R and Mod-S. 

The first result which we would like to mention is that of Fuller. Let %? be 
a complete additive subcategory of Mod-R, i.e., @ is a full subcategory of 
Mod-R closed under submodules, factor modules, arbitrary direct sums and 
isomorphic images. Then he proved that %Y and Mod-R are category 
equivalent if and only if there exists a bimodule ,U, such that U, is a quasi- 
progenerator (i.e., a finitely generated quasi-projective self-generator), 
S g End(U,) canonically and Gen(U,) = @Y, where Gen(U,) means the full 
subcategory of Mod-R consisting of all homomorphic images of direct sums 
of copies of U,. 

Before describing other results it should be noted that in Fuller’s result U, 
may have a zero trace ideal. In fact if R is a primitive ring, we can take as 
U, a finite direct sum of simple modules which are not isomorphic to right 
ideals of R, and then U, is a quasi-progenerator with a zero trace ideal. 

The second result is that of Azumaya [2]. Let RP be a projective module 
with S = End@‘). Let J be the trace ideal of P, and q;= {NE Mod-S / 
NJ = N}. Then he proved that Horn,@, -) and - OR P induce an equivalence 
.F, - Im Hom,(P, -). 
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For convenience let PR be a projective right R-module with the trace 
ideal Z. Then Z defines a torsion theory ( q,,T) in Mod-R, where q = 
{ME Mod-R 1 MI = M} and *e = {ME Mod-R / MI = 0). MR is said to be 
Z-projective if Hom,(M, -) is exact on all short exact sequences 0 +x:, + 
X, + Xg + 0 with X’ E %c. A homomorphism f: C(M) + M is called an Z- 
colocalization if Ker f, Cok f E ,q;, C(M) E q and C(M) is Z-projective. 
Then McMaster [ 17 1 proved that the canonical homomorphism q,,: 
Hom,(P, M) OS P + M is the I-colocalization for all M E Mod-R, where S = 
End(P,). 

The third result is that of Kato. He has generalized both results of 
Azumaya and McMaster as follows: Let &UR, xVs) be a Morita context 
with the trace ideals Z c R and J c S. For convenience we assume UZ = U 
(so does JU = U). By a manner similar to the above we can deftne I- 
projective modules and I-colocalizations for right R-modules. On the other 
hand, since J is an idempotent ideal, it defines a hereditary torsion theory 
(, i”J, ‘r,) in Mod-S, where .FJ = (NE Mod-S ( NJ = 01 and QJ = (NE 
Mod-S 1 Ann,(J) = 0). Then J-injective modules and J-localizations are 
defined dually. Let q[ = (ME Mod-R / ME q and M, is Z-projective} and 
YJ = (NE Mod-S 1 NE gJ and N, is J-injective}. Then he proved that if 
UE ‘6, Hom,(U, -) and - OS U induce an equivalence 5 - YJ. Moreover 
in this case the canonical homomorphisms dM: Hom,(U, M) OS U + M and 
v,~: N + Hom,(U, N OS U) are the I-colocalization and the J-localization for 
all M E Mod-R and N E Mod-S, respectively. 

There is an important difference between the results of Fuller and Kato: In 
Kato’s result the condition UZ = U is essential. But it does not hold generally 
in Fuller’s result as was pointed before. So Tachikawa suggested that we 
obtain a theorem which contains both results of Fuller and Kato as special 
cases. 

Before stating our results some further comments are necessary. Let .@’ be 
an abelian category and ( Y,fl) a torsion theory in &’ in the sense of 
Dickson [5]. An object A E .& is said to be divisible with respect to (Y,.F) 
if .cP(-, A) is exact on all short exact sequences 0 +X’ +X+ X” --+ 0 with 
X” E Y. A morphism f: A -+ B is said to be a localization of A if Ker f, 
Cok f E Y, B E .F and B is divisible. ( 9-,x) is called hereditary if .Y- is 
closed under subobjects and is called strongly hereditary if every object of 
.pP has its localization. The dual of these definitions are obtained as tran- 
slations of the same ones with respect to the torsion theory (Y, Y) in the 
dual category .ol’*. In 134 ] we have proved that there is a l-l correspon- 
dence between strongly hereditary torsion theories and reflective 
subcategories of .d such that reflectors preserve kernels. Such a reflective 
subcategory is called Giraud (and its dual is called Co-Giraud). 

Let U E Mod-R and let Z be the trace ideal of U,. For It4 E Mod-R let US 

set t(M) = C (Im f / f E Hom,(U, M)}. Then f is an idempotent preradical. 
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It is known that U, is trace accessible (i.e., UZ = U) if and only if t preserves 
epimorphisms. If t is epi-preserving, the corresponding torsion theory is 
( Y,,,YJ, which is cohereditary. Conversely every cohereditary torsion 
theory in a category of modules is obtained by a trace accessible modules by 
the same way of the above. Examples of trace accessible modules are 
(1) generators, (2) projective modules, (3) locally projective modules [ 35 ], 
(4) the module in the result of Kato. 

Dually let VE Mod-R and for any A4 E Mod-R put r(M) = n {Ker f 1 
f~ Hom,(M, I’)}. Then r is a radical. It is well known that r is left exact if 
and only if V, cogenerates its injective envelope. The name QF-3’ modules 
has come from this property [3,4]. But in this paper we call I’, QF-3 
provided that r is left exact. The name of QF-3’ modules will be left for 
another type of modules (Section 6). So trace accessible modules and QF-3 
modules are relatively dual notions. On the other hand, recently Wakamatsu 
has made a categorical characterization for QF-3 modules as follows: I’, is 
QF-3 if and only if for a monomorphism f: MA + MR, Hom(f, I’) = 0 
implies Horn,@‘, V) = 0. It should be noted that the notion of QF-3 
modules generalizes both cogenerators and injective modules. So in any 
category an object which possesses the property described above we call QF- 
3 and its dual CQF-3. 

Now let 9 be a complete additive subcategory of Mod-R and U E 9 a 
CQF-3 object with S = End(U,J and (Y,X) a torsion theory in .S 
generated by U. Then from the result of Section 2 we can prove the following 
theorem. 

THEOREM. The following statements are equivalent. 

(i) U is codivisible with respect to (F, 5). 
(ii) The canonical homomorphism $B: Hom,(U, B) OS U+ B is the 

colocalization with respect to ( T,?) for all B E 9. 
(iii) ,U is weakly flat (in the sense of Wakamatsu) and the canonical 

homomorphism v,,,: N -+ Hom,( U, N OS U) is the localization for all N E 
Mod-S with respect to the Gabriel topology T = (Js c S 1 JU = U}, where ,U 
is weakly flat if for a monomorphism f: sX’ -+ sX, f 0 N = 0 implies 
X’@ u=o. 

If the above statements hold, Hom,(U, -) and - OS U induce an 
equivalence ‘8 w 9, where %Y is the Co-Giraud subcategory of 9 associated 
with ( Y,;) and 9 is the Giraud subcategory of Mod-S associated with T. 

In the above theorem if @? = 9 and .P = Mod-S, we get the result of 
Fuller, and if A!? = Mod-R, we get that of Kato in the case of the derived 
context ($I,, .Hom,(U, R)). 

Fuller’s result seems to be concerned with equivalences between a cocom- 
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plete abelian category and a category of modules. So in Section 2 we 
consider torsion theories in a cocomplete abelian category and obtain 
generalizations of Fuller’s result and the Gabriel-Popescu theorem [26]. As 
a result we can prove that a cocomplete abelian category with a small 
generator is a Grothendieck category. 

A weakly flat object plays an important role. So in Section 1 we consider 
the localization with respect to the hereditary torsion theory in Mod-R which 
is determined by a weakly flat R-object RU in a cocomplete additive 
category &. It will be shown that in complete additive subcategories of 
module categories, every CQF-3 object is weakly flat over its endomorphism 
ring. 

Again let .d be an abelian category and 9 a full subcategory of zZ’. Then 
.!8 is said to be an exact subcategory if it is abelian and the inclusion functor 
is exact. In this paper we call .9 a strongly exact subcategory if it is closed 
under subobjects, quotient objects and finite coproducts. As an example of 
strongly exact subcategories, we have the following: 

EXAMPLE (Robert 127, Proposition 11). Let ZJE & and put .9(U) = 
(A E & 1 U is A-projective}. Then .9(U) is a strongly exact subcategory. 

In Section 3 we consider the colocalization in strongly exact subcategories 
of cocomplete abelian categories. In this section we establish the lattice 
isomorphism between the lattice of torsion subobjects of a CQF-3 codivisible 
object and the lattice of right ideals of its endomorphism ring such that the 
object is faithful to factor modules of the ring factored by those right ideals. 

Section 4 is devoted to obtain the dual of results in Section 3. Let W, be a 
cogenerator of Mod-R. Then we can prove that every finitely W,- 
cogenerated module is W-reflexive, in particular, if W, finitely cogenerates 
R R, W, is balanced. As one more example, let V, be a quasi-injective 
module and .Y’(V,) = {ME Mod-R / VR is M-injective}. Then we can 
construct the hereditary torsion theory in r(V,). It can be shown that for 
XE S-V,), if X/r(X) is finitely V-cogenerated, the canonical 
homomorphism nX: X+ Hom,(Hom,(X, V), V) gives the localization, where 
S = End(V,) and r is the torsion radical in 3(V,) associated with the 
torsion theory cogenerated by V. 

The above example induces a duality between the category of V,- 
copresented and finitely V,-cogenerated module and the category of finitely 
generated and sV-cogenerated left S-modules (cf. Lambek and Rattray [ 141). 
In Section 5 we give category equivalence and duality as applications of 
Section 3 and 4. 
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1. WEAKLY FLAT OBJECTS AND LOCALIZATION 

Throughout this section &’ denotes a cocomplete additive category, i.e., a 
preadditive category with coproducts and cokernels. First of all it is 
convenient for us to review the existence of a left adjoint of a Horn-functor 
(see [ 19, p. 143, Theorem 3. l] for detail). Let C E &. Then C is called an R- 
object if there is a ring homomorphism R -+ End.,(C). Then for any A E d, 
&(C,A) can be considered a right R-module. We can construct the left 
adjoint of the functor &(C, -): & + Mod-R as follows. Let A4 E Mod-R and 
let RfK’ 3 RCM’ 1: A4 -t 0 be an exact sequence, where ,u is defined by 
,~((r,)) = C r,,,m, K =“Kerp and 1 is defined by A((r,)) = C r,k. Then 1 
induces a morphism A: C’“’ + CM). So MOR C is defined by Cok A. The 
isomorphism q: Hom,(M, d(C, A)) r &(A4 OR C, A) is given as follows: 
Let rp: MR + &‘(C, A)R be a homomorphism. For m E M, let C, be the mth 
C in C”“‘. Then q(m): C, + A induces q(p): CM’ -+ A. It is checked that 
q(o)1 = 0. Hence q(q) induces v(o): MOR C+A. v is an isomorphism and 
is natural in M and A. This shows that -OR C is a left adjoint of d(C, -). 
Let 4: d(C, -) OR C -+ l,, and w: ll\lod.R + &‘(C, -OR C) be natural 
transformations induced by q. They are called the right and left adjunctions, 
respectively. Suppose & has images. Then it is easily shown that Im 4, = 
l,J {Imf]fE&‘(C,A)}. Let Z be a right ideal ofR. Put ZC=Im(Z@R C-+ 
R OR C g C). Then it is also easy to see that ZC = U (Im x ] x E I}. 

Now let us fix an R-object U E J and adjunctions 0: &‘(U, -) OR U-, l.,, 
w: IMod.R + &‘(U, --OR U). For any ME Mod-R, put r(M) = Ker vunr. Then 
r is a radical. 

ProoJ: First note that wM @ U: it4& U-, d(U, A4 OR U) OR U is 
monomorphism. Since r(M) -+ M-1 xf(U, A4 OR U) is a zero sequence, 
(r(M) OR U + M OR U) = 0. Thus by the uniqueness of cokernels, we get an 
isomorphism M OR U g M/r(M) OR U canonically. Now it follows 
r&f/r(M)) = 0 from the commutative diagram 

0 -r(M) WM -M/r(M)-0 

DEFINITION 1.1 (Wakamatsu). RU is weakly flat if for a monomorphism 
fiX;+X,,S@ U=O implies X’O, U=O. 

LEMMA 1.1. The following conditions are equivalent. 
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(1) RU is weak[vflat. 

(2) r is a left exact radical. 

Proof: (1) 2 (2): Let X E Mod-R. Then (r(X) OR U+ X;@:, U) = 0 by 
the above. Hence r(X) OR U= 0 by the assumption. Thus r is idempotent. It 
should be noted that X OR U = 0 if and only if r(X) =X. Hence if r(X) =X 
and X’ c X (X’ OR U + X8,, U) = 0 implies r(X’) =X’. Therefore r is left 
exact. 

(2) 3 (1): Let f:_X; +X, be a monomorphism such that f @ U = 0. 
By the assumption, f: X’/r(X’) -+ X/r(X) is a monomorphism. Thus it 
follows X’ = r(X’) from the commutative diagram 

r” i 
0 - x~/r(xg) - X/r(X) 

I I .!aJ,x’/r(x’)s,u) %dJ.x/r(x)e,u 1. 

Put Y = {ME Mod-R ( r(M) = M) and .;Y- = (A4 E Mod-R ( r(M) = 0). 

DEFINITION 1.2. RU is Y-flat if for a monomorphism f in Mod-R such 
that Cok f E I, f @ U is an isomorphism. 

For the rest of this section we assume that RU is weakly flat. In this case 
the Gabriel topology associated with ( Y, Y) is T = {I, c R 1 ZU = U). 

LEMMA 1.2. For an*y A E d. S &( U. A)R E , F. 

Proof Let X E Y, Then Hom,(X, ,Y(U, A)) ? &‘(XOR U, A) = 0. 

LEMMA 1.3. If RU is F-jlat, .&‘(U? A)R is divisible for all A E .d. 

Proof Let 0 + X’ +X+X” -+ 0 be exact in Mod-R with X” E Z Then 
by the assumption, X’ OR U z X OR U. Hence by the adjoint relation, 
Hom,(X. .&‘(U, A)) E Hom,(X’, ,u’(U, A)) for all A E .c4. 

PROPOSITION 1.4. Suppose ,,U is weakly flat and Y-flat. For any ME 
Mod-R, put L(M)={fE.d(U,M@,U)I(Imy/,+,:f)ET}. Then 6$,: 
M + L(M) is the localization, where 19,~ is the homomorphism induced bv w,, . 

ProoJ This follows clearly from Lemmas 1.2 and 1.3. 

COROLLARY 1.5. Suppose RU is weakly jlat and T-flat. Zf Cok wn, aj, 
U = 0, then v,,,, is the localization (with respect to T). 
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Let SV, be a bimodule. Then the left adjoint of the covariant functor 
Horn (S-Mod),,& V, -): (S-Mod)OP + Mod-R is Hom,(-, V): Mod-R --) 
(S-Mod)OP. Hence we get: 

EXAMPLE 1.1. Let sVR be a bimodule such that VR is QF-3 and divisible 
with respect to the hereditary torsion theory cogenerated by V,. Let T be the 
Gabriel topology corresponding to the torsion theory. For each M E Mod-R, 
put L(M) = {fE Hom,(Hom,(M, v), I’) 1 (Im v/,~:I) E T). Then 0,,,: 
M+ L(M) is the localization, where V/M: M-+ Hom,(Hom,(M, I’), v) is the 
canonical homomorphism and 0,,, is canonically induced from vi/M’ 

EXAMPLE 1.2 (Wakamatsu). Let RUS be a bimodule and let r be the 
radical in Mod-R being similar to the one defined at the beginning of this 
section. Then the following conditions are equivalent. 

(1) RU is weakly flat. 
(2) r is a left exact radical. 
(3) For any cogenerator W, of Mod-S, V, = Hom,(U, IV) is a QF-3 

module. 

Proof: (1) o (2): Already proved. 
(2) o (3): Let W, be a cogenerator and put I’= Hom,(U, IV). For all 

ME Mod-R, let us set r’(M) = 0 {Kerf 1 f E Hom,(M, V)). Then it is 
enough to show that r = r’. Since W, is a cogenerator, there is a 
monomorphism Hom,(U, M OR U) G n V, . Thus r’(M) c r(M). Suppose 
r(M) c6 r’(M). Then there exists x E r(M) such that there exists f E 
Hom,(M, v) with f(x) # 0. We have an isomorphism q: Hom,(M, I’) z 
Hom,Y(M@, U, w> defined by q(f)(x @ u) = (f(x))u. On the other hand 
x @ u = 0 for all u E U in M OR U. Therefore (f (x))u = 0 for all u E U, i.e., 
f(x) = 0. This is a contradiction, proving r = r’. 

2. EQUIVALENCE BETWEEN COLOCALIZATION AND LOCALIZATION 

LEMMA 2.1. Let .d be a cocomplete abelian category with exact direct 
limits and ( 9-,X) a cohereditary torsion theory in .pP with the idempotent 
radical t. Then the following conditions are equivalent. 

(1) .ir is closed under coproducts. 
(2) For any A E d and a direct union A = IJ A,, we have A = 

U @J 
(3) For any A E .d and a direct union A = (J A,, we have t(A) = 

U WJ 
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Proof: (1) 3 (2): Let A = tJ A, be the same as the condition of (2). 
Then we have a short exact sequence 

0 -+ u t(A,) --t u A, + hAIt -+ 0. 

Since 7 is closed under coproducts and quotient objects, 4 A/t@,) E 97 
On the other hand A E Y. Hence ti A/t@,) = 0. Therefore A = U @I,). 

(2) + (3): Let A = U A, be the same as the condition of (3). Then by 
AB-5 property, t(A) = U (A, n t(A)). By the assumption, t(A) = 
U f(A,n f(A)). On the other hand, t(A, n t(A)) c t(A,). Hence t(A) = 
U t(A,). 

(3) * (1): Let Xi E X (i E I). Let J be the family of finite subsets 
of I. We must show that 0 Xi E X. By the assumption, 

On the other hand, f(OjEJX,) = 0 since .Y- is always closed under finite 
coproducts. This proves that @Xi EXT. 

Now for the rest of this section, unless otherwise specified, .d means a 
cocomplete abelian category. We fix U E ,pP with R = End,,(U) and the 
adjunctions 4: _cP( 17, -) OR U + l,,, y: lMod.R-+,.&(U,-@R U). For any 
A E ,r9, let t(A) = Im dA. Then since Im 4, = U {Im f 1 f E ,d(U, A)}, t is 
an idempotent preradical in .tJ. 

DEFINITION 2.1. U is CQF-3 if for an epimorphism f: A -+ A”, 
.d(U,f) = 0 implies ..&(U, A”) = 0. 

LEMMA 2.2. The following conditions are equivalent. 

(1) U is CQF-3. 
(2) t preserves epimorphisms. 

Proof. (1) * (2): Let A E .r$, Then A-+A/t(A)+O induces 
(,d(U, A) -+ -pP(U, A/t(A))) = 0. Hence by the assumption, 
xf(U, A/t(A)) = 0. This implies t(A/t(A)) = 0, i.e., t is a radical. Let (Y,R) 
be the torsion theory in d associated with t. Then to show that I is epi- 
preserving, it is sufficient to show that (X7) is cohereditary by [34, 
Proposition 2.11. Let A EST and A’ a subobject ofA. Then since 
-&(U, A) = 0, the canonical morphism (.xf(U, A) + &‘(U, A/A’)) = 0. Hence 
by the assumption, J(U, A/A’) = 0. This proves that A/A’ EXT. 

(2) 3 (1): Let f: A + A” be an epimorphism such that .&(U, f) = 0. 
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By the assumption, t(f): t(A) + t(A “) is an epimorphism. Therefore clearly 
t(A “) = 0, i.e., &( U, A “) = 0. 

LEMMA 2.3. Suppose M’ has exact direct limits and U is CQF-3. Let 
(Y,?) be the cohereditary torsion theory associated with t. Suppose jr is 
closed coproducts. Then R U is weakly flat. 

Proof: Let f: XL +X, be a monomorphism. We can construct the 
commutative diagram 

#‘) ” , ,a’) p’ ,X8 -* (-J 

1 
IL 

1 
v 1 f 

#) x. ,(X) Lx - 0. 

The above diagram induces a commutative diagram 

A A 

,,(K’) .x’, “(X’ ) L+ X’@,U +o 

1 

n 

G 

1 

2 
A 

"(IQ x, “(X) ‘;‘ l 
I 

f@U 

XBRU +o. 

Put A = Ker &l and B = Im i. Let 

P -t(A) 

1 UcK) - B 
be the pull back diagram. Then we further get the commutative diagram 

t(P) Lt(A) - U(") 

-B-U. 

Let J and E be the families of finite subsets of K and X’ respectively. Then 
since s?’ has exact direct limits, 

u K-‘(u) = t(P) and 
JEl 

E(E 5-‘@(A) n uE> = t(P). 
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Now by Lemma 2.1, 

t(P)= (J KP’(UJ) 
JEJ 

= (J,E;JxE t(K-‘(uJ)nr-‘(t(A)nU”)). 

For each (.I, E), there is an epimorphism CiJ U -+ t(K- ’ (u”) n 

r-‘(t(A) n U”)). So let q: UC’) + t(P) be the epimorphism induced by those 
morphisms. Then q induces a commutative diagram 

By the construction of v, compositions (U- U”’ -+ U”“) and (U-, 
U(I) -+ UCK’) factor through finite subcoproducts of I!?~” and UtK’ respec- 
tively. Hence we get a commutative diagram 

Since f is a monomorphism, ,u’n = 0. Therefore p’? = 0. This proves that 
t(A) c Ker p’. Thus ,6’ induces an epimorphism A/t(A) -+ Ker f @ U. On the 
other hand, .F is closed under quotient objects. Hence Ker f @ U E .Y. 
Now suppose f’@ U = 0. Then Ker f @ U= X' OR UEF. Hence 
,d(U, A” OR U) = 0. This implies that X’ OR U = 0. Therefore RU is weakly 
flat. 

Following Lambek and Rattray [ 141, we call U weakly small if every 
morphism U-+ @ U factors through a finite subcoproduct of @ U. 
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LEMMA 2.4. Suppose U is CQF-3 and weakly small. Then RU is weakly 
flat. 

Proof The proof is easier than that of the preceding lemma. 
If t is an idempotent radical, we call the associated torsion theory 

generated by U. 

THEOREM 2.5. Suppose ,d has exact direct limits and U is CQF-3. Let 
( Y,,F’) be the torsion theory generated by U and (S’,?‘) the hereditary 
torsion theory in Mod-R determined by the weakly flatness of RU. Moreover 
suppose .Y is closed under coproducts. Then the following statements are 
equivalent. 

(i) U is codivisible with respect to (5,X). 

(ii) #,:.d(U,A)& U-+A is the colocalization of A with respect to 
(Y,.F)forallAE.d. 

(iii) w,,,: M--+ &‘(U, M OR U) is the localization of M with respect to 
(Y”, .Y) for all M E Mod-R. 

If the above statements hold, &(U, -) and - OR U induce an equivalence 
g N P, where SF is the Co-Giraud subcategory of ..d associated with 
( F,K) and 9 is the Giraud subcategory of Mod-R associated with 
(9-l, <F’). 

This time we prove the following theorem. The proof of Theorem 2.5 will 
be obtained by some minor modifications (using the method of Lemma 2.3) 
of the next proof I. 

THEOREM 2.6. Suppose U is CQF-3 and weakly small. Let (9,.;7) be 
the torsion theory in .cP generated by U and (Y’, %F’) the hereditary torsion 
theory in Mod-R determined by RU. 

I. The following statements are equivalent. 

(i) U is codivisible with respect to (Y,.YJ. 
(ii) QA: L/(U, A) OR U-r A is th e colocalization of A with respect to 

(Y,X)forallAE&‘. 
(iii) v,~: M -+ &‘(U, M OR U) is the localization of M with respect 

to (Y”, X7) for all M E Mod-R. 

II. Suppose the above statements hold. Let %Y be the Co-Giraud 
subcategory of .d associated with ( 9-,X) and 9 the Giraud subcategory of 
Mod-R associated with (Y’,X’). Then 

(iv) &‘(U, -) and - OR U induce an equivalence q - 9. 
(v) &‘(U, -) and - OR U induce an equivalence F N Mod-R if and 

only tf every epimorphism of the type @ U + U splits. 
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Proo$ I. (i) * (ii): First we show that (5,R) is strongly 
cohereditary. Let XE JZZ and let f = (f,): U”) -+ t(X) be an epimorphism. 
Then f induces a short exact sequence 

0 - K/f(K) - W/f(K) f, f(X) - 0, 

where K = Kerf. Put A = U"'/t(K). Then (4 < t(X) G X) is the 
colocalization of X. Hence (r, .Sr) is strongly cohereditary. For YE A, we 
define the homomorphism 8: .&‘(A, Y) + Hom,(&(U,X), .d(U, Y)). Let g: 
A -+ Y and h: U + X be morphisms. Then Im h c f(X). Hence there exists a 
unique morphism a: U-A such that the diagram 

is commutative. So we define 8’ via (a( g))h = ga. It is easy to check that 8 
is a group homomorphism. Next we define the homomorphism 8: 
Hom,(d(U,X), &‘(U, Y))-+.d(A, Y). Let cp: -pP(U, X), -+ L~(U, Y)R be a 
homomorphism such that ~(fi~) = x,, where j is the inclusion t(X) G X. 
First note that there is an,epimorphism UCJ’ + f(K). Since U is weakly small 
we may put (rBn) = (U 2 UfJ' -+ f(K) G 17"') (rBa E R and for each /I E J, 
rLk2 = 0 for all but a finite number of a E I), where u;1)s are the injections. 
Then we have a commutative diagram 

ucJ) -t(K) 

AA 

where rc is the canonical epimorphism and U,‘S are the injections. We show 
that x factors through n. To see this it is enough to show that Ker x 1 t(K). 
Since Ker f 3 t(K). C f, rDa = 0 for each /I E J. Hence 
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for all p E J. Thus by the property of coproducts, (UtJ’ + t(K) -+ 
U”’ 3 Y) = 0. On the other hand UCJ’ -+ t(K) is an epimorphism. Hence 
Ker x I t(K). So we define 8 via 13(p) = 2, where .? is defined by x = Cr. 
Then it is also easy to see that 8 is a group homomorphism. Next we show 
6%’ = 1. Let g: A + Y be given. Put (g,) = glr. Then we get the commutative 
diagram 

where we put a, = rru,. Hence ga, = g,, i.e., (a( g))f, = g,. Thus by the 
definition of 0, c%?(g) = g. Therefore 863’ = 1. 

Next let q: &‘(U, X), -+ M’(U, Y), be a homomorphism and rp(&) = x,. 
Let h: U-t X be a morphism. Then h induces 6: U -+ t(X). Let 

P-u 

i I “(I) -t(X) 
be the pull back diagram. Then it induces a commutative diagram 

tiIy J.TJ 

“(I) f , t(X) -x . 

Note that t is an epimorphism by the property of pull backs. Since t(P) E r, 
there is an epimorphism x: I!J’~’ -+ t(P). Put rp = rxu$ where ~7: U+ U”~’ is 
the injection for all y E L. Since U is weakly small we may put fcxuy = (I~) 
(rya = 0 for almost all a E I for each y E L). Then 
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= gKXU;, 

where g = (x,): I!?‘) + Y. Since y runs through all indices, q$h)r = gK. Now 
we get the diagram 

t(p) 

where a: U + A is defined via j,& = h by the codivisibility of U. To see that 
$0 = 1, it is sufficient to show @I = q(h) by the definition of 8. 

fat = hs 

=jfnK. 

Since j is the inclusion, faz = j?r~. Hence J‘(ar - ~CK) = 0. Thus (as - no): 

t(P) + A factors through t(P) + K/t(K). Hence a5 = ?r~. Then 

gat= @K 

= gK 

= cp(h)z. 

Since r is an epimorphism, p(h) = ga. Therefore BB = 1. The naturality of 8 
on Y is clear by the definition of itself. Now there exists a natural 
isomorphism 

11~: d(TH(X), Y) Z Hom,(H(X), H(Y)) z .&(A, Y), 

where we have put H = ..&(U, -) and T = - OR U for convenience. Put 2 = 

~WX,(lTH(X) ) and 6 = v;‘(l,). Then we get the commutative diagram 
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.&W(X) ,A) ’ 
I' A 

c .~A,A) 

..s'(TII(X),G) .J(TIi(X),X) 
TI 

nA 
J(A,b) .dd(A,A) 

TI 
d('rll(X) ,111(X)) + + .s"(A,W(X)) 

1 
'TH(X) 

a"(TII(X),$) 
I 

d(WX) 

~~'(llI(X) ,X) 
"X 

l .v'(A,X) 

\ / 
tl%(NX) ,H(X)) . 

Then A is an isomorphism and we get the commutative diagram 

0 +K/t(K) - AjTX 

Therefore qx is the colocalization. 

(ii) 3 (iii): It is clear that H and T induce an equivalence Im T- 
Im H. Hence for any A4 E Mod-R, Cok v/~ OR U = 0. So it is sufficient to 
show that RU is T-‘-flat by Corollary 1.5. Let 0 + X’ + X+ X” + 0 be exact 
in Mod-R with X” E F’. Then since XOR U is codivisible, the exact 
sequence O-+K+X’@,U-+X@,U-+O splits, because KE.F by (34, 
Lemma 3.21. Hence K = 0. 

(iii) 2 (i): Let g: A -+ A” b e an epimorphism in .6. Then we have a 
commutative diagram 

I 
t(A) 

1 
0 

1 
h 

b t(A") - 0 

with exact rows and columns, where 8 = ,d(U, g) @ U. Since h is a minimal 
epimorphism by ] 34, Lemma 2.21, 0 is an epimorphism. Let 0 --f A’ -+ A ---* 
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A” --t 0 be exact in .cu” with A’ E ,F. Then we have a short exact sequence 
O+.d(U,A)-+.d(U,A”)-*N-+0 with NO, U=O by the above. Then it 
splits since s’(U, A)R is divisible with respect to (Y-I, .F’). Thus N = 0. 
This proves that U is codivisible. 

II. (iv) is obvious. 

(v) Suppose every epimorphism of the type @ U-t U splits. We 
show that U is projective in P?. Letf: C -+ C” be an epimorphism in F’. Then 
f is an epimorphism in <c3, too. Let g: U + C” be any morphism. Then we get 
the commutative diagram in .d ’ 

U(J) - UP) - u 

6 I &I 
C f C" , 

which is induced from the pull back diagram. By the assumption there is a 
morphism U+ 17’~’ such that (U+ UCJ’ + t(P) + U) = 1 r:. Hence by putting 
Ed = (U -+ UCJ’ -+ t(P) -+ C), the diagram 

is commutative. Thus U is projective in F. Let A4 E Mod-R and let @ R -+ 
%, R + M+ 0 be exact. Then since U is weakly small and projective in %“, we 
have the commutative diagram 

8R-@R-M-O 

with exact rows. Hence ‘I/,~ is an isomorphism. Therefore ,&(U, -) and 
-OR U induce an equivalence @ - Mod-R. The converse is obvious. 

This completes the proof. 

COROLLARY 2.1. A cocomplete abelian category with a weakly small 
generator is a Grothendieck category. 

Remark. If U is a small generator in A?‘, then with respect to the 
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corresponding hereditary torsion theory in Mod-R, every direct sum of 
torsion free divisible modules is again divisible. 

COROLLARY 2.8 (Gabriel and Popescu [26]). Let A?’ be (I Grothendieck 
category with a generator U. Let R = End,,(U). Then the following 
assertions hold. 

(1) The jiinctor &( U, -): .F9 + Mod-R is fill and faithful. 

(2) RU is flat (i.e., -OR U is an exact functor). 

Proof: This is a special case of Theorem 2.5. 
If we assume the Gabriel-Popescu theorem, we can give an easier proof of 

Theorem 2.5 without assuming Lemma 2.3. We give this proof. 

Proof of Theorem 2.5. Assume Corollary 2.8. 
(i) + (ii), (iii): Suppose U is codivisible. Then (F,<F) is strongly 

cohereditary by the same reason in Theorem 2.6. Let $9 be the Co-Giraud 
subcategory of ..!zZ associated with ( 9, F), i: Q -+ ..s;l the inclusion functor 
and a: .d -+ @ the coreflector. Then g is a cocomplete abelian category with 
a generator U. We show that F has exact direct limits. Since i is right exact 
and a is exact, direct limits are right exact in g. Hence it is sufficient to 
show that they preserve monomorphisms. Let 0 -+ XA + X, be exact in F 
and let O+ K, -+ i(XL) --t i(X,) be exact in ./r9. Then K, E 37 By the 
assumption, .F is closed under quotient objects and coproducts. Hence 
l& K, E 7. Thus we have a monomorphism a(@ i(X;)) -+ a(@ i(X,)). 
On the other hand, a(9 i(-)) = l&(-). Therefore ‘F has exact direct limits. 
Since M OR U E V for all M E Mod-R, we get the commutative diagram 

Y'= Im H. 

where T(M) = iI4aR U for M E Mod-R, T’ is the inverse equivalence of H’, 
b is the kernel preserving reflector andj is the inclusion functor. In particular 
,oP(U, -) and - OR U induce an equivalence g = Im TN Y’ = Im H. Hence 
Ker dA E F for all A E .d. This proves (ii). 

To prove (iii) we first show that RU is weakly flat. Let f: XA + X, be a 
monomorphism such that f @ U = 0. Then since jb = ,-oP(U, - OR U) is left 
exact, (./(U, X’ OR U) + zZ(U, XoR U)) = 0 implies _9p(U, X’ OR U) = 0. 



186 KOICHIRO OHTAKE 

Hence X’ OR U = 0. Therefore RU is weakly flat. Then the other part of (iii) 
is similar to that of Theorem 2.6. 

(ii) 2 (i): Obvious. 

(iii) 3 (i): Same as that of Theorem 2.6. 

Now we are in a position to prove the theorem in the Introduction. To 
prove it it is enough to show the following easy lemma. 

LEMMA 2.9. Let %d be a complete additive subcategory of Mod-R and 
( 7, .7) a torsion theory in .irp. Then c ?- is closed under direct sums. 

Proof: Let T E ,+?- and Fi E Y. Then 

Horn, (T,@Fi)CHom, (T,] lFi)zHom,(T,Fi)=O. 

Therefore Hom,(T, @ Fi) = 0. This implies that @ Fi E .8. 

COROLLARY 2.10. A CQF-3 object of a complete additive subcategory of 
Mod-R is weakly flat over its endomorphism ring. 

COROLLARY 2.11. Let the situation be the same as either Theorem 2.5 
or 2.6. Suppose U is codivisible. Then 

(1) U is projective in .;I(* if and only if the inclusion functor j: 2’ + 
Mod-R is exact, and 

(2) RU is jlat if and onlv if the inclusion finctor i: V + .w- is exact. 

Let Gen(U) be the full subcategory of .CY’ consisting of all U-generated 
objects and Gen(U) the full subcategory of .d consisting of all subobjects of 
objects of Gen(U). An object A E .&” is said to be U-presented if there is an 
exact sequence @ U + %, U+ A + 0. Now let U, be a C-quasi-projective 
module. Then since .Y(U,) contains arbitrary direct sums of copies of U, 
.?(U,) 3 Gel. Thus by the theorem of the Introduction, we get: 

EXAMPLE 2.1. Let U, be a X-quasi-projective module with S = End( U,). 
Let V be the full subcategory of Mod-R consisting of all U,-presented 
modules. Then ‘V is a Grothendieck category and sU is weakly flat. 

3. CQF-3 OBJECTS AND COLOCALIZATION 

Throughout this section .d denotes a cocomplete abelian category and .d 
a strongly exact subcategory of. :+‘. We fix U E ~9 with R = End ,(U) and 
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the adjunctions qi: d(U, -) OR U+ 1 d and w: 1 Mod.R -+ .d(U, - OR U). For 
A E-9, put t(A)=Imd,. Then since .5? is closed under subobjects, 
t: .Y -+ 9 is an idempotent preradical. 

We define CQF-3 objects in 9 as in Section 2. 

LEMMA 3.1. The following conditions are equivalent. 

(1) U is a CQF-3 object. 

(2) t preserves epimorphisms. 

Proof: The proof is completely similar to that of Lemma 2.2. 

THEOREM 3.2. Suppose U is CQF-3 and codivisible with respect to the 
cohereditary torsion theory in ,B generated by U. Then for X E .%‘, zf t(X) is 
jkitely U-generated, tix: .c4(U, X) OR U + X is the colocalization. 

Proof: In the proof of (i) => (ii) of Theorem 2.6, that U is weakly small is 
necessary only if the set Z is infinite. Hence if t(X) is finitely U-generated, we 
can take Z as finite. Therefore #x is the colocalization. 

DEFINITION 3.1. Let ME Mod-R. Then U is said to be M-faithful if v,,, 
is a monomorphism, and is said to be completely faithful if U is M-faithful 
for all ME Mod-R. 

LEMMA 3.3. The following statements hold. 

(1) Zf U is M-faithful, U is M’ faithful for all submodules M’ of M. 

(2) Zf U is M,-faithful, then U is ZZM,faithful. 

Proof (1) is clear. 

(2) Let ri: ZZA4-t Mi be projections. Consider the commutative 
diagram 

IIMi 
%Mi 

+ d(U,IIMi'8,U) 

TT. 
1 

1 
*M. 1 

sfyu,ni @U) 

Mi 1. d(U,MiORU). 

Let (m,) E Ker oh,,,,,. Then rc,(m,) = mi E Ker vMi. Hence mi = 0. Therefore 
vnMi is a monomorphism. 

Now put L(U)={XcUIt(X)=X} and L(R)={Z,cRIU is R/Z- 
faithful}. In this case we have identified Xc U as a class of all subobjects of 
U equivalent to X. Then note that L(U) is a set. 

481/79/l-13 
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LEMMA 3.4. L(U) and L(R) are complete lattices by the usual order 
relations. 

ProoJ Let {Xi} c L(U). Then it is clear that x Xi E L(U). Hence L(U) 
is a complete lattice. Next let (Zj} c L(R). Then by the preceding lemma. 
fi Z,i E L(R). Thus L(R) is also a complete lattice. 

PROPOSITION 3.5. Let the situation be the same as Theorem 3.2. Then 
L(U) and L(R) are lattice isomorphic by the assignment F: L(U) + L(R) via 
F(X) = s@‘(U, X) = {r E R 1 I m r c X) and by the inverse assignment G: 
L(R) + L(U) via G(Z) = ZU. 

ProoJ Let X E L(U). Then we have the exact sequence 0 -+ &‘(U, X) + 
R -+ ,%‘(U, U/X). Put Y = Im(R -+ &‘(U, U/X)). Then since U/X is 
codivisible, U is Y-faithful by Lemma 3.3. This implies &‘(U, X) = F(X) E 
L(R). Next consider the commutative diagram 

.d(U,X)@* u - RBRU 

Then ,,&(U, X)U = F(X)U = GF(X) = Im @x = X since Im 4X = t(X) = X. 
Conversely let Z E L(R). Consider the commutative diagram 

Then by the definition of ZU, 0 -+ ,&(U, ZU) -+ R + ,&(U, R/Z OR U) is exact. 
Hence by five lemmas, (I+“’ CvY’(U, ZaR U) + ,pP(U, Zu> is an isomorphism. 
On the other hand, (R s .&(U, R OR U) z ,,@‘(U, U)) = 1,. Hence Z = 
,zf(U, ZU) = FG(Z). 

LEMMA 3.6. Suppose U is projective in .%f. Then L(R) contains all 
finitely generated right ideals. 

Proof: Let Z be a finitely generated right ideal of R. Then R/Z is liitely 
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presented. Hence by five lemma, vRI, is an isomorphism. In particular U is 
R/Z-faithful. 

COROLLARY 3.7 (cf. Harada 19, Proposition 2.71). Suppose U is 
projective in .8. Then L(U) is noetherian tf and only tfR is right noetherian. 

The proof of next corollary is essentially due to [9, Proposition 2.31. 

COROLLARY 3.8 (Harada). Suppose U is projective in .%. Then if L(U) 
is artinian, R is semiprimary. 

Proof Since L(U) is artinian and contains all principal right ideals, R is 
left perfect by [ 1, Theorem 24.81. Hence it is sufficient to show that Rad R is 
nilpotent. By the assumption, there exists a positive integer n such that 
(Rad R)” U = (Rad R)*” U. Put Z = (Rad R)“. Suppose Z # 0. Then there is a 
minimal subobject (xR)U with respect to the condition such that x E Z and 
xl # 0. Then xZ # 0 implies x1* # 0 (because xZ* U = xZU # 0). Thus there 
also exists y E Z such that xyZ# 0. Since 0 # (xyR)U c (xR)U, we get 
(xR)U= (xyR)U by the minimality of (xR)U. This implies XR = xyR by 
Proposition 3.5. Therefore x = xyr for some r E R. Since 1 - yr by 
Proposition 3.5. Therefore x = xyr for some r E R. Since 1 - yr is invertible, 
x = 0. This is a contradiction. Therefore Rad R is nilpotent. 

LEMMA 3.9. Let U, be a quasi-projective module with S = End(U,). 
Suppose U is a CQF-3 object of some complete additive subcategory of 
Mod-R. Then ,U is completely faithful if and only if U, is finitelv generated. 

Proof If U, is finitely generated, U, is C-quasi-projective. Hence by 
Theorem 2.6, 11(2), ,U is completely faithful. 

Conversely suppose ,U is completely faithful. Let U, = C X, be a direct 
union. Then S = V Hom,(U, X,) in L(S). Since ,U is completely faithful, 
L(S) coincides with the lattice of all right ideals. Hence S = C Hom,(U, X,). 
Therefore there exists X, such that S = Hom,(U, X,). Thus U = X,. This 
proves that U, is finitely generated. 

COROLLARY 3.10. Let U, be a quasi-projective artinian module with 
S = End(U,). Let 1, = e, + ... + e, be a decomposition of primitive idem- 
potents and U = U, + . . . t U, the corresponding decomposition. Then: 

(1) Zf each Ui is CQF-3 in some complete additive subcategory of 
Mod-R, U, is finitely generated. 

(2) In addition to (1 ), if U, is trace accessible, Z-J, is a Jinite direct 
sum of cyclic projective modules. 

Proof Let N = Rad S. To prove (1) we may assume that U, is 
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indecomposable. Let t be the idempotent radical in Gen(U,) associated with 
the torsion theory generated by U in Gen(U,). Let U, = C X, be a direct 
union. Then U = x t(X,). Hence S = V Hom,(U, t(X,)). Since N is 
nilpotent, NE L(S). N, is a unique maximal submodule of S,. Hence there 
exists X, such that S = Hom,(U. t(X,)). Thus U = t(X,) c X. Therefore U, 
is finitely generated. This proves (1). 

Suppose U, is trace accessible. Let .Z be the trace ideal in S of the derived 
context (&J,,, Hom,(U, R),). Then since ,U is completely faithful, J = S. 
Thus by the dual basis lemma. U, is finitely generated projective. It only 
remains to show that each Vi is cyclic. Let Ui = x, R t ++. t x,R. Then U; = 
x,z f ... + xkZ, where Z is the trace ideal of Uix. Then there exists xi such 
that Hom,(U,, x,Z) = End(U,,). Hence Ui = x,R. This completes the proof. 

PROPOSITION 3.11. Let .I%+ be a strongly exact subcategory of Mod-R 
and U E .9? a CQF-3 object with S = End(U,). Let (8, .i”) be the torsion 
theory generated by) U in .d with the idempotent radical t. Then the following 
conditions are equivalent. 

( 1) ( XI Y) is hereditary. 

(2) .!J, generates each of its submodules. 

(3) ,U is flat and the canonical homomorphism #R: Hom,(U, B) (~1,~ 
U + B is an isomorphism for all B E ,d. 

ProoJ (1) z- (2): Obvious. 

(2) +- (3): It is a general result that Y is closed under group 
extensions in ~8. Hence it is an easy consequence that Gen(U,) = Gen(U,). 
Thus Gen(U,) is a Grothendieck category. On the other hand, Gen(U,) is an 
exact subcategory. Therefore (3) holds. 

(3) * (1): For any B E .d, we have a commutative diagram 

Hence t z Hom,(U. -) OS U, which is left exact by the assumption. 

COROLLARY 3.12 (Fuller 171). Let U, be a quasi-projective module and 
generate each of its submodules. Then Gen(U,) = Gen(U,). 
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4. QF-3 OBJECTS AND LOCALIZATION 

Throughout this section unless otherwise specified, .d denotes a complete 
abelian category and .5? denotes a strongly exact subcategory of .d. We fix 
VE ,:%’ and R = End,,(V). The contravariant functor .A’(-, V): .&’ + R-Mod 
has a colimit reversing contravariant adjoint T: R-Mod + .d. Let 4: I,,-+ 
T(.pJ(-, V)) and lu: 1, Mod -+.&(T( ), V) be the natural transformations 
associated with the adjoint relation. Then 4 has following properties: 

(1) (&‘(A, V) + ,&(Ker #A, V)) = 0, and 

(2) Coim 4, is cogenerated by V. 

Hence by putting r(B) = Coim dB, Y is an idempotent coradical in .d in 
the sense of 1341. 

DEFINITION 4.1. V is a QF-3 object in .% if for a monomorphism J 
B’ -+ B in <%), ,&(f, V) = 0 implies .@‘(B’, V) = 0. 

LEMMA 4.1 (cf. [ 341). The following conditions are equivalent. 

(1) V is QF-3. 

(2) r preserves monomorphisms. 

THEOREM 4.2. Suppose V is QF-3 and divisible with respect to the 
hereditary torsion theory in .59 associated with r. Then for X E <%p, if r(X) is 
finitely V-cogenerated, $*: X -+ T(.d(X, V)) is the localization. 

Let sQR be a bimodule. Then the adjoint of Hom,(-, Q) is Horn&, Q). 
Hence we get: 

'EXAMPLE 4.1. Let W, be a cogenerator with S = End( W,). Then every 
finitely W,-cogenerated module is ,W,-reflexive, hence in particular if W, 
finitely cogenerates R, W, is balanced. 

In Theorem 4.2, that r(X) is finitely V-cogenerated cannot be replaced by 
infinitely V-cogenerated, for if R is a Morita ring such that ,s W, defines a 
Morita duality, then no infinite direct sum of W-reflexive right R-modules is 
reflexive (Camillo). 

LEMMA 4.3. The following statements hold. 

(1) If v,~ is a monomorphism, then ‘//MC is a monomorphism for all 
submodules M’ of M. 

(2) If vMi is a monomorphism for each Mi, then t,u,r,,,, is also a 
monomorphism. 
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Now put L(V)= (YI Y is a quotient object of V such that r(Y) = Y} and 
L(R) = (RZc R I vR,, is a monomorphism}. 

LEMMA 4.4. L(V) and L(R) are complete lattices. 

Remark. It should be noted that the order relation in L(V) is defined as 
follows: For Y, Y’ E L( I’), Y < Y’ if and only if Y c Y’ in A@‘*. 

PROPOSITION 4.5. Let the situation be the same as Theorem 4.2. Then 
L(V) and L(R) are lattice isomorphic by the assignment F: L(V) + L(R) via 
F(Y) = (r E R 1 Coim r < Y} and by the inverse assignment G: L(R) + L(V) 
via G(Z) = [T(Z)], where [T(Z) 1 = Coim( V = T(R) + T(Z)). 

Now we set L(V) = (Xc V 1 r(V/X) = V/X). Then by the usual order 
relation, L(V) is a complete lattice. Moreover it is clear that L(V) and L(V) 
are lattice anti-isomorphic by Xet V/X. Let F: L( I’) -+ L(R) be the 
composition L(V) + L( v> -+ L(R). Let X E L(V) and consider the diagram: 

0 b Ker r __* V--*Coimr - 0. 

Hence r E P(X) if and only if X c Ker r. Thus F(X) = {r E R ) Ker r 3 X) = 
.d( V/X, V’). Furthermore the composition e: L(R) + L(V) -+ L(V) is a 
lattice anti-isomorphism. Let Z E L(R) and r, r’ E I, and let X = 
Ker( V-+ r(Z)). Then it follows d(Z) = n {Ker r 1 r E I} from the 
commutative diagram 

Ker I“ Coim I‘ 

Ker r coim I“ 

Thus: 
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PROPOSITION 4.5’. Let the situation be the sameq as Theorem 4.2. Then 
t(V) and L(R) are lattice anti-isomorphic by the assignment P:“(V) +-L(R) 
(&X) = .pP( V/X, V)) and by the inverse assignment G: L(R) -+ L(V) (G(Z) = 
n (Ker r 1 r E I}). 

COROLLARY 4.6 (Harada and Ishii [ lo]). Suppose V is injective in .%9. 
Then @(V) is artinian if and only if R is left noetherian. 

COROLLARY 4.7 (Harada and Ishii [IO]). Suppose V is injective in 3. 
Then if f$ V) is noetherian, R is semiprimary. 

5. EQUIVALENCE AND DUALITY 

Throughout this section let ,,G’ be a cocomplete abelian category and U a 
quasi-projective object with R = End,,(U). 

DEFINITION 5.1. An object A E .d is said to be U-presented if there 
exists an exact sequence @ U-+ @ U+ A + 0 (some authors call A to be U- 
codominant dimension at least 2). In the above, if we can take @ U’s as 
finite coproducts, A is said to be finitely U-presented. 

We set g(U) = {A E .r4 1 A is U-presented and finitely U-generated} and 
2(U) = (M E Mod-R 1 M, is finitely generated and U is M-faithful}. 

PROPOSITION 5.1. .EZ’( U, -) and - OR U induce an equivalence g(U) - 
.9(U). 

Proof: U generates a cohereditary trosion theory ( .F,-,.F) in CP(U). Let 
q5: <d(U, *) OR u- I,, and v/: 1 Mod.R + .@‘(U, - OR U) be adjunctions. Let 
AE%Y(U). Then A E.B(U) and A is codivisible with respect to ( F,.F). 
Hence #A is an isomorphism. Thus w-~(“,~, is also an isomorphism. Therefore 
.d(U, A) E 9(U). Conversely let ME g(U). Then it is easy to see that ‘i/,,, 
is an isomorphism. On the other hand, #MO,C, is an isomorphism and 
MBR UEY(U) imply that MO, UE F(U). Therefore .&(U,-) and 
- OR U induce an equivalence V(U) - 9 (U). 

We give another proof of this proposition using the method originally 
introduced by Lambek and Rattray. 

Let A E .FZ’. Consider classes fl of subobjects of A satisfying the following 
conditions: 

(1) OEP. 

(2) If X,, X, E fl, then X, U X2 E P. 

(3) IfXEP and YcX, then YEP. 
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We call such a class P a cofilter of A. 
No we construct the new category .D whose objects are the pairs (A, p) 

and whose morphisms are the morphisms in .& and map each member of the 
cotilter into another one. 

LEMMA 5.2. .3 is a cocomplete additice category. 

Proof: Let f: (A, ,P) -+ (4 ‘, F’) be a morphism in .%1. Let 7-c: A’ -+ Cok f 
be a canonical morphism in .&. Then Cok f = (Cok f, P”), where P” = 
{n(X)IXEP’}. Next let (A,,<)E.ti. Put P= (X~.w'lXc 

xi, 0 -. . @ Xi,, Xij E <;}. Then clearly P is a cotilter of @ Ai. We show that 
GJ(Ai,/t;:)=(@Ai,~). Let (A,p’)E.3 and fi:(A,,<)+(A,P’) be 
morphisms in .Y?. Then there exists a unique morphism g: @ Ai + A such that 
the diagram 

@A. 
1 

ui 

/ 

Ai 

\ 1 

!!3 '(fi) 

fi 

A 

is commutative, where ui)s are injections. Note that uI)s are morphisms in .d. 
Let X E P. Then there exist XijE <j (j = l,..., n) such that Xc 
xi, 0 . . . @Xi,. Then g(X) c f,,(Xil) U +. . U &,(Xil) E P” since fi,‘s are 
morphisms in .8. Therefore g is a morphism in 3’. Fmally we show that .J 
is additive. Let f, g: (A, P) + (A’, P’) be morphisms in .%. Then f + g can 
be expressed by the composition 

AJLl’OA- . (I,n, A’ 

Hence it is enough to show that ({) is a morphism in 28. Let X E P. We 
show that ({)(X) c f(X) @ X. We get the commutative diagram 

f(X) 63 x 

A-9 I\ 
f(X)- x X 

&kI 
A'- A - A. 
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This implies that (T)(X) c f(X) @ X. Therefore ({) is a morphism in .M. 
We get the diagram of functors 

Mod-R 

where F(A) = (A, F;), c”A is a class of all subobjects of A and G is a forgetful 
functor. Then F is full and faithful and is a right adjoint of G. Note that 
.ia(F(U), -) e F = &‘(U, -) and G(- OR F(U)) = (- OR U). 

LEMMA 5.3. F(A) is weakly small in 9 for all A E .pP. 

Proof Let F(A) -+ @ F(A) be a morphism in 3. Since A E PA, f(A) lies 
in the cofilter of @ F(A). Thus f factors through a finite subcoproduct of 
0 F(A 1. 

DEFINITION 5.2 (Lambek and Rattray [ 141). P E 9 is weakly projective 
if for every set Z, every cokernel J PC” + B and every morphism g: P+ B, 
there exists h: P + PC’) such that j?r = g. 

LEMMA 5.4. Suppose U is quasi-projective in M’. Then F(U) is weakly 
projective in 9. 

ProoJ Let @F(U)=(@U,P) and Ac@U. Letf:F(U)+(@U,F)/ 
(A, (“‘) = (0 U/A, ,“) b e a morphism. Since U lies in the cofilter of F(U), 
ImfcX, @ . ..@X.UA/A (XicU). H ence there exists g: F(U) + F(U)” 
such that the diagram 

where rr is a canonical morphism. Therefore F(U) is weakly projective. 
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Now let U be quasi-projective in .d. Then by [ 14, Theorem 41, 
.&(F(U), -) and - OR F(U) induce an equivalence .M’ N Im .M(F(U), -), 
where .W’ is a full subcategory consisting of all F(U)-presented objects. So in 
particular, we get Proposition 5.1. 

The dual of the above is easy by using the notion of filters. We leave it to 
the reader for detail. 

PROPOSITION 5.5. Let the situation be the same as Proposition 5.1. Then 
the following statements are equivalent. 

( 1) V(U) is abelian. 
(2) W(U) consists of all finitely U-presented objects. 
(3) Y(U) consists of all finitely presented right R-modules. 

Hence if F(U) is abelian, R is right coherent. 

Proof: (2) e (3) is easily verified. Before showing (1) =X (3), we show 
that G/(U) is closed under cokernels. Let f: M -+ M” be a morphism in Q(U) 
and Cok f the cokernel off in Mod-R. Then by live lemma, Cok f E Q’(U). 

(1) * (3): Let J M’ -+ M be a morphism in Q(U) and g: K + M’ the 
kernel off in Q’(U). Consider the diagram in Mod-R 

K 

I g 
O-Ker f v M1 BM, 

where Ker f is the kernel off in Mod-R. It is obvious that Im g c Ker f and 
Im g E 9(U), where Im g is the image of g in Mod-R. Hence there exists a 
unique homomorphism h: Im g-+ K such that the diagram 

is commutative. Therefore g: K -+ M’ induces an isomorphism K E Im g. On 
the other hand, every finitely generated submodule of Ker f is in D(U). This 
implies Im g = Ker f. Thus G(U) is closed under kernels. Let N E 9 (U) and 
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let R” + N + 0 be exact. Then Ker(R” -+ N) E Q(U). Therefore N, is finitely 
presented. 

(3) 3 (1): Suppose G(U) consists of all finitely presented right R- 
modules. Since every finitely generated right ideal of R is finitely presented, 
R is right coherent. Hence 5?(U) coincides with the category of coherent 
right R-modules, which is abelian. 

In the preceding corollary, if R is right noetherian, clearly (3) holds. But it 
is not a necessary condition in order to (3) hold. 

EXAMPLE 5.1. Let R be a semisimple ring and VR an infinitely generated 
cogenerator with S = End(V,). Then @*(I’,) = {ME Mod-R 1 MR is V- 
copresented and finitely V-cogenerated} is abelian. But S is not left 
noetherian since L( I’,) coincides with the lattice of all submodules of V, and 
L(V,) is not artinian. 

Also that R is right coherent is not a sufficient condition in order to (2) 
hold, for let R be right coherent but not right noetherian. Then clearly 
g(R) = Q(R) = {ME Mod-R 1 MR is finitely generated}. Hence 

V(R) is abelian o every finitely generated right R-module 
is finitely presented 

G R is right noetherian. 

Hence g(R) is not abelian. 

EXAMPLE 5.2. Let R be any ring, I an infinite set such that card I > 
card R. Let PR = R (‘) Then 59(PR) is abelian. . 

Proof: First we show that card P = card I. Put F,, = { (ri) E P 1 
card{(r,, i) 1 ri # 0} < n). Then it is clear that P = u F,. We define the map 
19: R” x I” + F, via 13((r, ,..., r,), (ii ,..., i,)) = 2 uij(rij), where uij: R + P are 
injections. Then clearly B is surjective. Hence card F, < card R” x I” < 
card 1’” = card I. Thus card I < card P < card I x N = card 1. Now let X, be 
finitely P-generated. Let fi P” +X be an epimorphism. Then since card P” = 
card I, Ker f can be generated by I elements. So put Ker f = Cie, xiR. Then 
there is an epimorphism p: P-1 Ker f such that rp(ri) = JJ xiri. This implies 
that X, is finitely P-presented. Hence T(PR) is abelian. 

Finally we consider coherent objects. Again let UE J be a quasi- 
projective object with R = End,(U). Let U be a category of all finitely U- 
generated projective objects in Y(U). Let X E .9(U). Then X is said to be U- 
coherent if X is finitely U-presented and every finitely U-generated subobject 
of X is finitely U-presented. If every object of U is U-coherent, U is said to 
be coherent. It is easily shown that U is coherent if and only if U is U- 
coherent. 
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PROPOSITION 5.6. Zf U is U-coherent, R is right coherent. 

Proof: Let f: R” + R be a homomorphism in Mod-R. Then since U is U- 
coherent, we have the exact sequence U” + U” fz U. Thus we have an 
exact sequence R” + R” L R since U is projective in .9(U). Therefore R is 
right coherent. 

Now let R be any ring and P an additive category of all X-generated 
projective right R-modules. Let P, = R”’ and S = End(P,), where Z is a set 
such that card Z = x. R is said to be right X-coherent if every X-generated 
right ideal of R is X-related. It is known that R is right X-coherent if and only 
if P is coherent (hence PR is P-coherent). 

EXAMPLE 5.3. Under the same situation of the above, the following 
conditions are equivalent. 

(1) R is right X-coherent. 

(2) P, is P-coherent. 

(3) S is right coherent. 

In Example 5.2, R is right card Z-coherent. 

6. SUPPLEMENTS 

In this section we give a couple of applications. Let R be a ring and E, 
the injective envelope of R,. Then Sato called R right QF-3 if every finitely 
generated submodule of E, is torsionless, and he showed that if R is left and 
right noetherian, R is left QF-3 if and only if R is right QF-3. In this section 
we generalize his result. But we call R right QF-3’ if R is right QF-3 in the 
sense of Sato. First we introduce QF-3’ modules. 

.Let VE Mod-R and cog(V,) the full subcategory of Mod-R consisting of 
all submodules of homomorphic images of finite direct sums of copies of V, . 
In other words cog(V,) is the smallest strongly exact subcategory 
containing V, . 

PROPOSITION 6.1. Let E, be the injective envelope of VR. Then the 
following conditions are equivalent. 

(1) V is QF-3 in G(V,). 
(2) Every finitely V,-generated submodule of E, is V,-torsionless. 
(3) Every Jnitely V,-generated torsion free module with respect to the 

torsion theory cogenerated by E, in Mod-R is V,-torsionless. 
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ProoJ: (1) + (3): Let X, be a submodule of rI E, and V: +X, --+ 0 be 
exact. Let r(X) = n {Ker S 1 f E Hom,(X, V)}. We must show r(X) = 0. 
Suppose r(X) # 0. Then there exists 0 # f: X, -+ E, such that f(r(X)) # 0. 
Then since Im f 4 1 1 V, there exists 0 # g: X, + VR such that g(r(X)) # 0. 
This is a contradiction. 

(3) > (2): Trivial. 

(2) 2 (1): Let J Xfi + X, be a monomorphism in cog( V,) such that 
Hom(f, V) = 0. We may assume that X, is finitely V-generated. Suppose 
HomR(X’, V) # 0. Then there exists 0 # g: X; -+ E,. Since E, is injective, g 
can be extended to h: X, -+ E,. Put N = Im h. Then NR is finitely V- 
generated. Hence N, is V-torsioniess by the assumption. Then there exist 
xEX’ and u:N, + VR such that ug(x) # 0. But ug is the image of uh by 
Hom(f, V). This is a contradiction. Therefore V is QF-3 in cog(V,). 

DEFINITION 6.1. VR is a QF-3’ module if V is QF-3 in cog(V,). 

PROPOSITION 6.2. Let VR be a QF-3’ module and E, the injective 
envelope of V, . Then the following statements are equivalent. 

(1) V is divisible with respect to the torsion theory cogenerated by V in 
C%(V,>. 

(2) For every finitely If,-generated submodule X of E, such that 
X 3 V, X/V is V,-torsionless. 

Moreover if R E cog( VR), these are equivalent to: 

(3) V, is divisible with respect to the torsion theory cogenerated bv E, 
in Mod-R. 

We omit the proof, because there is no new idea for the proof other than 
in categories of modules. 

What we are most interested in is a QF-3’ ring. A famous example of QF- 
3’ rings is J, the ring of integers. Thus we get an example which states that 
in abelian categories “hereditary torsion theory” does not necessarily mean 
“strongly hereditary.” 

PROPOSITION 6.3. Let R be right QF-3’. Suppose R is either left 
noetherian or right linearly compact with essential socle. Then R is left QF- 
3’. 

Proof: (cf. Lemma 2.3). Let f: RM’ + ,@ be a monomorphism such that 
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,$4 is finitely generated and Hom(f, R) = 0. Let RN be an arbitrary finitely 
generated submodule of M’ and f ‘: N--t M the restriction off. Then we get 
the commutative diagram 

-R"-M -0. 

Thus we further get the commutative diagram of right R-modules 

If R is left noetherian, J can be taken as a finite set. So suppose R is right 
linearly compact with essential right socle. Put K = Ker g*. Then note that 
Hom,(M, R) c K. Let F be the family of all finite subsets of J. Let us denote 
P as the complement of FE F. Then since np-,r R’ = 0, Hom,(M, R) = 
nFEFt*-1 (RF). By the assumption it is clear that K, is a finitely 
completely meet irreducible submodule of Rm. Hence by Mtiller [ 231, there 
exists FE F such that o’* -‘(RF) c K. Let R” + R’ be the projection. Then 

’ * induces a monomorphism R”/cp’ * ‘(RF) + R’. Now let r be the idem- 
Fotent coradical (in the sense of [34 1) associated with the hereditary torsion 
theory cogenerated by R, in cog(R,). Then we know that r preserves 
monomorphisms. Let 

IF/ p’ -+nF) -‘RF 

I I Rn -Q 

be the push out diagram. Then Q E mod-R, where mod-R = cog(R,). Hence 
r(Q) is defined and R” -+ r(Q) is a monomorphism. Let r(Q) --t RL be a 
monomorphism. Then we get the commutative diagram 
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Thus it induces the further one. 

- Rm-M -0. 

Thus we conclude Hom,(N,R) = 0. Since RN is an arbitrary finitely 
generated submodule of M’, HomR(M’, R) = 0. Therefore R is left QF-3’. 

LEMMA 6.4. Let .59 be a strongly exact subcategory of Mod-R and 
V E .%9 a QF-3 object with S = End(V,). Let f: X, + Vi be a 
monomorphism. Then Hom,(Cok Hom(f, V), V) = 0. 

ProoJ: Let xi: V” -+ V (i = I,..., n) be the projections and put jJ = rrif. 
Then we have an exact sequence 

S” --f-t Hom,(X, V) ---) N -+ 0, 

where (sl ,..., s,)a = Slf, + *** + s, f, for all si E S. Let 0: ,Hom,(X, V) + s V 
be a homomorphism such that 80 = 0. Then we have to show 19 = 0. It is 
easy to see that 86 = 0 if and only if f, 8 = ... = f, 8 = 0. Suppose there 
exists g E Hom,(X, V) such that g8 # 0. Let 

I: I 
'f-0 
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be the push out diagram (in 59). Let r be the idempotent coradical associated 
with the hereditary torsion theory cogenerated by V in .9. Since r preserves 
monomorphisms, (V+ Q + r(Q)) is a monomorphism. Let r(Q) -+ IZV, be a 
monomorphism with V, = V. Let ji: V+ V” (i = l,..., n) be the injections 
and rr,: I7V, + V the projections. Put k = (V- r(Q) -+ v), s, = 71, k, h, = 
(VQh r(Q) + ZZV, +X* V) and s,) = h,ji. Then for each x E X, 

Lf(x) = ku-,xY.~ .Lx) 

= hd,(f,x) + ..’ + kJ,Unx) 

= sa,uN + ... + %Jfnx> 

= kJi + ... + %“f,>X. 

Hence h,f = s,,f, + . . . + sa, f, . Then for all a, since 0 is S-linear, 

4 go> = s,( gel 

= (s, de 

= Lf >e 

= (s,,f, + -.. + s,,f,)e 

= (s,,h)e + ... + (s,,f,)e 

= s,,u-, 0) + ... + s,,w) 

= 0. 

Therefore k( go) = 0. But k is a monomorphism, hence g8 = 0. This is a 
contradiction. Thus 8 = 0. 

THEOREM 6.5. Let R be left noetherian, right QF-3’ and contain all 
simple right modules. Then R is QF. 

ProoJ The proof is immediate from the preceding lemmas. 
Next corollary is well known (e.g. [ 111). 

COROLLARY 6.6. Let R be either left noetherian or right artinian, and a 
cogenerator in Mod-R. Then R is QF. 

For the rest of this section our intention is set upon to characterize right 
hereditary rings. A module iVR is said to be semi-injective if Hom,(-, M) is 
exact on all short exact sequences 0 + I+ R -+ R/I -+ 0 with finitely 
generated right ideal I of R, and is said to be a self-cogenerator if M is a 
cogenerator in cog(M,). Let QR be an injective self-cogenerator with S = 
End(Q,). Then Miiller and Turnidge [ 141 proved that S is semihereditary if 
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and only if every finitely Q-cogenerated factor of QR is injective. We 
generalize a little bit this result. 

Let .d be a cocomplete abelian category and U E .d a quasi-projective 
object with R = End d(U). 

DEFINITION 6.2. R U is semiflat if the canonical morphism 0 -+ I OR U + 
R OR U is exact for all finitely generated right ideals I of R. 

The next lemma is essential for the later discussion. 

LEMMA 6.7. The following conditions are equivalent. 

(1) R is right semihereditar-y and RU is semif[at. 

(2) Every finitely U-generated subobject of U is progective in .9(U). 

Proof. (1) * (2): Let XC U and U” +X+ 0 be exact. Then U/X is 
codivisible with respect to the torsion theory generated by U in ,9(U). Hence 
we have a commutative diagram 

0 --+M’(Ll,X)QRU - RBRU --w/(u,u/x)@Ru -0 

1 lz lz 
0-x ____, u _____* u/x __, 0 

with exact rows because C.is(U, X) is a finitely generated right ideal of R and 
RU is semiflat. Hence %M’(U, X) OR US X. On the other hand, by the 
assumption, R” z .r4( U, X) 0 Y for some YR . Thus U” g X @ (Y OR U). 
This proves that X is projective in .9(U). 

(2) =c- (1): Let I, be a finitely generated right ideal of R. Then note 
that zf(U, I OR U) g I. We have an exact sequence 0 + N---t I OR U + U. Put 
L = Im(1 OR U + U). Then by the assumption, L is projective in .4(U). Thus 
ZBR U g L ON. On the other hand the commutative diagram 

0 +eJ,I‘I) d ~KJ,IBRU 1 -----w J(‘J,RQ?J~U ) 

T T 
o-1-R 

implies *zf(U, N) = 0. Hence N = 0. This implies that RU is semiflat. Since 
Z @JR U is finitely generated by U and projective in <Y(U), we conclude that 
Z, is projective. Therefore R is right semihereditary. 
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COROLLARY 6.8. Let U, be a projective module with S = End(U,). Then 
the following conditions are equivalent. 

(1) S is right semihereditary and ,U is flat. 

(2) Every finitely U-generated submodule of U, is projective. 

COROLLARY 6.9. Let VR be an injective module with S = End(V,). Then 
the following conditions are equivalent. 

(1) S is left semihereditary and s V is semi-injective. 

(2) Every finiteI-v V-cogenerated factor of VR is injective. 

THEOREM 6.10. The following statements are equivalent. 

(1) R is right hereditary. 

(2) An endomorph&m ring of any injective right R-module is left 
semihereditary. 

(3) An endomorphism ring of any projective right R-module is right 
semihereditary. 

Proof (1) 3 (2): This has been proved in Corollary 6.9. 
(2) * (1): Let V, be an injective module and X a submodule of V,. 

Take an injective cogenerator W, such that V G W and V/X G W. Since VR 
is isomorphic to a direct summand of W,, V/X is isomorphic to a factor 
module of W,. By the assumption, End( W,) is left semihereditary. Since 
W, is an injective cogenerator, W is semi-injective over End( W,) (by 
Lemma 6.4 or [28, Theorem 3.31). Therefore by Corollary 6.9, V/X, is 
injective. Hence R is right hereditary. 

(l)* (3)+ (1): This is the dual of (l)* (2)5 (1). 
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