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Abstract
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∏
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1. Introduction

Throughout this paper, let R denote a commutative ring with identity. All modules are
assumed to be left unitary. The notion of pure injective modules has a substantial role
in commutative algebra and model theory. Even in model theory [8], the notion of pure
injective modules is much more useful than that of injective modules. Also, there are some
nice applications of this notion in theory of flat covers (see e.g. [11]).

There are several generalizations of the notion of pure injective modules. One of these
generalizations is the notion of cyclically pure injective modules which has attracted more
attention in recent years. Following his investigations on “direct summand conjecture,”
M. Hochster [6] studied the structure of Noetherian rings that are pure in every module in
which it is cyclically pure. He showed that a Noetherian ring R is pure in every module in
which it is cyclically pure if and only if R has small cofinite irreducibles. Using the notion
of cyclically pure injective modules, L. Melkersson [7] provided some characterizations for
a finitely generated module M over a Noetherian local ring which is pure in every cyclically
pure extension of M . In this paper, our aim is to present some criterions of cyclically pure
injective modules, through a systematic investigation of their structure.

There are several variants of the notion of purity (see e.g. [10]). More generally, let S be
a class of R-modules. An exact sequence 0 → A → B → C → 0 is S-pure if for all M ∈ S
the induced homomorphism HomR(M,B) → HomR(M,C) is surjective. An R-module D

is said to be S-pure injective if for any S-pure exact sequence 0 → A → B → C → 0, the
induced homomorphism HomR(B,D) → HomR(A,D) is surjective. When S is the class
of finitely presented R-modules, S-pure exact sequences and S-pure injective modules
are called pure exact sequences and pure injective modules, respectively. In this article,
we consider the class S consisting of all R-modules M for which there are an integer
n ∈ N and a cyclic submodule G of Rn such that M is isomorphic to Rn/G. In Section 2,
a characterization of cyclically pure exact sequences is given. Among other things, this
characterization implies that for the above class S , S-pure exact sequences and S-pure in-
jective modules coincide with cyclically pure exact sequences and cyclically pure injective
modules, respectively. Also, several elementary results will be presented in this section, to
ease reading the remainder of the paper.

In Section 3, we present two characterizations of cyclically pure injective modules. The
first one, in particular, asserts that an R-module D is cyclically pure injective if and only if
D has no proper essential cyclically pure extension. Also, it is proved that an R-module D

is cyclically pure injective if and only if D is isomorphic to a direct summand of a module
of the form HomR(L,E) where E is an injective R-module and L is the direct sum of a
family of finitely presented cyclic modules.

In Section 4, we show that every R-module possesses a unique, up to isomorphism,
cyclically pure injective envelope.

In Section 5, we investigate the question when cocyclic modules are cyclically pure in-
jective. As a result, we present our last characterization of pure injective modules. Namely,
we prove that over a quasi-complete Noetherian local ring (R,m) an R-module D is cycli-
cally pure injective if and only if there is a family {Cλ}λ∈Λ of cocyclic modules such
that D is isomorphic to a direct summand of

∏
λ∈Λ Cλ. Also, we prove that over a local

Noetherian ring (R,m) every finitely generated R-module M that has small cofinite irre-
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ducibles is pure in every cyclically pure extension of M . As a result, we deduce that over a
complete local ring every finitely generated module which has small cofinite irreducibles
is cyclically pure injective.

2. Cyclically pure extensions of modules

Let S denote the class of all R-modules M such that there are an integer n ∈ N and a
cyclic submodule G of Rn such that M is isomorphic to Rn/G. In the sequel, we show
that cyclically pure exact sequences and cyclically pure injective modules are coincide with
S-pure exact sequences and S-pure injective modules, respectively.

Definition 2.1. (i) Recall that an exact sequence 0 → A → B → C → 0 is said to be cycli-
cally pure if the natural map R/a ⊗R A → R/a ⊗R B is injective for all finitely generated
ideals a of R. Also, an R-monomorphism f :A → B is said to be cyclically pure, if the

exact sequence 0 → A
f−→ B

nat−−→ B/f (A) → 0 is cyclically pure. Moreover, a submodule
A of an R-module B is called cyclically pure submodule if the inclusion map A ↪→ B is
cyclically pure.

(ii) An R-module D is called cyclically pure injective if for any cyclically pure exact
sequence 0 → A → B → C → 0, the induced sequence

0 → HomR(C,D) → HomR(B,D) → HomR(A,D) → 0

is exact.

In the sequel, we use the abbreviation CP for the term “cyclically pure.”

Proposition 2.2. Suppose 0 → A ↪→ B
ϕ−→ C → 0 is an exact sequence of R-modules and

R-homomorphisms. The following are equivalent:

(i) For any M ∈ S , the induced homomorphism HomR(M,B) → HomR(M,C) is sur-
jective.

(ii) If the linear equation
∑n

i=1 rixi = a, a ∈ A, r1, r2, . . . , rn ∈ R, is solvable in B, then
it is also solvable in A.

(iii) aB ∩ A = aA for any finitely generated ideal a of R.
(iii′) aB ∩ A = aA for any ideal a of R.
(iv) The exact sequence 0 → A ↪→ B

ϕ−→ C → 0 is cyclically pure.
(iv′) The natural map R/a ⊗R A → R/a ⊗R B is injective for all ideals a of R.

Proof. (ii) ⇒ (i) Let M = Rn/G where G = R(r1, r2, . . . , rn) is a cyclic submodule of
Rn and take an element f in HomR(M,C). For each 1 � i � n, set mi = ei + G where
{e1, e2, . . . , en} is the standard basis of Rn. There is yi ∈ B such that ϕ(yi) = f (mi)

for all 1 � i � n. One can see easily that a := ∑n
i=1 riyi ∈ A. Hence, by the assump-

tion there are z1, z2, . . . , zn ∈ A such that
∑n

i=1 rizi = a. We define g :M → B , by
g(

∑n
simi) = ∑n

si(yi − zi) for all s1, s2, . . . , sn ∈ R. Suppose that
∑n

simi = 0
i=1 i=1 i=1
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for some s1, s2, . . . , sn ∈ R. Then (s1, s2, . . . , sn) ∈ G. Hence there is b ∈ R such that
(s1, s2, . . . , sn) = b(r1, r2, . . . , rn), and so

n∑
i=1

si(yi − zi) = b

(
n∑

i=1

riyi −
n∑

i=1

rizi

)
= 0.

Therefore g is well-defined. It is easy to see that ϕg = f .
(i) ⇒ (ii) Suppose that n ∈ N, r1, r2, . . . , rn ∈ R and y1, y2, . . . , yn ∈ B are such

that a := ∑n
i=1 riyi is an element of A. Set M = Rn/R(r1, r2, . . . , rn) and mi = ei +

R(r1, r2, . . . , rn) for all 1 � i � n. Define f :M → C, by f (
∑n

i=1 simi) = ∑n
i=1 siϕ(yi).

It is a routine check that f is a well-defined R-homomorphism. By the assumption, there
exists an R-homomorphism g :M → B such that ϕg = f . We have ϕ(yi) = f (mi) =
ϕ(g(mi)), and so yi − g(mi) ∈ A for all 1 � i � n. Now, we have

n∑
i=1

ri
(
yi − g(mi)

) =
n∑

i=1

riyi −
n∑

i=1

rig(mi) = a − g

(
n∑

i=1

rimi

)

= a − g
(
(r1, r2, . . . , rn) + (r1, r2, . . . , rn)R

)
= a.

Next, the equivalences (ii) ⇒ (iii′), (iii′) ⇒ (iv′), and (iv′) ⇒ (iv) are clear. Also, the
implications (iv) ⇒ (iii) and (iii) ⇒ (ii) are obvious, and so the proof is complete. �

Let {Ei}i∈I be a class of R-modules. It is known that
∏

i∈I Ei is an injective R-module
if and only if Ei is injective for all i ∈ I . By using the standard argument of this classical
result, we can deduce the following analogue conclusion for CP-injective modules.

Lemma 2.3. Let {Di}i∈I be a class of R-modules. Then
∏

i∈I Di is a CP-injective
R-module if and only if Di is CP-injective for all i ∈ I .

Lemma 2.4. Let b be an ideal of R. Then any CP-injective R/b-module is also CP-injective
as an R-module.

Proof. Let D be a CP-injective R/b-module. Assume that M and N are two R-modules.
Let ψ :N → M be a CP-homomorphism and let f ∈ HomR(N,D). Since bD = 0, the
map f induces the R/b-homomorphism f ∗ :N/bN → D, defined by f ∗(x + bN) =
f (x) for all x + bN ∈ N/bN . From our assumption on ψ , we deduce that the induced
R/b-homomorphism ψ∗ :N/bN → M/bM is cyclically pure. Thus there is an R/b-
homomorphism h :M/bM → D with hψ∗ = f ∗. Let g = hπ where π is the natural
epimorphism M → M/bM . Then gψ = f . �
Theorem 2.5. Let M be an R-module. Then there are a CP-injective R-module D and a
CP-homomorphism ϕ :M → D.
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Proof. Let R∗ denote the set of all finitely generated ideals of R. Set D = ∏
a∈R∗ ER/a(M/

aM) where ER/a(M/aM) denotes the injective envelope of the R/a-module M/aM . De-
fine ϕ :M → D, by ϕ(x) = (x +aM)a∈R∗ for all x ∈ M . It follows, by Lemmas 2.3 and 2.4
that D is CP-injective. Clearly, ϕ is injective. Next, we prove that ϕ is cyclically pure. To
this end, let b be an arbitrary finitely generated ideal of R and let y be an arbitrary ele-
ment of bD ∩ ϕ(M). Then y = ϕ(x) for some x ∈ M . Since ϕ(x) ∈ bD, it turns out that
x + bM ∈ bER/b(M/bM) = 0. Thus x ∈ bM , and so y ∈ bϕ(M), as required. �
Corollary 2.6. Let M be an R-module. There is an extension D of M such that D is
CP-injective and it contains M as a CP-submodule.

Proof. Let M be an R-module. By Theorem 2.5, there are a CP-injective R-module D′
and a CP-homomorphism ϕ :M → D′. Using [9, Proposition 1.1], it turns out that there
are an extension D of M and an isomorphism ψ :D → D′ which is such that ψ(x) = ϕ(x)

for all x ∈ M . It is easy to see that the inclusion map M ↪→ D is cyclically pure. �
Remark 2.7. (i) The analogue of some of our results for RD-purity were proved by
R.B. Warfield (see e.g. [5, Chapter XIII.1]).

(ii) One can adapt the method of Warfield’s proof of existence of RD-injective envelopes
for proving the existence of CP-injective envelopes. We present a different proof for exis-
tence of CP-injective envelopes in Section 4.

3. Two characterizations

In this section, we present two characterizations of CP-injective modules. First, we bring
a definition.

Definition 3.1. Let M be an R-module and N a CP-submodule of M . Then M is called
essential CP-extension of N , if there is not any nonzero submodule K of M such that
K ∩ N = 0 and (K + N)/K is a CP-submodule of M/K .

For a submodule N of an R-module M , it is known that M is an essential extension
of N if and only if for any R-module L an R-homomorphism ϕ :M → L is injective
whenever ϕ|N is injective. Similarly, for essential CP-extensions we have the following
characterization.

Lemma 3.2. Let N be a CP-submodule of an R-module M . Then M is essential CP-
extension of N if and only if for any homomorphism ϕ :M → L such that ϕ|N is a CP-
homomorphism, it follows that ϕ is injective.

Proof. Suppose that M is an essential CP-extension of N . Let ϕ :M → L be a homomor-
phism such that ϕ|N is a CP-homomorphism. Let K = kerϕ and let ϕ∗ :M/K → L denote
the natural monomorphism which induced by ϕ. Also, let ρ : (K + N)/K → N denote the
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natural isomorphism. Note that, because ϕ|N is injective, it turns out that K ∩N = 0. From
the commutative diagram

(K + N)/K

ρ

M/K

ϕ∗

N
ϕ|N

L

we deduce that (K + N)/K is a CP-submodule of M/K . Therefore, it follows that K = 0.
The proof of the converse is easy and we leave it to the reader. �
Lemma 3.3. Let N be a CP-submodule of an R-module M . Then, there exists a submodule
K of M such that

(i) K ∩ N = 0,
(ii) (K + N)/K is a CP-submodule of M/K , and

that K is maximal with respect to inclusion among all submodules of M which satisfy the
conditions (i) and (ii). In particular, M/K is an essential CP-extension of (K + N)/K .

Proof. Let Σ denote the class of all submodules of M which satisfy the conditions (i)
and (ii). Then Σ is not empty, because 0 ∈ Σ . Let Ω be a totally ordered subclass of Σ . Set
K = ⋃

Kα∈Ω Kα . We show that K satisfies the conditions (i) and (ii). Clearly, K ∩ N = 0.
In view of Proposition 2.2, it is enough to show that (K + aM) ∩ (K + N) ⊆ (aN + K)

for any ideal a of R. But, it is a routine check, because by Proposition 2.2 (Kα + aM) ∩
(Kα + N) = aN + Kα for any ideal a of R and all Kα ∈ Ω . Thus the conclusion follows
by Zorn’s lemma. Now, we prove the last assertion. Assume there is a submodule L/K of
M/K such that L/K ∩ ((N +K)/K) = 0 and that (L+N)/L is a CP-submodule of M/L.
Then

L ∩ N ⊆ L ∩ (N + K) = K,

and so L∩N ⊆ K∩N = 0. Thus L ∈ Σ and so L = K , by the assumption on K . Therefore,
M/K is an essential CP-extension of (K + N)/K , as required. �

Now, we present our first characterization of CP-injective modules.

Theorem 3.4. Let D be an R-module. Then the following are equivalent:

(i) D is CP-injective.
(ii) For any CP-homomorphism f :A → B , every homomorphism from A to D can be

extended to a homomorphism from B to D.
(iii) Every CP-exact sequence 0 → D → M → N → 0 splits.
(iv) D is a direct summand of every R-module L which is such that D is a CP-submodule

of L.
(v) D has no proper essential CP-extension.
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Proof. The implications (i) ⇒ (ii), (ii) ⇒ (iii), and (iii) ⇒ (iv) are clear.
(iv) ⇒ (v) Let M be a essential CP-extension of D. Then, there is a submodule L of

M such that M = L + D and L ∩ D = 0. Since M is essential CP-extension of D and
(L + D)/L = M/L, we deduce that L = 0, and so M = D.

(v) ⇒ (vi) Suppose L is a CP-extension of D. It may be assumed that L is a proper
CP-extension of D. By Lemma 3.3, there is a submodule K of L such that L/K is an
essential CP-extension of (D + K)/K and that D ∩ K = 0. But D has no proper essential
CP-extension, so D + K = L, from which it follows that L = D ⊕ K .

(iv) ⇒ (i) By Corollary 2.6, there exists a CP-injective extension L of D. Therefore,
D is a direct summand of L, and so it is CP-injective, by Lemma 2.3. �

Let D be an R-module. In [3, Corollary 2.12], we proved that D is pure injective if
and only if D is isomorphic to a direct summand of a module of the form HomR(L,E)

where E is an injective R-module and L is the direct sum of a family of finitely generated
modules. Next, we will establish a similar characterization for CP-injective modules. First,
we need to the following lemma.

Lemma 3.5. Let a be an ideal of R. Then an R/a-module D is injective as an R/a-module
if and only if there is an injective R-module E such that D is equal to 0 :E a.

Proof. The “if” part is known and it is easy to check. For the converse, one only need to
note that for an injective R/a-module D, we have

D = ER/a(D) = 0 :ER(D) a.

Here ER(D) (respectively ER/a(D)) denotes the injective envelope of D as an R-module
(respectively R/a-module). �
Theorem 3.6. Suppose D is an R-module. Then the following are equivalent:

(i) D is CP-injective.
(ii) There is a family {aλ}λ∈Λ of finitely generated ideals of R such that D is isomorphic

to a direct summand of an R-module of the form
∏

λ∈Λ Eλ where Eλ is an injective
R/aλ-module for all λ ∈ Λ.

(iii) D is isomorphic to a direct summand of a module of the form HomR(L,E) where E

is an injective module and L is the direct sum of a family of finitely presented cyclic
modules.

Proof. In view of the proof of Theorem 2.5, the equivalence (i) ⇔ (ii) follows by Lem-
mas 2.3 and 2.4.

(ii) ⇒ (iii) Suppose that there is a family {aλ}λ∈Λ of finitely generated ideals of R such
that D is isomorphic to a direct summand of an R-module of the form

∏
λ∈Λ Eλ where Eλ

is an injective R/aλ-module for all λ ∈ Λ. By Lemma 3.5, for each λ ∈ Λ, there is an injec-
tive R-module Dλ such that Eλ = 0 :Dλ aλ. Hence

∏
λ∈Λ Eλ = ∏

λ∈Λ HomR(R/aλ,Dλ).
Now, let L = ⊕

R/aλ and E = ∏
Dλ. Thus E is an injective R-module and
λ∈Λ λ∈Λ
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∏
λ∈Λ Eλ is a direct summand of the R-module HomR(L,E). Therefore, D is isomorphic

to a direct summand of the R-module HomR(L,E).
(iii) ⇒ (ii) It is clear, by Lemma 3.5. �

4. CP-injective envelops

In this section, we show that every R-module possesses a unique, up to isomorphism,
CP-injective envelope.

Definition 4.1. (i) Let N be an R-module. A CP-essential extension M of N is said to be
maximal if there is no proper extension of M which is a CP-essential extension of N .

(ii) Let M be a CP-submodule of a CP-injective R-module D. We say that D is a
minimal CP-injective extension of M , if there is not any proper CP-injective submodule of
D containing M .

Lemma 4.2. Let N be an R-module and M a CP-essential extension of N . There exists a
maximal CP-essential extension C of N containing M .

Proof. Suppose the contrary is true. By induction on ordinal numbers, we show that for
any ordinal β , there is a CP-essential extension Cβ of N containing M . Let β be an ordinal
and assume that Cα is defined for all α < β . Assume β is a predecessor β − 1. Since Cβ−1
is not a maximal CP-essential extension of N , there is a proper extension Cβ of Cβ−1 such
that Cβ is a CP-essential extension of N . If β is a limit ordinal, then it is routine check that
Cβ := ⋃

α<β Cα is a CP-essential extension of N . By Corollary 2.6, there is an extension
D of N such that D is CP-injective and it contains N as a CP-submodule. Let β be an
ordinal with |β| > |D|. Then, by Lemma 3.2 the inclusion map N ↪→ D can be extended
to a monomorphism ψ :Cβ → D. Hence |β| � |Cβ | � |D|, which is a contradiction. �
Lemma 4.3. Let M and M ′ be two R-modules and let f :M → M ′ be an isomorphism.
Let N be a submodule M and N ′ = f (N).

(i) N is a CP-submodule of M if and only N ′ is a CP-submodule of M ′.
(ii) M is a CP-essential extension of N if and only M ′ is a CP-essential extension of N ′.

(iii) M is a maximal CP-essential extension of N if and only M ′ is a maximal CP-essential
extension of N ′.

Proof. (i) is clear.
(ii) Assume that M is an CP-essential extension of N . By (i), N ′ is a CP-submodule

of M ′. Let K ′ be a submodule of M ′ such that K ′ ∩ N ′ = 0 and that (K ′ + N ′)/K ′ is a
CP-submodule of M ′/K ′. Let K = f −1(K ′). Then K ∩ N = 0, because f is monic. On
the other hand, if f ∗ :M/K → M ′/K ′ denotes the natural isomorphism induced by f ,
then (i) yields that (K + N)/K is a CP-submodule of M/K . Note that f ∗((K + N)/K) =
(K ′ + N ′)/K ′. Thus K = 0, and so K ′ = 0. Hence M ′ is a CP-essential extension of N ′.
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The converse follows by the symmetry. Note that f −1 :M → M ′ is an isomorphism with
f −1(N ′) = N .

(iii) By the symmetry, it is enough to show the “only if” part. Suppose that M is a
maximal CP-essential extension of N . By (ii), M ′ is a CP-essential extension of N ′. Let L′
be an extension of M ′ such that it is a CP-essential extension of N ′. By [9, Proposition 1.1],
there are an extension L of M and an isomorphism g :L → L′ such that the following
diagram commutes:

N

f |N

M

f

L

g

N ′ M ′ L′

It follows by (ii), that L is a CP-essential extension of N . Hence L = M , by the maximality
assumption on M . Therefore L′ = M ′, as required. �
Corollary 4.4. Let M be a CP-injective R-module and N a CP-submodule of M . There is
a submodule D of M which is maximal CP-essential extension of N .

Proof. By Lemma 4.2, there exists a maximal CP-essential extension L of N . In view of
Lemma 3.2, there is a monomorphism ψ :L → M such that ψ |N is equal to the inclu-
sion map N ↪→ M . Let D = ψ(L). Since ψ :L → D is an isomorphism, it follows by
Lemma 4.3(iii), that D is also a maximal CP-essential extension of N . �
Proposition 4.5. Suppose that M is an R-module and that D is a maximal CP-essential
extension of M . Then D is a CP-injective R-module.

Proof. In view of Theorem 3.4, it is enough to show that D is a direct summand of
every R-module which contains D as a CP-submodule. Let D be a CP-submodule of an
R-module L. By Lemma 3.3, there exists a submodule K of L such that K ∩ M = 0 and
that L/K is a CP-essential extension of (K + M)/K . We show that L is the direct sum of
K and D. First, we show that K ∩D = 0. Let K1 = K ∩D. Then K1 ∩M = 0 and since the
natural embedding M ∼= (K +M)/K in L/K can be factored throw the natural embedding
M ∼= (K1 + M)/K1 in D/K1, it follows that (K1 + M)/K1 is a CP-submodule of D/K1.
Thus K1 = 0, as required. Now, let f :D → (K + D)/K denote that the natural isomor-
phism. Then f (M) = (K + M)/K . Thus, it follows by Lemma 4.3(iii) that (K + D)/K is
a maximal CP-essential extension of (K + M)/K . But L/K is a CP-essential extension of
(K + M)/K and (K + D)/K ⊆ L/K . Thus L = K + D. �

Now, we are ready to prove the main result of this section.

Theorem 4.6. Let D be an R-module and M a submodule of D. The following are equiv-
alent:

(i) D is a maximal CP-essential extension of M .
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(ii) D is a CP-essential extension of M which is CP-injective.
(iii) D is a minimal CP-injective extension of M .

Proof. (i) ⇒ (ii) is clear by Proposition 4.5.
(ii) ⇒ (iii) Suppose D′ is a submodule of D containing M such that D′ is CP-injective.

By Corollary 4.4, there exists a submodule D′′ of D′ which is a maximal CP-essential
extension of M . Since D is a CP-essential extension of M , it turns out that D′′ = D.
Hence D′ = D.

(iii) ⇒ (i) By Corollary 4.4, there is a submodule D′ of D such that D′ is a maximal
CP-essential extension of M . Now, the module D′ is CP-injective, by Proposition 4.5, thus
D′ = D, by the minimality assumption on D. �
Corollary 4.7. Let M be an R-module. Then there exists an R-module D satisfying the
equivalent conditions (i), (ii) and (iii) in Theorem 4.6. Moreover, if D1, D2 are both min-
imal CP-injective extensions of M and i :M → D1 and j :M → D2 denote the related
inclusion maps, then there is an isomorphism θ :D1 → D2 such that θi = j .

Proof. The existence of a such R-module D follows by Lemma 4.2. Now, assume that the
R-modules D1 and D2 are minimal CP-injective extensions of M . In view of Lemma 3.2,
there exists a monomorphism θ :D1 → D2 such that the following diagram commutes:

M

idM

i
D1

θ

M
j

D2

The module θ(D1) is a CP-injective submodule of D2 that contains M . Hence θ(D1) =
D2, by the minimality assumption on D1. This completes the proof. �
Definition 4.8. Let M be an R-module and D an extension of M . If D satisfies one of the
equivalent conditions of Theorem 4.6, then D is said to be the CP-injective envelope of M .

Let χ denote a class of R-modules. We recall the notion of χ -envelope from [11].

Definition 4.9. Let M be an R-module. An R-module D ∈ χ is called χ -envelope of M if
there is a homomorphism ϕ :M → D such that

(i) for any homomorphism ϕ′ :M → D′ with D′ ∈ χ , there is a homomorphism f :D →
D′ such with ϕ′ = f ϕ, and

(ii) if a homomorphism f :D → D is such that ϕ = f ϕ, then f must be an automorphism.

By [11, Proposition 1.2.1], the χ -envelope of an R-module is unique up to isomorphism.
Now, we present our last result.
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Theorem 4.10. Let χ be the class of all CP-injective R-modules and M an R-module. Let
D be a CP-injective envelope of M . Then D is isomorphic to the χ -envelope of M .

Proof. Let ϕ :M → D denote the inclusion homomorphism. Let D′ ∈ χ and ψ :M → D′
be a homomorphism. By Theorem 3.4, there exists a homomorphism f :D → D′ such that
ψ = f ϕ.

Now, suppose a homomorphism f :D → D is such that ϕ = f ϕ. By Lemma 3.2, the
map f is injective. By Lemma 4.3(iii), f (D) is also a maximal CP-essential extension
of M . Hence f (D) is CP-injective, by Proposition 4.5. On the other hand, we have M ⊆
f (D) ⊆ D. Therefore, by using Theorem 4.6, we deduce that f (D) = D, and so f is an
automorphism, as required. �

5. Cocyclic modules

In [3], we showed that over a Noetherian ring R an R-module D is pure injective if and
only if D is isomorphic to a direct summand of the direct product of a family of Artinian
modules. In this section, we intent to provide an analogue characterization for CP-injective
modules, by using cocyclic modules instead of Artinian modules. It is known that any
Artinian module is pure injective, but it is not the case that every cocyclic module is CP-
injective (see Example 5.6). Thus, it is interesting to know when a cocyclic modules is
CP-injective. First, we recall some definitions.

Definition 5.1. (i) (See [4, p. 4].) An R-module M is called cocyclic if M is isomorphic to
a submodule of the injective envelope of a simple module.

(ii) (See [1].) An R-module M is called subdirectly irreducible if for any family {Mi}i∈I

of R-modules and any monomorphism f :M → ∏
i∈I Mi , there exists i ∈ I such that the

map πif :M → Mi is injective, where πi :
∏

i∈I Mi → Mi denotes the ith projection map.

In the following result, we collect some other conditions that are equivalent to the defi-
nition of a cocyclic module.

Proposition 5.2. Let M be a nonzero R-module. Then the following are equivalent:

(i) M is cocyclic.
(ii) ER(M) = ER(S) where S is a simple module.

(iii) The socle of M is simple and M is an essential extension of its socle.
(iv) The intersection of all nonzero submodules of M is nonzero.
(v) There exists an element c ∈ M such that for every R-module N and every R-

homomorphism f :M → N , it follows that f is injective if and only if c /∈ kerf .
(vi) The intersection of all nonzero submodules of M is a simple submodule of M .
(vii) M is subdirectly irreducible.

Proof. The equivalence (i) ⇔ (ii) follows by [9, Proposition 2.28]. Also, the equivalences
(iv) ⇔ (v) and (iv) ⇔ (vi) are clear.
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(i) ⇒ (iii) Suppose the simple R-module S is such that M is isomorphic to a submodule
of ER(S). Then M possesses a simple submodule S′ such that every nonzero submodule of
M contains S′. Hence, the socle of M is simple. On the other hand, M is essential extension
of its socle, by [9, Proposition 3.17].

Next, the equivalence (iii) ⇔ (vi) and the implication (iii) ⇒ (ii) both are deduced, by
[9, Proposition 3.17].

(vi) ⇒ (vii) Consider the family {Mi}i∈I of R-modules and a monomorphism f :M →∏
i∈I Mi . For each i ∈ I , let πi :

∏
i∈I Mi → Mi denote the ith projection map. Assume

that the simple R-module S is equal to the intersection of all nonzero submodules of M

and let x be a nonzero element of S. Since f (x) 
= 0, it follows that there is i ∈ I such that
(πif )(x) 
= 0. This implies that ker(πif ) = 0, because otherwise S ⊆ ker(πif ), which is
a contradiction.

Finally, we prove that (vii) implies (iv). Let {Nλ}λ∈Λ denote the set of all nonzero sub-
modules of M and let f :M → ∏

λ∈Λ M/Nλ denote the natural homomorphism defined
by x �→ (x + Nλ)λ∈Λ. Denote

⋂
λ∈Λ Nλ by S. If S = 0, then f is injective, and so there

is λ ∈ Λ such that πλf :M → M/Nλ is injective. This implies that Nλ = 0, which is a
contradiction. �
Proposition 5.3. Let M be an R-module and let {Ni}i∈I denote the set of all submodules N

of M , such that M/N is cocyclic. Then the natural map ψ :M → ∏
i∈I M/Ni is cyclically

pure. In particular, if M is CP-injective then M is isomorphic to a direct summand of∏
i∈I M/Ni .

Proof. Let L = ∏
i∈I M/Ni and for each i ∈ I let πi :L → M/Ni denote the ith nat-

ural projection map. Define ψ :M → L by x �→ (πi(x))i . We show that ψ is a CP-
homomorphism. To this end, let a be an ideal of R and consider the following commutative
diagram in which all maps are natural ones.

M ⊗R R/a
ψ⊗idR/a

∼=

L ⊗R R/a

M/aM
θ ∏

i∈I M/(aM + Ni)

It suffices to show that the bottom map is injective. Let α = x + aM be a nonzero
element of M/aM . Using Zorn’s lemma, we deduce that there is a submodule N of M such
that aM ⊆ N and x /∈ N , but x belongs to any submodule of M which strictly contains N .
Now, by Proposition 5.2, it turns out that M/N is cocyclic. So, there is j ∈ I such that
N = Nj . Since πj (x) 
= 0, it follows that θ is monomorphism, as required. �
Definition 5.4. (See e.g. [7].) A Noetherian local ring (R,m) is called quasi-complete if
for any decreasing sequence {ai}i∈I of ideals of R and any n � 0, there exists i ∈ I such
that ai ⊆ (

⋂
i∈I ai ) + mn.

Now, we are ready to present our last characterization of CP-injective modules.
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Theorem 5.5. Let (R,m) be a quasi-complete local ring. An R-module D is CP-injective
if and only if D is isomorphic to a direct summand of the direct product of a family of
cocyclic modules.

Proof. Let E = ER(R/m). By [7, Remark 3.2], every cocyclic R-module has the form
0 :E a for some ideal a of R. Thus, by Lemma 2.4 every cocyclic R-module is CP-injective.
Now, the conclusion follows by Lemma 2.3 and Proposition 5.3. �
Example 5.6. By [6, Theorem 6], a Prüfer domain R is locally almost maximal if and only
if every cocyclic R-module is pure injective. On the other hand, by [2, Example 2.4] there
exists a valuation domain R such that R is not almost maximal. Hence cocyclic modules
are not CP-injective in general, and so the converse of Proposition 5.3 is not true.

In [6], M. Hochster investigated the structure of Noetherian rings R with the property
that R is pure in each CP-extension of R. Let (R,m) be a Noetherian local ring, he defined
a finitely generated R-module M to have small cofinite irreducibles if for every n ∈ N

there is an irreducible submodule Q of M such that Q ⊆ mnM and M/Q is Artinian. He
showed that a Noetherian ring R is pure in each CP-extension of R if and only if Rm has
small cofinite irreducibles for all maximal ideals m of R. In this section, we will prove
that over a local Noetherian ring R every finitely generated R-module M that has small
cofinite irreducibles is pure in every CP-extension of M . As a result, we deduce that over
a complete local ring every finitely generated module which has small cofinite irreducibles
is CP-injective.

Lemma 5.7. Let R be a Noetherian ring and D a finitely generated cocyclic R-module.
Then D is CP-injective.

Proof. There is a maximal ideal m of R such that D is isomorphic to a submodule of
E := ER(R/m). Then it is easy to see that the natural map D → Dm is an isomorphism.
Also, one can check easily that, if D is CP-injective as an Rm-module then it is also CP-
injective as an R-module. So, we may and do assume that R is local with the maximal
ideal m.

Let R̂ denote the completion of R with respect to m-adic topology. Each element of
ER(R/m) is annihilated by some power of m. Hence ER(R/m) has a natural structure
as an R̂-module. Note that, if we regard this R̂-module as an R-module by means of the
natural ring homomorphism R → R̂, then we recover the original R-module structure on
ER(R/m). Note also that a subset of ER(R/m) is an R-submodule if and only if it is an R̂-
submodule. Set a := AnnR D and E := ER(R/m). Since, D is finitely generated, it turns
out that Ann

R̂
D = aR̂. Therefore, by [9, Corollary, p. 154] we have

D = (0 :E Ann
R̂

D) = (0 :E a).

Thus the claim follows, by Lemma 2.4. �
Theorem 5.8. Let (R,m) be a Noetherian local ring and M a finitely generated R-module.
If M has small cofinite irreducibles, then M is pure in every CP-extension of M .
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Proof. Let {Ni}i∈I denote the set of all submodules N of M , such that M/N is cocyclic.
Let L and ψ :M → L be as in the proof of Proposition 5.3. Let C be a CP-extension of
M and let i :M ↪→ C denote the inclusion map. From Lemma 5.7, it follows that L is
CP-injective, and so there is a homomorphism f :C → L such that f i = ψ . Therefore, to
prove M is pure in C, it suffices to show that ψ is pure. So, we are going to show that for
any finitely generated R-module N , the induced map

ψ ⊗ idN : M ⊗R N → L ⊗R N

is injective. Assume there exists n ∈ N such that mnN = 0. Then, since M has small
cofinite irreducibles, there is an irreducible submodule Q0 of M such that Q0 ⊆ mnM

and M/Q0 is Artinian. Then there is j ∈ I such that Q0 = Nj . For each i ∈ I , let
πi :M → M/Ni denote the natural epimorphism. Now, because the modules M ⊗R N

and M/Nj ⊗R N are naturally isomorphic, it turns out that πj ⊗ idN is an isomorphism.
Consider the following commutative diagram:

M ⊗R N
ψ⊗idN

idM⊗RN

L ⊗R N

∼=

M ⊗R N

∏
(πi⊗idN) ∏

i∈I (M/Ni ⊗R N).

Hence ψ ⊗ idN is injective.
Next, assume that N is an arbitrary finitely generated R-module. Suppose that ker(ψ ⊗

idN) contains a nonzero element x. Set K = M ⊗R N . Since
⋂

i∈N
miK = 0, it follows that

there is n ∈ N such that x /∈ mnK . Set N̄ = N/mnN and let π :N → N̄ denote the natural
epimorphism. Because the modules K/mnK and M ⊗R N̄ are naturally isomorphic, it
turns out that the element (idM ⊗ π)(x) of the module M ⊗R N̄ is nonzero. From the
commutative diagram

M ⊗R N
idM⊗π

ψ⊗idN

M ⊗R N̄

ψ⊗idN̄

L ⊗R N
idL⊗π

L ⊗R N̄

we deduce that ψ ⊗ idN̄ is not injective, which is a contradiction in view of the first para-
graph of the proof. �
Corollary 5.9. Let (R,m) be a Noetherian complete local ring and M a finitely generated
R-module. If M has small cofinite irreducibles, then M is CP-injective.

Proof. By Theorem 5.8, M is pure in every CP-extension of M . Thus by [7, Theorem 3.3],
M is CP-injective. �
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Remark 5.10. (i) Let R be a field. Clearly, every monomorphism is split and so it is pure.
We show that M = R ⊕ R does not have small cofinite irreducibles. Suppose the contrary
is true. Then there is an irreducible submodule Q of M such that Q ⊆ 0M = 0. That is the
zero submodule of M is irreducible. Therefore we achieved at a contradiction. This shows
that the converse of Theorem 5.8 and Corollary 5.9 do not hold. Thus one may consider
these results as generalizations of [6] and [7, Corollary 3.4], respectively.

(ii) It might be interesting to know when the converse of the last part of Proposi-
tion 5.3 holds. Clearly, this is the case when every cocyclic R-module is CP-injective.
By Theorem 3.4 and Proposition 5.2, it is easy to see that if every cocyclic R-module is
CP-injective, then the only CP-submodules of a cocyclic R-module are the trivial ones. Is
the converse true?
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