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We reexamine the estimate of the neutron electric dipole moment (NEDM) from chiral and QCD spectral
sum rules (QSSR) approaches. In the former, we evaluate the pion mass corrections which are about 5%
of the leading Log results. However, the chiral estimate can be affected by the unknown value of the
renormalizaton scale ν . For QSSR, we analyze the effect of the nucleon interpolating currents on the
existing predictions. We conclude that previous QSSR results are not obtained within the optimal choice
of these operators, which lead to an overestimate of these results by about a factor 4. The weakest upper
bound |θ | � 2 × 10−9 for the strong C P -violating angle is obtained from QSSR, while the strongest upper
bound |θ | � 1.3 × 10−10 comes from the chiral approach evaluated at the scale ν = MN . We also re-
estimate the proton magnetic susceptibility, which is an important input in the QSSR estimate of the
NEDM.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

The Lagrangian of Yang–Mills theory contains, in addition to the
usual term, also a topological term:

L= −1

4
F a
μν F aμν − θq(x), (1)

where q(x) is the topological charge density given by:

q(x) = g2

32π2
F a
μν F̃ aμν, F̃ μν = 1

2
εμνρσ Fρσ . (2)

The additional term violates the invariance under C P . This is called
strong C P violation [1] to distinguish it from the C P violation
present in the weak and electromagnetic sector of the Standard
Model. Experiments, however, do not show any violation of strong
C P and require a very small value for |θ | < 2 × 10−9 as we shall
see later on. In this Letter we shall determine the dependence of
physical quantities on θ and study the processes that violate strong
C P . For this purpose, we reevaluate the neutron electric dipole
moment (NEDM) which depends on the π N N coupling which vio-
lates CP.

2. Improved chiral estimate of the NEDM

An elegant way of doing this is to use the low energy effec-
tive Lagrangian of QCD that contains the fields of the pseudoscalar
mesons and baryons instead of the original quarks and gluons. This
is due to the fact that in the effective Lagrangian the effect of the
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axial U (1) anomaly is explicitly displayed and because of this the
amplitudes for the hadronic processes can be easily computed. This
Lagrangian cannot be explicitly derived from the fundamental QCD
Lagrangian as in the C P N−1 model (see e.g. Refs. [2,3] and refer-
ences therein), but can only be constructed requiring that it has
the same anomalous and non-anomalous symmetries of the fun-
damental QCD Lagrangian. The expressions of the QCD effective
Lagrangian describing pseudoscalar mesons and including the U (1)

anomaly are given in [4–11] and the review in Ref. [2,3].

2.1. Estimate of the π N N couplings

The π N N couplings are defined as:1

Lπ N N = √
2π N̄τ (iγ5 gπ N N + ḡπ N N)N, (3)

where τ are isospin Pauli matrices.
The C P -conserving coupling is well measured:

gπ N N = 13.4. (4)

The C P -violating coupling ḡπ N N can be obtained using an ef-
fective Lagrangian approach, though this approach for estimating
the coupling can be questionable. It reads [3,7]:

ḡπ N N = − mumdθ

fπ (mu + md)(ms − m)
(m	 − m
)

[
1 + 3m(m
 − m�)

2(ms − m)mN

]

(5)

1 We follow the normalizations of [7] but adding an overall
√

2 factor for charged
pion fields.
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with 2m ≡ (mu + md). We shall use the ChPT mass ratio [15]:

r3 ≡ 2ms

(mu + md)
= 24.4 ± 1.5, (6)

which is confirmed by the QSSR estimates of the quark mass ab-
solute values in units of MeV [12,13]:

mu(2) = 2.8 ± 0.2, md(2) = 5.1 ± 0.4, (7)

and

ms(2) = 96.3 ± 17.5. (8)

Using fπ = 92.46 MeV, one can deduce:

ḡπ N N = (0.0282 ± 0.0071)θ, (9)

which is relatively small compared to gπ N N . One can also note that
the chiral correction is about 0.5% of the leading order expression
given in Ref. [7]. We have added an error of about 25% as a guess
of the systematics of the method based on its deviation for pre-
dicting the value of the measured C P -conserving coupling.2

2.2. The NEDM from chiral and ChPT approaches

To first order in θ , the neutron electric dipole moment (NEDM)
DN is given by:

Vμ ≡ T
〈
n(p f )

∣∣ Jμ(0)i

∫
d4x δLC P (x)

∣∣n(pi)
〉

= −(iDN )ū(p f )σμνkνγ5u(pi) +O
(
k2), (10)

where k ≡ p f − pi is the photon momentum and

δLC P (x) = q̄(iγ5)Aq, (11)

with A a 3-dimension Hermitian matrix acting on the flavour
space (u,d, s) and σμν ≡ (1/2)(γμγν − γνγμ). In order to extract
DN , we use the Gordon decomposition for the axial current:

ū(p + k)γ5σμνkνu(p) = · · · + ū(p + k)γ5(2p + k)μu(p). (12)

The lowest order contribution to DN comes from the diagrams in
Figs. 1 and 2. Using the expression of the ππγ vertex〈
π−(p + k)

∣∣ Jμ
∣∣π−(p)

〉 = −(2p + k)μ +O
(
k2), (13)

the evaluation of the previous diagrams can be expressed as

DN = (−1)3 ḡπ N N gπ N N
2MN

M2
N

1

16π2
2
{

I(1) + I(2)
}
, (14)

where I(n) are integrals over Feynman parameters coming from
Figs. 1 and 2. Fig. 1 gives:

I(1) ≡
1∫

0

x dx

1∫
0

dy
x(1 − y)

x2(1 − y)2 + a[1 − x(1 − y)]

= −1 − log a

2
(1 − a) + f (a) (15)

with:

f (a) = a(3 − a)√
a(4 − a)

{
arctan

[
2 − a√
a(4 − a)

]
+ arctan

[
a√

a(4 − a)

]}

� 3

4

(
π

√
a − a

) − 5

32
πa3/2 + · · · , (16)

and where

a ≡ (mπ/MN)2. (17)

2 See however Ref. [14].
Fig. 1. 1st class of diagrams contributing to DN .

Fig. 2. 2nd class of diagrams contributing to DN .

One can notice that the term log a appears naturally in the unex-
panded full expression without an arbitrary choice of the cut-off
MN . One can also note the non-analytic terms

√
a and a3/2. In the

same way, Fig. 2 gives:

I(2) ≡
1∫

0

x dx

1∫
0

dy
x

x2 + a(1 − x)

= 1 + (−2 + a)a√
(4 − a)a

{
arctan

(2 − a)√
(4 − a)a

− arctan
a√

(4 − a)a

}

− a

2
log a

= 1 − π

2

√
a + a

2
(3 − log a) + 3

16
πa3/2. (18)

2.3. Results and discussions

Adding the previous Feynman integrals I(1) and I(2) [Eqs. (15)
and (18)] into the expression of NEDM in Eq. (14), the NEDM from
chiral approach reads:

DN |chiral = ḡπ N N gπ N N

MN

1

4π2

{
− log a

2
+ 0 + 1

4

(
π

√
a + 3a

) + · · ·
}
.

(19)

The leading-log term agrees with the original result in Ref. [7]. The
cancellation of the constant terms have been also noticed in [16].
In addition, we also have a cancellation of the a log a term, which
implies small mass corrections (about 5%). Our result demonstrates
the accuracy of the leading-log approximation used in Ref. [7]. It
also shows that the scale, appearing in the leading-log a term, is
the mass of the nucleon but not any arbitrary cut-off scale, because
this term appears before the expansion in a [see Eq. (15)]. This
leads to the prediction:

DN |chiral = (20 ± 5) × 10−3θ GeV−1

= (40 ± 10) × 10−17θ cm. (20)

However, within chiral perturbation theory (ChPT), the addition of
counterterms in the effective Lagrangian induces a log(MN/ν)2-
term and leads to the (renormalized) NEDM expression [16]:

DN (ν)|ChPT = ḡπ N N gπ N N

MN

1

4π2

{
log

ν

mπ
+ k

}
, (21)

where ν is an arbitrary hadronic scale and k an unknown constant.
This result indicates that, only the coefficient of the log mπ term is
model-independent.
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For a conservative estimate and for a model-independent result,
we keep only the log mπ term and move, like in [16], the scale ν
above mπ from the value of the constituent quark mass, which we
take to be about (MN/3) (within a 30% error), to MN = 940 MeV.
Using the values of the parameters in Eqs. (4) and (9), one obtains,
in units of the electric charge e:

DN (ν) = (2.7–23.8) × 10−3θ GeV−1

= (5.4–47.6) × 10−17θ cm, (22)

where the range takes into account the assumed 25% systematic
uncertainties for estimating ḡπ N N and the assumed 30% one for
the value of the quark constituent mass. The value in Eq. (20) cor-
responds to the value ν = MN and where the small chiral mass
corrections have been included. One can notice that the width of
the range depends strongly on the unknown value of ν , and where
a fine tuning is obtained for its low values.

3. NEDM and magnetic susceptibility from QSSR

Alternative estimates of the NEDM have been done using QCD
spectral sum rules [17]. We shall re-examine these results in this
section and present some alternative new sum rules.

The analysis is based on the baryon two-point correlator put in
a background with nonzero θ and electromagnetic field Fμν :

S
(
q2)∣∣

θ,F = i

∫
d4x eiqx〈0|T N(x)N̄(0)|0〉∣∣

θ,F . (23)

N is the nucleon operators which can be written in general as:3

N(x) ≡ 2
{(

ψCγ 5ψ
)
ψ + b(ψCψ)γ 5}, (24)

where C is the charge conjugate; ψ is the quark field; b is (a pri-
ori) an arbitrary mixing between the two operators: b = 0 in the
non-relativistic limit, which is the choice used in different lattice
calculations [18]. Originally, Ioffe [19] has used the choice b = −1
in the 1st QSSR applications to the nucleon channel, which he has
justified for a better convergence of the QCD series in the OPE.
In [20,21],4 a more general analysis has been performed by letting
b as a free parameter and then looks for the b-value where the re-
sult is less sensitive to the variation of b. From the overall fit using
different form of the sum rules, the optimal result for the nucleon
mass and residue have been obtained for b = −1/5, which can be
qualitatively understood by taking the zero of the derivative in b
when retaining only the lowest order contribution.

For the analysis of the NEDM, Ref. [17] has used a value b = 1,
which differs completely from the previous choices. Within this
choice, the authors impose the zero coefficient of an non-analytic
mass-Log in the next 1/Q 2-corrections (q2 ≡ −Q 2) to the low-
est order contribution. However, the vanishing of the mass-Log to
leading order does not (a priori) guarantee the absence of this
contribution to higher orders. In the following, we shall test the
stability of the existing results versus the variation of b.

3.1. Expression of the two-point correlator

For the forthcoming analysis, we shall keep the coefficient of
the term { F̃μνσ

μν,γμqμ}, in the Lorentz decomposition of the
nucleon two-point correlator given in Eq. (23) (some alternative
choices are also possible). The QCD expression reads [17]:

3 In order to help the reader, we use the same notations and normalizations as
in Ref. [17], which is the same as the ones in [19]. The normalization of the QCD
correlator differs by a factor 8 from [20,21].

4 For reviews, see e.g. [13,18].
S
(

Q 2)∣∣th
θ,F = −θm∗〈ψψ〉 1

32π2

{
−χC0 ln

Q 2

ν2

+
[

C2a

(
ln

Q 2

ν2
χ

− 1

)
+ C2b

]
1

Q 2
+O

(
1

Q 4

)}
, (25)

ν and νχ correspond to an UV and a small mass arbitrary sub-
tractions; 〈ψ̄ψ〉 is the quark condensate. The coefficient-functions
are:

C0 = (b + 1)2(4ed − eu),

C2a = −4(b − 1)2ed

(
1 + 1

4
(2κ + ξ)

)
,

C2b = − ξ

2

[(
4b2 − 4b + 2

)
ed + (

3b2 + 2b + 1
)
eu

]
, (26)

where eu, ed are the electric charge of the u and d quarks in units
of e. χ, ζ, ξ are the magnetic susceptibilities of the QCD conden-
sates which encode the electromagnetic field dependence of the
two-point correlator. In units of e, they are defined as [22]:

〈0|ψ̄σμνψ |0〉∣∣F = eqχ Fμν〈ψ̄ψ〉,

g〈0|ψ̄ λa

2
Ga

μνψ |0〉
∣∣∣∣

F
= eqκ Fμν〈ψ̄ψ〉,

g〈0|ψ̄γ5
λa

2
Ga

μνψ |0〉
∣∣∣∣

F
= ieqξ Fμν〈ψ̄ψ〉, (27)

where g is the QCD coupling and Ga
μν the gluon field strength. The

size of these magnetic susceptibilities have been estimated in the
literature using different methods. The values [23]:

κ � −(0.34 ± 0.10), ξ � −(0.74 ± 0.2), (28)

induce (a posteriori) small numerical corrections in the present
analysis and will not be reconsidered. On the contrary, the domi-
nant contribution comes from χ , which is not known with a good
accuracy:

χ
[
GeV−2] = −8 = − Nc

4π2 f 2
π

: Triangle anomaly [24]

− 8,−6: Laplace SR (LSR) [22,23]

− 3.3: Light cone SR [25], (29)

which we shall reconsider later on. Our analysis gives the value
in Eq. (43), which is in better agreement with the one obtained
in [22,24].

The phenomenological part of the correlator can be paramet-
rized in the zero width approximation by:

S
(
q2)∣∣exp

θ,F = λ2
N MN DN

(q2 − M2
N )2

+ A

q2 − M2
N

+ “QCD continuum”, (30)

where λN is the nucleon coupling to its corresponding current;
A is an arbitrary coupling which parametrizes the single pole con-
tributions; “QCD continuum” stands from the QCD smearing of
excited state contributions and comes from the discontinuity of
the QCD expression.

3.2. Estimate of the magnetic susceptibility

Considering the nucleon two-point correlator in Eq. (23) in
presence of an external electromagnetic field, one can derive the
following LSR (neglecting anomalous dimensions) for each invari-
ants related to the structure (σμν p̂ + p̂σμν) and i(pμγν − pνγμ)

[22] (hereafter referred as IS):
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Lσ
p ≡ eu M4(1 − ρ1) + a2

3M2

{
−

(
ed + 2

3
eu

)

+ 1

3
eu(κ − 2ζ ) − 2euχ

(
M2 − 1

8
M2

0

)}

= 1

4
λ̃2

N e−M2
N /M2

(
μp

M2
+ A p

)
, (31)

Lγ
p ≡ aMN

{
eu + 1

2
ed + 1

3
edχ M2

[
(1 − ρ0) + b

24M4

]}

= 1

4
λ̃2

N e−M2
N /M2

(
μa

p

M2
+ B p

)
, (32)

where M2 ≡ 1/τ is the SR variable; MN = 0.946 GeV is the
proton mass; a ≡ 4π2|〈0|ψ̄ψ |0〉|; b = 4π〈0|αsG2|0〉 � 0.87 GeV4

[13,29] are the quark and gluon condensates; M2
0 = 0.8 GeV2

[13,19–21,30] parametrizes the mixed quark–gluon condensate:
〈0|ψ̄σμν(λa/2)Gμν

a ψ |0〉 = M2
0〈0|ψ̄ψ |0〉; the QCD continuum con-

tribution from a threshold tc is quantified as:

ρn = e−tcτ

(
1 + tcτ + (tcτ )2

2
+ · · · + (tcτ )n

n!
)

; (33)

A p, B p are the single proton pole coupling to the two-point cor-
relator, while λ̃2

N ≡ 32π4λ2
N is the coupling of the double proton

pole; κ , ζ and χ have been defined in Eq. (27); μp and μa
p are

the proton magnetic and anomalous magnetic moments. The sum
rules for the neutron can be deduced from Eqs. (31) and (32) by
the substitution:

ed ↔ eu, μp,μa
p → μn, A p, B p → An, Bn. (34)

Multiplying Eqs. (31) and (32) by ed and each corresponding neu-
tron sum rule by eu and then subtracting the proton and the
corresponding neutron sum rules, IS deduce:

μped − μneu + (A ped − Aneu)τ−1 = 4a2

3λ̃2
N

eM2
Nτ

(
e2

u − e2
d

)
,

μa
peu − μned + (B peu − Bned)τ

−1 = 4aMNτ−1

λ̃2
N

eM2
Nτ

(
e2

u − e2
d

)
. (35)

In order to eliminate the single pole contribution, IS apply, to both
sides of Eq. (35), the operator:

L01 ≡
(

1 + τ
∂

∂τ

)
. (36)

Using the LSR expression of the proton coupling λN from the MN -
component F2 of the two-point correlator [19–21]:

λ̃2
N � 2aτ−2

MN
eM2

Nτ , (37)

IS deduces for τ−1 ≈ M2
N :

μp ≈ 8

3

(
1 + 1

6

a

M3
N

)
≈ 2.96,

μn ≈ −4

3

(
1 + 2

3

a

M3
N

)
≈ −1.93, (38)

in remarkable agreement with the experimental values:

μ
exp
p = 2.79, μ

exp
n = −1.91, (39)

despite the crude LO approximation used for getting these predic-
tions. Including the OPE and anomalous dimension corrections, IS
deduce, from Eq. (35), the predictions:5

μ
exp
p = 3.0, μ

exp
n = −2.0, (40)

5 Some relations between the neutron anomalous magnetic and its electric dipole
moments has been also derived using light-front QCD approach [31], which will be
interesting to check from some other methods.
(a) (b)

Fig. 3. Analysis of χ using LSR for b = −1: (a) τ -dependence for tc = 3.0 GeV2;
(b) tc -dependence of the common solution in (a) for τ = 0.4 GeV−2.

and the correlated value:

χ � −8 GeV−2, (41)

for ξ ≈ κ ≈ 0. However, by examining the LSR used by the authors,
we notice that these sum rules do not satisfy τ -stability criteria
such that (a priori) there is no good argument for extracting an
optimal result.

In order to check the previous result, we solve the two equa-
tions:

χ = d

dτ
Lσ

p and χ = d

dτ
Lγ

p , (42)

for each given value of tc . The functions Lσ ,γ
p have been defined

in Eqs. (31) and (32). We use the values of κ and ξ given in
Eq. (28) but they do not affect much the conclusions like in the
case of IS. The analysis is shown in Fig. 3, where a common solu-
tion is reached at τ = 0.4 GeV−2, though the curves do not exhibit
τ -stability region.

Again like in the proton mass sum rule, the tc-stability is
reached around tc = 3 GeV2 [21]. Taking as a conservative estimate
the range of values tc = 1.6–3.0 GeV2, where the lowest value cor-
responds to the beginning of τ -stability for the determination of
the proton mass, we deduce the optimal estimate:

χ � −(8.5 ± 1.0) GeV−2, (43)

in good agreement with the IS previous value [22] and the one in
[24] using the quark triangle anomaly. At τ = 0.4 GeV−2 where a
common solution has been obtained, one expects a good conver-
gence of the OPE and smaller effects of radiative corrections. We
have used the choice b = −1 which we expect to give a reliable
result like in the previous cases of the proton mass and DN dis-
cussed in the next section where the results are almost unchanged
(within the errors) from b = −1 to the optimal value −1/5 ob-
tained in the case of the proton mass [20,21].

3.3. Test of the LSR results of Ref. [17] for NEDM

From the previous QCD and phenomenological expressions of
the two-point correlators, one can deduce the Borel/Laplace sum
rule (LSR):

L(τ ) ≡ r(τ ) ≡ 1

2θm∗

(
DN + Aτ−1

λ2
N MN

)

= − τ−2

32π2
〈ψ̄ψ〉eM2

Nτ
{
χC0(1 − ρ0)

+ [
C2a

[− ln
(
τν2

χ

) + γE − 1
] + C2b

]
τ
}
, (44)

where τ−1 ≡ M2 is the LSR variable.
Ref. [17] uses either the value [19–21]:

λ2
N � 1

(2π)4
(1.05 ± 0.1) GeV6, (45)

or its LSR expression [19–21] from the q̂ ≡ γμqμ part of the corre-
lator:



S. Narison / Physics Letters B 666 (2008) 455–461 459
(a) (b)

Fig. 4. Analysis of −r/χ using LSR for b = 1: (a) M2-dependence for tc = 1.6 GeV2;
(b) tc -dependence for M2 = 0.5 GeV2.

(2π)4λ2
N e−τ M2

N

= 5 + 2b + 5b2

64
τ−3[(1 − ρ2) + π

〈
αsG2〉(1 − ρ0)τ

2]. (46)

However, due to its high-dependence on τ , this sum rule is much
affected by the form of the continuum such that we shall not con-
sider it. Instead, we shall consider either the value in Eq. (45), or
the expression of the residue from the MN part of the correlator:

(2π)4λ2
N MN e−τ M2

N = −π2

4
〈ψ̄ψ〉τ−2[(7 − 2b − 5b2)(1 − ρ1)

− 3M2
0τ

(
1 − b2)(1 − ρ0)

]
, (47)

which has a lesser dependence in τ .
We show the results in Fig. 4 for the previous value of λ2

N and
using, as in Ref. [17], 〈ψψ〉 = −[0.225 GeV]3 for a better compari-
son.

For the choice b = 1 used in [17], one can see from Fig. 4(a)
that the optimal value is obtained at M2 ≡ τ−1 � 0.5 GeV2, which
is relatively low for justifying the convergence of both the OPE and
the PT series in αs . Fig. 4(b) shows, like in the case of the analysis
of the proton mass, that the tc stability is reached at high-value
of 3 GeV2 but the estimate does not move much from the optimal
value tc = 1.6 GeV2 obtained in the proton mass sum rule [19–21].
In this case, one can deduce:

r|b=1 = −χ(0.34–0.36) GeV4, (48)

which reproduces the result of [17]. Assuming, like in Ref. [17], that
the single pole contribution can be neglected (which we shall test
in the next section), and using the value of χ = −5.7 GeV−2 used
in [17], one can deduce from Eqs. (44) and (48):

DN |b=1 ≈ 9 × 10−3θ GeV−1. (49)

Though (almost) trivial, the previous test is necessary for calibrat-
ing our sum rule and for checking our inputs in the next analysis.

3.4. New estimate of A and choice of the nucleon currents

We shall reconsider the previous analysis by abandoning the
choice b = 1 for the nucleon current and by giving a new estimate
of

rA(τ ) ≡ 1

2θm∗

(
Aτ−1

λ2
N MN

)
. (50)

This analysis is summarized in Fig. 5 where we have used the value
of λN in Eq. (45) and the running condensate value [12,13,26]:

〈0|ψψ |0〉(M) � −[0.266 GeV]3 ln4/9 (M/Λ), (51)

with Λ � 350 MeV for 3-flavours.
One can notice that the result is optimal in b for:

b � −0.5, (52)

and more conservatively in the range:

−1 � b � 0, (53)
which does not favour the choice b = 1 used in [17]. The previ-
ous range includes the conventional choices −1 in [19], −1/5 in
[20,21] and the non-relativistic limit b = 0 used in lattice calcula-
tions [18].

The second (important) assumption used in Ref. [17] is the ne-
glect of the contribution of the single pole controlled by the pa-
rameter A. By inspecting the LSR in Eq. (44), one can isolate A by
working with the new LSR:

L1(τ ) ≡ d

dτ
L. (54)

One can see in Fig. 5(c) that for all ranges of b, rA is much smaller
than r justifying the assumption of [17]. At the optimal range of b
values given previously, one can deduce:

r/χ = −0.09, rA/χ = +0.02. (55)

Using the quark mass values in [12,13] and the previous value of
χ in Eq. (43), one gets:

DN � −0.11χθm∗ � (2.24 ± 0.12) × 10−3θ GeV−1. (56)

3.5. Direct extraction of DN from a new LSR

By inspecting the LSR in Eq. (44), one can also isolate DN by
working with the LSR:

L2(τ ) ≡ d

dτ
τL. (57)

We show the results of the analysis in Fig. 6.
One can notice that the sum rule stabilizes at τ ≈ 0.75 GeV−2,

which is smaller than in the previous analysis, showing a better
convergence of the OPE.

We also study the dependence of the result on the value of the
IR scale νχ . The optimal value corresponds to:

νχ � (80–200) MeV, (58)

which has the size of a typical IR chiral scale (pion or constituent
quark mass).

Therefore, we deduce the optimal value:

DN � −(0.10 ± 0.03 ± 0.03)χθm∗

� (2.06 ± 0.08) × 10−3θ GeV−1, (59)

where the first (resp. second) error comes from the localization of
the extremum in τ (resp.) of the tc values which we take to be
tc = (1.6 ± 0.2) GeV2 around the value obtained from the proton
mass sum rule [20,21].

3.6. NEDM results and systematics from QSSR

The two results from the LSR are in good agreement and lead
to the final estimate:

DN |QSSR � (2.15 ± 0.10) × 10−3θ GeV−1, (60)

which agrees with the range spanned by the chiral and ChPT esti-
mate in Eq. (20).

In order to analyze the systematic errors in the approach,
we estimate using vertex sum rules the well measured coupling
gπ N N = 13.4. We use the symmetric configuration of the hadronic
vertex in [27] from which, one obtains the LSR:

gπ N N(λ2
N MN)

(
fπm2

π

)
τ 3e−M2

Nτ

� − 1
2
(mu + md)〈ψ̄ψ〉(2 + 8b + 8b2). (61)
16π
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(a) (b) (c)

Fig. 5. LSR analysis of −r/χ (red: dash-dotted curve) and −rA/χ (blue: continuous curve): (a) τ ≡ 1/M2-dependence for b = −0.5, tc = 1.6 GeV2; (b) tc -dependence for
b = −0.5, τ = 2 GeV−2; (c) b-dependence for tc = 1.6 GeV2, τ = 2 GeV−2.

(a) (b) (c)

Fig. 6. Analysis of D N using LSR. (a) τ ≡ 1/M2 in GeV−2-dependence for b = −0.5, tc = 1.6 GeV2; (b) b-dependence for τ = 0.75 GeV−2, tc = 1.6 GeV2; (c) νχ -dependence
of the optimal value in units of MeV.
Using the expression of λ2
N in Eq. (46), one can deduce the LO sum

rule:

gπ N N � 16π2 fπ
MN

2 + 8b + 8b2

5 + 2b + 5b2
, (62)

while the one in Eq. (47) gives:

gπ N N � (mu + md)

fπm2
π

τ−1 2 + 8b + 8b2

7 − 2b − 5b2
. (63)

Using a double pole dominance and neglecting the QCD contin-
uum, Ref. [27] fixes from Eq. (62) the nucleon operator mixing to
be b ≡ 1/t = 0.307 for the 1st sum rule to reproduce the exper-
imental value of gπ N N . One can notice that this sum rule is not
accurate due to its τ -dependence. For τ � 1 GeV−2, the previous
value of the quark mass evaluated at 1 GeV is (mu + md)(1) �
10.9 MeV. Including the QCD continuum contribution with tc =
1.6 GeV2, the 2nd sum rule gives:

gπ N N � 8.9. (64)

We consider its deviation by 33% from the data as the systematic
error of QSSR for this estimate.6 Therefore, we consider as a con-
servative estimate of DN from QSSR:

DN |QSSR � (2.15 ± 0.71) × 10−3θ GeV−1

� (4.24 ± 1.40) × 10−17θ cm. (65)

4. Constituent quark results

For a qualitative comparison of the results from the chiral
and QSSR approaches, we use a simple model where the con-
stituent quark interacts with electromagnetic field. Then, one can
write [22]:

6 Note that a more precise estimate of gπ NN including the contribution of the
two first lowest quark and gluon condensate contributions is claimed in Ref. [28]
from the 1st sum rule using a different configuration of the hadronic vertex.
〈0|ψ̄σμνψ |0〉∣∣F ≡ eqχ Fμν〈0|ψ̄ψ |0〉
= −

∫
d4 p Tr

{
S(p, Mq)σμν

}
, (66)

where S(p, Mq) is the quark propagator in presence of an electro-
magnetic field:

S(p, Mq) = i

(2π)4

[
1

p̂ − Mq

− 1

2
〈0|ψ̄σμνψ |0〉∣∣F

[
i

p̂ − Mq
γμ

1

p̂ − Mq
γν

1

p̂ − Mq

− μa
a

2Mq

1

p̂ − Mq
σμν

1

p̂ − Mq

]]
, (67)

where Mq the quark constituent mass and μa
q � 2 is its anomalous

magnetic moment. Then, one can derive the relation [22]:

χ 〈0|ψψ |0〉 = 3

2π2
Mq ln

(
ν

Mq

)(
1 + μa

q

2

)
. (68)

Using this relation into the LSR expression of DN , one can deduce
in units of e:

DN ≈ 3Mq ln

(
ν

Mq

)
τ−2eM2

Nτ

(
1 + μa

q

2

)
θm∗

≈ 4.4 × 10−3θ GeV−1 ≈ 8.7 × 10−17θ cm, (69)

where we have taken b = 0 in the non-relativistic limit, τ−1 ≈
M2

N ≈ ν2, and we have used Mq ≈ (200–300) MeV ≈ νχ . We as-
sume that this crude non-relativistic approximation is known with
an accuracy of about 50%, which gives the final estimate:

DN |Const quark ≈ (8.7 ± 4.4) × 10−17θ cm. (70)

This value can be compared with the one from more involved LSR
analysis. This approximate formula may indicate that DN is domi-
nated by the non-analytic Log contribution like in the case of the
chiral estimate of [7] rederived in the previous section, but at the
quark constituent level.
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5. Final range of the NEDM values

The previous results from chiral and ChPT approaches in
Eqs. (20), from QSSR in Eq. (65) and from a naive quark constituent
model in Eq. (70) are comparable. However, a more definite com-
parison with the chiral and ChPT estimate requires a better control
of the value of the renormalization scale ν and an improved es-
timate of the C P violating π N N coupling. Also, search for some
other contributions beyond the standard OPE of QSSR like e.g. the
one of the D = 2 dimension operator discussed [32], may be re-
quired.

Combining these previous results with the present experimen-
tal upper limit (in units of e) [33]:

DN |exp � 6.3 × 10−26 cm, (71)

one can deduce in units of 10−10:

θ � (1.6 ± 0.4) [Chiral]: ν = MN

� (1.3–11.7) [ChPT]: MN/3 � ν � MN

� (6.9 ± 3.5) [Constituent quark]
� (14.9 ± 4.9) [QSSR]. (72)

These results indicate that the weakest upper bound comes from
QSSR, while the strongest upper bound comes from the chiral es-
timate evaluated at the scale ν = MN . Present lattice calculations
are at an early stage [34] and may narrow the previous range of
values in the future.
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