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This is the final paper in a Comments and Controversies series dedicated to “The identification of interacting
networks in the brain using fMRI: Model selection, causality and deconvolution”. We argue that discovering
effective connectivity depends critically on state-space models with biophysically informed observation and
state equations. These models have to be endowed with priors on unknown parameters and afford checks for
model Identifiability. We consider the similarities and differences among Dynamic Causal Modeling, Granger
Causal Modeling and other approaches. We establish links between past and current statistical causal
modeling, in terms of Bayesian dependency graphs and Wiener–Akaike–Granger–Schweder influence
measures. We show that some of the challenges faced in this field have promising solutions and speculate on
future developments.
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Introduction

Following an empirical evaluation of effective connectivity mea-
surements (David et al., 2008) and a primer on its implications (Friston,
2009a), the Comments and Controversy (C&C) exchange, initiated by
Roebroeck et al. (2011b-this issue) and continued by David (2011-this
issue), Friston (2011b-this issue), and Roebroeck et al. (2011a-this
issue), has provided a lively and constructive discussion on the relative
merits of two current techniques, Granger CausalModeling (GCM)1 and
Dynamic Causal Modeling (DCM), for detecting effective connectivity
using EEG/MEG and fMRI time series. The core papers of the C&C have
been complemented by authoritative contributions (Bressler and Seth,
2011-this issue; Daunizeau et al., 2011a-this issue; Marinazzo et al.,
2011-this issue) that clarify the state of the art for each approach.

This final paper in the series attempts to summarize themain points
discussed and elaborate a conceptual framework for the analysis of
effective connectivity (Figs. 1 and 2). Inferring effective connectivity
comprises the successive steps of model specification, model identifi-
cation andmodel (causal) inference (seeFig. 1).These steps are common
to DCM, GCM and indeed any evidence-based inference.Wewill look at
the choicesmade at each stage to clarify current areas of agreement and
disagreement, of successes and shortcomings.
This entails a selective review of key issues and lines of work.
Although an important area, we will not consider models that are just
used to measure statistical associations (i.e. functional connectivity).
In other words, we limit our focus to discovering effective connec-
tivity (Friston, 2009a); that is causal relations between neural
systems. Importantly, we hope to establish a clear terminology to
eschew purely semantic discussions, and perhaps dispel some
confusion in this regard. While preparing this material, we were
struck with how easy it is to recapitulate heated arguments in other
fields (such as econometrics), which were resolved several decades
ago. We are also mindful of the importance of referring to prior work,
to avoid repeating past mistakes2 and to identify where more work is
needed to address specific problems in the neurosciences.

We shall emphasize several times in this paper that causality is an
epistemological concept that can beparticularly difficult to capturewith
equations. This is because one's intuitive understanding of causality
becomes inherently constrainedwhenever one tries tomodel it. In brief,
one can think of causality in at least two distinct ways:

• Temporal precedence, i.e.: causes precede their consequences;
• Physical influence (control), i.e.: changing causes changes their
consequences.
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Fig. 1. Overview of causal modeling in Neuroimaging. Overall view of conceptual framework for defining and detecting effective connectivity in Neuroimaging studies.
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This distinction is important, since it is the basis for any statistical
detection of causal influence. In the context of brain connectivity,
identifying causal relationships between two regions in the brain thus
depends upon whether one tests for improvement in predictive
capacity between temporally distinct neural events or one assesses
the distal effect of (experimentally controlled) interventions.

Temporal precedence is the basis for Granger-like (what we call
WAGS influence, see WAGS influence section) inferences about
causality. In its simplest form, the idea is the following: A WAGS-
causes B if one reduces the uncertainty about the future of B given the
Fig. 2. Data and model driven approaches to causal modeling. Data driven approaches
look for nonparametric models that not only fit the data but also describe important
dynamical properties. They complement hypothesis driven approaches that are not
only constrained by having to explain dynamical behavior but also provide links to
computational models of brain function.
past of A. Statistical tests of WAGS-causality thus rely upon
information theoretic measures of predictability (of B given A).

In contradistinction, physical influence speaks to the notion of
intervention and control, which has been formalized using a
probabilistic framework called causal calculus (Pearl, 2000) (Structural
causal modeling: graphical models and Bayes–Nets section). Observing
(or estimating) activity at a network node potentially provides
information about its effects at remote nodes. However, physically
acting upon (e.g., fixing) this activity effectively removes any other
physical influence this node receives. This means that inferences based
on the effects of an intervention are somewhat different in nature from
those based on purely observational effects. Generally speaking,
inference on structural causality rests on modeling the effects of
(controlled) experimental manipulations of the system, c.f. the popular
quote ‘no causes in, no causes out’ (Cartwright, 2007). As we shall see
later, these twoapproaches canbecombined (Dynamic structural causal
modeling section).

The structure of the paper is as follows.We first review the types of
models used for studying effective connectivity. We then touch briefly
on the methods used to invert and make inferences about these
models. We then provide a brief summary of modern statistical causal
modeling, list some current approaches in the literature and discuss
their relevance to brain imaging. Finally, we list outstanding issues
that could be addressed and state our conclusions.

Model specification

State-space models of effective connectivity

From the C&C discussion, there seems to be a consensus that
discovering effective connectivity in Neuroimaging is essentially a
comparison of generative models based on state-space models (SSM)
of controllable (i.e., “causal” in a control theory sense) biophysical
processes that have hidden neural states and possibly exogenous

image of Fig.�2
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endpoint is included but not the right one and that b precedes a.
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input. While having a long history in engineering (Candy, 2006;
Kailath, 1980), SSM was only introduced recently for inference on
hidden neural states (Valdes-Sosa et al., 1999; Valdes-Sosa et al.,
1996; Valdés-Sosa et al., 2009a). For a comprehensive review of SSM
and its application in Neuroscience see the forthcoming book (Ozaki,
2011).

Neural states describe the activity of a set of “nodes” that comprise
a graph, the purpose of causal discovery being the identification of
active links (edges or connections) in the graph. The nodes can be
associatedwith neural populations at different levels;most commonly
at the macroscopic (whole brain areas) or mesoscopic (sub-areas to
cortical columns) level. These state-space models have unknown
parameters (e.g., effective connectivity) and hyperparameters (e.g.,
the amplitude of random fluctuations). The specific model, states,
parameters, hyperparameters and observables chosen determines the
type of analysis and the nature of the final inference about causality.
These choices are summarized in Fig. 1 (Step 1).

Given a set of observations or brainmeasurements, the first problem
is: which data features are relevant for detecting causal influences? The
most efficient way to address this question is to specify a generative
model, i.e. a set of equations that quantify how observed data are
affectedby thepresence of causal links. Put simply, thismodel translates
the assumption of (i) temporal precedence or (ii) physical influence into
how data should appear, given that (i) or (ii) is true. By presenting the
data togenerativemodels,model comparisoncan thenbeused todecide
whether some causal link is likely to be present (by comparing models
with and without that link). We now turn to the specification of
generative models, in the form of a SSM.

Nodes and random variables

The first things we consider are the basic units or nodes, among
which one wants to find causal links. These are usually modeled as
macroscopic, coarse grained, ensembles of neurons, whose activity is
summarized by a time varying state vector xr(t) or x(r, t): r∈R. For
example x(t) could be instantaneous (ensemble average) post-
synaptic membrane depolarization or pre-synaptic firing rate of
neurons. The set R of nodes is usually taken as a small number of
neural masses corresponding to pre-selected regions of interest (ROI)
as is typical in both DCM and GCM. However, there has been recent
interest in making R a continuous manifold (i.e. the cortex) that is
approximated by a very high dimensional representation at the
voxel level. We denote the complete set of random variables asso-
ciated with each node as X={X\ i, Xi} whose joint distribution is
described using a generative model. X\ i is the set of nodes without
node i and p(x)≜p(X=x).

The observation equation

Any model always includes an explicit or implicit observation
equation that generally varies with the imaging modality. This
equation specifies how hidden (neuronal) states xr(t) produce
observable data yq(tk): q∈Q. This is the sensor data sampled at
discrete time points tk=kΔ:

yq tkð Þ = g xr ; tð Þ + e tkð Þ : r∈ Rr ; t∈ tk; tk−1½ � ð1Þ

for k=1 … K. It is important to note that observations at a given
sensor q only reflect neural states from a subset of brain sites,
modified by the function g over a time interval determined by the
sampling period Δt and corrupted by instrumental noise e(tk). When
the sampling period is not considered explicitly, the observations are
denoted by yq(k). In most cases, this mapping does not need to be
dynamic since there is no physical feedback from observed data to
brain processes. In this special case, the observation equation reduces
to an instantaneous transformation: Y tð Þ = g̃ X tð Þð Þ, where g̃ is
derived from g and any retarded (past) hidden states have been
absorbed in X(t) (e.g., to model hemodynamic convolutions).

A selected collection of observation equations used in Neuro-
imaging is provided in Table 1. The observation equation is sometimes
simplified by assuming that observed data is a direct measurement of
neural states (with negligible error). While this might be an
acceptable assumption for invasive electrophysiological recordings,
it is inappropriate in many other situations: for example, much of the
activity in the brain is reflected in the EEG/MEG via the lead field with
a resultant spatial smearing. For the BOLD signal, the C&C articles have
discussed exhaustively the need to account for temporal smearing
produced by the hemodynamic response function (HRF) when
analyzing BOLD responses. This is important for fMRI because the
sampling period is quite large with respect to the time course of
neural events (we shall elaborate on this below).

Instrumental or sensor noise can seriously affect the results of
causal analyses. One simple approach to causal modeling is to take the
observation equation out of the picture by inverting the observation
equation (i.e., mapping from data to hidden states). The estimated
states can then used for determining effective connectivity. This
approach has been taken both for the EEG (Supp et al., 2007) and fMRI
(David et al., 2008). However, this is suboptimal because it assumes
that the causal modeling of hidden states is conditionally independent
of the mapping from data. This is generally not the case (e.g., non-
identifiability between observation and evolution processes described
below). The optimal statistical procedure is to invert the complete
generative model, including the observation and state equations
modeling the evolution of hidden states. This properly accommodates
conditional dependencies between parameters of the observer and
state equations. A nice example of this is DCM for EEG and MEG, in
which a SSM of coupled neuronal sources and a conventional
electromagnetic forward model are inverted together. This means
the parameters describing the spatial deployment of sources (e.g.,
dipole orientation and location) are optimized in relation to
parameters controlling the effective connectivity among hidden
sources. This sort of combined estimation has been described for
simple noise models (Table 1-#2 by Nalatore et al. (2007)). For fMRI,
DCM models the hemodynamic response with hidden physiological
states like blood flow and volume and then uses a nonlinear observer
function to generate BOLD responses (Table 2-#4). Early applications
of GCM did not model the HRF but in recent years a number of papers
have included explicit observation models in GCM (Ge et al., 2009;
Havlicek et al., 2010), which have even incorporated the full nonlinear
HRF model used in DCM (Havlicek et al., 2009; Havlicek et al., 2011).

The state equation

The evolution of the neuronal states is specified by the dynamical
equations:

xr tð Þ = f xr′∈Rr′
τð Þ;u τð Þ; ξr′∈Rr′

τð Þ
� �

: τ∈ t; t−t0ð �: ð2Þ

This equation3 expresses, xr(t), the state vector of node r at time t
as a function of:

• the states of nodes xr '(τ): r′∈Rr 'pR
• exogenous inputs, u(τ) and a
• stochastic process ξr′(τ).

Note that the dependence of the current states at node r may
be contingent on values of other variables from an arbitrary past from
t− t0 to just before t. The time dependence of Eq. (2) is important
because it allows to model feedback processes within the network.



Table 1
Observation equations. Examples of observation equations used for causal modeling of effective connectivity in the recent literature. Abbreviations: discrete (D), continuous (C),
white noise (WN). Note for Models #5 and #6 the observation equation is considered as all the equations except for the (neural) state equations. Strictly speaking, the observer
function is just the first equality (because the subsequent equations of motion are part of the state equation); however, we have presented the equations like this so that one can
compare instantaneous observation equations that are a function of hidden states, convolution operators or a set of differential equations that take hidden neuronal states as their
inputs.

Model Observation equation Measurement Space Time Equation type Kind of stochastic
process

1 None (Bressler and Seth, 2010) y(r, k)=x(r, k) EEG/fMRI D D Identity none
2 Added noise

(Nalatore et al., 2007)
y(r, k)=x(r, k)+e(r, t) fMRI D D Linear regression WN

3 Spatial smearing
(Riera et al., 2006)

y(q, t)=∫
r∈R

k(r, r′)x(r′, t)dr′+e(r, t) EEG/MEG D C Volterra integral
equation with noise

none

4 Convolution with linear HRF (Glover,
1999)

y r; kð Þ = ∫t = kΔ

−∞
h τð Þx r; t−τð Þdτ + e r; kð Þ fMRI D C Temporal

convolution
WN

5 Nonlinear HRF function
(Friston et al., 2000)

yt = V0 a1 1−qtð Þ−a2 1−vtð Þð Þ

v̇t =
1
τ0

ft−v1 = α
t

� �

q̇t =
1
τ0

ft 1− 1−E0ð Þ1= ft
� �

E0
− qt

v1−1 = α
t

0@ 1A
ṡt = εut− 1

τs
st− 1

τf
ft−1ð Þ

ḟt = st

fMRI C C Nonlinear
differential
equation

none

6 Nonlinear HRF function
(Valdes-Sosa et al., 2009a) f ġe tð Þ = se tð Þ

ṡe tð Þ = ae
τe

ue t−δeð Þ−1ð Þ− 2
τe

se tð Þ− 1
τ2e

ge tð Þ−1ð Þ

f ġi tð Þ = si tð Þ

ṡi tð Þ = ai
τi

ui t−δið Þ−1ð Þ− 2
τi
si tð Þ− 1

τ2i
gi tð Þ−1ð Þ

x =
1

1 + e−c ge tð Þ−dð Þ

f ˙˙f tð Þ = sf tð Þ

ṡf tð Þ = ε ue t−δf
� �

−1
� �

− sf tð Þ
τs

− f tð Þ−1
τf

mi tð Þ = gi tð Þ; me tð Þ = 2−x
2−x0

ge tð Þ; m tð Þ = γme tð Þ + mi tð Þ
γ + 1

fv̇ tð Þ = 1
τ0

f tð Þ−fout v; tð Þð Þ

q̇ tð Þ = 1
τ0

m tð Þ−fout v; tð Þ q tð Þ
v tð Þ

� �
; fout v; tð Þ = v

1
α

y tð Þ = V0 a1 1−qð Þ−a2 1−vð Þð Þ

EEG/fMRI C C Nonlinear random
differential
algebraic equation

none
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Many specific forms have been proposed for Eq. (2); some examples
are listed in Table 2, which is just a selection to illustrate different points
discussed below. Some types of equations, to our knowledge, have not
been yet used for the analysis of effective connectivity. Several general
observations emerge from these examples:

Discrete versus continuous time modeling: The state equations for
GCM have been for the most part discrete time recurrence models
(Bressler and Seth, 2010). Those for DCM are based on continuous
time models (differential equations) (Friston, 2009a). The latter
have advantages in dealing with the problem of temporal
aggregation and sub-sampling as we shall see below. In fact,
DCM is distinguished from general SSM by the fact it is based on
differential equations of one sort or another.
Discrete versus continuous spatial modeling: GCM has been
applied to continuous space (neural fields) though limited to
discrete time (Galka et al., 2004; Valdes-Sosa, 2004). DCM has
mainly been developed for discrete-space (ROIs) and, as
mentioned above, continuous time. State space models that are
continuous in space and time have recently been looked at in the
context of neural field equations (Daunizeau et al., 2009c;
Galka et al., 2008).
Type of equation: GCM has been predominantly based on linear
stochastic recurrence (autoregressive) models (Bressler and Seth,
2010). DCM on the other hand has popularized the use of
deterministic ordinary differential equations (ODE). These range
from simple bilinear forms for fMRI that accommodate interactions
between the input and the state variables (Friston, 2009a) to
complicated nonlinear equations describing the ensemble dynamics
of neural mass models. In their most comprehensive form, these
models can be formulated as Hierarchical Dynamical Models (HDM)
(Friston, 2008a,b). HDM uses nonlinear random differential equa-
tions and static nonlinearities, which can be deployed hierarchically
to reproduce most known parametric models. However, as noted in
the C&C, GCM is not limited to linear models. GCM mapping
(Roebroeck et al., 2005) uses an (implicit) bilinear model, because
the Autoregressive coefficients depend on the stimulus; this
bilinearity is explicit in GCM on manifolds (Valdés-Sosa et al.,
2005) GCM has also been extended to cover nonlinear state-
equations (Freiwald et al., 1999; Marinazzo et al., 2011).
The type of models used as state equations are very varied (and are
sometimes equivalent). One can find (for discrete spatial nodes)
recurrence equations, ordinary differential equations, and (for
neural fields) differential-integral and partial differential equations.



Table 2
State equations. Examples of the state equations used in the recent literature for causal modeling of effective connectivity. Abbreviations: C (continuous), D (discrete), WN (white
noise).

Model State equation Space Time Equation type Stochastic process

Linear GCM (Bressler and
Seth, 2010) x r; kð Þ = ∑

Nr

r0 =1
∑
T

l=1
al r; r′ð Þx r′; k−lð Þ + ξ r; kð Þ D D Linear multivariate linear

autoregressive (VAR)
WN

2 Nonlinear GCM (Freiwald
et al., 1999)

x r; kð Þ = ∑
Nr

r0 =1
∑
T

l=1
a l; r; r′; x r′; k−lð Þ½ � x r′; k−lð Þ + ξ r; kð Þ D D Nonlinear nonparametric

VAR (NNp_MVAR)
WN

3 Linear bivariate GCM mapping
(Roebroeck et al., 2005)

x r; kð Þ
x ROI; kð Þ

" #
= ∑

Nl

l=1

al r; rð Þ al r;ROIð Þ
al ROI; rð Þ al ROI;ROIð Þ

" #
x r; k−lð Þ

x ROI; k−lð Þ

" #
+

ξ r; kð Þ
ξ ROI; kð Þ

" #

∀r∈R x ROI; kð Þ = ∫
r∈R

x r; kð Þdr

D D VAR since al(r, r')
Implicitly bi-linear
changes with state.
(GCMap)

WN

4 Linear GCM on spatial
manifold (Valdés et al., 2006)

x r; kð Þ = ∑
Nl

l=1
∫r0∈Ral r; r′ð Þx r′; k−lð Þdr′ + ξ r; kð Þ C D Implicitly bi-linear VAR

as in 3
WN

5 Nonlinear DCM
(Stephan et al., 2008)

ẋ r; tð Þ = ∑
Nx

r0 =1
a r; r′ð Þx r′; tð Þ

+ ∑
Nu

i=1
u i; tð Þ ∑

Nx

r0 =1
b r; r′ð Þx r′; tð Þ

+ ∑
Nx

r0 =1
∑
Nx

r00 =1
d r; r′; r″
� �

x r′; tð Þx r″; t
� �

+ ∑
Nu

i=1
c r; ið Þu i; tð Þ

D D Differential equation
bilinear in both states
and inputs (DE)

None

6 Neural mass model
(Valdes et al., 1999)

ẋ r; tð Þ = f x r; tð Þð Þ + ξ r; tð Þ C C Ito stochastic differential
(SDE)

WN as formal
derivative of
Brownian motion

7 Hierarchical dynamic causal
model (Friston, 2008a,b)

ẋ r; tð Þ = f x r; tð Þ;u tð Þð Þ + ξ r; tð Þ D C General nonlinear (HDM) Analytic,
non-Markovian

8 Neural field (Jirsa et al., 2002) ∂2
∂t2 + 2ω ∂

∂t + ω2
0−v2∇2

� �3=2
x r; tð Þ = ω3

0 + ω2
0

∂
∂t

� �
S x r; tð Þ + ξ r; tð Þ½ � C C Stochastic fractional

partial differential (SfPDE)
WN

9 Modified neural field
(P. A. Valdes-Sosa et al., 2009a)

̈x r; tð Þ = f ẋ r; tð Þ; x r; tð Þð Þ + S z r; tð Þð Þ + ξ r; tð Þ
z r; tð Þ = ∫

R
a r; r0ð Þx r; τ r; r0ð Þð Þdr0

τ r; r0ð Þ = t− r−r0j j
ν

C C Random differential–
algebraic-equation (RDE)

General
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Tounderscore the variety of forms for effective connectivity,wenote
entry #8 in Table 2 which boasts a fractional differential operator!
Fractional operators arise in the context of neuralfields inmore than
one dimension; they result from the Fourier transform of a synaptic
connection density that is a continuous function of physical distance.
However, the ensuing fractional differential operators are usually
replaced by ordinary (partial) differential operators, when numeri-
cally solving the neural wave propagation equation given in Table 2;
see Bojak and Liley (2010) and Coombes et al. (2007) for the so-
called ‘long wavelength approximation’.
Among other things, it can be important to include time delays in
the state equation; this is usually avoided when possible to keep
the numerics simple (delay differential equations are infinite
dimensional) and are generally considered unnecessary for fMRI.
However, delays are crucial when modeling electromagnetic data,
since they can have a profound effect on systems dynamics
(Brandt et al., 2007). For example, delayed excitatory connections
can have an inhibitory instantaneous effect. In fact starting with
Jansen and Rit (1995) it has been common practice to include time
delays. This can be implemented within the framework of ODEs;
David et al. (2006) describe an ODE approximation to delayed
differential equations in the context of DCM for EEG and MEG.
An example of the potential richness of model structures is found
in Valdes-Sosa et al. (2009a) in a neural field forward model for
EEG/fMRI fusion, which includes anatomical connections and
delays as algebraic constraints. This approach (of including
algebraic constraints) affords the possibility of building complex
models from nonlinear components, using simple interconnection
rules—something that has been developed for control theory
(Shampine and Gahinet, 2006). Note that algebraic constraints
may be added to any of the aforementioned forms of state
equation.
Type of stochastics: for GCM-type modeling with discrete-time
models, Gaussian White Noise (GWN) is usually assumed for the
random fluctuations (state noise) or driving forces (innovations)
for the SSM and poses no special difficulties. However in
continuous time the problem becomes more intricate. A popular
approach is to treat the innovation as nowhere differentiable but
continuous Gaussian White Noise (the “derivative” of Brownian
motion (i.e., a Wiener process). When added to ordinary
differential equations we obtain “stochastic differential equations”
(SDE) as described inMedvegyev (2007) and used for connectivity
analysis of neural masses in Riera et al., (2007a,b), Riera et al.
(2006). Wiener noise is also central to the theory of Stochastic
Partial Differential Equations (SPDE) (Holden et al., 1996), which
may play a similar role in neural field theory as SDEs have played
for neural masses (Shardlow, 2003).
Despite the historical predominance of the classical SDE formula-
tion in econometrics (and SSM generally), we wish to emphasize
the following developments, which may take us (in the biological
sciences) in a different direction:
1. The first is the development of a theory for “random differential

equations” (RDE) (Jentzen and Kloeden, 2009). Here random-
ness is not limited to additive Gaussian white noise because the
parameters of the state equations are treated as stochastic. RDE
are treated as deterministic ODE, in the spirit of Sussmann
(1977), an approach usable to great advantage in extensive
neural mass modeling (Valdes-Sosa et al., 2009a) that is
implicitly a neural field.

2. The second development, also motivated by dissatisfaction
with classical SDE was introduced in Friston and Daunizeau
(2008). In that paper, it was argued that DCMs should be based
on stochastic processes, whose sample paths are infinitely
differentiable—in other words, analytic and non-Markovian.
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Though overlooked in the heyday of SDE theory, this type of
process was described very on early by Belyaev (1959).4 In fact
any band-limited stochastic process is an example of an
analytic random process; a stochastic process with a spectrum
that decreases sharply with frequency, has longmemory, and is
non-Markovian (Łuczka, 2005). The connection between
analytic stochastic processes and RDE can be found in Calbo
et al. (2010). An interesting point here is that for the process to
be analytic its successive derivatives must have finite variances,
as explained in Friston and Daunizeau (2008). This leads to the
generalization of classical SSM into generalized coordinates of
motion that model high-order temporal derivatives explicitly.
As pointed out in Friston (2008a,b), it is possible to cast an RDE
as a SDE by truncating the temporal derivatives at some
suitably high order (see also Carbonell et al., 2007). However,
this is not necessary because the theory and numerics for RDEs
in generalized coordinates are simpler than for the equivalent
SDE (and avoid the unwieldy calculus of Markovian formula-
tions, due to Ito and Stratonovich).

3. The third development is the recognition that non-Markovian
processes may be essential for neurobiological modeling. This
has been studied for some time in physics (Łuczka, 2005) but
has only recently been pointed out by Friston (2008a,b) in a
neuroscience setting. In fact, Faugeras et al. (2009) provide a
constructive mean-field analysis of multi-population neural
networks with random synaptic weights and stochastic inputs
that exhibits, as a main characteristic, the emergence of non-
Markovian stochastics.

4. Finally the fourth development is the emergence of neural field
models (Coombes, 2010; Deco et al., 2008), which not only
poses much larger scale problems but also the use of integral
equations, differential–integral equations, and partial differen-
tial equations which have yet to be exploited by DCM or GCM.

Biophysical versus non-parametric motivation: As discussed above,
there is an ever increasing use of biophysically motivated neural
mass and field state equations and, in principle, these are preferred
when possible because they bring biophysical constraints to bear
on model inversion and inference. When carrying out exploratory
analyses with very large SSM, it may be acceptable to use simple
linear or bilinear models as long as basic aspects of modeling are
not omitted.
Further generalizations: We want to end this subsection by
mentioning that there is a wealth of theory and numerics for
other stochastic (point) processes (Aalen and Frigessi, 2007;
Commenges and Gégout-Petit, 2009) that have not yet been, to our
knowledge, treated formally in Neuroimaging. Spike trains,
interictal-spikes, and random short-timed external stimuli may
be treated as point processes and can be analyzed in a unified
framework with the more familiar continuous time series. This
theory even encompasses mixtures of slow wave and spike trains.
Causal modeling depends very specifically on the temporal and
spatial scales chosen and the implicit level of granularity chosen to
characterize functional brain architectures. For example, if we
were to study the interaction of two neural masses and model the
propagation of activity between them in detail, we would have to
make use of the PDE that describes the propagation of nerve
impulses. If we eschew this level of detail, we may just model the
fact that afferent activity arrives at a neural mass with a
conduction delay and use delay differential equations. In short,
the specification of the appropriate SSM depends on the spatial
and temporal scale that one is analyzing. For example,
in concurrent EEG/fMRI analysis of resting state oscillations
4 With suggestion by A.N. Kolmogorov.
(Martínez-Montes et al., 2004) the temporal scale of interesting
phenomena (fluctuations of the EEG spectrum) is such that one
may convolve the EEG signal and do away with the observation
equation! This is exactly the opposite of the deconvolution
approach mentioned above. The purpose of Tables 1 and 2 is to
highlight the variety of forms that both state and observation
equations can take; for example, in Table 2-#6 key differential
equations are transformed into differential algebraic equations to
great computational advantage (Valdes-Sosa et al., 2009a).

Specification of priors

It is safe to say that the Neuroimaging (and perhaps generally)
modeling can be cast as Bayesian inference. This is just a euphemism
for saying that inference rests on probability theory. The two key
aspects of Bayesian inference we will appeal to in this article are
(i) the importance of prior believes that form an explicit part of the
generativemodel; and (ii) the central role of Bayesianmodel evidence
in optimizing (comparing and selecting) models to test hypotheses. In
terms of priors, it was very clear in an early state space model for EEG
connectivity (Valdes-Sosa et al., 1996) that without prior assumptions
about the spatial and temporal properties of the EEG, it was not
possible to even attempt source reconstruction. Indeed the whole
literature on ill-posed inverse problems rests on regularization that
can be cast in terms of prior beliefs.

In the SSM formulation, priors may be placed upon parameters in
the observation and state equations, and the states themselves (e.g.,
through priors on the higher-order motion of states or state-noise).
Sometimes, it may be necessary to place priors on the priors
(hyperpriors) to control model complexity. There has been an
increasing use of priors in fMRI research, as clearly formulated in
the DCM and HDM framework (Friston, 2008a,b). In connectivity
analyses, in addition to the usual use of priors to constrain the range of
parameters quantitatively; formal or structural priors are crucial for
switching off subsets of connections to form different (alternative)
models of observed data. Effectively, this specifies the model in terms
of its adjacency matrix, which defines allowable connections or
conditional dependencies among nodes. Conditional independence
(absence of an edge or anti-edge) is easy to specify by using a prior
expectation of zero and with zero variance. This is an explicit part of
model specification in DCM and is implicit in Granger tests of
autoregressive models, with and without a particular autoregression
coefficient.

Crucially, formal priors are not restricted to the parameters of a
model; they can also be applied to the form of the prior density over
parameters. These can be regarded as formal hyperpriors. An
important example here is the prior belief that connections are
distributed sparsely (with lots of small or absent connections and a
small number of strong connections). This sort of hyperprior can be
implemented by assuming the prior over parameters is sparse. A nice
example of this can be found in Valdés-Sosa (2004), Valdés-Sosa et al.
(2005, 2006), and Sánchez-Bornot et al. (2008).

The essential features of their model are shown in Fig. 3. The
authors analyzed slow fluctuations in resting state EEG. In this
situation, convolving these electrophysiological fluctuations with a
HRF affords (convolved) EEG and BOLD signals on the same time scale,
permitting lag-based inference. An example is presented in Fig. 4,
which shows the results of GCM Mapping for 579 ROIs from an EEG
inverse solution and concurrent BOLD signals. The EEG sources were
obtained via a time resolved VARETA inverse solution (Bosch-Bayard
et al., 2001) at the peak of the alpha rhythm. The graphs present the
result of inverting a (first order) multivariate vector autoregression
model, where a sparse l1 norm penalty was imposed on the
parameters (coefficient matrix). The implications of these results
will be further discussed in Conclusion and suggestions for further
work section below.



Fig. 3. Bayesian inference on the connectivity matrix as a random field. a) Causal modeling in Neuroimaging has concentrated on inference on neural states x(r, t)∈R defined on a
subset of nodes in the brain. However, spatial priors can be used to extend models into the spatial domain (cf., minimum norm priors over current source densities in EEG/MEG
inverse problems). b) In connectivity analysis, attention shifts to the AR (connectivity) matrix (or function) a(r, r′), where the ordered pairs (r, r′) belong to the Cartesian product
R×R. For this type of inference, priors are now placed on the connectivity matrix. c) Sparse multivariate autoregression obtains by penalizing the columns of a full multivariate
autoregressive model (Valdés-Sosa et al., 2005) thus forcing the columns of the connectivity matrix to be sparse. The columns of the connectivity matrix are the “outfields” that map
each voxel to the rest of the brain. This is an example of using sparse (spatial) hyperpriors to regularize a very difficult inverse problem in causal modeling.
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Model comparison and Identifiability

As we have seen, the SSMs considered for EEG and fMRI analysis are
becoming increasingly complex, with greater spatial or temporal
coverage and improved biological realism. A fundamental question
arises: Are these models identifiable? That is to say, are all states and
parameters uniquely determined by a given set of data? This is a basic
issue for all inverse problems, and indeedwe are facedwith a dynamical
inverse problem of the greatest importance. For example, recent
discussions about whether lag information can be derived from the
fMRI signal (in spite of heavy smoothing by the HRF and the subsequent
sub sampling) can be understood in terms of the identifiability of delays
in the corresponding SSM. It is striking that, in spite of much classical
work on the Identifiability of SSMs (see for example Ljung and Glad,
1994), a systematic treatment of identification has not been performed
for Neuroimaging models (but see below). An example of the type of
problem encountered is the complaint that a model with many neural
masses and different configurations or parameter values can produce
traces that “look the same as an observed response”.

Identifiability has been addressed in bioinformatics, where much
theory for nonlinear SSM has been developed (Anguelova and
Wennberg, 2010; August and Papachristodoulou, 2009). Of particular
note is DAISY, a computer algebra system for checking nonlinear SSM
Identifiability (Saccomani et al., 2010). Another framework for
modeling and fitting systems defined by differential equations in
bioinformatics is “Potters Wheel” (Maiwald and Timmer, 2008), which
uses a profile likelihood approach (Raue et al., 2009) to explore
“practical Identifiability” in addition to structural (theoretical) Identifia-
bility. So why has Neuroimaging not developed similar schemes?

In fact, it has. In a Bayesian setting the issue of model (and
parameter) identifiability is resolved though Bayesian model com-
parison. If two models generate exactly the same data with the same
number of parameters (complexity), then their evidence will be
identical. This means there is no evidence for one model over the
other and they cannot be distinguished. We will refer a lot to model
evidence in what follows: model evidence is simply the probability of
the data given the model. It is the marginal likelihood that obtains
from marginalizing the likelihood over unknown model parameters.
This is useful to remember because it means the likelihood of a model
(the probability of data given a model and its parameters) is a special
case of model evidence that results whenwe ignore uncertainty about
the parameters. In the same way, classical likelihood ratio tests of two
models are special cases of Bayes Factors used in Bayesian model
comparison. In this context, identifiability is a particular aspect of
model comparison. Identifiability mandates that changing a compo-
nent of a model changes the model evidence. This is the basic idea
behind the profile likelihood approach (Raue et al., 2009), which is
based on the profile of the evidence for models with different
parameter values. There are other examples that can be regarded as
special cases of model comparison; for example, the Kullback–Leibler
information criterion proposed for model identification (Chen et al.,
2009). The evidence can be decomposed into an accuracy and
complexity term (see Penny et al., 2004). Interestingly, the complex-
ity term is the Kullback–Leibler divergence between the posterior and
prior densities over parameters. This means that in the absence of
informative priors, model evidence reduces to accuracy; and
identifiability reduces to a (nontrivial) change in the accuracy or fit
when changing a model or parameter.

The Bayes–Net literature (see below) has dealt with the problem
of Identifiability for graphical causal models at its inception (Spirtes
et al., 2000). It can be shown that a given data set can be compatible
not with a single causal model but with an equivalence class of models

image of Fig.�3


Fig. 4. Sparse multivariate autoregression of concurrent EEG/fMRI recordings. Intra and
inter modality connectivity matrix for a concurrent EEG/fMRI recordings. The data
analyzed here were the time courses of the average activity in 579 ROI: for BOLD (first
half of data vector) and EEG power at the alpha peak. A first-order sparse multivariate
autoregressive model was fitted with an l1 norm (hyper) prior on the coefficient matrix.
The t-statistics of the autoregression coefficients where used for display. The color bar is
scaled to the largest absolute value of the matrix, where green codes for zero. a) the
innovation covariance matrix reflecting the absence of contemporaneous influences:
b) t-statistics for the lag 1 AR coefficients.
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(that all have the same evidence). The implications of this for
Neuroimaging have been considered in Ramsey et al. (2010). From
this discussion, it becomes clear that the ability to measure model
evidence (or some proxy) is absolutely essential to make sensible
Table 3
Classification of observation and state equations used in Neuroimaging state-space mod
Biophysically informedmodels are hypothesis driven andmay afford more efficient inference
be identifiable without additional priors but that may yield biased estimators. Nonparam
estimable but are generally unbiased.

Observation model State mo

Parametric Non-parametric Parametr

Generic Linear canonical HRF
(Glover, 1999)

Linear spline HRF
(Marrelec et al., 2003)

GCM (Br
2010a) b

Biophysically
informed

DCM nonlinear HRF
(Friston et al., 2000)

– Neural m
(Moran e
inferences about models or architectures generating observed data.
This is at the heart of evidence-based inference and DCM.

Summary

State space models for Neuroimaging come in an ever increasing
variety of forms (Tables 1 and 2). It is useful to classify the types of
models used in terms of their observation and state equations, as in
Table 3. Here, we see a distinction between models that are fairly
generic (in that they are not based on biophysical assumptions) and
those that correspond to biologically informed models. The canonical
HRF model is an example of generic HRF. Conventional GCM is based
on a generic model for neural states: the VAR model and has been
extended to switching VAR and bilinear models, the latter used in
some forms of DCM. Being generic is, at the same time, a strength and
weakness; biophysical models allowmuchmore precise and informed
inference—but only if the model is right or can be optimized in terms
of its evidence. We have also seen the key role that model evidence
plays in both making causal inferences by comparing models and
(implicitly) establishing their identifiability. The evidence for a model
depends on both accuracy and complexity and the complexity of the
model depends on its priors.

Another distinction between models is their complexity (e.g.,
number of parameters they call on). It is clear that without prior
beliefs, one cannot estimate more parameters than the degrees of
freedom in the data available. However, modern statistical learning
has gone beyond low dimensional parametric models to embrace
non-parametric models with very high dimensional parameter
spaces. The effective number of degrees of freedom is controlled by
the use of priors. DCM has been concerned mainly with hypothesis
driven parametric models, as has conventional GCM. However,
nonparametric models, such as smoothness priors in the time domain
have been used to estimate the HRF (Marrelec et al., 2003). Another
example is the use of spatial priors to estimate the connectivity matrix
in GCMap (Valdes-Sosa, 2004). Finally, when choosing a State Space
model, it is useful to appreciate that there are two agendas when
trying to understanding the connectivity of complex systems:

1. A data driven exploratory (discovery) approach that tries to scan
the largest model space possible, identifying robust phenomena or
candidates that will serve as constraints for more detailed
modeling. This type of approach generally uses nonparametric or
simply parameterized models for knowledge discovery. Prior
knowledge is generally nonspecific (e.g., connections are sparse)
but relatively non-restrictive.

2. A model driven confirmatory approach that is based on specific
hypothesis drivenmodels that incorporate asmuch biophysical prior
knowledge as possible. Generally, the priors entail specific hypoth-
esis about connectivity that can be resolvedusingmodel comparison.

These two approaches are shown in Fig. 2 (modified from Valdés-
Sosa et al., 1999). In both cases, modeling is constrained by the data,
by biophysical plausibility and ultimately the ability to establish links
with computational models (hypotheses) of information processing
els. Generic models lack specific biophysical constraints but are widely applicable.
(if correct). The term parametric refers to models with a small enough parameter set to
etric models are richly parameterized and therefore require prior distributions to be

del

ic Non-parametric

essler and Seth, 2010) Switching VAR (Smith et al.,
ilinear discrete DCM (Penny et al., 2005)

GCMap (Roebroeck et al.,
2005)

ass models (Valdes et al., 1999) Biophysical DCM
t al., 2008)

Neural fields (Daunizeau
et al., 2009c)

image of Fig.�4


347P.A. Valdes-Sosa et al. / NeuroImage 58 (2011) 339–361
in the brain. Table 3 shows that at one extreme the model-driven
approach is epitomized by Generic Nonparametric Models. Here,
modeling efforts are constrained by data and the attempt to disclose
emergent behavior, attractors and bifurcations (Breakspear et al.,
2006) that can be checked against biophysically motivatedmodels. An
example of this approach is searching the complete brain times brain
connectivity space (Fig. 3) with GCM mapping (Valdes-Sosa, 2004;
Roebroeck et al., 2005). At the other end we have the parametric and
biophysically informed approach that DCM has emphasized (Chen
et al., 2008). Having said this, as evidenced by this paper and
companion papers, there is convergence of the two approaches, with a
gradual blurring of the boundaries between DCM and GCM.

Model inversions and inference

In this section, we look at the problem of model identification or
inversion; namely, estimating the states and parameters of a
particular model. It can be confusing when there is discussion of a
new model that claims to be different from previous models, when it
is actually the samemodel but with a different inversion or estimation
scheme. We will try to clarify the distinction between models and
highlight their points of contact when possible. Our main focus here
will be on different formulations of SSM and how these formulations
affect model inversion.

Discrete or continuous time?

One (almost) always works with discretely sampled data. When
the model is itself discrete, then the only issue is matching the
sampling times of the model predictions and the data predicted.
However, when starting from a continuous time model, one has to
model explicitly the mapping to discrete time.

Mapping continuous time predictions to discrete samples is a well-
known topic in engineering and (probably from the early 50s) has
been solved by linearization of the ODEs and integration over discrete
time steps; a method known as the Exponential Euler method for
reasons we shall see below: see Minchev and Wright (2005) for a
historical review. For a recent review, with pointers to engineering
toolboxes, see Garnier and Wang (2008).

One of the most exciting developments in the 60s, in econometrics
was the development of explicit methods for estimating continuous
models from sampled data, initiated by Bergstrom (1966).5 His idea
was essentially the following. Consider 3 time series X1(t), X2(t), and
X3(t) where we know the values at time t:

dX1 tð Þ
dX2 tð Þ
dX3 tð Þ

0@ 1A = A
X1 tð Þ
X2 tð Þ
X3 tð Þ

24 35dt + ∑1=2dB tð Þ: ð3Þ

Then the explicit integration6 over the interval t + Δt; t½ � is

X1 t + Δtð Þ
X2 t + Δtð Þ
X3 t + Δtð Þ

0B@
1CA = exp AΔtð Þ

X1 tð Þ
X2 tð Þ
X3 tð Þ

0B@
1CA + e t + Δtð Þ

e t + Δtð Þ = ∫Δt

0
exp sAð Þ∑1=2dB t−sð Þ

Σdiscrete = ∫Δt

0
exp sAð Þ∑exp sAT

� �
ds

e t + Δtð Þ eN 0;Σdiscreteð Þ:

ð4Þ
5 Who, in fact, did this not for SDE (ODE driven by Brownian noise) but for linear
ODE driven by random measures, as reviewed in Bergstrom (1984).

6 Note, once again, that we use the convention t + Δt; t½ � for the time interval that
goes from t in the past to t + Δt in the present; while not the conventional usage this
will make later notation clearer.
The noise of the discrete process now has the covariance matrix
Σdiscrete. It is immediately evident from the equation above that the lag
zero covariance matrix Σdiscrete will show contemporaneous covari-
ance even if the continuous covariance matrix Σ is diagonal. In other
words, the discrete noise becomes correlated over the three time-
series (e.g., channels). This is because the random fluctuations ‘persist’
through their influence on the motion of the states. Rather than
considering this a disadvantage Bergstrom (1984) and Phillips (1974)
initiated a line of work studying the estimation of continuous time
Autoregressive models (Mccrorie and Chambers, 2006), and contin-
uous time Autoregressive Moving Average Models (Chambers and
Thornton, 2009). This approach tries to use both lag information (the
AR part) and zero-lag covariance information to identify the
underlying linear model.

The extension of the above methods to nonlinear stochastic
systems was proposed by Ozaki (1992) and has been extensively
developed in recent years, as reviewed in Valdes-Sosa et al. (2009a).
Consider a nonlinear system of the form:

dX tð Þ = f X tð Þð Þdt + ∑1=2dB tð Þ

X tð Þ =
X1 tð Þ
X2 tð Þ
X3 tð Þ

24 35: ð5Þ

The essential assumption in local linearization (LL) of this
nonlinear system is to consider the Jacobian matrix A=∂ f/∂X as
constant over the time period, t + Δt; t½ �. This Jacobian plays the same
role as the matrix of autoregression coefficient in the linear systems
above. Integration over this interval follows as above, with the
solution:

X t + Δtð Þ = X tð Þ + A−1 exp AΔtð Þ−Ið Þf X tð Þð Þ + e t + Δtð Þ ð6Þ7

where I is the identity matrix. This is solution is locally linear but
crucially it changes with the state at the beginning of each integration
interval; this is how is accommodates nonlinearity (i.e., a state-
dependent autoregression matrix). As above, the discretised noise
shows instantaneous correlations. Examples of inverting nonlinear
continuous time neural models using this procedure are described in
Valdes-Sosa et al. (1999), Riera et al. (2007b), Friston and Daunizeau
(2008), Marreiros et al. (2009), Stephan et al. (2008), and Daunizeau
et al. (2009b). Local linearization of this sort is used in all DCMs,
including those formulated in generalized coordinates of motion.

There are several well-known technical issues regarding contin-
uous model inversion:

1. The econometrics literature has been very much concerned with
identifiability in continuous time models—an issue raised by one of
us in the C&C series (Friston, 2009b) due to the non-uniqueness of
the inverse mapping of the matrix exponential operator(matrix
logarithm) for large sampling periods Δt. This is not a problem for
DCM, which parameterizes the state-equation directly in terms
of the connectivity A. However, autoregressive models (AR) try
to estimate A = exp AΔtð Þ directly, which requires a mapping

A =
1
Δt

ln Að Þ to get back to the underlying connectivity. Phillips

noted in the 70s that A is not necessarily invertible, unless one is
sampling at twice the highest frequency of the underlying signal
(the Nyquist frequency) (Phillips, 1973); in other words, unless
one samples quickly, in relation to the fluctuations in hidden states.
In econometrics, there are several papers that study the conditions
in which under-sampled systems can avoid an implicit aliasing
problem (Hansen and Sargent, 1983; Mccrorie and Chambers,
7 Note integration should not be computed this way since it is numerically unstable,
especially when the Jacobian is poorly conditioned. A list of robust and fast procedures
is reviewed in Valdes-Sosa et al. (2009a).
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2006; Mccrorie, 2003). This is not a problem for electrophysiolog-
ical models because sampling is fast relative to the underlying
neuronal dynamics. However, for fMRI this is not the case and AR
models provide connectivity estimates, A =

1
Δt

ln Að Þ∈ℂN×N that
are not necessarily unique (a phenomenon known as “aliasing” as
discussed below).We will return to this problem in the next
section, when considering the mediation of local (direct) and
global (indirect) influences over time. Although this “missing time”
problem precludes inference about coupling between neuronal
states that fluctuate quickly in relation to hemodynamics, one can
use AR models to make inferences about slow neuronal fluctua-
tions based on fMRI (e.g., the amplitude modulation of certain
frequencies; see Fig. 4). Optimal sampling for AR models has been
studied extensively in the engineering literature—the essential
point being that sampling should not be below or evenmuch above
the optimal choice that matches the natural frequencies (time-
constants) of the hidden states (Astrom, 1969; Larsson et al., 2006).

2. When the sampling period Δt is sufficiently small, the AR model is
approximately true. What is small? We found very few practical
recommendations, with the exception of Sargan (1974), who uses
heuristic arguments and Taylor expansions to suggest that a
sampling frequency 1.5 times faster than the Nyquist frequency
allows the use of a bilinear (or Tustin) approximation in (two stage
non-recursive) autoregression procedures. As shown in the
references cited above, it might be necessary to sample at several
times the Nyquist frequency to use AR models directly. However,
an interesting “Catch 22” emerges for AR models: The aliasing
problem mandates fast sampling, but fast sampling violates
Markovian (e.g., Gaussian noise) assumptions, if the true in-
novations are real (analytic) fluctuations.

3. A different (and a more complicated) issue concerns the
identifiability of models of neural activity actually occurring at
rates much higher than the sampling rates of fMRI, even when a
DCM is parameterized in terms of neuronal coupling. This is an
inverse problem that depends on prior assumptions. There are
lessons to be learned from the EEG literature here: Linear
deconvolution methods for inferring neural activity from EEG
proposed by Glover (1999) and Valdes-Sosa et al. (2009a)
correspond to a temporal version of the minimum norm and
LORETA spatial inverse solutions respectively. Riera et al. (2007a)
and Riera et al. (2006), proposed a nonlinear deconvolution
method. In fact, every standard SPM analysis of fMRI data is
effectively a deconvolution, where the stimulus function (that is
convolved with an assumed HRF) provides a generative model
whose inversion corresponds to deconvolution. In the present
context, the stimulus function provides the prior expectations
about neuronal activity and the assumed HRF places priors on the
ensuing hemodynamics. In short, model inversion or deconvolu-
tion depends on priors. The extent to which identifiability will
limit inferences about neuronal coupling rests on whether the
data supports evidence for different models of neuronal activity.
We already know that there is sufficient information in fMRI time
series to resolve DCMs with different neuronal connectivity
architectures (through Bayesian model comparison), provided
we use simple bilinear models. The issue here is whether we can
make these models more realistic (cf., the neural mass models
used for EEG) and still adjudicate among them, using model
evidences: When models are too complex for their data, their
evidence falls and model selection (identification) fails. This is an
unresolved issue.

As one can see from these points, the issue of inference from
discretised data depends on the fundamental frequencies of fluctu-
ations in hidden states, data sampling rate, the model, and the prior
information we bring to the inferential problem. When writing these
lines, we were reminded of the dictum, prevalent in the first years of
EEG source modeling, that one could “only estimate a number of
dipoles that was less than or equal to a sixth of the number of
electrodes”. Bayesian modeling has not increased the amount of
information in data but it has given us a principled framework to
optimize generative or forward models (i.e., priors) in terms of their
complexity, by choosing priors that maximize model evidence. This
has enabled advances in distributed source modeling and the
elaboration of better constraints (Valdés-Sosa et al., 2009b). One
might anticipate the same advances in causal modeling over the next
few years.

Time, frequency or generalized coordinates?

A last point to mention is that (prior to model inversion) it may be
convenient to transform the time domain data to a different
coordinate system, to facilitate computations or achieve a theoretical
objective. In particular transformation to the frequency domain has
proved quite useful.

1. This was proposed first for generic linear models in both
continuous and discrete time (Robinson, 1991). More recently a
nonparametric frequency domain approach has been proposed for
Granger Causality (Dhamala et al., 2008).

2. A recent stream of EEG/MEG effective connectivity modeling has
been introduced by Nolte et al. (2008), Marzetti et al. (2008), Nolte
et al. (2009), andNolte et al. (2006) with the realization that time
(phase) delays are reflected in the imaginary part of the EEG/MEG
cross-spectra, whereas the real part contains contemporaneous
contributions due to volume conduction.

3. Linearised versions of nonlinear DCMs have also been transformed
successfully to the frequency domain (Moran et al., 2008; Robinson
et al., 2008).

As noted above Friston (2008a,b) has proposed a transformation to
generalized coordinates, inspired by their success in physics. This
involves representing the motion of the system by means of an
infinite sequence of derivatives. The truncation of this sequence
provides a summary of the time-series, in much the same way that a
Fourier transform provides a series of Fourier coefficients. In classical
time series analysis, the truncation is based on frequencies of interest.
In generalized coordinates, the truncation is based on the smoothness
of the time series. This use of generalized coordinates in causal
modeling is predicated on the assumption that real stochastic
processes are analytic (Belyaev, 1959).

Model inversion and inference

There are many inversion schemes to estimate the states,
parameters and hyperparameters of a model. Some of the most
commonly used are variants of the Kalman Filer,Monte-Carlomethods
and variational methods (se e.g., Daunizeau et al., 2009b for a
variational Bayesian scheme). As reviewed in Valdes-Sosa et al.
(2009a) the main challenges are how to scale the numerics of these
schemes for more realistic and extensive modeling. The one thing all
these schemes have in common is that they (implicitly or explicitly)
optimize model parameters with respect to model evidence. In this
sensemodel inversion and inference onmodels per se share a common
objective; namely to maximize the evidence for a model.

Selecting or optimizing a model for effective connectivity ulti-
mately rests on model evidence used in model comparison or
averaging. The familiar tests for GCM (i.e. Dickey–Fuller test) are
based on likelihood comparisons. As noted above, the likelihood (the
probability of the data given a model and its parameters) is the same
as model evidence (the probability of the data given a model), if we
ignore uncertainty about the model parameters. However, the models
considered in this paper, that include qualitative prior beliefs call for
measures of goodness that balance accuracy (expected log-likelihood)



8 It might be preferable to use a more precise term “predictability” instead of
influence.

9 DAG = Directed Acyclic Graph. The word ‘graph’ refers to the mapping from the
set of (factorized) joint probability densities over X and the actual directed acyclic
graph that represents the set of conditional independencies implicit in the
factorization of the joint pdf p(x).
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with model complexity. All of these measures (AIC, BIC, GCV, and
variational free energy) are approximations to the model evidence
(Friston, 2008a,b). Model evidence furnishes the measure used for the
final probabilistic inference about a causal architecture (i.e., causal
inference). Clearly, to carry out model comparison one must have an
adequate set of candidates. Model Diagnostics are useful heuristics in
this context that ensure that the correct models have been chosen for
comparison. An interesting example that can be used to perform a
detailed check of the adequacy of models is to assess the spatial and
temporal whiteness of the residual innovation of the model which is
illustrated in (Galka et al., 2004). More generally, the specification and
exploration of model sets (spaces) probably represents one of the
greatest challenges that lie ahead in this area.

Summary

In summary, we have reviewed the distinction between autore-
gression (AR) models and models formulated in continuous time
(DCM). We have touched upon the important role of local linearisa-
tion in mapping from continuous dynamics of hidden states to
discrete data samples and the implications for sampling under AR
models. In terms of model inversion and selection, we have
highlighted the underlying role played by model evidence and have
cast most of the cores issues in model identifiability and selection in
terms of Bayesian model comparison. This subsumes questions about
the complexity of models that can be supported by fMRI data; through
to ultimate inferences about causality, in terms of which causal model
has the greatest evidence. This section concludes our review of
pragmatic issues and advances in the causal modeling of effective
connectivity. We now turn to more conceptual issues and try to link
the causal modeling for Neuroimaging described in this section to
classical constructs that have dominated the theoretical literature
over the past few decades.

Statistical causal modeling

In this section, we review some key approaches to statistical
causality. At one level, these approaches have had relatively little
impact on recent developments in causal modeling in Neuroimaging,
largely because they based on classical Markovian (and linear) models
or ignore dynamics completely. However, this field contains some deep
ideas andwe include this section in the hope that itwill illuminate some
of the outstanding problemswe facewhenmodeling brain connectivity.
Furthermore, it may be the case that bringing together classical
temporal precedence treatments with structural causal modeling will
finesse these problems and inspire theoreticians to tackle the special
issues that attend the analysis of biological time series.

Philosophical background

Defining, discovering and exploiting causal relations have a long and
enduring history (Bunge, 2009). Examples of current philosophical
debates about causality can be found in Woodward (Woodward, 2003)
and Cartwright (2007). An important concept, stressed byWoodward, is
that a cause is something that “makes things happen”. Cartwright, on the
other hand (Cartwright, 2007), argues for the need to separate the
definition, discovery and use of causes; stresses the pluralism of the
concept of cause and argues for the use of “thick causal concepts”. An
example of what she calls a “thin causal claim”would be that “activity in
the retina causes activity in V1”—represented as a directed arrow from
one structure to the other. Instead, itmight bemore useful to say that the
Retina is mapped via a complex logarithmic transform to V1 (Schwartz,
1977). A “thick causal” explanation tries to explain how information is
actually transmitted. For a different perspective see Glymour (2009). It
may be that both thin and thick causal concepts are useful when
characterizing complex systems.
Despite philosophical disagreements about the study of causality,
there seems to be a consensus that causal modeling is a legitimate
statistical enterprise (Cox and Wermuth, 2004; Frosini, 2006; Pearl,
2003). One can clearly differentiate two current streams of statistical
causal modeling; one based on Bayesian dependency graphs or
graphical models which has been labeled as “Structural Causal
Modeling” by White and Lu (2010). The other, apparently unrelated,
approach rests on some variant of Granger Causality for which we
prefer the terms WAGS influence8 for reasons stated below. WAGS
influence modeling appeals to an improved predictability of one time
series by another. We will describe these two streams of modeling,
which leads us to anticipate their combination in a third line of work,
called Dynamic Structural Systems (White and Lu, 2010).

Structural causal modeling: graphical models and Bayes–Nets

Structural Causal Modeling originated with Structural Equation
Modeling (SEM) (Wright, 1921) and is characterized by the use of
graphical models, in which direct causal links are encoded by directed
edges in the graph (Lauritzen, 1996; Pearl, 2000; Spirtes et al., 2000).
Ideally these edges can be given a mechanistic interpretation
(Machamer et al., 2000). Using these graphs, statistical procedures
then discover the best model (graph) given the data (Pearl, 2000;
2003; Spirtes et al., 2000). As explained in the previous section, the
“best” model has the highest evidence. There may be many models
with the same evidence; in this case, the statistical search produces an
equivalence class of models with the same explanatory power. With
regard to effective connectivity, themultiplicity of possibly equivalent
models has been highlighted by Ramsey et al. (2010).

This line of work has furnished Statistical Causal Modeling with a
rigorous foundation and specific graphical procedures such as the
“Back-door” and “Front-door” criteria, to decide whether a given
causal model explains observational data. Here, causal architectures
are encoded by the structure of the graph. In fMRI studies these
methods have been applied by Ramsey et al. (2010) to estimate
directionality in several steps, first looking for “unshielded colliders”
(paths of the form A→B←C) and then finding out what further
dependencies are implied by these colliders. We now summarize
Structural Causal Modeling, as presented by Pearl (2000).

One of the key concepts in Pearl's causal calculus is interventional
probabilities, which he denotes p(x\ i|do(Xi=xi)) or more simply p(x\ i|
do(xi)), which are distinct from conditional probabilities p(x\ i|Xi=xi).
Pearl highlights the difference between the action do(Xi=xi) and the
observation Xi=xi. Note that observing Xi=xi provides information
both about the children and parents of Xi in a directed acyclic graph
(DAG9). However, whatever relationship existed between Xi and its
parents prior to action, this relationship is no longer in effect whenwe
perform the action do(Xi=xi). Xi is held fixed by the action do(Xi=xi),
and therefore cannot be influenced. Thus, inferences based on
evaluating do(Xi=xi) are different in nature from the usual
conditional inference. Interventional probabilities are calculated via
a truncated factorization; i.e. by conditioning on a “mutilated graph”,
with the edges (links) from the parents of Xi removed:

p x =i jdo xið Þ
� �

= ∏
j≠i

p xj jpaj
� �

=
p xð Þ

p xi jpaið Þ : ð7Þ



Fig. 5. Themissing region problem. a) Two typical graphical models including a hidden node (node 2).b) Marginal dependence relationships implied by the causal structure depicted
in (a), after marginalizing over the hidden node 2; the samemoral graph can be derived from directed (causal) graphs A and B. c) Causal relationships implied by the causal structure
depicted in (a), after marginalizing over the hidden node 2. Note that these are perfectly consistent with the moral graph in (b), depicting (non causal) statistical dependencies
between nodes 1 and 3, which are the same for both A and B.
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Here, paj denotes the set of all the parents of the jth node in the
graph and p(x) is the full joint distribution. Such interventional
probabilities exhibit two properties:

P1 : p xi jdo paið Þð Þ = p xi jpaið Þ
P2 : p xi jdo paið Þ; do sð Þð Þ = p xi jdo paið Þð Þ

�
ð8Þ

for all i and for every subset S of variables disjoint of {Xi, PAi}. Property
1 renders every parent set PAi exogenous relative to its child Xi,
ensuring that the conditional p(xi|pai) probability coincides with the
effect (on Xi) of setting PAi to pai by external control. Property 2
expresses the notion of invariance: once we control its direct causes
PAi, no other interventions will affect the probability of Xi. These
properties allow us to evaluate the (probabilistic) effect of in-
terventions from the definition of the joint density p(x) associated
with the pre-intervention graph.

This treatment of interventions provides a semantics for notions
such as “causal effects” or “causal influence”. For example, to see
whether a variable Xi has a causal influence on Xj, we compute (using
the truncated factorization in Eq. (7)) the marginal distribution of Xj

under the actions do(Xi=xi) and check whether that distribution is
sensitive to xi. It is easy to see that only descendants of Xi can be
influenced by Xi; deleting the factor p(xi|pai) from the joint
distribution turns Xi into a root node10 in the mutilated graph. This
can be contrasted with (undirected) probabilistic dependencies that
can be deduced from the factorization of the joint distribution per se.
These dependencies can be thought as (non-causal and non-directed)
correlations among measured variables that can be predicted on the
basis of the structure of the network.

In the context of brain connectivity, themeasures of interventional
and conditional probabilities map onto the notions of effective
connectivity and functional connectivity respectively. Let us consider
two typical situations that arise in the context of the missing region
problem. These are summarized in Fig. 5.

Consider Fig. 5a. In situation A, node 1 influences node 2, which
influences node 3. That is, the causal effect of 1 on 3 is mediated by 2.
The joint distribution of the graphical causal model can be factorized
as pA(x)=p(x3|x2)p(x2|x1)p(x1). In situation B, both 1 and 3 have a
common cause: node 2 influences both 1 and 3. The joint distribution
of this graphical causal model can then be factorized as: pB(x)=p(x1|
x2)p(x3|x2)p(x2). It is easy to prove that in both cases (A and B), 1 and
3 are conditionally independent given 2; i.e., p(x1, x3|x2)=p(x1|x2)p(x3|
x2). This means that observing node 1 (respectively 3) does not
convey additional information about 3 (respectively 1), oncewe know
10 A root node is a node without parents. It is marginally independent of all other
variables in a DAG, except its descendents.
2. Furthermore, note that 1 and 3 are actually marginally dependent;
i.e., p x1; x3ð Þ = ∫p xð Þdx2≠p x1ð Þp x3ð Þ. This means that whatever value
X2 might take, X1 and X3 will be correlated. Deriving the marginal
independencies from the DAG produces an undirected graph (see, e.g.,
Fig. 5b). This undirected graph is called a moral graph and its
derivation is called the moralization of the DAG. For example,
moralizing the DAG A produces a fully connected moral graph.

In brief, both situations (A and B) are similar in terms of their
statistical dependencies. In both situations, functional connectivity
methods would recover the conditional independence of nodes 1 and
3 if node 2 was observed, and their marginal dependence if it is not
(see Fig. 5b).However, the situations in A and B are actually very
different in terms of the causal relations between 1 and 3. This can be
seen using the interventional probabilities defined above: let us
derive the interventional probabilities expressing the causal influence
of node 1 onto node 3 (and reciprocally) in situation A:

pA x3 jdo x̃1ð Þð Þ = ∫pA x2; x3 jdo x̃1ð Þð Þdx2
= ∫p x3 jx2ð Þp x2 j x̃1ð Þdx2
= p x3 jx̃1ð Þ

ð9Þ

pA x1 jdo x̃3ð Þð Þ = ∫pA x1; x2 jdo x̃3ð Þð Þdx2
= p x1ð Þ∫p x2 jx1ð Þdx2
= p x1ð Þ:

ð10Þ

Eq. (8) simply says that the likelihood of any value that x3 might
take is dependent upon the value x̃1 that we have fixed for x1 (by
intervention). In contradistinction, Eq. (9) says that the likelihood of
any value that x1 might take is independent of x3. This means that
node 1 has a causal influence on node 3, i.e. there is a directed
(mediated through 2) causal link from 1 to 3. The situation is quite
different in B:

pB x3 jdo x̃1ð Þð Þ = ∫pB x2; x3 jdo x̃1ð Þð Þdx2
= ∫p x3 jx2ð Þp x2ð Þdx2
= p x3ð Þ

pB x1 jdo x̃3ð Þð Þ = ∫pB x1; x2 jdo x̃3ð Þð Þdx2
= ∫p x1 jx2ð Þp x2ð Þdx2
= p x1ð Þ:

ð11Þ

This shows that nodes 1 and 3 are not influenced by intervention
on the other. This means that here, there is no causal link between 1
and 3.This is summarized in Fig. 5c, which depicts the corresponding
‘effective’ causal graphs, having marginalized over node 2.

Causal calculus provides a simple but principled perspective on the
“missing region” problem. It shows that effective connectivity analysis

image of Fig.�5
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can, in certain cases, address a subset of brain regions (subgraph),
leaving aside potential variables (e.g., brain regions) that might
influence the system of interest. The example abovemakes the precise
confines of this statement clear: one must be able to perform
interventional actions on source and target variables. Given that the
principal ‘value-setting’ interventions available to us in cognitive
neuroscience are experimental stimulus manipulations, our capacity
for such interventions are generally limited to the primary sensory
cortices. Intervention beyond sensorimotor cortex is much more
difficult; although one could employ techniques such as transcranial
magnetic stimulation (TMS) to perturb activity in superficial cortical
areas. However, the perturbation in TMS is unnatural and known to
induce compensatory changes throughout the brain rather than well-
defined effects in down-stream areas.

The sameundirected graph can be derived from themoralization of a
set of DAGs (c.f. from Figs. 5a and b). This set contains a (potentially
infinite) number of elements, and is referred to as the equivalent class. As
stated by Pearl, the identification of causal (i.e., interventional)
probabilities from observational data requires additional assumptions
or constraints (see also Ramsey et al., 2010). Pearl mentions two such
critical assumptions: (i) minimality and (ii) structural stability. Minim-
ality appeals to complexity minimization, when maximizing model
evidence (c.f., Occam's razor). In brief, among a set of causalmodels that
would explain the observed data, onemust choose the simplest (e.g., the
one with the fewest parameters). Structural stability (also coined
‘faithfulness’) is a related requirement that is motivated from the fact
that an absence of causal relationships is inferred from an observed
absence of correlation. Therefore, if no association is observed, it is
unlikely to be due to the particular instantiation of a given model for
which this independence would be predicted (see below). Rather, it is
more likely to be explained in terms of a model that would predict, for
any parameter setting, the observed absence of correlation. This clearly
speaks to the convergent application, mentioned above, of data driven
exploratory approaches that scan the largest model space possible for
correlations to be explained and a model driven confirmatory approach
that appeal to structural stability: Within a Bayesian setting, we usually
specify a prior distribution p(θ|m) over model parameters, which are
usually assumed to be independent. This is justified when the
parameters representmechanisms that are free to change independent-
ly of one another—that is, when the system is structurally stable. In other
terms, the use of such prior favors structurally stable models. In most
cases, stability and minimality are sufficient conditions for solving the
structure discovery inverse problem in the context of observational data.
If this is not sufficient to reduce the cardinality of the equivalent class,
one has to resort to experimental interventions.11 Within the context of
Neuroimaging, this would involve controlling the system by optimizing
the experimental design in terms of the psychophysical properties of the
stimuli and/or through direct biophysical stimulation (e.g., transcranial
magnetic stimulation – TMS – or deep brain stimulation—DBS).
Summary

The causal calculus based on graphical models has some important
connections to the distinction between functional and effective
connectivity and provides an elegant framework in which one can
deal with interventions. However, it is limited in two respects. First, it
is restricted to discovering conditional independencies in directed
acyclic graphs. This is a problem because the brain is a directed cyclic
graph—every brain region is reciprocally connected (at least poly-
synaptically) and every computational theory of brain function rests
11 For example, the back- and front-door criteria (Pearl, 2000) can be used to
optimize the intervention.
on some form of reciprocal or reentrant message passing. Second, the
calculus ignores time: Pearl argues that what he calls a ‘causal model’
should rest upon functional relationships between variables, an example
of which is structural equation modeling (SEM). However, these
functional relationships cannot deal with (cyclic) feedback loops. In
fact, DCM was invented to address these limitations, after evaluating
structural causalmodeling for fMRI time-series. This is why itwas called
dynamic causal modeling to distinguish it from structural causal
modeling (Friston et al., 2003). Indeed, Pearl (2000) argues in favor of
dynamic causal models, when attempting to identify what physicists
call hysteresis effects, whereby the causal influence depends upon the
history of the system. Interestingly, the DAG limitation can be finessed
by considering dynamics and temporal precedence within structural
causal modeling. This is because the arrow of time turns directed cyclic
graphs into directed acyclic graphs, when the nodes are deployed over
successive time points. This leads us to an examination of prediction-
based measures of functional relations.

WAGS influence

The second stream of statistical causal modeling is based on the
premise that a cause must precede and increase the predictability of
its consequence. This type of reasoning can be traced back at least to
Hume (Triacca, 2007) and is particularly popular in time series
analysis. Formally, it was originally proposed (in an abstract form) by
Wiener (1956) (see Appendix A) and introduced into data analysis by
Granger (1963). Granger emphasized that increased predictability is a
necessary but not sufficient condition for a causal relation to exist. In
fact, Granger distinguished between true causal relations and “prima
facie” causal relations (Granger, 1988); the former only to be inferred
in the presence of “knowledge of the state of the whole universe”.
When discussing “prima facie causes” we recommend the use of
the neutral term “influence” in agreement with other authors
(Commenges & Gégout-Petit, 2009; Gégout-Petit & Commenges,
2010). Additionally, it should be pointed out that around the same
time as Grangers work, Akaike (1968), and Schweder (1970)
introduced similar concepts of influence, prompting us to refer to
“WAGS influence modeling” (for Wiener–Akaike–Granger–Schweder).
This is a generalization of a proposal by Aalen (1987) and Aalen and
Frigessi (2007) who were among the first to point out the connections
between the Granger and Shweder concepts.

An unfortunate misconception in Neuroimaging identifies WAGS
influence modeling (WAGS for short) with just one of the specific
proposals (among others) dealt with by Granger; namely, the
discrete-time linear Vector Autoregressive Model (VAR). This simple
model has proven to be a useful tool in many fields, including
Neuroimaging—the latter work well documented in Bressler and Seth
(2010). However, this restricted viewpoint overlooks the fact that
WAGS has dealt with a much broader class of systems:

1. Classical textbooks, such as Lutkephol (2005), show howWAGS can
applied VARmodels, infinite order VAR, impulse response functions,
Vector Autoregressive Moving Average models (VARMA), etc.

2. There are a number of nonlinear WAGS methods that have been
proposed for analyzing directed effective connectivity (Freiwald
et al., 1999, Solo, 2008; Gourieroux et al., 1987; Marinazzo et al.,
2011; Kalitzin et al., 2007)

3. Early in the econometrics literature, causal modeling was extended
to linear and nonlinear random differential equations in continuous
time (Bergstrom, 1988). These initial efforts have been successively
generalized (Aalen, 1987; Commenges & Gégout-Petit, 2009; Comte
& Renault, 1996; Florens & Fougere, 1996; Gill & Petrović, 1987;
Gégout-Petit & Commenges, 2010; Mykland, 1986; Petrović &
Stanojević, 2010) to more inclusive types of dynamical systems.

4. Schweder (1970) describes WAGS concepts for counting processes
in continuous, time which has enjoyed applications in Survival
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Analysis—a formalism that could well be used to model in-
teractions expressed in neural spike train data.

We now give an intuitive explanation of some of these definitions
(the interested reader can refer to the technical literature for more
rigorous treatments). Let us again consider triples of (possibly vector)
time series X1(t), X2(t), X3(t), where we want to know if time series
X1(t) is influenced by time series X2(t) conditional on X3(t). This last
variable can be considered as any time series to be controlled for (if
we were omniscient, the “entire universe”!). Let X[a, b]={X(t)|t∈ [a,
b]} denote the history of a time series in the discrete or continuous
time interval [a, b]. There are several types of influence. One
distinction is based on what part of the present or future of
X1(t) can be predicted by the past or present of X2(τ) τb t. This
leads to the following classification:

• If X2(τ): τb t, can influence any future value of X1(s) for sN t, then it is
a global influence.

• If X2(τ) τb t, can influence X1(t) it is a local influence.
• If X2(τ) τ= t can influence X1(t) it is a contemporaneous influence.

Another distinction is whether one predicts the whole probability
distribution (strong influence) or only given moments (weak
influence). These two classifications give rise to six types of influence
as schematized in Fig. 6 and Table 4 and 5. Briefly, the formal
definitions are as follows.

X1(t) is strongly, conditionally, and globally independent of X2(t)
given X3(t) (not SCGi), if

P X1 ∞; tð � jX1 t;−∞ð �;X2 t;−∞ð �;X3 t;−∞ð �ð Þ
= P X1 ∞; tð � jX1 t;−∞ð �;X3 t;−∞ð �ð Þ:

ð12Þ
Fig. 6. Wiener–Akaike–Granger–Schweder (WAGS) Influences. This figure illustrates the dif
process, which may be influencing the differentiable continuous time process X1(t) (to
predictability in the immediate future (dt), or global influence (dashed arrow) at any set of fu
influence (bottom), and a weak influence (top) if predictability is limited to the moments
When this condition does not hold we say X2(t) strongly,
conditionally, and globally influences (SCGi) X1(t) given X3(t). Note
that the whole future of Xt is included (hence the term “global”). And
the whole past of all time series is considered. This means these
definitions accommodate non-Markovian processes (for Markovian
processes, we only consider the previous time point). Furthermore,
these definitions do not depend on an assumption of linearity or any
given functional form (and are therefore applicable to any of the state
equations in Table 2). Note also that this definition is appropriate for
point processes, discrete and continuous time series, even for
categorical (qualitative valued) time series. The only problem with
this formulation is that it calls on the whole probability distribution
and therefore its practical assessment requires the use of measures
such as mutual information.

X1(t) is weakly, conditionally and globally independent of X2(t)
given X3(t) (not WCGi), if

E X1 ∞; tð � jX1 ∞; tð �;X2 t;−∞ð �;X3 t;−∞ð �½ � = E X1 ∞; tð � jX1 t;−∞ð �;X3 t;−∞ð �½ �:
ð13Þ

If this condition does not hold we say X2(t) weakly, conditionally
and globally influences (WCGi) X1(t) given X3(t). This concept
extends to any number of moments (such as the variance of the
process). There are a number of relations between these concepts: not
SCGi implies not WCGi for all its moments and the converse is true for
influences (WCGi implies SCGi), but we shall not go into details here;
see Florens andMouchart (1985), Florens (2003), Florens and Fougere
(1996), and Florens and Mouchart (1982).

Global influence refers to influence at any time in the future. If we
want to capture the idea of immediate influence we use the local
ferent types of WAGS influence measures. In the middle X2(t) a continuous time point
p and bottom) This process may have local influence (full arrows), which indicate
ture times. If predictability pertains to thewhole probability distribution, this is a strong
(e.g., expectation) of this distribution.
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Table 4
Conditional Independence relations.

Strong (Probability Distribution) Weak (Expectation)

Global (for all horizons) Strongly, Conditionally, Globally, independence (not SCGi) Weakly, Conditionally, Globally, independence (not WCGi)
Local (Immediate future) Strongly, Conditionally, Locally, independence (not SCLi) Weakly, Conditionally, Globally, independence (not WCLi)
Contemporaneous Strongly, Conditionally, Contemporaneously, independence (not SCCi) Weakly, Conditionally, Contemporaneously, independence (not WCCi)

Table 5
Types of Influence defined by absence of the corresponding independences in Table 4.

Strong (Probability Distribution) Weak (Expectation)

Global ( for all horizons) Strongly, Conditionally, Globally, influence (SCGi)
- Strong Granger or Sims influence

Weakly, Conditionally, Globally, influence (WCGi)
- Weak Granger or Sims influence

Local (Immediate future) Strongly, Conditionally, Locally, influence (SCLi)
- Influence (Possibly indirect)

Weakly, Conditionally, Globally, influence (WCLi)
- Direct Influence

Contemporaneous Strongly, Conditionally, Contemporaneously, influence (SCCi) Weakly, Conditionally, Contemporaneously, influence (WCCi)
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concepts defined above. The concepts of strong andweak local influence
have very simple interpretations if we aremodeling in discrete time and
events occur every Δt. To see this, consider the expectation basedweak
conditionally local independence (not WCLi) in discrete time:

E X1 t + Δtð Þ jX1 t;−∞½ �;X2 t;−∞½ �;X3 t;−∞½ �½ �

= E X1 t + Δtð Þ jX1 t;−∞½ �;X3 t;−∞½ �½ �:

ð14Þ

If this condition does not hold we have that X2(t) weakly,
conditionally and locally influences (WCLi) X1(t) given X3(t). Strong
local concepts are defined similarly by considering conditional in-
dependences. For the usual discrete time, real valued time series of
Neuroimaging, all these concepts are equivalent as shown by Florens
and Mouchart (1982) and Solo (2007). As an example, consider the
multivariate autoregressive model of the previous section

X t + Δtð Þ = ∑
p

k=1
AkX t− k−1ð ÞΔtð Þ + e t + Δtð Þ ð15Þ

with the innovation term et+Δt being GWN with covariance
matrix Σ :=Σdiscrete. For this familiar case E X t + Δt½ � jX t;−∞½ �½ � =
∑kAkX t− k−1ð ÞΔtð Þ, and analyzing influence reduces to finding
which coefficients of the autoregressive coefficients are zero.
However, in continuous time there is a problem when Δt→0, since
the stochastic processes we are dealing with are at least almost
surely continuous and limΔt→0E X1 t + Δtð ÞjX1 t;−∞½ �;X2 t;−∞½ �;X3 t;−∞½ �½ � =
limΔt→0 E X1 t + Δ jð Þ½ � is trivially satisfied (limits are now taken in the
sense of a quadraticmean) because the X1(t) process is path continuous—
it will only depend on itself. To accommodate this situation instead we
shall use the following definition for not WCLi (Commenges & Gégout-
Petit, 2009; Comte&Renault, 1996; Florens&Fougere, 1996;Gégout-Petit
& Commenges, 2010; Renault, Sekkat, & Szafarz, 1998):

lim E
Δt→0

X1 t + Δtð Þ−X1 tð Þ
Δt jX1 t;−∞ð �;X2 t;−∞ð �;X3 t;−∞ð �

	 

= lim E

Δt→0

X1 t + Δtð Þ−X1 t + Δtð Þ
Δt jX1 t;−∞ð �;X3 t;−∞ð �

	 

:

ð16Þ

As noted by Renault et al. (1998) (whom we follow closely here),
for finite Δt this is equivalent to the usual definitions. Now how does
this definition relate to the linear SDE in Eq. (3)?
For three time series:

dX1 tð Þ
dX2 tð Þ
dX3 tð Þ

0@ 1A = A
X1 tð Þ
X2 tð Þ
X3 tð Þ

24 35dt + dB tð Þ: ð17Þ

Integrating from t to Δt, we have

X1 t + Δtð Þ−X1 t + Δtð Þ = ∫
t + Δt

t

h
a 1;1ð ÞX τð Þ + a 1;2ð ÞX2 τð Þ

+ a 1;3ð ÞX3 τð Þ+
i
dτ+ σbb B1 t+Δtð Þ;−B2 tð Þð Þ

⇒

limE
Δt→0

X1 t + Δtð Þ−X2 tð Þ
Δt jX1 tð Þ;X2 tð Þ;X3 tð Þ

	 

= a 1;1ð ÞX2 τð Þ

+ a 1;2ð ÞX2 τð Þ + a 1;3ð ÞX3 τð Þ:

This shows that, in effect, the detection of an influence will depend
on whether the coefficients of the matrix A are zero or not. For
nonlinear systems this holds with the local linear approximation. This
treatment highlights the goal of WAGS, like structural causal
modeling, is to detect conditional independencies; in this (AR)
example, weak and local.

The issue of contemporaneous influence measures is quite
problematic. In discrete time, it is clear that the covariance matrix
of two or more time series may have cross-covariances that are due to
an “environmental” or missing variable Z(t). This was discussed by
Akaike and a nice example of this effect is described in Wong and
Ozaki (2007), which also explains the relation of the Akaike measures
of influence to others used in the literature. For continuous time
(Comte and Renault, 1996) define strong (second order) conditional
contemporaneous independence (not SCCi) if:

cov X1 ∞; tð �;X2 ∞; tð � jX1 t;−∞½ ÞX2 t;−∞½ Þ;X3 t;−∞½ Þ½ � = 0: ð18Þ

Note that this is the same definition for continuous time as for the
discrete AR example (Eq. (15)) and is equivalent to requiring that the
elements of the corresponding innovation covariance matrix Σ be
zero. These authors then went on to define weak contemporaneous
conditional independence (not WCCi) if:

lim
Δt→0

cov X1 t + Δtð Þ;X2 t + Δtð Þ jX1 t;−∞½ Þ;X2 t;−∞½ Þ;X3 t;−∞½ Þ½ �f g = 0:

ð19Þ
In the absence of these conditions we have strong (weak)

contemporaneous conditional influences which are clearly non-



354 P.A. Valdes-Sosa et al. / NeuroImage 58 (2011) 339–361
directional. In his initial paper (Granger, 1963) defined a contem-
poraneous version of his influence measure in discrete time. Much
later, (Geweke, 1984)decomposed his own WAGS measure into a
sum of parts, some depending on lag information and others
reflecting contemporaneous (undirected) influences, see in these
C&C (Bressler and Seth, 2010). However, Granger (in later
discussions) felt that if the system included all relevant time series
this concept would not be valid, unless these influences were
assigned a directionality (see Granger, 1988, pp. 204–208). In this
sense, he was proposing a Structural Equation Modeling approach
to the covariance structure of the autoregressive model innovations.
As will be mentioned below (WAGS influence section) this is
something that has been explored in the econometrics literature by
Demiralp and Hoover (2008), Moneta and Spirtes (2006), but not to
our knowledge in Neuroimaging.

More general models
As we have seen, strong global measures of independence are

equivalent to conditional independence and are therefore applicable
to very general stochastic processes. For weak local conditional
independence, the situation is a little more difficult andwe have given
examples, which involve a limit in the mean of a derivative-type
operator expression. Themore general theory, too technical to include
here, entails successive generalizations by Mykland (1986), Aalen
(1987), Commenges and Gégout-Petit (2009), and Gégout-Petit and
Commenges (2010). The basic concept can be stated briefly as follows
(we drop conditioning on a third time series for convenience).
Suppose we have stochastic processes that are semi-martingales of
the form, X(t)=PX(t)+MX(t). Here PX(t) is a predictable stochastic
process12 of bounded variation, which is known as the “compensator”
of the semi-martingale, and Mt

X is a martingale.13 Predictability is the
key property that generalizes Wiener's intuition. The martingale
component is the unpredictable part of the stochastic process we are
interested in.14 Now suppose we have two stochastic processes X(t)
and W(t). If:

1. The martingalesMX1 andMX2 are orthogonal (no contemporaneous
interactions).

2. PX1(t) is measurable15 with respect to X1[t,−∞] only (without
considering X2(t)).

then X1(t) is said to be weakly locally independent of X2(t). In
Gégout-Petit and Commenges (2010) the concept of ~WLCi is
generalized to a general class of random phenomena that include
random measures, marked point processes, diffusions, and diffu-
sions with jumps, covering many of the models in Table 2. In fact,
this theory may allow unification of the analysis of random
behavioral events, LFP, spike recordings, and EEG, just to give a
few examples.
12 Roughly speaking, if PX(t)is a predictable process, then it is “known” just ahead of
time t. For a rigorous definition and some discussion see http://myyn.org/m/article/
predictable-process/).
13 For a martingale M(t),E(M(t+ s)|X[t,−∞])=M(t) for all t and s. This states that
the expected value ofM(t+s) is that at time t, there is no “knowledge” (in the sense of
expected value) for the future from the past, hence this type of process is taken as a
representation of unpredictability.
14 This is a form of the famous Doob–Meyer decomposition of a stochastic process
(Medvegyev, 2007).
15 Roughly speaking PX(t) is measurable with respect to the process X1[t,−∞] and
not X2[t,−∞] if all expected values of PX(t) can be obtained by integrating X1[t,−∞]
without reference to X2[t,−∞]. The technical definition can be found in Medvegyev
(2007). Basically this definition is based on the concept of a “measurable function”
extended to the sets of random variables that comprise the stochastic processes.
Direct influence
Weak local independence might be considered an unnecessarily

technical condition for declaring the absence of an influence; in that
strong (local or global) influence measures should be sufficient.
An early counterexample of this was provided by Renault et al.
(1998), where they considered a model where X(t) is ~WCLi of W(t),
given Z(t). See Fig. 7 for an illustration of this divergence between
local and global influences. This has lead Commenges and Gégout-
Petit (2009) to define WCLi as the central concept for “direct
influence” whereas SCGi is an influence that can be mediated directly
or indirectly through other time series.

An important point here is the degree to which the definition of
WAGS influence depends on the martingale concept or, indeed, on
that of a stochastic process. As discussed in The observation equation
section, there are a number of instances in which Markovian models
developed for financial time series may not apply for Neuroimaging
data. However, the concepts are probably generally valid, as we shall
illustrate with some examples:

• The analytical randomprocesses used in generalized coordinates are
quite different from those usually studied in classical SDE theory but
have been known for a long time (Belyaev, 1959). In fact, there has
been quite a lot of work on their predictability (Lyman et al., 2000)
and indeed there is even work on VARMA modeling of this type of
process (Pollock, 2010).

• We have already seen that the definitions of influence do not
depend on Markovian assumptions as noted by Aalen (1987).

• The use of deterministic bilinear systems in DCM (Penny et al.,
2005) suggests that (non-stochastic) ODEs may be incorporated
into the WAGS framework. This sort of assimilation has in fact been
proposed by Commenges and Gégout-Petit (2009) as a limiting case
of the definition based on semi-martingales above. Extensions of the
definition might be required when dealing with chaotic dynamics
but, even here, measure theoretic definitions are probably valid.16

An interesting discussion of determinism versus stochastics can be
found in Ozaki (1990).

The use or development of WAGS theory for systems that were not
initially considered by the aforementioned papers may well be a
fruitful area of mathematical research. In particular, WAGS may be
especially powerful when applied to processes defined on continuous
spatial manifolds (Valdes-Sosa, 2004; Valdés-Sosa et al., 2006).To our
knowledge, WAGS has yet to be developed for the case of continuous
time and space models; for example, those expressed as stochastic or
random Partial Differential Equations.

Testing and measuring WAGS influence
Above, we have covered different types of WAGS influence. With

these definitions in place we now distinguish between testing for the
presence of an influence (inference on models) and estimating the
strength of the influence (inference on parameters). There is an
extensive literature on this, which we shall not go into here. Examples
of testing versus measuring for discrete time VAR models include the
Dickey–Fuller test and the Geweke measure of influence. In the
electrophysiological literature, there are a number of measures
proposed. A review and a toolbox for these measures can be found
in Seth (2009). From the point of view of effective connectivity, many
of these measures have an uncertain status. This is because effective
connectivity is only defined in relation to a generative model. In turn,
this means there are only two quantities of interest (that permit
16 In particular the Sinai–Ruelle–Bowen measure for hyperbolic dynamical systems
(Chueshov, 2002).

http://myyn.org/m/article/predictable-process/
http://myyn.org/m/article/predictable-process/


Fig. 7. The missing time problem. This figure provides a schematic representation of spurious causality produced by sub-sampling. a) Three time series X1(t), X2(t), and X3(t) are
shown changing at an “infinitesimal” time scale with steps dt, as well as at a coarser sampled time scale with set Δt. Each time series, influences itself at later moments. In the
example X3(t) directly influences X2(t), with no direct influence on X1(t). In turn X2(t) directly influences X1(t), with no direct influence on X3(t). Finally X1(t) does not influence
either X3(t) nor X2(t). There are no contemporaneous influences.b) When only observing at the coarser time scale Δt, spurious contemporaneous influences (mediated by
intermediate nodes) appear between X2(t) and X1(t) and between X3(t) and X2(t). In addition a spurious direct influence appears between X3(t) and X1(t).The graphical
representations of the true and spurious causal relations are to the right of each figure where an arrow represents direct influence and a double arrow represents contemporaneous
influence. Estimating these spurious influences can only be avoided by explicitly modeling their effect from continuous models or using models such as VARMA models which are
resistant to this phenomena.
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inference on models and parameters respectively): the relative
evidence for a model with and without a connection and the estimate
(conditional density over) the connection parameter. For DCM the
first quantity is the Bayes factor and for GCM it is the equivalent
likelihood ratio (Granger causal F-statistics). In DCM, the conditional
expectation of the parameter (effective connectivity) measures the
strength, while for GCM this is the conditional estimate of the
corresponding autoregression coefficient. Other measures (e.g.,
partial directed coherence) are simply different ways of reporting
these conditional estimates. The next section explores the use of
WAGS measures of direct and indirect effects within the Structural
Causal modeling framework, thus bringing together the two major
strands of statistical causal modeling.
Dynamic structural causal modeling

There have been recent theoretical efforts to embed WAGS into
Structural Causal Modeling, which one could conceive of (in the
language of Granger) as providing a means to find out which “prima
facie causes” are actual “causes”. One of the first people to use the
methods from Structural Causal Modeling was Granger himself:
Swanson and Granger (1997) used Bayes-Net methods described in
Spirtes et al. (2000) in combination with autoregressive modeling.
Similar approaches have been adopted by Demiralp and Hoover
(2008) and Moneta and Spirtes (2006), which address the search for
directed contemporaneous influences mentioned above.

However, we should mention three current attempts to combine
Structural Causal Modeling with WAGS influence analysis. We shall
follow White in calling models that can be described by both
theoretical frameworks Dynamic Structural Systems:

1. Eichler has been developing graphical time series models that are
based on discrete time WAGS. Recently, in work with Didelez the
formalization of interventions has been introduced and equivalents
for the backdoor and front-door criteria of Structural Causality
have been defined. Thus, for discrete systems, this work could
result in practical criteria for defining when it is possible to infer
causal structure from WAGS in discrete time.

2. White has created a general formalism for Dynamical Structural
Systems (White and Lu, 2010) based on the concept of settable
systems (White and Chalak, 2009), which supports model
optimization, equilibrium and learning. The effects of intervention
are also dealt with explicitly.

3. Commenges and Gégout-Petit (2009) have also proposed a general
framework for causal inference that combines elements of Bayes–
Nets and WAGS influence and has been applied to epidemiology.
Specifically, as mentioned above, they introduce a very general
definition of WAGS that is valid for continuous/discrete time
processes. This definition can be applied to a mixture of SDEs and
point processes and distinguishes between direct influences and
indirect influences. They then relate the definition to graphical
models, with nodes connected by direct influences only and place
their work in the context of General Systems Theory. Interestingly,
they stress the need for an observation equation to assure causal
explanatory power.

The common theme of all these efforts is to supplement predict-
abilitywith additional criteria to extendWAGS influence to inference on
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Fig. 8. Direct and indirect effects. Causal relationships implied by the DCM given in
Eq. (23). On the left the apparent graph, that includes feedback which precludes causal
analysis. Note that the causal links are actually expressed through implicit delays,
whichmakes this graph a DAG, which is seenmore clearly on the right where each node
is expanded at several time instants.
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causal mechanisms. In the words of Gégout-Petit and Commenges
(2010): “A causal interpretation needs an epistemological act to link the
mathematical model to a physical reality.”Wewill illustrate these ideas
with a particular type of SSM, known as a (stochastic) dynamic causal
model (DCM):

ẋ = f x; θ;uð Þ + ω
y = g x; θð Þ + ε

�
ð20Þ

where x are (hidden) states of the system, θ are evolution parameters,
u are the experimental control variables, ω are random fluctuations
and ε is observation noise. Inverting this model involves estimating
the evolution parameters θ, which is equivalent to characterizing the
structural transition density p ẋ jdo xð Þð Þ, having accounted for obser-
vational processes.17 Here, time matters because it prevents instan-
taneous cyclic causation, but still allows for dynamics. This is because
identifying the structural transition density p ẋ jdo xð Þð Þ effectively
decouples the children of X(t) (in the future) from its parents (in the
past). Let us now examine a bilinear form of this model

f xð Þ = Ax + ∑
i
uiB

ið Þx + Cu + ∑
j
xjD

jð Þx: ð21Þ

Then we have:

A = lim
x;u→0

∂
∂x E ẋ jdo xð Þ½ �

B ið Þ =
∂2

∂x∂ui
E ẋ jdo xð Þ½ �

C = lim
x→0

∂
∂ui

E ẋ jdo xð Þ½ �

D jð Þ =
∂2

∂x∂xj
E ẋ jdo xð Þ½ �:

ð22Þ

The meaning of A; i.e. the effective connectivity is the rate of
change (relative to x) of the expected motion E Ẋ

h i
where X is held at

x≈0.18 It measures the direct effect of connections. Importantly,
indirect effects can be derived from the effective connectivity. To make
things simple, consider the following 3-region DCM depicted in Fig. 8:

ẋ1 = A11x1 + ω1
ẋ2 = A21x1 + A22x2 + ω2
ẋ3 = A31x1 + A32x2 + A33x3 + ω3:

ð23Þ

The effect of node 1 on node 3 is derived from the calculus of the
intervention do(X1=x1), where X1 is held constant at x1 but X2 is
permitted to run its natural course. This intervention confirms that
node 1 has both a direct and an indirect effect on node 3 (through
node 2).19 Interestingly, indirect effects can also be derived by
17 Note that the interventional interpretation of DCM is motivated by the (temporal)
asymmetry between the left- and the right-hand terms in Eq. (24). Its right-hand
term gives us the expected rate of change E Ẋ tð Þ

h i
of X(t) if we fix X(t) to be x (i.e. if we

perform the action do(x)), but does not provide any information about what X(t) is
likely to be if we fix its rate of change Ẋ tð Þ. This is best seen by noting that the system's
motion Ẋ tð Þ is a proxy for the system's future state X(t+Δt), which cannot influence its
own past X(t). Interestingly, this shows how interventional and prediction-over-time
oriented (i.e. WAGS) interpretations of DCM are related.
18 The original motivation for the neural evolution equation of DCM for fMRI data
considered the system's states x as being perturbations around the steady-state
activity x0. Thus, x=0 actually corresponds to steady (background) activity within the
network (x0).
19 Interventional probabilities in a dynamical setting have recently been derived in,
e.g., Eichler and Didelez (2010).
projecting Eq. (20) onto generalized coordinates; i.e. by deriving the
evolution function of the augmented state space x̃ = x; ẋ; x

::
;…ð ÞT (see

Friston et al., 2008a,b for a variational treatment of stochastic
dynamical systems in generalized coordinates). For example, deriving
the left and the right hand side of the last equation in Eq. (23) with
respect to time yields:

x
::
3 = Ã31x1 + Ã32x2 + Ã33x3 + ω̃3

Ã31 = A31 A11 + A33ð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
direct effect

+ A32A21|fflfflffl{zfflfflffl}
indirect effect

Ã32 = A32 A22 + A33ð Þ
Ã33 = A33A33

ð24Þ

where ω̃3 lumps all stochastic inputs (and their time derivatives)
together. The total effect of node 1 onto node 3 is thus simply
decomposed through the above second order ODE (Eq. (24)), as the
sum of direct and indirect effects. One can see that the indirect causal
effect of node 1 on node 3 is proportional to the product A32A21 of the
path coefficients of the links [1→2] and [2→3].This speaks to a partial
equivalence of the do calculus and the use of generalized coordinates,
when modeling both direct and mediated (indirect) effects. This is
because embedding the evolution equation into a generalized
coordinates of motion naturally accommodates dynamics and the
respective contributions of direct/indirect connections (and correla-
tions induced by non-Markovian state noise ω). However, the
embedding (truncation) order has to be at least as great as the
number of intermediary links to capture indirect effects.

This type of reasoning is very similar to the treatment of direct and
indirect influences under WAGS influence and exemplifies a conver-
gence of Structural Causal (Bayes-Net) Modeling andWAGS influence.
One could summarize this ambition by noting the “arrow of time”
converts realistic (cyclic) graphical models – that include feedback
and cyclic connections – into a DAG formalism, to allow full causal
inference. So what are the limits of this approach in Neuroimaging?

Challenges for causal modeling in Neuroimaging

The papers in this C&C highlight challenges that face methods for
detecting effective connectivity. These challenges arise mainly in the
analysis of BOLD signals. To date, the only experimental examination
of these issues is reported in the paper that originated this series
(David et al., 2008). The main message from the ensuing exchanges is
the need to account for the effect of the HRF; that is, to include an
appropriate observation model in the analysis, along with careful
evaluation of form, priors and Identifiability.

Another approach to testing the validity and limits of the methods
discussed above has been through computer simulations. The results
of these simulations have been mixed. A number of papers have
supported the use of GCM in fMRI (Deshpande et al., 2009; Stevenson
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20 Such a data set in an animal model including EEG, EcoG, DWI tractography and
fMRI is being gathered by Jorge Riera (Tohoku University), within a collaboration
including F. H. Lopes da Silva, Thomas Knoesche, Olivier David, and the authors of this
paper. This data set will be made publicly available in the near future.
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and Körding, 2010; Witt and Meyerand, 2009). Others have shown
advantages for Bayes-Net methods in short time series and for GCM
for longer time series (Zou et al., 2009).

An extensive set of simulations (NETSIM) has been carried out by
Smith et al. (2010b) using non-stationary (Poisson-type) neural
innovations in several configurations of nodes and simulating
hemodynamics using the fMRI version of DCM. Many different
methods were compared (apart from DCM), distinguishing between
those that estimate undirected association (functional connectivity)
from those that estimate “lagged” dependence (essentially a form of
effective connectivity). The main conclusion was that a few
undirected association methods that only used the information in
the zero lag covariance matrixes perform well in identifying
functional connectivity from fMRI. However, lag-based methods
“performworse”. We speculate that lag information is lost by filtering
with a (regionally variable) HRF and sub-sampling. Thus one could
expect that (stochastic) DCMmight perform better, as supported by a
comparison of SEM and DCM (Penny et al., 2004).

Interesting as these results are, several points remain unresolved.
In the first place, more biophysically realistic simulations are called
for, especially in the simulation of neurodynamics. The neurody-
namics model in DCM for fMRI is intentionally generic, to ensure
identifiability when deconvolving fMRI time-series. There is work
suggesting that discrete time Vector Autoregressive Moving Average
models are immune to sub-sampling and noise relative to VARmodels
(Amendola et al., 2010; Solo, 1986; 2007). Considering that WAGS
influence modeling with VARMAmodels is in the standard time series
textbooks (Lutkephol, 2005), it is surprising that this model has not
been used in Neuroimaging, with the notable exception of (Victor
Solo, 2008).

NETSIM has not yet been tested using continuous timemodels. The
problem, as pointed out by the creators of NETSIM and (Roebroeck
et al., 2005), is not only sub-sampling but the combined effect of sub-
sampling and the low pass filtering of the HRF. However, these
problems only pertain to AR models. Continuous time DCMs have an
explicit forward model of (fast) hidden states and are not confounded
by sub-sampling or the HRF, provided both are modeled properly in
the DCM. The key issue is whether DCM can infer hidden states in the
absence of priors (i.e., stimulus functions) that are unavailable for
design-free (resting state) fMRI studies of the sort generated by
NETSIM. This is an unsettled issue that will surely be followed up in
the near future, with the use of biophysically more informed models
and new DCM developments; e.g., DCM in generalized coordinates,
stochastic DCMs and the DCM–GCM combinations that are being
tested at the moment.

It should further be noted that the effect of sub-sampling (and
hemodynamic convolution) are only a problem at certain spatial and
temporal scales. Undoubtedly it must be a concern, when inferring the
dynamics of fast neural phenomena. However, it is clear that brain
activity spans many different spatial (Michael Breakspear and Stam,
2005) and temporal (Vanhatalo et al., 2005) scales. Multi-scale time
series methods (including WAGS influence measures) have already
been used in econometrics (Gencay et al., 2002) and could be applied
in neuroscience.

One example of events that occur at a time scale that is probably
sufficiently slow to allow simple (AR) WAGS influence analysis are
resting state fluctuations observed in concurrent EEG/fMRI record-
ings. The analysis of causal relations between EEG and BOLD have
been studied by several authors (Eichler, 2005; Jiao et al., 2010;
Valdés-Sosa et al., 2006) and is illustrated in Fig. 4:The autoregressive
coefficients of this first order sparse VAR model suggest that:

1. There are hardly any lag 0 (or contemporaneous) interactions
between ROIs.

2. The only coefficients that survive the FDR threshold in the fMRI are
those that link each ROI to its own past.
3. There is no influence of the fMRI on the EEG.
4. There are many, interesting interactions, among the EEG sources.
5. There are a number of influences of the EEG sources on the fMRI.

This is a consistent causalmodel of EEG induced fMRImodulation—
valid only for the slow phenomena that survive convolution with the
HRF and for the alpha band EEG activity that was investigated here. Of
course there are neural phenomena that might show up at as
contemporaneous at this sampling rate—but we have filtered them
out. An interesting analysis of information recoverable at each scale
can be found in Deneux and Faugeras (2010).

Conclusion and suggestions for further work

1. We believe that the simulation efforts that are being carried
currently out are very useful and should be extended to cover a
greater realism in the neurodynamics, as well as to systematically
test new proposals.

2. It will be also be important to have standardized experimental data
from animals as a resource for model testing. Ideally this data set
should provide intracranial recordings of possible neural drivers,
BOLD-fMRI, surface EEG, diffusion MRI based structural connectiv-
ity and histological based connectivity matrices.20

3. There is a clear need for tools that can assess model evidence (and
establish their Identifiability) when dealing with large model
spaces of biophysically informed SSMs. These should be brought to
bear on the issue of bounds on model complexity, imposed by the
HRF convolution and sub-sampling in fMRI.

4. We foresee the following theoretical developments in Causal
modeling for effective connectivity:
a. The fusion of Bayes–Net and WAGS methods.
b. The WAGS tools developed for combined point and continuous

time stochastic processes may play an important role in the
connectivity analysis of EEG/fMRI, LFP and spike train data.

c. WAGS methods must be extended to non-standard models,
among others: non-Markovian, RDE, and delay differential
equations.

5. The development of exploratory (nonparametric), large scale
state-space methods that are biophysically constrained and
contain modality specific observation equations. This objective
will depend critically on the exploration of large model spaces and
is in consistent with the recent surge of methods analyzing “Ultra-
High” dimensional data.

6. The explicit decomposition of multiple spatial and frequency
scales.

7. Effective connectivity in the setting of Neural Field Modeling

We hope to have focused attention on these issues, within a
unifying framework that integrates apparently disparate and impor-
tant approaches.We are not saying that DCM and GCM are equivalent,
but rather that an integration is possible within a Bayesian SSM
framework and the use of model comparison methods. Our review of
the field has been based on the use of state spacemodels (SSM).While
we are aware that SSMs are not the only possible framework for
analyzing effective connectivity, this formulation allowed us to
present a particular view that we feel will stimulate further work.

Besides reviewing current work we have discussed a number of
new mathematical tools: Random Differential Equations, non-Mar-
kovian models, infinitely differentiable sample path processes, as well
as the use of graphical causality models. We also considered the use of
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continuous-time AR and ARMA models. It may well be that some of
these techniques will not live up to expectations, but we feel our field
will benefit from these and other new tools that confront some of the
particular challenges addressed in this discussion series.
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Appendix A. Wiener's original definition of causality

This approach was first formalized by Wiener (1956) as follows.21

Consider a strictly stationary (possibly complex) stochastic processes22

X1(t, ω) defined as a collection of random variable for all integer time
instants t and realizations ω. Wiener showed how to construct its
“innovation”—the unit variancewhite noise time series E1(t,ω)which is
uncorrelatedwith thepast ofX1(t,ω). The innovationE2(t,ω) can alsobe
constructed for a second time series X2(t,ω). Now consider the random
variable K1(ω), that part of E1(t, ω) uncorrelated with its own past and
thatofE2(t,ω). The variance of this randomvariable lies between0and1
and is the degree to which the time series X1(t, ω) does not depend on
the past of X2(t,ω). One minus this variance is theWiener measure C of
the causal effect of X2(t,ω) on X1(t,ω). Thismeasure of influencewas in
fact expressed by Wiener as an infinite sum:

IW2→1 = ∑
∞

m=1
ρ t; t−mð Þj j2 + ∑

∞

m=1
∑
∞

n=1
ρ t; t−mð Þρ t−n; t−mð Þ

���� ����2 + ⋯

ρ t; sð Þ = E X1 tð Þ;X2 sð Þ
h i

ð25Þ

where X sð Þ indicates the complex conjugate of a time series.
As pointed out in Bressler and Seth (2010) this definition is not

practical. We elaborate on why: First, it is limited to strictly stationary
processes and involves an infinite series of moments without
specification of how to perform the requisite calculations. More
seriously, it only involves a finite number of series and ignores the
potential confounding effect of unobserved (or latent) causes. More
importantly, it adopts the “functional formulation” of von Mises that
lost out to the currently predominant “stochastic formulation” of
Kolmogorov and Doob (Von Mises and Doob, 1941).Nevertheless
Wiener's definition has several points that deserve to be highlighted:

1. It was not limited to autoregressive models but was based on the
more general Moving Average Representation (MAR).

2. Although defined explicitly for discrete time stochastic processes,
the extension to continuous time was mentioned explicitly.

3. Applications in neuroscience were anticipated. In fact, Wiener
elaborated on its possible use: “Or again, in the study of brain
waves we may be able to obtain electroencephalograms more or
21 With some loss of rigor we have simplified the definitions, making our notation
consistent with current time series analysis. For greater detail please consult the
original references.
22 That is Pr(X1(t1, ω), ⋯, X1(tn, ω))=Pr(X1(t1+τ, ω), ⋯, X1(tn+τ, ω)) for all for all n
and τ.
less corresponding to electrical activity in different parts of the
brain. Here the study of the coefficients of causality running both
ways and of their analogs for sets of more than two functions f may
be useful in determining what part of the brain is driving what
other part of the brain in its normal activity”.

4. It is instructive to compare this initial definition with modern
accounts of direct influence.
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