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Abstract

We give a new proof of the NP-completeness of multiplicative linear logic without constants
by a direct encoding of the Hamiltonian circuit decision problem. c© 2001 Published by Elsevier
Science B.V.

1. Introduction

Max Kanovich proved the NP-completeness of various fragments of multiplicative
linear logic (MLL) by an encoding of the 3-partition problem [6]. We show the
NP-completeness of MLL by encoding a problem of di:erent nature, namely a graph-
theoretical decision problem. This is a reference problem of the complexity theory. Our
main contribution is to realize this without the use of additives. Normally, a natural
encoding of the Hamiltonian circuit decision problem would be in the additive frag-
ment (MALL), but this is not satisfactory because MALL is PSPACE-complete [9].
So, we use a multiplicative management of the additives. We can <nd a similar idea
in the proof of undecidability in the second-order fragment of MLL [8] obtained from
the result of Lafont [7] where the additives are used for zero-test. We give two proofs
which justify our encoding, one using proof nets, and the other using Horn implica-
tions: we obtain an interpretation of the oriented graphs as formulas and of the paths
as proofs. Since the encoding is intuitionistic and MLL is conservative over its intu-
itionistic fragment, our result is also valid for intuitionistic multiplicative linear logic.
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Our approach suggests a more general study of (the foundations of) graph theory in
the context of linear logic.

2. The encoding

Let G be an oriented graph. This means that G is a couple (V; E) with V being
a <nite non-empty set and E⊆V ×V . An element of V (respectively E) is called a
vertex (respectively an edge). The <rst (respectively second) projection of an edge is
called its origin (respectively destination). For a vertex i (respectively j) in V , we note
deg+(i) (respectively deg−(j)) the number of edges in G with origin i (respectively
destination j).
A path from the vertex x to the vertex y in G is a sequence of edges e0; e1; : : : ; el

in G such that x is the origin of e0, for every r; 06r¡l the destination of er is the
origin of er+1 and y is the destination of el. A path p in G is Hamiltonian, if every
vertex of G occurs exactly once as the origin of an edge of p. A path from the vertex
x to the vertex y is a circuit if x=y.
In the following, we consider graphs 1 such that for each vertex i; deg+(i)¿1;

deg−(i)¿1 such that there is a vertex i; deg+(i)¿2 and a vertex j; deg−(i)¿2.
Let O be a vertex in V . Let V ∗ be the set V − {O}. To every vertex i in V , we

associate two atomic formulae ai and bi. It is easy to show that the existence of a
Hamiltonian circuit in G is equivalent to the provability in multiplicative additive linear
logic of the sequent:

bO; {ai ( bi}i∈V∗ ; {(bi ( aj) & 1}(i;j)∈E � aO:

Let k be an atomic formula, and S the sequent 2 of MLL

{k ⊗ ai ( k ⊗ bi}i∈V∗ ; {bi ( aj}(i;j)∈E;

k ⊗ aO ( ⊗i∈V b�
+
i

i � k ⊗ bO ( ⊗j∈V a
�−j
j ;

where

�+i = deg
+(i)− 1 for each vertex i

and

�−j = deg
−(j)− 1 for each vertex j:

Theorem 1. There is a Hamiltonian circuit in the oriented graph G if and only if
the sequent S is provable in multiplicative linear logic.

1 The main result can be stated for graphs in general.
2⊗i∈V x�ii is equivalent to ⊗i∈V ′ x�ii where V ′ is {i ∈ V |�i �= 0}. See [5] for proof-nets with constants.
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3. The necessary condition

If G has a Hamiltonian circuit (v0; v1); (v1; v2); : : : ; (vn−1; vn), with v0 = vn=O then
we get by induction a proof of

{k ⊗ avi ( k ⊗ bvi}i∈[1;:::;n−1]; {bvi ( avi+1}i∈[0;:::;n−1]; k ⊗ bv0 � k ⊗ avn :

If E∗ is the set of edges not in the Hamiltonian circuit, we get easily

⊗i∈V b�
+
i

i ; {bi ( aj}(i;j)∈E∗ � ⊗j∈V a
�−j
j

and we can <nish the proof of S by a left and a right introduction of the linear
implication.

4. The su�cient condition

4.1. Multiplicative proof-nets

We do not give full de<nitions for multiplicative proof-nets [5]. We use a modi<ed
version of the Danos–Regnier notation [2], and represent a binary tensor and par by:
We use n-ary versions of the connectors as well.

Remember that the n-ary o is considered as a single switch which is positioned on one
of the premises. The Danos–Regnier correctness criterion for multiplicative proof-nets
[2] is valid.

The following subnets, which correspond to the formulae 3 k ⊗ aO ( ⊗i∈V b�
+
i

i ; k ⊗
bO ( ⊗j∈V a

�−j
j ; k⊗ai ( k⊗bi and bi ( aj are, respectively, called F-device, I -device,

V -device and E-device. 4

4.2. Proof using proof-nets

Suppose as given a proof-net P for the sequent S. For a given atom A, we will say
that the device d1 is A-connected to the device d2 if there is an axiom-link connecting
the A-port of d1 to the A⊥-port of d2 (Fig. 1).

3 The formulas on the left in the sequent S are negated.
4 The notations stand, respectively, for <nal, initial, vertex and edge.
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Fig. 1. Example of a proof-net.

We use the correctness criterion to construct a Hamiltonian circuit in G. Consider
the k-axiom-links in P. The acyclicity condition forbids the existence of a sequence of
V-devices v0; v1; : : : ; vl, such that v0 = vl and for each i; 06 i ¡ l; vi is k-connected to
vi+1. It would be suMcient to put each o-switch occurring in one of the V-devices in
the sequence on the position k to get a cycle. If we call v0 the I-device, then there is a
sequence of V-devices v1; v2; : : : ; vn, such that for each i; 06 i6n−1; vi is k-connected
to vi+1, and vn is the F-device. Every V-device v and the F-device is aj-connected to
an E-device.
If an E-device e is bi-connected to the F-device, then the I-device is aj-connected

to e, otherwise one would get a cycle by putting the o-switch of the F-device on the
position corresponding to e and all other o-switches on V-devices on the k-position.
From

∑
i∈V �+i =

∑
i∈V �−i , we have that if the I-device is aj-connected to an E-device

e, then e is bi-connected to the F-device.
We prove by downward induction on the integer r; r ¡ n that if the V-device (or the

F-device) vr+1 is aj-connected to the E-device er , and er is bi-connected to a device
u, then u equals vr . If u is a vl, with l¡r, by switching vr on a⊥j , and vl on k⊥, we
disconnect, the proof-net. Thus u equals vr . The sequence e0; e1; : : : ; en−1, where el is
the edge corresponding to the E-device el, yields a Hamiltonian circuit of G.

4.3. Proof using horn programs

De�nition 2. A simple conjunction is a tensor of positive literals.

A Horn implication is a formula of the form X (Y where X and Y are simple
conjunctions.

De�nition 3. For a multiset � consisting of Horn implications, a sequent of the form
W;� �Z where W and Z are simple conjunctions is called a Horn sequent.

Note that if W = k ⊗ bO; Z = ⊗j∈V a
�−j
j and

� = {{(k ⊗ ai)( (k ⊗ bi)}i∈V∗ ; {bi ( aj}(i;j)∈E; (k ⊗ aO)( ⊗i∈V b�
+
i

i }

then W;� � Z is a Horn sequent. By reversibility of right-linear implication, it is prov-
able if and only if S is provable.
The idea of Kanovich [6] is that a branching Horn program produces Z from W by

consuming generalized Horn implications of �. Because our � is a multiset consisting
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only of Horn implications we use a restricted form of Horn programs and suitable
theorems.

De�nition 4. A Horn program is a chain where each vertex is labelled by a simple
conjunction and each edge is labelled by a Horn implication X (Y which describes
the elementary assignment operation producing Y ⊗U from X ⊗U .

Theorem 5 (Completeness, Kanowich [6]). For any � consisting of Horn implica-
tions; a sequent of the form

W;� � Z

is derivable in linear logic if and only if we can construct a Horn program P such
that
(1) All formulas used in the program P are from �;
(2) In the chain P each formula of � is used exactly once;
(3) The 9rst node is labelled by W and the last one by Z .

If the sequent S is provable then by the completeness theorem, we can construct a
Horn program P which satis<es:
• P starts from k ⊗ bO and reaches k ⊗ aO at a certain node using alternative formulae
of type bi( aj and (k ⊗ ai)( (k ⊗ bi):

nl k ⊗ bi


� bi (aj

nl+1 k ⊗ aj


� (k ⊗ aj)((k ⊗ bj)

nl+2 k ⊗ bj

• All the {(k ⊗ ai)( (k ⊗ bi)}i∈V∗ are used before one reaches k ⊗ aO.
Here is the key point of the proof: if a node in P has the label k ⊗ aj then the next

edge cannot have the labelling (k ⊗ aO)( ⊗i∈V b�
+
i

i before we have already used all

of the {(k ⊗ ai)( (k ⊗ bi)}i∈V∗ . Otherwise the next node has the label ⊗i∈V b�
+
i

i which
does not contain an occurrence of k and then no following edge in the chain can be
labelled by a (k ⊗ ai)( (k ⊗ bi). This contradicts the fact that in the chain P each
formula of � is used exactly once. So this implies the existence of a Hamiltonian
circuit in G=(V; E).
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4.4. Proof using sequent calculus

In this section, we work with proofs in intuitionistic sequent calculus.

Lemma 6. Let U ⊆V and E⊆V ×V .
(i) If k; bi; {k ⊗ ap( k ⊗ bp}p∈U ; {bp( aq}(p; q)∈E � k ⊗ aj is provable with {i; j} =∈U

then there exists a Hamiltonian path from i to j in G=(U ∪{i; j}; E);
(ii) If k; ai; {k ⊗ ap( k⊗bp}p∈U ; {bp( aq}(p; q)∈E � k⊗aj is provable with i∈U and

j =∈U then there exists a Hamiltonian path from i to j in G=(U ∪{j}; E);
(iii) If k; bi; {k ⊗ ap( k⊗ bp}p∈U ; {bp( aq}(p; q)∈E � k⊗ bj is provable with i =∈U and

j ∈ U then there exists a Hamiltonian path from i to j in G=(U ∪{i}; E);
(iv) If k; ai; {k ⊗ ap( k⊗bp}p∈U ; {bp( aq}(p; q)∈E � k⊗bj is provable with {i; j} ∈ U

then there exists a Hamiltonian path from i to j in G=(U; E).

Proof. By induction on n=card(U )+ card(E). Let P(n) the conjuction of (i)–(iv) at
rank n. Suppose that P(m) is true for all m¡n.

Case(i): If k; bi {k ⊗ ap( k ⊗ bp}p∈U ; {bp( aq}(p; q)∈E � k ⊗ aj is provable then
consider the last rule in a cut-free proof of this sequent:
• rule of left-linear implication on k⊗al( k⊗bl for l ∈ U . Balance of atoms implies
that the <rst sequent is provable if and only if

k; bi; {k ⊗ ap ( k ⊗ bp}p∈U1 ; {bp ( aq}(p;q)∈E1 � k ⊗ al;

k ⊗ bl; {k ⊗ ap ( k ⊗ bp}p∈U2 ; {bp ( aq}(p;q)∈E2 � k ⊗ aj;

are provable, where {U1; U2} is a partition on U\{l} and {E1; E2} is a parti-
tion of E. By reversibility of left-tensor rule and induction hypothesis (i) there
are Hamiltonian paths from i to l in G=(U1 ∪{i; l}; E1) and from l to j in
G=(U2 ∪{l; j}; E2). Because {i; j} =∈U , there exists a Hamiltonian path from i
to j in G=(U1 ∪U2 ∪{l; i; j}; E1 ∪E2) i.e. in G=(U ∪{i; j}; E).

• rule of left-linear implication on br( as for (r; s) ∈ E. Balance of atoms implies
that the <rst sequent is provable if and only if

bi; {k ⊗ ap ( k ⊗ bp}p∈U1 ; {bp ( aq}(p;q)∈E1 � br; (1)

k; as; {k ⊗ ap ( k ⊗ bp}p∈U2 ; {bp ( aq}(p;q)∈E2 � k ⊗ aj; (2)

are provable where {U1; U2} is a partition of U and {E1; E2} is a partition of
E\{(r; s)}. By case analysis of the last rule, (1) is provable if and only if i= r
and U1 =E1 = ∅. By induction hypothesis (ii) on (2); there is a Hamiltonian path
from s to j in G=(U2 ∪{j}; E2). Because i =∈U , there exists a Hamiltonian path
from i to j in G=(U2 ∪{i; j}; E2 ∪{(r; s)}).
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• rule of right tensor on k ⊗ aj. Balance of atoms implies that the <rst sequent is
provable if and only if

k; {k ⊗ ap ( k ⊗ bp}p∈U1 ; {bp ( aq}(p;q)∈E1 � k; (1)

bi{k ⊗ ap ( k ⊗ bp}p∈U2 ; {bp ( aq}(p;q)∈E2 � aj; (2)

are provable where {U1; U2} is a partition of U and {E1; E2} is a partition of
E. It follows from a study of the last rule that (1) is provable if and only if
U1 =E1 = ∅. Likewise, (2) is provable if and only if U2 = ∅ and E2 = {(i; j)} (i.e.
n=1). G=({i; j}; E2) has a trivial Hamiltonian path from i to j.

Case (ii): This is similar to Case (i) except that the last rule in a cut-free proof of this
sequent can be a rule of right tensor on k ⊗ aj if and only if i= j and U =E= ∅ (i.e.
n=0). But also it cannot be a rule of left-linear implication on br( as for (r; s) ∈ E
because atoms cannot be balanced.

Case(iii): This is similar to Case(i).
Case(iv): This is similar to Case(i) except that the last rule in a cut-free proof of

this sequent cannot be a rule of left-linear implication on br( as for (r; s)∈E or a
rule of right tensor on k ⊗ bj because atoms cannot be balanced.
So P(n) is true.

Lemma 7. Let U ⊆V and E⊆V ×V .

(i) If k; bi; {k ⊗ ap( k ⊗ bp}p∈U∗ ; {bp( aq}(p; q)∈E; (k ⊗ aO)( ⊗i∈U b�
+
i

i � ⊗j∈U a
�−j
j

is provable with {i} =∈U then there exists a Hamiltonian path from i to O in
G=(U ∪{i; O}; E);

(ii) If k; ai; {k ⊗ ap( k ⊗ bp}p∈U∗ ; {bp( aq}(p; q)∈E; (k ⊗ aO)( ⊗i∈U b�
+
i

i � ⊗j∈U a
�−j
j

is provable with i∈U then there exists a Hamiltonian path from i to O in
G=(U ∪{O}; E).

Proof. By induction on n=card(U ) + card(E). Let P(n) be (i) and (ii) at rank n.
Suppose that P(m) is true for all m¡n.

Case (i): If k; bi; {k ⊗ ap ( k ⊗ bp}p∈U∗ ; {bp(aq}(p;q)∈E; (k ⊗ aO)( ⊗i∈Ub
�+i
i �

⊗j∈U a
�−j
j is provable then consider the last rule in a cut-free proof of this sequent:

• rule of left-linear implication on k ⊗ al( k ⊗ bl for l∈U ∗ and rule of left-linear
implication on br( as for (r; s)∈E. Similar to Case (i) of Lemma 6, using re-
versibility of left-tensor rule, induction hypothesis and Lemma 6.

• rule of left-linear implication on (k ⊗ aO)( ⊗i∈Ub
�+i
i . Balance of atoms implies that

the <rst sequent is provable if and only if

⊗i∈U b�
+
i

i ; {k ⊗ ap( k ⊗ bp}p∈U1 ; {bp( aq}(p;q)∈E1 � ⊗j∈U a
�−j
j ; (1)

k; bi; {k ⊗ ap( k ⊗ bp}p∈U2 ; {bp( aq}(p;q)∈E2 � k ⊗ aO; (2)
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are provable where {U1; U2} is a partition of U ∗ and {E1; E2} is a partition of E.
By case analysis of the last rule, (1) is provable if and only if U1 = ∅. Then
E1⊆U ×U . By Lemma 6(i) on (2) there is a Hamiltonian path from i to O in
G=(U2 ∪{i; O}; E2). So there exists a Hamiltonian path from i to O in G=(U2 ∪
{i; O}; E1 ∪E2).

• rule of right tensor on ⊗j∈U a
�−j
j cannot appear by balance of atoms and considering

possible rules. In fact a particular study is needed if the number of edges is two
more than the number of vertices.

Case (ii) is the same as Case (i) except that the last rule in a cut-free proof of this
sequent cannot be a rule of left-linear implication on br( as for (r; s) ∈ E because
atoms cannot be balanced.
So P(n) is true.

Proof. (encoding provable ⇒ existence of a Hamiltonian circuit). By reversibility of
the right-linear implication and of the left-tensor rule, provability of S implies that
the hypothesis of Lemma 7(i) with U =V is satis<ed. So there is a Hamiltonian path
from O to O in G=(V ∗ ∪O; E) i.e. there exists a Hamiltonian circuit in G=(V; E).

5. Conclusion

The encoding should give some intuition for a multiplicative management of addi-
tives in other cases as well. We remark that, we use a small fragment of MLL. In fact
with a slight modi<cation of the encoding the valid proof-nets are planar. The question
of NP-completeness of non-commutative MLL 5 remains open though, as no order is
imposed a priori on the formulae of the sequent S.
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Appendix A.

A.1. Sequent calculus for intuitionistic multiplicative linear logic

A formula is either a positive atom A, or a negative one A⊥, or a constant 1, or
constructed using binary connectors A⊗B (tensor), A(B (linear implication). Intu-

5 See [10] for a partial result.
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itionistic sequents are of the form � �A, where � is a multiset of formulae and A a
formula. The rules for the intuitionistic sequent calculus are the following:

Identity group
A � A

(identity)
� � A A; % � B

�; % � B
(cut)

Logic group unit:

� 1 (one)

tensor:

�; A; B � C
�; A⊗ B � C

(left)
� � A % � B
�; % � A⊗ B

(right)

linear implication:

� � A %; B � C
�; %; A( B � C

(left)
�; A � B

� � A( B
(right)

A.2. Some properties

• Classical MLL is conservative over intuitionistic MLL (see [4] for de<nitions): an
intuitionistic sequent is provable in the intuitionistic calculus if and only if it is
classically provable.

• The calculus veri<es cut elimination, so a provable sequent has a proof not using
the cut rule.

• A rule is reversible if the provability of its conclusion implies the provability of its
premises. The left-tensor rule and the right-linear implication rule are reversible.

• Balance of atoms: if we de<ne pA(A)= 1; pA(B⊗C)=pA(B)+pA(C) and pA(B(
C)=pA(C) − pA(B) for an atom A then every provable sequent B1; : : : ; Bn �C
satis<es pA(B1) + · · ·+ pA(Bn) = pA(C).
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