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Abstract A study of thermal convection in a rotating fluid layer is investigated based on the

dynamical systems approach. A system of differential equation like Lorenz model has been

obtained by using Galerkin-truncated approximation. The chaotic convection is investigated in a

rotating fluid layer. A low-dimensional, Lorenz-like model was obtained using Galerkin truncated

approximation. The fourth-order Runge–Kutta method is employed to obtain the numerical solu-

tion of Lorenz-like system of equations. We found that there is proportional relation between Tay-

lor number and the scaled Rayleigh number R. This means that chaotic behavior can be delayed

(for increasing value of R) when we increase the scaled Taylor number. We conclude that the tran-

sition from steady convection to chaos depends on the level of Taylor number.
� 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Chaotic convection in fluid layer has great interest due to its
relevance in a wide range of industrial applications. Chaos

was obtained in a three dimensional phase space for the Lor-
enz [13] system arising from the truncation of the classical
Rayleigh–Benard convection model. Chaotic behavior in a

fluid layer can be actually advantageous in various industrial
applications such as the production of crystals, oil reservoir
modeling, and catalytic packed beds filtration.

The study of the effect of external rotation on thermal con-

vection has attracted significant experimental and theoretical
interest. Because of its general occurrence in geophysical and
oceanic flows, it is important to understand how the Coriolis
force influences the structure and transport properties of ther-
mal convection. Rotating thermal convection also provides a

system to study hydrodynamic instabilities, pattern formation
and spatio-temporal chaos in nonlinear dynamical systems.
The study of thermal convection in rotating fluid layer is moti-

vated both theoretically and by its practical applications in
engineering. Some of the important areas of applications in
engineering include the food processing, chemical process,

solidification and centrifugal casting of metals and rotating
machinery. Bhadauria [6] investigated the fluid convection in
a rotating porous layer under modulated temperature on the

boundaries. They found that the effect of increasing the value
of Taylor number is to delay the onset of convection, thus
making the system more stabilizing. Similar results were found
by Malashetty and Swamy [7] and Malashetty and Heera [8]

for Taylor number.
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Nomenclature

Latin symbols

a horizontal wave number
ac critical wave number
g gravitational acceleration, ð0; 0;�gÞ
d height of fluid layer

p pressure
Pr Prandtl number, m=jT
Ta Taylor number, 4d4X2

m2

q velocity of the fluid ðu; v;wÞ
Ra Rayleigh number, aTgdðDTÞd3=mjT
t time
T temperature
DT temperature difference between the walls

Greek symbols

X angular velocity, ð0; 0;xÞ

jT thermal diffusivity

aT thermal expansion coefficient
q density
m kinematic viscosity, l=q0
w stream function

Subscripts
b basic state
c critical

0 reference state
cr critical value

Superscripts
0 perturbed value
� non-dimensional value
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There are several computational results on the effect of
rotation in porous media. Vadasz and Olek [11] found that
the transition from steady convection to chaos occurs by a sub-
critical Hopf bifurcation producing a solitary cycle which may

be associated with a homoclinic explosion when the Prandtl
number is low. The work of Vadasz [15] suggests an explana-
tion for the appearance of this solitary limit cycle via local

analytical results. Mahmud and Hasim [1] investigated effect
of magnetic field on chaotic convection in fluid layer. He
observed that transition from chaotic convection to steady

convection occurs by a subcritical Hopf bifurcation producing
a homoclinic explosion which may be limit cycle as Hartman
number increases. Jawdat and Hasim [2] found that the onset

of chaotic convection in a porous medium for a low Prandtl
number, amount of internal heat generation is inversely pro-
portional to scaled Rayleigh number. The generalized Lorenz
models and their routes to chaos by energy-conserving

horizontal mode truncations were investigated by Roy and
Musielek [9]. They observe that 5D system is the lowest-
order generalized Lorenz model, which can be constructed

by horizontal modes. Vadasz and Olek [17] observed that when
the Prandtl number is moderate, the route to chaos occurs by a
period doubling sequence of bifurcations. The work of Vadasz

[16] suggests an explanation for the appearance of this solitary
limit cycle via local analytical results.

Mahmud and Hasim [18] investigated chaotic convection in
porous media in the presence of feedback control. They

observed chaotic behavior with increasing Rayleigh number.
Magyari [10] demonstrated that the structure of the feedback
control system proposed by Mahmud and Hasim [18] does

not change the original uncontrolled system but its effect is
in altering the initial conditions of the system. Sheu [4] demon-
strated that interface heat transfer the route to chaos and that

application of a thermal non-equilibrium model tends to stabi-
lize steady convection. Sheu et al. [5] investigated that stress
relaxation tends to accelerate the onset of chaos through the

use of an oldroydian fluid. Ferrario et al. [3] studied the
chaotic behavior of second grade fluid in two dimensional
convection. Gupta and Singh [19] reported the effect of aniso-
tropic parameters on chaotic convection. They found a pro-
portional relation between scaled Rayleigh number and
scaled anisotropic parameters. Gupta and Bhadauria [20]
investigated the double diffusive convection in a couple stress
liquid saturated porous layer with Soret effect using thermal

non-equilibrium model. Gupta et al. [21] studied the effect of
applied magnetic field in couple stress fluid. They found that
increase in Hartmann number increases the level of chaos.

Also, Gupta and Singh [22] investigated the effect of chemical
reaction in double diffusive convection.

In this study, the work of Vadasz [12] on the transition to

chaos in rotating porous layer is extended to include consider-
ation of rotating fluid layer. The transition from steady
convection to chaos was analyzed by using Runge–Kutta

method of order four. The Galerkin truncated approximation
was applied to the governing equations for thermal convection
in a rotating fluid layer subject to gravity and heated from
below, allowing us to deduce an autonomous system with four

ordinary differential equations. This system is investigated for
the dynamic behavior of thermal convection in a fluid layer
and for the effect of rotation on transition to chaos.
2. Mathematical formulation

We consider a horizontal rotating fluid layer of depth d

between two parallel infinite stress free boundaries, which is
heated from below and cooled from above. The x-axis is taken
along the lower boundary, and the z-axis vertically upward.
The lower surface is held at temperature T0, while the upper

surface is at T0 þ DT, where DT is temperature difference
between the lower and upper surfaces. The continuity and
momentum equations governing the motion of an incompress-

ible rotating fluid are given by

r �~q ¼ 0 ð1Þ

@~q

@t
þ 2X�~q ¼ � 1

q0

rpþ q
q0

~gþ mr2~q ð2Þ



Table 1 Values of R where k2; k3 become

equal and complex conjugates.

T R

0.0 24.73684209

0.05 25.07354964

0.1 25.55198983

0.15 26.14758062

0.2 26.84255860

0.215 27.06837743

0.25 27.62381051

0.45 31.44507647

0.6 34.90344691
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@T

@t
þ ð~q � rÞT ¼ jTr2T ð3Þ

q ¼ q0½1� aTðT� T0Þ� ð4Þ
The thermal boundary condition is

T ¼ T0 þ DT at z ¼ 0 and T ¼ T0 at z ¼ d ð5Þ
where ~q is velocity of fluid, X the vorticity vector, p the fluid

pressure, q the density of fluid, m the kinematic viscosity, jT

the thermal diffusivity ratio, and aT the thermal expansion
coefficient of fluid.

2.1. Basic state

The basic state of the fluid is quiescent and is given by,

qb ¼ ð0; 0; 0Þ; p ¼ pbðzÞ; T ¼ TbðzÞ ð6Þ
Using Eq. (6) in Eqs. (1)–(3) we get,

dpb
dz

¼ qb~g;
d2Tb

d2z
¼ 0; qb ¼ q0½1� aTðTb � T0Þ� ð7Þ
2.2. Perturbed state

On the basic state we superpose perturbations in the form

~q ¼ ~qb þ ~q0; T ¼ TbðzÞ þ T0; p ¼ pbðzÞ þ p0;

q ¼ qbðzÞ þ q0 ð8Þ
where primes indicate perturbations. Substituting Eq. (8) into
Eqs. (1)–(4) and using the basic state solutions, we obtain the

equations governing the perturbations in the form,

r � ~q0 ¼ 0 ð9Þ

@~q0

@t
þ 2X� ~q0 ¼ � 1

q0

rp0 þ q0

q0

~gþ mr2~q0 ð10Þ

@T0

@t
þ ð~q0 � rÞT0 þ w0 @Tb

@z
¼ jTr2T0 ð11Þ

we consider only two-dimensional disturbances and define

stream function w and ~g by

ðu0;w0Þ ¼ � @w
@z

;
@w
@x

� �
; ~g ¼ ð0; 0;�gÞ ð12Þ

which satisfy continuity Eq. (9).
Eliminating pressure term from Eq. (10), introducing
the stream function w and non-dimensionalizing the
resulting equation as well as Eqs. (10) and (11) use the follow-

ing non-dimensional parameters: ðx0; y0; z0Þ ¼ dðx�; y�; z�Þ,
t0 ¼ d2

jT
t�;T0 ¼ ðDTÞT�; p0 ¼ ljT

d2
p� to obtain non-dimensional

equations

1

Pr

@

@t
�r2

� �2

r2 þ Ta

@2

@z2

" #
@w
@x

¼ Ra
@2

@x2

1

Pr

@

@t
�r2

� �
T ð13Þ

@

@t
�r2

� �
T ¼ @w

@x
� @ðw;TÞ

@ðx; zÞ ð14Þ

where Pr ¼ m
jT
, Prandtl number, Ta ¼ 4d4X2

m2 , Taylor number,

Ra ¼ aðDTÞd3g
mjT

, Rayleigh number.

Assumed, boundaries are stress free and isothermal; there-
fore, the boundary conditions are given by

w ¼ @2w

@z2
¼ T ¼ 0 at z ¼ 0 and z ¼ 1 ð15Þ

The set of partial differential Eqs. (13) and (14) forms a

non-linear coupled system with the boundary conditions. We
will solve this by using Galerkin method.

3. Truncated Galerkin expansion

To obtain the solution of non-linear coupled system of partial
differential Eqs. (13) and (14), we represent the stream func-

tion and temperature in the form

w ¼ A1 sinðaxÞ sinðpzÞ ð16Þ

T ¼ B1 cosðaxÞ sinðpzÞ þ B2 sinð2pzÞ ð17Þ
This representation is equivalent to Galerkin expansion of

the solution in both the x- and z-directions. Substituting

Eqs. (16) and (17) in Eqs. (13) and (14), multiplying the equa-
tions by the orthogonal characteristic functions corresponding
to Eqs. (16) and (17) and integrating them over the domain

½0; 1� � ½0; 1� yield a set of three ordinary differential equations
for the time evolution of the amplitudes:

d2A1ðsÞ
ds2

¼ �2Pr
dA1ðsÞ
ds

þ A

k6
ða2Ra� p2TaPr

� k6PrÞAðsÞ þ pa2PrRa

k6
AðsÞB2ðsÞ

þ aRaPrðPr� 1Þ
k4

B1ðsÞ ð18Þ

dB1ðsÞ
ds

¼ a

k2
AðsÞ þ pa

k2
A1ðsÞB2ðsÞ � B1ðsÞ ð19Þ

dB2ðsÞ
ds

¼ � 4p2

k2
B2ðsÞ � pa

2k2
A1ðsÞB1ðsÞ ð20Þ

where k2 ¼ p2 þ a2, total wavelength number and time is

rescaled by s ¼ k2t.
Although we cannot establish the relationship between

the solutions of the governing partial differential and the



0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450
0

100

200

300

400

500

600

R

Z

T=0

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450
0

100

200

300

400

500

600

R

Z

T=0.1

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450
0

100

200

300

400

500

600

R

Z

T=0.2

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450
0

100

200

300

400

500

600

R

Z

T=0.45

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450
0

100

200

300

400

500

600

R

Z

T=0.6

Fig. 1 Bifurcation diagrams of Z versus R representing maxima and minima of the post-transient solution of Z(t) for r ¼ 10; c ¼ �8=3.
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corresponding truncated ordinary differential system, these
lower-order spectral models may qualitatively reproduce the
convective phenomena observed in the full system. The result

can also be used as starting values when discussing the fully
non-linear problem.
It is convenient to introduce the following notation:

R ¼ a2Ra

k6
; T ¼ p2Ta

k6
and c ¼ � 4p2

k2
; r ¼ Pr ð21Þ

and rescale the amplitudes in the form of
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Fig. 2 Evolution of complex eigenvalues with increasing

Rayleigh number, for T ¼ 0; 0:1; 0:2; 0:45; 0:6.
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XðsÞ ¼ pa

k2
ffiffiffi
2

p A1ðsÞ; YðsÞ ¼ pRffiffiffi
2

p B1ðsÞ and

ZðsÞ ¼ �pRB2ðsÞ ð22Þ
to provide the following set of equations:

_X ¼ W ð23Þ

_Y ¼ RX� XZ� Y ð24Þ

_Z ¼ XYþ cZ ð25Þ

_W ¼ �2rWþ rfR� rðTþ 1ÞgX� rXZþ rðr� 1ÞY ð26Þ

where the dots(�) denote the time derivative dðÞ=ds. Eqs. (23)–
(26) are like the Lorenz equations (Lorenz [13], Sparrow [14]),

although the different coefficients.

4. Stability analyses

In this section, we consider the thermal instability of
buoyancy-driven flow of a rotating fluid layer confined
between stress-free boundaries. The fluid layer is subjected to

a constant horizontal temperature gradient. Stability analysis
of the stationary solutions was performed in order to deter-
mine the nature of dynamics about the fixed points. The
non-linear dynamics of Lorenz-like system (23)–(26) has been

analyzed and solved for r ¼ 10 and c ¼ �8=3 corresponding
to convection. The basic properties of the system to obtain
the eigenfunction are described next.

4.1. Dissipation

System (23)–(26) is dissipative since

rV ¼ @ _X

@X
þ @ _Y

@Y
þ @ _Z

@Z
þ @ _W

@W
¼ �ð2rþ 1� cÞ < 0 ð27Þ

Hence, if set of initial points in the phase space occupies
region Vð0Þ at time t ¼ 0, then after some time t, the endpoints
of the trajectories will decrease a volume

VðtÞ ¼ Vð0Þ exp �ð2rþ 1� cÞt½ � ð28Þ
The above expression shows that the volume decreases

exponentially with time.
4.2. Equilibrium points

System (23)–(26) has the general form _X ¼ fðXÞ and the equi-
librium (fixed or stationary) points Xs are defined by fðXsÞ ¼ 0.
The equilibrium points of the rescaled system are

ðX1;Y1;Z1Þ ¼ ð0; 0; 0Þ ð29Þ
and

X2;3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðTþ1�RÞ

Tþ1

q
Y2;3 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðTþ 1� RÞðTþ 1Þp
Z2;3 ¼ �ðTþ 1� RÞ

9>>=
>>; ð30Þ

corresponding to the motionless and convection solutions.

4.3. Stability of equilibrium points
By linearizing system (23)–(26), we obtain its Jacobian matrix

as follows:

J ¼

0 0 0 1

R� Z �1 �X 0

Y X c 0

rfR� rðTþ 1Þ � Zg rðr� 1Þ �rX �2r

2
6664

3
7775 ð31Þ

The characteristic values of the Jacobian matrix, obtained

by solving the zeros of the characteristic polynomial, provide
the stability conditions. A fixed point is stable if all the eigen-
values are negative (or in the case of complex eigenvalues, they

have negative real parts) and unstable, when at least one eigen-
value becomes positive (or in the case of complex eigenvalues,
it has positive real part).

The stability of the fixed point corresponding to motionless

solution X1 ¼ 0;Y1 ¼ 0;Z1 ¼ 0 is controlled by the zeros of
the following characteristic polynomial equation for the eigen-
values, kiði ¼ 1; 2; 3; 4Þ:
ðk� cÞ k3 þ ð2rþ 1Þk2 þ fr2ðTþ 1Þ þ ð2� RÞrgk�

þ r2ðTþ 1� RÞ� ¼ 0 ð32Þ
The first eigenvalue k1 ¼ c is always negative as c ¼ �8=3,

but the other three eigenvalues are given by equation

k3 þ ð2rþ 1Þk2 þ fr2ðTþ 1Þ þ ð2� RÞrgk
þ r2ðTþ 1� RÞ ¼ 0 ð33Þ

which provides the stability condition for the motionless solu-
tion in the form R < Tþ 1. Therefore the critical value of R,
where the motionless solution loses stability and the convec-

tion solution (expressed by the other two fixed points) takes
over, is determined as

Rc1 ¼ Rcr ¼ 1þ T ð34Þ
which corresponds to Racr ¼ k6ð1þ TÞ=a2.

The stability of the fixed points corresponding to the con-

vection solution ðX2;3;Y2;3;Z2;3Þ is controlled by the following

equation for the eigenvalues, kiði ¼ 1; 2; 3; 4Þ:

k4 þ ð2rþ 1� cÞk3 þ �cR
Tþ 1

þ 2rð1� cÞ þ rðr� 1ÞðTþ 1Þ
� �

k2

þ �2rcR
Tþ 1

þ rcfð2� rÞðTþ 1Þ � Rg
� �

k

þ 2r2cðTþ 1� RÞ ¼ 0 ð35Þ



Fig. 3 Phase portraits for evolution of trajectories over time in the state space for increasing value of rescaled Rayleigh number (R). The

graphs represent the projection of the solution data points onto Y� X;Z� X;Z� Y;W� Z planes for r ¼ 10; c ¼ �8=3 and T ¼ 0.
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Eq. (35) yields four eigenvalues, and all the roots are real and

negative at slightly supercritical value of R, such that the con-
vection fixed points are stable, that is simple nodes. These
roots move on the real axis towards the origin as the value

of R increases. For r ¼ 10 and c ¼ �8=3, these roots become
equal when R ¼



Fig. 4 Phase portraits for evolution of trajectories over time in the state space for increasing value of rescaled Rayleigh number (R). The

graphs represent the projection of the solution data points onto Y� X;Z� X;Z� Y;W� Z planes for r ¼ 10; c ¼ �8=3 and T ¼ 0:1.
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Fig. 5 Phase portraits for evolution of trajectories over time in the state space for increasing value of rescaled Rayleigh number (R). The

graphs represent the projection of the solution data points onto Y� X;Z� X;Z� Y;W� Z planes for r ¼ 10; c ¼ �8=3 and T ¼ 0:2.
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Fig. 6 Phase portraits for evolution of trajectories over time in the state space for increasing value of rescaled Rayleigh number (R). The

graphs represent the projection of the solution data points onto Y� X;Z� X;Z� Y;W� Z planes for r ¼ 10; c ¼ �8=3 and T ¼ 0:45.
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Fig. 7 Phase portraits for evolution of trajectories over time in the state space for increasing value of rescaled Rayleigh number (R). The

graphs represent the projection of the solution data points onto Y� X;Z� X;Z� Y;W� Z planes for r ¼ 10; c ¼ �8=3 and T ¼ 0:6.
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rc2ðTþ 3Þð1� c� r� rTÞ
ðTþ 1Þ2 R2

� rc ð2rþ 1� cÞ cð2� rÞ þ 2rð1� cÞðTþ 3Þ
ðTþ 1Þ

	�

þ rðTþ 3Þðr� 1Þ � 2rð2rþ 1� cÞ


� 2rcðTþ 3Þð2� rÞ

�
R

þ r2cðTþ 1Þð2� rÞ½ð2rþ 1� cÞf2ð1� cÞ þ ð1� rÞðTþ 1Þg
� cðTþ 1Þð2� rÞ� ¼ 0 ð36Þ
At this point the convection fixed points lose their stability

and other (periodic or chaotic) solutions take over. The loss of
stability of the convection fixed points for r ¼ 10; c ¼ �8=3
using Eq. (35) is evaluated to be Rc2 ¼ 25:75590 for
T ¼ 0;Rc2 ¼ 25:343620 for T ¼ 0:1;Rc2 ¼ 25:774560 for
T ¼ 0:2;Rc2 ¼ 29:344020 for T ¼ 0:45 and Rc2 ¼ 32:775550
for T ¼ 0:6.

5. Result and discussion

In this section, we present some numerical simulation of the sys-
tem of Eqs. (23)–(26) for the time domain 0 6 t 6 40. Calcula-
tions were done using Fortran 77 fourth-order Runge–Kutta

method on double precision with step size 0.001 and Mathemat-
ica, fixing the values r ¼ 10; c ¼ �8=3, and taking the initial
conditions Xð0Þ ¼ Yð0Þ ¼ 0:8;Zð0Þ ¼ 0:9 (see Figs. 1 and 2).

In case for T ¼ 0, we found that at Rc1 ¼ 1, obtained from
Eq. (34), the motionless solution loses stability and the convec-
tion solution occurs. Also the eigenvalues from Eq. (35)
become equal and complex conjugate when R ¼ 24:73684209
(as obtained in Table 1). The convection fixed points lose their
stability and a chaotic solution occurs when R ¼ 24:73684209.
The evolution of trajectories over time in the state space for

increasing value of scaled Rayleigh number is shown in
Fig. 3 in terms of projections of trajectories onto
Y� X;Z� X;Z� Y and W� Z planes. In Fig. 3(a), we

observe that the trajectory moves to the steady convection

points X ¼ Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðTþ1�RÞ

Tþ1

q
, Z ¼ �ðTþ 1� RÞ on a straight

line for a Rayleigh number slightly above the loss of stability
of the motionless solution ðR ¼ 1:1Þ. At R ¼ 12 the trajectories
approach the fixed point on a spiral as shown in Fig. 3(b). At
the subcritical value of R ¼ 25:75590 transition to chaotic

behavior solution occurs.
For T ¼ 0:1, we obtain Rc1 ¼ 1:1 from Eq. (34), the

motionless solution loses stability and convection solution

takes over. Moreover, the values of the eigenvalues k2 and k3
become equal and complex conjugate when R ¼ 25:55198983
(shown in Table 1). At the point R ¼ 25:55198983 the convec-

tion points lose their stability and a chaotic solution occurs.
The evolution of trajectories over time in the state space for
increasing value of scaled Rayleigh number is presented in

Fig. 4 in terms of projections of trajectories onto the
Y� X;Z� X;Z� Y and W� Z planes. We observe that in
Fig. 4(a), the trajectory moves to the steady convection point

X ¼ Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðTþ1�RÞ

Tþ1

q
and Z ¼ �ðTþ 1� RÞ on a straight line

for a Rayleigh number slightly above the loss of stability of
the motionless solution ðR ¼ 1:1Þ. The trajectories approach

a fixed point on a spiral as shown in Fig. 4(b) at R ¼ 13:1.
At the subcritical value of R ¼ 25:55198983 transition to chao-
tic behavior solution occurs.
For T ¼ 0:2, we obtain Rc1 ¼ 1:2 from Eq. (34), the
motionless solution loses stability and convection solution
takes over. Moreover, the values of the eigenvalues k2 and k3
become equal and complex conjugate when R ¼ 26:84255860
(from Table 1). At the point R ¼ 26:84255860 the convection
points lose their stability and a chaotic solution occurs. The

evolution of trajectories over time in the state space for
increasing value of scaled Rayleigh number is presented in
Fig. 5 in terms of projections of trajectories onto the

Y� X;Z� X;Z� Y and W� Z planes. We observe that in
Fig. 5(a), the trajectory moves to the steady convection point

X ¼ Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðTþ1�RÞ

Tþ1

q
and Z ¼ �ðTþ 1� RÞ on a straight line

for a Rayleigh number slightly above the loss of stability of
the motionless solution ðR ¼ 1:2Þ. The trajectories approach
a fixed point on a spiral as shown in Fig. 5(b) at R ¼ 14:5.
At the subcritical value of R ¼ 26:84255860 transition to chao-
tic behavior solution occurs.

For T ¼ 0:45, we obtain Rc1 ¼ 1:45 from Eq. (34), the

motionless solution loses stability and convection solution
takes over. Moreover, the values of the eigenvalues k2 and
k3 become equal and complex conjugate when R ¼
31:44507647. At the point R ¼ 31:44507647 the convection
points lose their stability and a chaotic solution occurs. The
evolution of trajectories over time in the state space for

increasing value of scaled Rayleigh number is presented in
Fig. 6 in terms of projections of trajectories onto the
Y� X;Z� X;Z� Y and W� Z planes. We observe that in
Fig. 6(a), the trajectory moves to the steady convection point

X ¼ Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðTþ1�RÞ

Tþ1

q
and Z ¼ �ðTþ 1� RÞ on a straight line

for a Rayleigh number slightly above the loss of stability of

the motionless solution ðR ¼ 1:45Þ. The trajectories approach
a fixed point on a spiral as shown in Fig. 6(b) at R ¼ 16:5.
At the subcritical value of R ¼ 31:44507647 transition to chao-

tic behavior solution occurs.
For T ¼ 0:6, we obtain Rc1 ¼ 1:6 from Eq. (34), the

motionless solution loses stability and convection solution

takes over. Moreover, the values of the eigenvalues k2 and k3
become equal and complex conjugate when R ¼ 34:90344691.
At the point R ¼ 34:90344691 the convection points lose their
stability and a chaotic solution occurs. The evolution of trajecto-

ries over time in the state space for increasing value of scaled
Rayleigh number is presented in Fig. 7 in terms of projections
of trajectories onto the Y� X;Z� X;Z� Y andW� Z planes.

We observe that in Fig. 7(a), the trajectory moves to the steady

convection point X ¼ Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðTþ1�RÞ

Tþ1

q
and Z ¼ �ðTþ 1� RÞ on

a straight line for a Rayleigh number slightly above the loss of
stability of the motionless solution ðR ¼ 1:6Þ. The trajectories
approach a fixed point on a spiral as shown in Fig. 7(b) at

R ¼ 18. At the subcritical value of R ¼ 34:90344691 transition
to chaotic behavior solution occurs.

6. Conclusion

In this paper, we have studied chaotic behavior under the
effect of different values of scaled Taylor number T, in a rotat-

ing fluid layer, subjected to gravity and heated from below. We
found that there is proportional relation between the scaled
Taylor number T and scaled Rayleigh number R. This means
that chaotic behavior can be delayed (for increasing value of
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R) when we increase the scaled Taylor number. We conclude
that the transition from steady convection to chaos depends
on the level of Taylor number.
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