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a b s t r a c t

A large karst area of South-Eastern Italy (Puglia) is characterized by endorheic basins, whose runoff does
not discharge into the sea but converges toward internal lowlands and infiltrates or flows into under-
ground cave systems through swallow holes. In such environment whenever intense rainfall events cover
large areas and rainfall intensity exceeds the discharge capacity of sinks and swallow holes, significant
volumes of runoff are produced and stored on surface causing floods and risks for people and goods.
Most of these sinks are often at the end of small independent basins delimited by weak divides and,
whenever water storage exceeds the overflow threshold, runoff contributes to downstream areas and, in
cascade, large areas may contribute to deepest lowlands.

The observation of historical flood events suggests that in such areas traditional methods for the
individuation of the design flood event, and in particular of critical rainfall duration, lack of applicability
and the worst rainfall condition, for a fixed return time, should be searched accounting for soil hydraulic
behaviour and groundwater dynamics. In this paper a rationale for the evaluation of the critical rainfall
event and of the flood-prone area for given return period is proposed. A case study is presented showing
that for high return period events a “multiple-reservoirs” mechanism is activated that affects the critical
rainfall condition as well as the flood extent in the urban areas.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Traditional procedures for the identification of flood-prone
areas for given return period are usually referred to exorheic ba-
sins, i.e. basins with a free surface outlet into an open sea (or lake or
other stream). They typically evaluate the effects of a flood design
hydrograph (Horritt and Bates, 2002; Kay et al., 2011; Romanowicz
and Beven, 1997; Sarhadi et al., 2012) whose peak, representing the
maximum streamflow-level, is considered the most critical factor.
In facts, during the flood, a consistent threat for human lives and
goods is represented by both the water level and the conveying
force that characterizes flow velocity.

These procedures, quite often, are not suitable for karst areas,
because they do not provide complete elements necessary to
individuate areas flooded with fixed return period and the related
risk (Bonacci et al., 2006; Mijatovíc, 1987). In some of these areas
the risk due to the conveying force of discharge is less important
because the weak slopes reduce flow velocity. On the other hand
more importance should be given to other factors such as the water
volume that can be stored in surface sinks and depressions, in order
to account for the risk connected to high water depth.
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The Puglia region in Southern Italy (Fig. 1) is mostly character-
ized by karst areas with irregular and apparently flat landscapes
and quite permeable matrix of outcropping soils (Festa et al., 2012;
Parise, 2011). In these areas it is often erroneously assumed that
drainage of rainfall excess behaves in a natural way without sig-
nificant risk. In fact, in many cases, when rainfall assumes particular
space-time patterns, the drainage capacity of the swallow holes and
the underlying karst system may be insufficient. In those cases the
flood risk, with consistent water depths, of large lowlands with
high population density is real.

A peculiar feature of these lands is provided by endorheic ba-
sins, i.e. drainage basins with a closed watershed divide and
without free-surface outlet into an open sea. Within these basins
runoff flows towards sink areas and reaches underground aquifers
through percolation and filtration within the karst system. When
rainfall intensity exceeds infiltration rate, large runoff volumes may
be produced and routed towards lowlands.

The semi-arid climate that characterizes this region suggests to
consider the Horton (infiltration excess) mechanism as the domi-
nant process in runoff generation. The so-called Hortonian runoff
(Beven, 2004a,b,c; 2006; Horton, 1931, 1933, 1936) was conceptu-
ally defined starting from the observation that the source of runoff
is the portion of the basin where rainfall intensity exceeds the
infiltration capacity of soil. In recent years many researchers have
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Fig. 1. Endorheic areas and study area in Puglia, Southern Italy.

Fig. 2. Scheme of adjacent endhoreic basins behaving as multiple reservoirs.
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been studying the hydrologic response of semi-arid basins
considering that, besides the infiltration excess mechanism, floods
can be triggered also by the saturation excess mechanism (Kirkby,
1978; Martinez-Mena et al., 1998), leading to two-components
distribution of runoff (Fiorentino et al., 2011; Gioia et al., 2008,
2012; Iacobellis et al., 2011).

The hydrologic behaviour of endorheic areas in extreme events,
as far as we know, is practically unexplored and, in particular, the
hydrological literature does not provide any consolidated meth-
odology for risk assessment and long term flood prediction spe-
cifically designed for this kind of environment. Moreover, despite
the high risk of flooding of important areas including small-
medium towns of Salento (Southern Puglia), there is not any
available dataset of measured flows. Then, according to the defi-
nition provided by (Sivapalan et al., 2003), these basins have to be
considered “ungauged basins” where rainfall time series are
available and, consequently, non-conventional methods for cali-
brating (and validating) any proposed hydrological model (Biondi
et al., 2011) shall be proposed and tested.

In this paper we focus on the evaluation of flood-prone areas
which is particularly suited for urban areas placed in karst low-
lands. In particular, in the context of flood risk evaluation, for such
peculiar environment, we still suggest the use of traditional (and
parsimonious) hydrological models, but they have to be casted in
the correct framework, accounting for all critical factors that
sensibly affect model result. With this purpose, in section 2, a
rationale for providing flood-prone areas is described and orga-
nized in different tasks, including the sub-task to be performed for
model assessment. A suitable hydrological model is described and
the procedure to evaluate the critical rainfall event is defined. In
section 3 a real case study is presented: the town of Copertino. In
particular, the description of all surrounding endorheic areas that
potentially contribute to flooding the town centre, with indication
of divides, hydraulic connections and main swallow holes, is pro-
vided. The model assessment was performed exploiting measures
and observations relative to the flood event of November 2004. In
long-term prediction the flood-prone area for return period of 30
years is obtained. In section 4 we report additional comments and
final remarks.

2. Rationale for model assessment and flood-prone areas
evaluation

In a karst environment local situations may be quite different
and heterogeneous depending on geomorphology, soil behaviour
and groundwater dynamics. In some cases the karst bedrock is
covered by a more or less deep layer of less permeable soil (in some
cases practically impermeable) and runoff is drained by a surface
stream-network system that ends into a natural swallow hole.
Then, runoff is drained through the impermeable layer connecting
the surfacewith the underlying aquifer. Obviously the swallow hole
discharge capacity depends by its size and maintenance but can be
also conditioned by the groundwater level oscillation. In fact, when
the water table rises and approaches the surface, the swallow hole
gets to hydraulic saturation and its discharge capacity is strongly
reduced. Moreover, if wet soil moisture condition precedes a sig-
nificant rainfall event, extensive overland runoff may be triggered
and contribute to a flood event of consistent volume and peak flow.
In such cases, when the flood peak exceeds the discharge capacity
of the swallow holes, even large areas besides themmay be flooded.
Such areas remain flooded until runoff discharge decreases below
the sinkholes drainage capacity and the stored water volume is
then slowly released.

In absence of an impermeable soil layer covering the karst
bedrock, still similar processes may have place but the flood
frequency significantly decreases even because soil is well drained
by infiltration and the antecedent moisture conditions are usually
dry.

In some other cases, the final reach of the stream-network is not
a swallow hole but a lowland area, which may be flooded as a
bucket, without any other hydraulic connection, between the sur-
face and the aquifer, than filtration or infiltration.

It also often happens that adjacent endorheic basins may pro-
duce connected flow patterns. In fact, if the common part of their
divide is low, water may flow from one to the other using the lower
part of the divide as a weir. In such a way runoff may flow from
basin to basin as in multiple reservoir systems (Fig. 2). By means of
such a mechanism also very large areas of hundreds square kilo-
metres may become contributing, in cascade, toward deepest areas
facing a very high risk of flooding.

As an important consequence of what is stated above, the
total drainage basin area contributing to the flood is not con-
stant, in principle, but may change during the rainfall event. If
one studies the effects of a single rainfall event, he will first have
to identify all the surrounding endorheic basins that could
potentially contribute to the flood by overflow from basin to
basin in cascade. Then he will have to verify if the overflow
conditions from one sink to the following, in cascade, are
reached or not. On the other hand, from the designer's
perspective, according to this mechanism the overall effective
contributing area may change with return period. In fact we may
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have different endorheic basins that behave independently for
low return periods. But for increasing return period the cascade
mechanism could be activated being exceeded the critical
threshold of storage and drainage capacity of the upstream
sinks.

The first task to be performed starts from the detailed analysis of
the flood-prone lowland including the identification of the water-
shed divide, soil features, storage and drainage capacity accounting
also for the presence of swallow holes, drainage wells and other
structures typical of the karst system. The empirical depthevolume
relationship of the sink has to be evaluated providing the volume of
water that can be stored in the sink below any corresponding level.
Elaborating the depthevolume curve needs accurate topographic
data for depth ranging from zero (lowest level within the sink) to
the lowest point of the watershed divide. In fact, also the flood-
prone lowland may behave, in extreme conditions, as a sink
whose overflow crosses the lowest part of the divide as a weir. Let
us call VS the sink storage capacity i.e. the maximum volume of
water that can be stored in such a sink below the lowest point of the
watershed divide.

The geomorphological analysis includes detection of the areas
outside the watershed divide in order to identify other sinks whose
runoff volume, in critical events, may overtop such a weir-divide
and contribute to flood the lowland. Obviously the analysis has to
be further extended from basin to basin in the upstream direction
in order to find the overall potential contributing area provided by
the union of all the sub-basin that may, in cascade, contribute to
flood the deepest lowland. Then, watershed, soil features, storage
and drainage capacity have to be assessed for all the sub-basins that
compound the overall potential contributing basin.

The second task is aimed at determining the hydrologic
behaviour of the overall potential contributing area. For each of the
sub-basins individuated in the first task, the runoff exceedance
overflowing the weir-divide has to be evaluated for a given rainfall
input. This hydrologic analysis has to begin from the headwater
sub-basins, those that drain runoff from the upper reaches of the
overall potential basin, and proceed, in cascade, towards the lower
sub-basins and the flood-prone area considered.

Accounting for different types of rainfall input, we distinguish
three different sub-tasks: (2.1) model assessment, which is based
on the use of one or more single observed events; (2.2) model
application for long-term prediction, which is based on the use of
design rainfall events; and (2.3) model application for real time
forecasting of floods, based on measured or predicted real time
rainfall events. We do not develop real time forecasting in this
paper because it requires a different level of bothmodel complexity
and real-world observation.

One of the most important requirements for the development of
a correct model assessment procedure is the availability of obser-
vations from real extreme events in the area. The collection and
analysis of observed rainfall and flood features is needed in order to
choose a suitable hydrological model and verify its descriptive and
predictive capability. In practice, for assessment purpose, the
observed rainfall input is used in order to evaluate the runoff vol-
ume that reaches the flood-prone lowland. Then, the modelled
runoff volume is compared with the volume of water in the real
flooded area. At this stage it is also possible to perform the cali-
bration of model parameters in order to achieve the best fit be-
tween modelled and observed flood volume.

In long-term prediction the rainfall input is provided by means
of the rainfall Intensity Duration Frequency (IDF) curve for given
return period. Thus, the hydrologic analysis has to be repeated for a
consistent range of rainfall duration values. These should range
from technical values close to zero up to themaximum routing time
of the entire potential basin area, including the farthermost
headwater sub-basin. The rainfall duration that produces the
maximum runoff volume (VR) in the flood-prone lowland will be
the critical rainfall duration.

In the third task the runoff volume, VR, available after the second
task as the maximum runoff volume produced by the critical
rainfall event, is used to provide the flood-prone area map for given
return period. For this purpose VR is compared with the volume of
water that can be stored in the flood-prone lowland according to
the volumeedepth curve which was obtained in the first task. We
remind here that VS was defined as the sink storage capacity.

We have two different cases:

If VR < VS
- the runoff volume is stored in the sink without overflow. The
flood water depth is obtained intersecting the volumeedepth
curve with the line of equation V ¼ VR. Hence, also the flood
water surface, which is below the lowest point of the water-
shed divide, is determined.

If VR � VS
- the runoff volume exceeds (or is equal to) the storage capacity
of the sink which is filled up while the runoff exceedance
overflows the weir-divide. The flood water depth is obtained
intersecting the volumeedepth curve with the line of equa-
tion V ¼ VS. The flood water surface is placed at the same level
of the lowest point of the watershed divide.

2.1. Hydrological model

According to the key design criteria above introduced, the crit-
ical rainfall event maximizes the runoff volume produced from the
overall potential contributing basin. Then, the hydrological analysis
to be performed requires the choice of a suitable hydrological
model that has to be applied to each of the involved sub-basins in
order to determine if the local sink is able to contain runoff volume
or if the overflow volume contributes to runoff in the lower sub-
basin.

We assume that runoff per time unit is equal to net rainfall, i.e. it
is equal to rainfall intensity minus infiltration. Then, the runoff
volume is obtained for any sub-basin by integrating in space and
time the net rainfall intensity and adding the upstream overflow
volume, if present. Besides infiltration we have to account also for
the discharge capacity of single or multiple swallow holes that are
inside the sub-basin.

We use, for long-term prediction, a design hyetograph with
rainfall intensity, constant in space and time, evaluated bymeans of
the IDF curve of assigned return period. Then, the evaluation of the
maximum runoff volume is performed numerically by allowing
rainfall duration to vary within 0.5 and 24 h.

The hydrologic model exploits a spatially-distributed parame-
terization and evaluates the infiltration capacity in time f(t) ac-
cording to the classic Horton equation (Horton, 1940):

f ðtÞ ¼ fc þ ðfo � fcÞe�t=k (1)

where fo is potential infiltration capacity at time 0; fc is the
asymptotic infiltration rate; k is a time constant.

The three model parameters should be calibrated based on
direct observations on the studied basin, in particular its soil and
land-use. Nevertheless, for application to semi-distributed models,
it is feasible to use values reported in literature, in particular we
referred to handbook values in Table 1 which were evaluated
(Maione, 1995) with reference to the classification of the Soil
Conservation Service (SCS,1972). This includes groups A, B, C and D,
based on the infiltration capacity of the bare soil in average soil
moisture antecedent condition:



Table 1
Handbook values of parameters fc, fo and k for different SCS groups.

SCS Group fc [mm/h] fo [mm/h] k [min]

A 25.4 250 30
B 12.7 200 30
C 6.3 125 30
D 2.5 76 30
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Group Ae Soils with high potential infiltration (low runoff) after
prolonged wetting. Sand, loamy sand, or sandy loam.
Group B e Soils with moderate potential infiltration (moderate
runoff). Silt loam or loam.
Group Ce Soils with low potential infiltration (moderate runoff)
Sandy clay loam.
Group D e Soils with very low potential infiltration (high
runoff). Clay loam, silty clay loam, sandy clay, silty clay, or clay.

We do not consider the variability of parameters due to land-use
except for urban areas that are reclassified as belonging to group D.
We use fc values from Table 1 while parameters fo and k are eval-
uated by model calibration with reference to four SCS groups.

The evaluation of the real infiltration is performed comparing
rain intensity and infiltration capacity after determining the
ponding time from equations:

Ztp

0

iðtÞdt ¼ F
�
tp � to

�
; iðtÞ ¼ f

�
tp � to

�
(2)

where i(t) is time-dependent rainfall intensity, F(t) is cumulative
infiltration and to is a time constant that allows to find:

Fr
�
tp
� ¼ F

�
tp � to

�
(3)

where Fr(t) is cumulative real infiltration.
If rainfall intensity is constant the above equations become:

itp ¼ F
�
tp � to

�
; i ¼ f

�
tp � to

�
: (4)

Such a case is displayed in Fig. 3 with reference to a rainfall
event of duration 3 h and a soil type of Group D.

A flood peak concentration model is also needed and we used
the classic lag and route method (Pilgrim and Cordery, 1992)
Fig. 3. Design hyetograph of constant intensity (duration 3 h) and Horton infiltration
for Group D.
characterized by the following assumptions: (i) runoff flows over
the basin surface following an invariant path dependent only by the
point where it generates; (ii) water velocity is constant in time and
(iii) discharge is obtained by summing contributions coming from
upstream source areas.

The application of such methodology is described in the
following case study section and includes the calibration of the
hydrological model above reported which was performed exploit-
ing the flooded areas observed after an historical flood event.

3. Case study: the town of Copertino

In this section we report results of the model application to the
town of Copertino, placed in a karst endorheic area (Fig. 1) in
Salento, the southernmost part of the Puglia region, in Southern
Italy. Such a case is emblematic of the processes above described
and involves an urban area placed in the sink of an endorheic area
that receives overflows from other adjacent sinks.

Climate is of the Mediterranean type, with mild temperatures in
winter and hot-dry summer. The mean annual temperature ranges
between about 15 �C and 20 �C with peaks of 40 �C observed in July
and August. Mean annual rainfall is about 590 mm, while mean
annual reference evapo-transpiration is about 1100mm. All climate
variables, including rainfall, show a strong inter-annual variability
and seasonality. The town population is estimated at about 24,000
with a population density of about 420 inhabitants/km2.

The Geology of Salento reports different outcropping carbonate
rocks, including the Cretaceous limestone, the Oligocene, Miocene,
and Plio-Pleistocene calcarenites, and the middle-upper Pleisto-
cene terraced marine deposits (Festa et al., 2012). Depending on
characteristics of soluble rocks, age and activity of karstic phe-
nomena, the all region is strongly affected by the presence of
sinkholes, and vertical structures, showing a great variety of size
and morphology (Bruno et al., 2008).

3.1. Geomorphological analysis and detection of the overall
potential contributing basin (task 1)

The endorheic area of Copertino covers 22.3 km2 and can be
divided, morphologically, in four sub-basins (sub-basins 1, 2, 3 and
4 in Fig. 4a). It has an elongated shape in direction (North-West) e
(South-East) and, looking at soil characteristics, could be divided in
two parts. The first, Northern part (sub-basins 1 and 2.1) is less
permeable, while the second one (sub-basins 2.2, 2.3, 3 and 4) has
outcropping fractured limestone of moderate permeability (ac-
cording to the SCS classification).

The basin of Copertino may exchange flows with the adjacent
endorheic basin of Leverano, (so called because it includes the
homonymous urban area, see Fig. 4a) of 34.3 km2. In fact, the
watershed-divide between these two basins presents a concave
shape with a lower sector that, for intense and prolonged rainfall
events, allows water to flow from Leverano to Copertino.

With regard to this behaviour it is worth to mention that within
the lower area of the Leverano basin is located a large swallow hole,
which is called “Le Arche” from the name of the surrounding land.
Despite the morphology and the size of the hole, its discharge ca-
pacity is strongly reduced by sediments and vegetation. Within
such lowland area we estimate, from the available DEM at resolu-
tion 20 m � 20 m, a discharge capacity of about 500,000 m3 where
water could be stored before overflowing toward Copertino. We
assigned a null drainage capacity to the swallow hole in fact,
probably due to absence of hydraulic maintenance in the latest
years, a little permanent pond is present in the area.

Notwithstanding the remarkable volume that could be stored in
the area it is possible to hypothesize that in past events (in



Fig. 4. a: Endorheic basins of Copertino and Leverano and b: Soil permeability.
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particular during the extreme event in 2004 which is described in
the following section) a significant overflow from the basin of
Leverano interested the basin of Copertino with a dramatic wors-
ening of the hydraulic risk.

The upper part of the Copertino area is compound by sub-basins
1, 2 and 3. The sub-basin n. 1 includes a natural swallow hole (in the
following called S. Isidoro), which is also practically filled by earth
and vegetation. Previous studies report a maximum discharge ca-
pacity of the swallow hole of about 0.1 m3/s. The basin has soils of
low permeability (Fig. 4b) and is placed North-West of the urban
area. The storage capacity of the sink is about 450,000 m3 in the
area of the S. Isidoro swallow hole. The sub-basin area covers
6.5 km2 with minimum height of 32.4 m a.s.l. and the sub-basin
divide lowest point is at 33.2 m a.s.l. which is the overflow
threshold toward basin n. 3 which includes part of the city centre.

The sub-basin n. 2 includes an area North-East of Copertino and
its divide crosses a medieval castle which dominates the old town
of Copertino. The basin area of 6.6 km2, has low permeable soils, a
lowest point at 32.3 m a.s.l. and at least one overflow threshold
toward the city centre (basin n. 3). Sub-basin n. 2 is compound by
three smaller sub-basins: 2.1 and 2.2. They have storage capacities
respectively of 165,000 m3 and 132,000 m3 and both may overflow
toward sub-basin 3. Sub-basin 2.3 has a storage capacity of
55,000 m3 and may overflow toward basin 2.2.
Fig. 5. Rainfall event of the 13th November 2004 recorded at the raingauge of
Copertino and Horton infiltration.
Sub-basin n. 3 includes almost the entire old town of Copertino
and is crossed by a railway. The area of sub-basin n. 3 is 1.9 km2,
with soils of low permeability and may receive overflows from all
the above mentioned basins. Close to the train station a natural
swallow hole is present, located inside a large settling-basin. The
maximum drainage capacity of the swallow hole is estimated in
about 0.6 m3/s. Beside the concrete wall of the settling-basin, a
street-tunnel runs below the railway. The total storage capacity, of
about 530,000 m3, includes both the settling-basin and the street-
tunnel that has been repeatedly flooded during significant extreme
events. The depthevolume relationship of the sink is shown in
Fig. 10a. The lowest point of the watershed divide of basin n. 3 is
located at the end of the tunnel in the outbound direction and,
according to local authorities, it has been never reached by water.

Sub-basins n. 2.1, 2.2, 2.3 and 3 are also provided with inde-
pendent sewer systems that, for sub-basins 2.1, 2.2 and 2.3 drain
into a network of small wells placed inside the same sub-basins in
the lowest areas. The sewer system of sub-basin n. 3 drains into the
settle basin close to the street-tunnel. The discharge capacity of the
draining wells is unknown but their efficiency is probably very low
Fig. 6. Traces of the overflow from the Leverano basin into sub-basin n. 1.



Fig. 7. Flooding in sub-basin n. 1 close to the S. Isidoro swallow hole (on the left) and traces of the overflow into sub-basin n. 3 (on the right).

Fig. 8. Basin n. 3, view from above of the street-tunnel in normal conditions (on the left) and during the flood of 2004 (on the right).
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due to scarce maintenance and to saturation due to the water table
rise from the underlying aquifer.

Sub-basin n. 4 (7.3 km2) is placed South-West of the urban area.
It has low permeability, the lowest point is at 31.3 m a.s.l. and ac-
cording to the available historical information it was never inter-
ested by overflows from sub-basin n. 3.
Fig. 9. Basin n. 3, view from below of the street-tunnel in normal con
3.2. Model assessment (sub-task 2.1)

3.2.1. Analysis of the flood event of November 2004
The urban area of Copertino was subject to a remarkable flood

event on the 13th of November 2004. The following information is
available:
ditions (on the left) and during the flood of 2004 (on the right).



Fig. 10. a: Depthevolume curve for basin 3. b: Curve of flood volumes for sub-basin 3, for T ¼ 30 years and rainfall duration ranging from 0.5 to 24 h.
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� A record of the rainfall time series with time step of 5 min
measured at the raingauge station of Copertino from the Ser-
vizio Idrografico e Mareografico, Regione Puglia. (Table 2 and
Fig. 5);

� The flooded urban areas and relative volumes are known and
documented by photographic reports; such data provide the
necessary information for a non-conventional model
assessment.

During the month of November 2004 also other significant
rainfall events, besides the one of the 13th, were observed. On the
8th of November a rainfall event typical of the Autumn season
occurred, with a peak of 41.8 mm. In following days only very small
precipitation was observed and no rainfall was recorded in the
second half of the month.

On the 13th of November 2004, in particular, 177.2 mm of
rainfall were measured corresponding to a return period of about
400 years. Precipitation started 15 min past 2 a.m. and proceeded
almost continuously until 5 min to 10 a.m. producing an observed
rainfall depth of 126.2mm. At 20min past 1 p.m. it rained again and
(after a strong peak) it stopped at about 3 p.m. determining other
Table 2
Rainfall time series (mm) recorded on the 13th November 2004 at the raingauge in Cop

0÷5 5÷10 10÷15 15÷20 20÷25 25÷30

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 1.0 1.8 1.4
3 1.0 1.0 1.0 0.8 0.4 0.4
4 0.8 0.8 0.6 1.2 0.4 2.0
5 0.6 1.4 3.2 2.0 2.6 3.0
6 1.4 2.2 1.8 1.4 1.6 0.6
7 0.8 0.4 1.0 1.0 0.6 0.8
8 0 0 1.4 2.2 2.0 0.8
9 5.2 5.8 2.4 1.0 1.4 1.2
10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0.2 0
14 7.8 4.6 2.6 2.2 3.0 5.2
15 0 0 0.2 0 0 0
16 0.2 0.4 0 0 0 0
17 0 0.2 0.2 0 0 0
18 0 0 0 0 0 0
19 0 0 0 0 0 0
20 0 0 0.2 0 0 0
21 0 0 0 0 0 0
22 0 0 0 0 0 0
23 0 0 0 0 0 0
49.6 mm of rainfall; up to the end of the day only other 1.4 mm
were measured.

In order to provide further information about the basin
response, it is worth noting that, on the 14th of November, a total
rainfall depth of 25.6 mm, recorded in two steps (the first one at 6
a.m., the second at 3 p.m.), did not produced any variation of the
flooded areas observed after the rainfall in previous days.

Starting at 30 min past 3 p.m. of the 13th of November local
authorities realized a continuous monitoring of the flooded areas in
the town centre and documented the state of the areas by means of
several photographs. Such photographic documentation was
precious in order to individuate five areas that for their extension
and position could be considered as damaged by the flood.

The first one of these areas is located in the basin of Leverano
whose overflow into basin n. 1 contributed to the flood nearby
the S. Isidoro swallow hole. This is the second flooded area that
approaches the urban area of Copertino. Fig. 6, which was shot a
few hours after the peak, shows a water level slightly above the
street that separates the basin of Leverano from basin n. 1. Traces
of the overflow from basin n. 1 into sub-basin 3 are visible in
Fig. 7.
ertino. The table reports rainfall depths in intervals of 5 min.

30÷35 35÷40 40÷45 45÷50 50÷55 55÷60

0 0 0 0 0 0
0 0 0 0 0 0
2.0 1.8 2.4 1.6 2.8 1.2
0.2 0.4 0.2 0.2 0.2 1.4
1.0 1.4 1.0 1.8 2.2 1.0
2.2 1.2 1.2 1.6 0.2 1.0
0.8 1.4 1.4 1.6 2.0 1.6
0.6 1.0 0.4 0.8 0.4 0.8
0.4 1.6 1.0 1.0 3.6 7.6
1.2 1.0 0.4 0.2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0.2 0 0.2 0.2 5.0 7.0
7.0 2.6 1.6 0.2 0 0
0 0 0 0 0 0
0 0 0 0.6 0.2 0
0 0 0 0 0 0
0 0 0 0 0.2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



Table 4
Hydraulic features of lowland sinks.

Sub-basin Discharge capacity
of swallow holes
(m3/s)

Storage
capacity
VS (m3)

Runoff stored on
event of 11/13/
2004 (m3)

Runoff volume
with T ¼ 30
years (m3)

Leverano e 500,000 500,000 72,000
1 0.1 450,000 450,000 150,000
2.1 e 165,000 165,000 33,000
2.2 e 1320,000 41,000 13,000
2.3 e 55,000 7,465 1,078
3 0.6 530,000 200,000 37,000
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The third and fourth flooded areas were placed in two sites not
too far. They were interested by contributions coming from their
respective watersheds (sub-basins 2.2 and 2.3 above described)
without reciprocal influence because the railway placed between
them runs higher than the streets level. According to local au-
thorities both the sub-basins did not produce overflow into other
sub-basins. The flooded areas, of limited extension, had water
depth of about 0.5m. Nevertheless theywere critical because a high
traffic urban road connecting the hospital and the urban centrewas
flooded.

Finally, the flood interested the urban area covering the streets
and the street-tunnel beside the settling-basin in basin 3 (Figs. 8
and 9). The entity of this flooding and the related risk were
particularly high. The water depth reached about 4 m with respect
to the bottom of the tunnel, representing a serious risk for human
lives. The water level reached 31.5 m a.s.l., hence, there was not
overflow (as confirmed by local authorities) from sub-basin n. 3
into sub-basin n. 4.

According to what above exposed, we implemented the hy-
drologic model considering the overall potential contributing basin
as composed by the union of the basin of Leverano and sub-basins
n. 1, 2 and 3.

3.2.2. Model parameterization
The availability of a DEM (20 m � 20 m) of the endorheic area of

Copertino allowed to determine, for all the considered sub-basins,
the runoff patterns up to the different outlets, and to evaluate
their lengths. Corresponding lag times were evaluated assuming as
a function of the soil coverage a higher velocity (1.0 m/s) for urban
areas where soil is considered impermeable and the drainage is also
assured by the existent sewers and a lower velocity (0.1 m/s) over
the surrounding areas not urbanized.

Exploiting the water levels observed in the photographs of the
flood and by means of the DEM, we determined the flood water
volume useful to calibrate the model and evaluated the influence of
the parameters fo and k of the Horton equation before mentioned.
We decided to keep literature values for the saturation infiltration
rate fc and calibrated the values of k and fo because they mostly
depend on the moisture condition antecedent the rainfall event.
We obtained by calibration the values of k and fo reported in Table 3.
All the calibrated values show higher values than those from
handbooks indicating that the antecedent moisture condition was
probably dry.

In practice we reproduced the effects of the event of November
2004, obtaining runoff storage volumes that were consistently
close to the observed values for all the considered flooded areas.
The procedure of calibration considered first the parameters of sub-
basins n. 2.2 and 2.3 whose behaviour was hydrologically inde-
pendent from the other sub-basins in the considered historical
event. In fact they reported observed flooded areas with volume of
41,000 and 7,465 m3 (see Table 4) without any contribution from
(nor into) other sub-basins. Moreover, both sub-basins are char-
acterized by the presence of soils belonging to only two classes of
permeability: Group B and Group D. The hydrological behaviour of
all other basins is not independent on each other provided that the
basin of Leverano produced overflow into sub-basin n. 1 as well as,
Table 3
Calibrated values of parameters fo and k for different SCS groups.

SCS group fo [mm/h] k [min]

A 302.50 50
B 242.00 40
C 151.25 30
D 91.96 20
sub-basins n.1 and n. 2.1 toward basin n. 3. Thus the parameters k
and fo of Group A and Group C were obtained by considering that:
(i) runoff exceeded the storage capacity of the basin of Leverano
characterized by presence all SCS Groups; (ii) runoff exceeded the
storage capacity of the sub-basin n. 2.1 characterized only by
Groups C and D; (iii) sub-basin n. 1, characterized by Groups A, B
and C received overflow from the basin of Leverano and also
exceeded the proper sink threshold with overflow into sub-basin
n.3; (iv) sub-basin n. 3, characterized by Groups B, C and D,
received overflows from sub-basin n. 1 and n. 2.1 and reached a
stored volume of about 200,000 m3well below its full capacity.
3.3. Evaluation of flood-prone areas for assigned return period
(sub-task 2.2 and task 3)

Following model calibration, the map of flood-prone areas for
given return period was obtained after evaluating the flood volume.
The latter was obtained finding the critical rainfall duration which
maximizes runoff volume (Fig. 10b).

The rainfall intensityedurationefrequency (IDF) curve was
estimated by regional analysis of the annual maxima of rainfall
intensity performed with probabilistic model based on the use of a
Two Component Extreme Value Distribution (Rossi et al., 1984),
Maximum Likelihood estimator and hierarchical estimation of
regional model parameters (Fiorentino et al., 1987). In particular,
the IDF curve with return period of 30 years is (Castorani and
Iacobellis, 2001):

i ¼ 67:4t�0:822 (5)

where i is rainfall intensity (in mm/hours) and t is duration (in
hours).
Fig. 11. Flood-prone area for T ¼ 30 years in sub-basins 2.2, 2.3 and 3.



V. Iacobellis et al. / Journal of Arid Environments 112 (2015) 98e108106
According to the observed behaviour of the Copertino basin
during the rainfall event of November 2004, we referred to rainfall
intensity for duration ranging between 0.5 and 24 h. Then we
evaluated the critical duration and the correspondent maximum
value of the flood volume. For a return time of 30 years we obtained
the flood volumes reported in Table 4.

The above values were obtained considering rainfall events
characterized by constant intensity (as in Fig. 3). Values slightly
different from those above reported were obtained by using
different design hyetographs and for this reason we do not present
the relative values.

By means of the depth-volume curve (Fig. 10a) we found the
flood depth corresponding to the flood volume and with available
DEM we found the areas covering volumes corresponding to those
reported in Table 4. In Fig. 11 we show areas subject to flood risk,
with return time 30 years, in sub-basins 2.2, 2.3 and 3 that involve
flooding of urban areas. A safety factor of 0.3 mwas summed to the
relative heights in order to individuate the areas prone to flooding
for return period of 30 years. Adopting the safe factor above
mentioned we found areas with extension very close to those
observed in the event of November 2004.

4. Final remarks

We propose a methodology for the assessment of flood-prone
areas, suited for a semi-arid, karst environment in Southern Italy.
In particular we focused on the individuation of the critical rainfall
of assigned return period producing the design flood event.

In this framework a detailed geomorphological analysis is
needed in order to assess if there is chance to overflow from one
sub-basin to another considering that, depending on the intensity
and duration of the rainfall event, the drainage area may change
with strong non-linearity.

In such a case the overall behaviour of adjacent endorheic
basins can be assimilated to multiple reservoirs whose flooded
area depends on the geomorphology of the lowlands and on the
volume of surface stored water. Hence we searched for the crit-
ical rainfall event duration as the one that produces the
Fig. 12. Comparison between patterns of the Horton and SCS-CN infiltration rates, in t
maximum water volume (not the maximum discharge) for
assigned return period.

We used a simple semi-distributed hydrological model which is
composed by two classical modules: the first one uses the Horton
infiltration model and evaluates runoff; the second one uses a
simple routing scheme and allows for the individuation of the
critical flood hydrograph.

The most difficult task is provided by the calibration of the hy-
drological model due to the absence of continuous measurements
of discharge. In particular, the model parameters were calibrated in
order to reproduce a runoff volume equal to the volume of water
stored in the observed flooded areas. For such a purpose we used a
digital elevation model (DEM) of the basin with scale 1:5000. The
same DEM was improved by means of a dense sample of elevation
measurements of the flooded areas.

In the process of parameters calibration, we kept handbook
values of the asymptotic infiltration rate fc of the Horton equation
and changed the parameters k and fo that depend on the antecedent
moisture condition.

We used the SCS-CN soil classification for model parameteri-
zation but we did not use the SCS-CN method because we found it
unsuitable for these areas. In fact the SCS-CN method, originally
developed by the US Department of Agriculture Soil Conservation
Service and documented in detail in the National Engineering
Handbook (SCS, 1972), is based on the assumption that:

V
ðP � IaÞ ¼

F
S

(6)

where V is runoff volume, P is rainfall volume, Ia is initial absorp-
tion, F is real infiltration volume and S is potential maximum soil
moisture retention after runoff begins. Following Equation (6), the
SCS-CN method provides that, when soil reaches saturation (i.e.
F¼ S), runoff (V) is equal to rainfall (P) minus initial adsorption Ia. In
other words, as also shown in Fig. 12, the SCS-CN method produces
an infiltration rate that, in time during the rainfall event, always
tends asymptotically to zero. This kind of behaviour is physically
unconsistent in karst areas where the asymptotic infiltration rate
ime, during a rainfall event of 3 h, obtained for a rainfall event of T ¼ 200 years.



Fig. 13. Comparison between Horton and SCS-CN runoff volume curves obtained for rainfall events of T ¼ 200 years and different rainfall durations.
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can be very high and always plays an important role. On the other
hand, as a consequence of a null asymptotic infiltration rate, the
proposed procedure that aims to find the maximum runoff volume,
would not be applicable. In fact, as shown in Fig. 13, when using the
SCS-CN the volume of runoff diverges and the maximum does not
exist for any rainfall duration. Nevertheless the direct observation
of the real processes confirms that critical rainfall values exist and
are found in the range of duration between 1 and 24 h.

Themost important findings from this paper can be summarised
by the following statements:

- determining flood-prone areas in one endorheic basin needs a
preliminary geomorphological analysis of surrounding areas in
order to find the overall potential contributing basin to the
flood-prone area;

- the effective overall contributing basin may change during a
rainfall event, and may be different from event to event,
depending on the event return period;

- accurate information about sinks, swallow holes, draining wells,
terrain shape, soil permeability and drainage capacity is neces-
sary to assess the hydrological behaviour of these areas;

- the critical rainfall event can be obtained by numerical analysis,
searching within a suitable range of rainfall duration, as the one
that maximizes the runoff volume in the flood-prone lowland
accounting for the effective overall contributing basin;

- the use of parsimonious hydrological models and traditional
assumptions, such as a space-time homogeneous rainfall field, is
still admittable but, in principle, the use of different design
hyetographs and/or different spatial rainfall patterns could be
recommended;

- in order to model soil infiltrationwe used the traditional Horton
model, other choices could be made nevertheless, we showed
that the well known SCS-Curve Number method, which is
probably today the foremost worldwide-accepted model in
catchment hydrology, is not suitable for application to endo-
rheic basins;

- time of runoff concentration and propagation is also crucial for
model performances, especially if swallow holes and draining
wells provide a significant drainage capacity;
- model assessment always has to include, as much as possible,
elements for testing the model descriptive ability based on the
comparison with real event observation.

Some more considerations can be made with reference to the
relevance of such results for floodmanagement and risk mitigation.
In this paper, as we said in section 2, we have not developed the
sub-tasks 2.3 devoted to real-time forecasting but most of the
considerations we have made for long-term prediction may obvi-
ously affect (and lead to significant improvements of) the emer-
gency procedures for civil protection. In particular:

- the entire modelling framework and the results of the case
study suggest that particular attention has to be paid also to
prolonged rainfall of medium intensity that could trigger
flooding of minor consistency (i.e.: water depth less than 50 cm)
and produce high risk affecting urban areas, traffic roads or
streets connecting important centres such as hospitals, schools,
etc;

- a now-casting system could significantly benefit from the
observation of weir points where the overflow from basin to
basin may occur;

- continuous and careful maintenance of the largest swallow
holes is also a crucial point. In fact, preserving their discharge
capacity and increasing the runoff volume that could be stored
in their proximity, in extra-urban areas, could sensibly decrease
the flood risk.

Finally, more insights about model performance and sensitivity
to parameterization will be objective of future research. In partic-
ular, the role of velocity in flow routing, the identification of CN
group soil, the antecedent moisture condition, to mention some of
the key parameters of the hydrological model, deserve specific
investigation in order to evaluate prediction uncertainty.
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