Journal of Combinatorial Theory, Series A 118 (2011) 2131-2156

Crystal bases of modified quantized enveloping algebras and a double RSK correspondence $\stackrel{\scriptscriptstyle \, \ensuremath{\scriptstyle \propto}}{}$

Jae-Hoon Kwon

Department of Mathematics, University of Seoul, Seoul 130-743, Republic of Korea

ARTICLE INFO

Article history: Received 14 April 2010 Available online 6 May 2011

Keywords: Modified quantized enveloping algebra Crystal base Extremal weight crystal Semistandard Young tableau RSK correspondence

ABSTRACT

We give a new combinatorial realization of the crystal base of the modified quantized enveloping algebras of type $A_{+\infty}$ or A_{∞} . It is obtained by describing the decomposition of the tensor product of a highest weight crystal and a lowest weight crystal into extremal weight crystals, and taking its limit using a tableaux model of extremal weight crystals. This realization induces in a purely combinatorial way a bicrystal structure of the crystal base of the modified quantized enveloping algebras and hence its Peter–Weyl type decomposition generalizing the classical RSK correspondence. © 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let $U_q(\mathfrak{g})$ be the quantized enveloping algebra associated with a symmetrizable Kac–Moody algebra \mathfrak{g} . In [17], Lusztig introduced the modified quantized enveloping algebra $\tilde{U}_q(\mathfrak{g}) = \bigoplus_A U_q(\mathfrak{g})a_A$, where Λ runs over all integral weight for \mathfrak{g} , and proved the existence of its global crystal basis or canonical basis. In [10], Kashiwara studied the crystal structure of $\tilde{U}_q(\mathfrak{g})$ in detail, and showed that

 $\mathbf{B}(U_q(\mathfrak{g})a_A) \simeq \mathbf{B}(\infty) \otimes T_A \otimes \mathbf{B}(-\infty),$

where $\mathbf{B}(U_q(\mathfrak{g})a_A)$ denotes the crystal base of $U_q(\mathfrak{g})a_A$, $\mathbf{B}(\pm\infty)$ is the crystal base of the negative (resp. positive) part of $U_q(\mathfrak{g})$ and $T_A = \{t_A\}$ is a crystal with $\operatorname{wt}(t_A) = A$ and $\varepsilon_i(t_A) = \varphi_i(t_A) = -\infty$. It is also shown that the Lusztig's involution on $\tilde{U}_q(\mathfrak{g})$ provides the crystal $\mathbf{B}(\tilde{U}_q(\mathfrak{g})) = \bigsqcup_A \mathbf{B}(\infty) \otimes T_A \otimes \mathbf{B}(-\infty)$ with another crystal structure so-called *-crystal structure and therefore a regular $(\mathfrak{g}, \mathfrak{g})$ -bicrystal structure [10]. With respect to this bicrystal structure, a Peter–Weyl type decomposition for $\mathbf{B}(\tilde{U}_q(\mathfrak{g}))$ was obtained when it is of finite type or affine type at non-zero levels by Kashiwara [10]

0097-3165/\$ – see front matter © 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jcta.2011.04.006

 $^{^{*}}$ This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No. 2011-0006735).

E-mail address: jhkwon@uos.ac.kr.

and of affine type at level zero by Beck and Nakajima [1] (see also [21,22] for partial results). Note that the crystal base of the quantized coordinate ring for \mathfrak{g} [9] is a subcrystal of $\mathbf{B}(\tilde{U}_q(\mathfrak{g}))$, and equal to $\mathbf{B}(\tilde{U}_q(\mathfrak{g}))$ if and only if \mathfrak{g} is of finite type [10].

One of the essential ingredients for understanding the structure of $\tilde{U}_q(\mathfrak{g})$ is the notion of extremal weight $U_q(\mathfrak{g})$ -module introduced by Kashiwara [10]. An extremal weight module associated with an integral weight Λ for \mathfrak{g} is an integrable $U_q(\mathfrak{g})$ -module, which is a generalization of a highest weight and a lowest weight module, and it also has a (global) crystal base. When \mathfrak{g} is an affine algebra of finite rank, it is shown by Kashiwara [19, Remark 2.15] that a level zero extremal weight module is isomorphic to a Weyl module introduced by Chari and Pressley [3].

The main purpose of this work is to study the structure of $\mathbf{B}(\tilde{U}_q(\mathfrak{g}))$ when \mathfrak{g} is a general linear Lie algebra of type $A_{+\infty}$ or A_{∞} (affine type of infinite rank following [7]) using the combinatorics of Young tableaux, and understand its connection with the classical RSK correspondence. From now on, we denote \mathfrak{g} by $\mathfrak{gl}_{>0}$ and \mathfrak{gl}_{∞} when it is of type $A_{+\infty}$ and A_{∞} , respectively.

The main result in this paper gives a new combinatorial realization of $\mathbf{B}(\infty) \otimes T_A \otimes \mathbf{B}(-\infty)$ for all integral $\mathfrak{gl}_{>0}$ -weights and all level zero integral \mathfrak{gl}_{∞} -weights A as a set of certain bimatrices. This also implies directly Peter–Weyl type decompositions of $\mathbf{B}(\tilde{U}_q(\mathfrak{gl}_{>0}))$ and $\mathbf{B}(\tilde{U}_q(\mathfrak{gl}_{\infty}))_0$, the level zero part of $\mathbf{B}(\tilde{U}_q(\mathfrak{gl}_{\infty}))$, without using the *-crystal structure. Our approach is based on the combinatorial models of extremal weight crystals of type $A_{+\infty}$ and A_{∞} developed in [14,15].

Let us state our results more precisely. Let \mathcal{M} be the set of $\mathbb{N} \times \mathbb{N}$ matrices with non-negative integral entries and finitely many positive entries. Recall that \mathcal{M} has a $\mathfrak{gl}_{>0}$ -crystal structure where each row of a matrix in \mathcal{M} is identified with a single row Young tableau or a crystal element associated with the symmetric power of the natural representation. Let $\mathcal{M}^{\vee} = \{M^{\vee} \mid M \in \mathcal{M}\}$ be the dual crystal of \mathcal{M} . For each integral weight Λ , let

$$\widetilde{\mathcal{M}}_{\Lambda} = \left\{ M^{\vee} \otimes N \mid \operatorname{wt}(N^{t}) - \operatorname{wt}(M^{t}) = \Lambda \right\} \subset \mathcal{M}^{\vee} \otimes \mathcal{M}.$$

Here wt denotes the weight with respect to $\mathfrak{gl}_{>0}$ -crystal structure and A^t denotes the transpose of $A \in \mathcal{M}$. Then we show that

$$\mathcal{M}_{A} \simeq \mathbf{B}(\infty) \otimes T_{A} \otimes \mathbf{B}(-\infty)$$

(Theorem 5.5). The crucial step in the proof is the description of the tensor product $\mathbf{B}(\Lambda') \otimes \mathbf{B}(-\Lambda'')$ for dominant integral weights Λ' , Λ'' with $\Lambda = \Lambda' - \Lambda''$ in terms of skew Young bitableaux (Proposition 5.1), and its embedding into $\mathbf{B}(\Lambda' + \xi) \otimes \mathbf{B}(-\xi - \Lambda'')$ for arbitrary dominant integral weight ξ (Proposition 5.4). In fact, $\mathbf{B}(\Lambda' + \xi) \otimes \mathbf{B}(-\xi - \Lambda'')$ is realized as a set of skew Young bitableaux whose shapes are almost horizontal strips as ξ goes to infinity. This establishes the above isomorphism and as a consequence

$$\mathbf{B}(\tilde{U}_q(\mathfrak{gl}_{>0})) \simeq \mathcal{M}^{\vee} \otimes \mathcal{M},$$

since $\bigsqcup_{\Lambda} \tilde{\mathcal{M}}_{\Lambda} = \mathcal{M}^{\vee} \otimes \mathcal{M}.$

~

Now, for partitions μ, ν , let $\mathcal{B}_{\mu,\nu}$ be the extremal weight crystal with the Weyl group orbit of its extremal weight corresponding to the pair (μ, ν) . Note that $\mathcal{B}_{\mu,\emptyset}$ (resp. $\mathcal{B}_{\emptyset,\nu}$) is a highest (resp. lowest) weight crystal and $\mathcal{B}_{\mu,\nu} \simeq \mathcal{B}_{\emptyset,\nu} \otimes \mathcal{B}_{\mu,\emptyset}$ [14]. Then a $(\mathfrak{gl}_{>0},\mathfrak{gl}_{>0})$ -bicrystal structure of \mathcal{M} and \mathcal{M}^{\vee} arising from the RSK correspondence [4] naturally induces a $(\mathfrak{gl}_{>0},\mathfrak{gl}_{>0})$ -bicrystal structure of **B** $(\tilde{U}_q(\mathfrak{gl}_{>0}))$ and the following Peter–Weyl type decomposition (Corollary 5.7)

$$\mathbf{B}\big(\tilde{U}_q(\mathfrak{gl}_{>0})\big)\simeq\bigsqcup_{\mu,\nu}\mathcal{B}_{\mu,\nu}\times\mathcal{B}_{\mu,\nu}.$$

Hence the decomposition of $\mathbf{B}(\tilde{U}_q(\mathfrak{gl}_{>0}))$ into extremal weight crystals can be understood as the tensor product of two RSK correspondences, which are dual to each other as a $(\mathfrak{gl}_{>0}, \mathfrak{gl}_{>0})$ -bicrystal.

Next, we prove analogues for $\mathbf{B}(\tilde{U}_q(\mathfrak{gl}_\infty))_0$. This is done by taking the limit of the results in $\mathfrak{gl}_{>0}$. In this case, \mathcal{M} is replaced by $\mathbb{Z} \times \mathbb{Z}$ -matrices and $\mathcal{B}_{\mu,\nu}$ is replaced by the level zero extremal weight crystal with the same parameter (μ, ν) . Finally, we conjecture that the second crystal structures arising from the RSK correspondence is compatible with the dual of *-crystal structure. There are several nice combinatorial descriptions of $\mathbf{B}(\infty)$ for $\mathfrak{gl}_{>0}$ and \mathfrak{gl}_{∞} (see e.g. [16,23,24]), by which one can understand the structure of $\mathbf{B}(\infty) \otimes T_A \otimes \mathbf{B}(-\infty)$. But our description of $\mathbf{B}(\infty) \otimes T_A \otimes \mathbf{B}(-\infty)$ enables us to explain more explicitly the connected component of a given element by applying usual Young tableaux insertion to the row word of its matrix form, an embedding of a tensor product of a highest weight crystal and a lowest weight crystal into $\mathbf{B}(\infty) \otimes T_A \otimes \mathbf{B}(-\infty)$ in terms of skew Young tableaux and hence a bicrystal structure on $\mathbf{B}(U_q(\mathfrak{gl}_{>0}))$ and $\mathbf{B}(U_q(\mathfrak{gl}_{\infty}))_0$ in connection with RSK algorithm.

The paper is organized as follows. In Section 2, we give necessary background on crystals. In Section 3, we recall some combinatorics of Littlewood–Richardson tableaux from a view point of crystals, which is necessary for our later arguments. In Section 4, we review a combinatorial model of extremal weight $\mathfrak{gl}_{>0}$ -crystals [14] and their non-commutative Littlewood–Richardson rule. Then in Section 5 we prove the main theorem. In Section 6, we recall a combinatorial model of extremal weight \mathfrak{gl}_{∞} -crystals [15] and describe the Littlewood–Richardson rule of the tensor product of a highest weight crystal and a lowest weight crystal. In Section 7, we prove analogues of the results in Section 5 for \mathfrak{gl}_{∞} . We remark that the Littlewood–Richardson rule in Section 6 is not necessary for Section 7, but is of independent interest, which completes the discussion on tensor product of extremal weight \mathfrak{gl}_{∞} -crystals in [15].

2. Crystals

2.1. Let \mathfrak{gl}_{∞} be the Lie algebra of complex matrices $(a_{ij})_{i,j\in\mathbb{Z}}$ with finitely many non-zero entries, which is spanned by E_{ij} $(i, j \in \mathbb{Z})$, the elementary matrix with 1 at the *i*-th row and the *j*-th column and zero elsewhere. Let $\mathfrak{h} = \bigoplus_{i \in \mathbb{Z}} \mathbb{C} E_{ii}$ be the Cartan subalgebra of \mathfrak{gl}_{∞} and let $\langle \cdot, \cdot \rangle$ denote the natural pairing on $\mathfrak{h}^* \times \mathfrak{h}$. We denote by $\{h_i = E_{ii} - E_{i+1\,i+1} \mid i \in \mathbb{Z}\}$ the set of simple coroots, and denote by $\{\alpha_i = \epsilon_i - \epsilon_{i+1} \mid i \in \mathbb{Z}\}$ the set of simple roots, where $\epsilon_i \in \mathfrak{h}^*$ is given by $\langle \epsilon_i, E_{jj} \rangle = \delta_{ij}$. The Dynkin diagram associated with the Cartan matrix $(\langle \alpha_j, h_i \rangle)_{i,j \in \mathbb{Z}}$ is

Let $P = \mathbb{Z}\Lambda_0 \oplus \bigoplus_{i \in \mathbb{Z}} \mathbb{Z}\epsilon_i = \bigoplus_{i \in \mathbb{Z}} \mathbb{Z}\Lambda_i$ be the weight lattice of \mathfrak{gl}_{∞} , where Λ_0 is given by $\langle \Lambda_0, E_{-j+1-j+1} \rangle = -\langle \Lambda_0, E_{jj} \rangle = \frac{1}{2}$ $(j \ge 1)$, and $\Lambda_i = \Lambda_0 + \sum_{k=1}^i \epsilon_k$, $\Lambda_{-i} = \Lambda_0 - \sum_{k=-i+1}^0 \epsilon_k$ for $i \ge 1$. We call Λ_i the *i*-th fundamental weight.

For $k \in \mathbb{Z}$, let $P_k = k\Lambda_0 + \bigoplus_{i \in \mathbb{Z}} \mathbb{Z}\epsilon_i$ be the set of integral weights of level k. Let $P^+ = \{\Lambda \in P \mid \langle \Lambda, h_i \rangle \ge 0, i \in \mathbb{Z}\} = \sum_{i \in \mathbb{Z}} \mathbb{Z}_{\ge 0}\Lambda_i$ be the set of dominant integral weights. We put $P_k^+ = P^+ \cap P_k$ for $k \ge 0$. For $\Lambda = \sum_{i \in \mathbb{Z}} c_i\Lambda_i \in P$, the level of Λ is $\sum_{i \in \mathbb{Z}} c_i$. If we put $\Lambda_{\pm} = \sum_{i;c_i \ge 0} |c_i|\Lambda_i$, then $\Lambda = \Lambda_+ - \Lambda_-$ with $\Lambda_{\pm} \in P^+$.

For $i \in \mathbb{Z}$, let r_i be the simple reflection given by $r_i(\lambda) = \lambda - \langle \lambda, h_i \rangle \alpha_i$ for $\lambda \in \mathfrak{h}^*$. Let W be the Weyl group of \mathfrak{gl}_{∞} , that is, the subgroup of $GL(\mathfrak{h}^*)$ generated by r_i for $i \in \mathbb{Z}$.

For $p, q \in \mathbb{Z}$, let $[p, q] = \{p, p + 1, ..., q\}$ (p < q), $[p, \infty) = \{p, p + 1, ...\}$ and $(-\infty, q] = \{..., q - 1, q\}$. For simplicity, we denote [1, n] by [n] $(n \ge 1)$. For an interval *S* in \mathbb{Z} , let \mathfrak{gl}_S be the subalgebra of \mathfrak{gl}_∞ spanned by E_{ij} for $i, j \in S$. (We have $\mathfrak{gl}_{\mathbb{Z}} = \mathfrak{gl}_\infty$.) We denote by S° the index set of simple roots for \mathfrak{gl}_S . For example, $[p, q]^\circ = \{p, ..., q - 1\}$. We also put $\mathfrak{gl}_{>r} = \mathfrak{gl}_{[r+1,\infty)}$ and $\mathfrak{gl}_{<r} = \mathfrak{gl}_{(-\infty, r-1]}$ for $r \in \mathbb{Z}$.

2.2. Let *S* be an interval in \mathbb{Z} . Let $U_q(\mathfrak{gl}_S)$ be the quantized enveloping algebra associated with \mathfrak{gl}_S . Then we can consider the crystal base of a $U_q(\mathfrak{gl}_S)$ -module following Kashiwara [8]. Roughly speaking, the crystal base of a $U_q(\mathfrak{gl}_S)$ -module *V* is an *S*°-colored oriented graph, which can be viewed as a limit of *V* at q = 0, but still has important combinatorial information of *V*. The existence of the crystal bases of $U_q(\mathfrak{gl}_S)$ -modules which are related with the work in this paper can be found in [8–10,13].

Based on the properties of crystal bases, one can define the notion of crystal as follows (see [11] for a general review and references therein).

A \mathfrak{gl}_S -crystal is a set *B* together with the maps wt : $B \to P$, $\varepsilon_i, \varphi_i : B \to \mathbb{Z} \cup \{-\infty\}$ and $\tilde{e}_i, \tilde{f}_i : B \to B \cup \{\mathbf{0}\}$ ($i \in S^\circ$) such that for $b \in B$

(1) $\varphi_i(b) = \langle wt(b), h_i \rangle + \varepsilon_i(b),$ (2) $\varepsilon_i(\tilde{e}_i b) = \varepsilon_i(b) - 1, \varphi_i(\tilde{e}_i b) = \varphi_i(b) + 1, wt(\tilde{e}_i b) = wt(b) + \alpha_i \text{ if } \tilde{e}_i b \neq \mathbf{0},$ (3) $\varepsilon_i(\tilde{f}_i b) = \varepsilon_i(b) + 1, \varphi_i(\tilde{f}_i b) = \varphi_i(b) - 1, wt(\tilde{f}_i b) = wt(b) - \alpha_i \text{ if } \tilde{f}_i b \neq \mathbf{0},$ (4) $\tilde{f}_i b = b' \text{ if and only if } b = \tilde{e}_i b' \text{ for } b, b' \in B,$ (5) $\tilde{e}_i b = \tilde{f}_i b = \mathbf{0}$ if $\varphi_i(b) = -\infty$,

where **0** is a formal symbol and $-\infty$ is the smallest element in $\mathbb{Z} \cup \{-\infty\}$ such that $-\infty + n = -\infty$ for all $n \in \mathbb{Z}$. For example, the crystal base of an integrable $U_q(\mathfrak{gl}_S)$ -module is a \mathfrak{gl}_S -crystal.

Note that *B* is equipped with an S° -colored oriented graph structure, where $b \xrightarrow{i} b'$ if and only if $b' = \tilde{f}_i b$ for $b, b' \in B$ and $i \in S^{\circ}$. For $b \in B$, we denote by C(b) the connected component in *B* including *b* as an S° -colored graph. We say that *B* is *connected* if C(b) = B for some $b \in B$.

The dual crystal B^{\vee} of B is defined to be the set $\{b^{\vee} | b \in B\}$ with $wt(b^{\vee}) = -wt(b)$, $\varepsilon_i(b^{\vee}) = \varphi_i(b)$, $\varphi_i(b^{\vee}) = \varepsilon_i(b)$, $\tilde{e}_i(b^{\vee}) = (\tilde{f}_ib)^{\vee}$ and $\tilde{f}_i(b^{\vee}) = (\tilde{e}_ib)^{\vee}$ for $b \in B$ and $i \in S^{\circ}$. We assume that $\mathbf{0}^{\vee} = \mathbf{0}$.

Let B_1 and B_2 be crystals. A morphism $\psi : B_1 \to B_2$ is a map from $B_1 \cup \{0\}$ to $B_2 \cup \{0\}$ such that for $b \in B_1$ and $i \in S^{\circ}$

- (1) $\psi(0) = 0$,
- (2) wt($\psi(b)$) = wt(b), $\varepsilon_i(\psi(b)) = \varepsilon_i(b)$, and $\varphi_i(\psi(b)) = \varphi_i(b)$ if $\psi(b) \neq \mathbf{0}$,
- (3) $\psi(\tilde{e}_{j}b) = \tilde{e}_{j}\psi(b)$ if $\psi(b) \neq \mathbf{0}$ and $\psi(\tilde{e}_{j}b) \neq \mathbf{0}$,

(4) $\psi(\tilde{f}_i b) = \tilde{f}_i \psi(b)$ if $\psi(b) \neq \mathbf{0}$ and $\psi(\tilde{f}_i b) \neq \mathbf{0}$.

We call ψ an *embedding* and B_1 a *subcrystal* of B_2 when ψ is injective, and call ψ *strict* if $\psi : B_1 \cup \{\mathbf{0}\} \to B_2 \cup \{\mathbf{0}\}$ commutes with \tilde{e}_i and \tilde{f}_i for $i \in S^\circ$, where we assume that $\tilde{e}_i \mathbf{0} = \tilde{f}_i \mathbf{0} = \mathbf{0}$. If ψ is a strict embedding, then B_2 is isomorphic to $B_1 \sqcup (B_2 \setminus B_1)$.

For $b_i \in B_i$ (i = 1, 2), we say that b_1 is (\mathfrak{gl}_S -)equivalent to b_2 , and write $b_1 \equiv b_2$ if there exists an isomorphism of crystals $C(b_1) \rightarrow C(b_2)$ sending b_1 to b_2 .

For a crystal *B* and $m \in \mathbb{Z}_{\geq 0}$, we denote by $B^{\oplus m}$ the disjoint union $B_1 \sqcup \cdots \sqcup B_m$ with $B_i \simeq B$, where $B^{\oplus 0}$ means the empty set.

We say that a crystal *B* is *regular* if *B* is as a $\mathfrak{gl}_{S'}$ -crystal, isomorphic to the crystal base of an integrable $U_q(\mathfrak{gl}_{S'})$ -module for any finite subinterval $S' \subset S$. In particular, if *B* is regular, then $\varepsilon_i(b) = \max\{k \mid \tilde{e}_i^k b \neq \mathbf{0}\}$ and $\varphi_i(b) = \max\{k \mid \tilde{f}_i^k b \neq \mathbf{0}\}$ for $b \in B$ and $i \in S^\circ$. Note that an embedding between regular crystals is always strict.

A tensor product $B_1 \otimes B_2$ of crystals B_1 and B_2 is defined to be $B_1 \times B_2$ as a set with elements denoted by $b_1 \otimes b_2$, where

$$\begin{split} & \mathsf{wt}(b_1 \otimes b_2) = \mathsf{wt}(b_1) + \mathsf{wt}(b_2), \\ & \varepsilon_i(b_1 \otimes b_2) = \mathsf{max}\big(\varepsilon_i(b_1), \varepsilon_i(b_2) - \big\langle \mathsf{wt}(b_1), h_i \big\rangle\big), \\ & \varphi_i(b_1 \otimes b_2) = \mathsf{max}\big(\varphi_i(b_1) + \big\langle \mathsf{wt}(b_2), h_i \big\rangle, \varphi_i(b_2)\big), \\ & \tilde{e}_i(b_1 \otimes b_2) = \begin{cases} \tilde{e}_i b_1 \otimes b_2, & \text{if } \varphi_i(b_1) \geqslant \varepsilon_i(b_2), \\ & b_1 \otimes \tilde{e}_i b_2, & \text{if } \varphi_i(b_1) < \varepsilon_i(b_2), \end{cases} \\ & \tilde{f}_i(b_1 \otimes b_2) = \begin{cases} \tilde{f}_i b_1 \otimes b_2, & \text{if } \varphi_i(b_1) > \varepsilon_i(b_2), \\ & b_1 \otimes \tilde{e}_i b_2, & \text{if } \varphi_i(b_1) > \varepsilon_i(b_2), \end{cases} \\ & \tilde{f}_i(b_1 \otimes b_2) = \begin{cases} \tilde{f}_i b_1 \otimes b_2, & \text{if } \varphi_i(b_1) > \varepsilon_i(b_2), \\ & b_1 \otimes \tilde{f}_i b_2, & \text{if } \varphi_i(b_1) < \varepsilon_i(b_2), \end{cases} \end{split}$$

for $i \in S^{\circ}$ and $b_1 \otimes b_2 \in B_1 \otimes B_2$. Here we assume that $\mathbf{0} \otimes b_2 = b_1 \otimes \mathbf{0} = \mathbf{0}$. Then $B_1 \otimes B_2$ is a crystal. Note that $B_1 \otimes B_2$ is regular if B_1 and B_2 are regular, and $(B_1 \otimes B_2)^{\vee} \simeq B_2^{\vee} \otimes B_1^{\vee}$.

2.3. Let us briefly review the crystal bases of an extremal weight module and a modified quantized enveloping algebra. We refer the reader to Kashiwara's papers [8,10,12] for more details.

restricting it to the weight lattice of \mathfrak{gl}_S (i.e. $\bigoplus_{i \in S} \mathbb{Z} \epsilon_i$ when $S \neq \mathbb{Z}$). Let $\mathbf{B}(\Lambda)$ be the crystal base of the extremal weight $U_q(\mathfrak{gl}_S)$ -module with extremal weight vector u_Λ of weight Λ , which is a regular \mathfrak{gl}_S -crystal. When $\pm \Lambda$ is a dominant integral weight for \mathfrak{gl}_S , $\mathbf{B}(\Lambda)$ is the crystal base of the integrable highest (resp. lowest) weight $U_q(\mathfrak{gl}_S)$ -module with highest (resp. lowest) weight Λ . Also we have $\mathbf{B}(\Lambda) \simeq \mathbf{B}(w\Lambda)$ for $w \in W$. When S is finite, Λ is Weyl group conjugate to a \mathfrak{gl}_S -dominant integral weight and hence $\mathbf{B}(\Lambda)$ is isomorphic to the crystal base of a highest weight module and in particular it is connected. When S is infinite, $\mathbf{B}(\Lambda)$ does not necessarily contain a highest weight or lowest weight element, but it is shown in [14, Proposition 3.1] and [15, Proposition 4.1] that $\mathbf{B}(\Lambda)$ is also connected.

Let $\mathbf{B}(\pm\infty)$ be the crystal base of the negative (resp. positive) part of $U_q(\mathfrak{gl}_S)$ with the highest (resp. lowest) weight element $u_{\pm\infty}$, which is a \mathfrak{gl}_S -crystal, and let $T_A = \{t_A\}$ ($A \in P$) be the crystal with $\operatorname{wt}(t_A) = A$, $\tilde{e}_i t_A = \tilde{f}_i t_A = \mathbf{0}$ and $\varepsilon_i(t_A) = \varphi_i(t_A) = -\infty$ for $i \in S^\circ$. Let $\tilde{U}_q(\mathfrak{gl}_S) = \bigoplus_A U_q(\mathfrak{gl}_S)a_A$ be the modified quantized enveloping algebra associated with \mathfrak{gl}_S , where A runs over all integral weights for \mathfrak{gl}_S , and let $\mathbf{B}(\tilde{U}_q(\mathfrak{gl}_S)) = \bigsqcup_A \mathbf{B}(U_q(\mathfrak{gl}_S)a_A)$ denote the crystal base of $\tilde{U}_q(\mathfrak{gl}_S)$. Then it was shown by Kashiwara that

$$\mathbf{B}(U_q(\mathfrak{gl}_S)a_A) \simeq \mathbf{B}(\infty) \otimes T_A \otimes \mathbf{B}(-\infty).$$

Note that $\mathbf{B}(\infty) \otimes T_A \otimes \mathbf{B}(-\infty)$ is regular, and there is a strict embedding of $\mathbf{B}(\Lambda)$ into $\mathbf{B}(\infty) \otimes T_A \otimes \mathbf{B}(-\infty)$ sending u_A to $u_\infty \otimes t_A \otimes u_{-\infty}$. Hence $\mathbf{B}(\Lambda)$ is isomorphic to $C(u_\infty \otimes t_A \otimes u_{-\infty})$ since $\mathbf{B}(\Lambda)$ is connected.

The crystal $\mathbf{B}(\infty) \otimes T_A \otimes \mathbf{B}(-\infty)$ can be understood as a limit of $\mathbf{B}(\Lambda') \otimes \mathbf{B}(-\Lambda'')$ for \mathfrak{gl}_S -dominant weights Λ', Λ'' with $\Lambda' - \Lambda'' = \Lambda$. First recall that there is an embedding $\mathbf{B}(\Lambda_+) \to \mathbf{B}(\infty) \otimes T_{\Lambda_+}$ (resp. $\mathbf{B}(-\Lambda_-) \to T_{\Lambda_-} \otimes \mathbf{B}(-\infty)$) sending u_{Λ_+} to $u_\infty \otimes t_{\Lambda_+}$ (resp. $u_{-\Lambda_-}$ to $t_{-\Lambda_-} \otimes u_{-\infty}$). This gives a strict embedding

$$\iota_{\Lambda_{+},\Lambda_{-}}: \mathbf{B}(\Lambda_{+}) \otimes \mathbf{B}(-\Lambda_{-}) \to \mathbf{B}(\infty) \otimes T_{\Lambda} \otimes \mathbf{B}(-\infty)$$
(2.1)

sending $u_{A_+} \otimes u_{-A_-}$ to $u_{\infty} \otimes t_A \otimes u_{-\infty}$ since $t_A \equiv t_{A_+} \otimes t_{-A_-}$. For a \mathfrak{gl}_S -dominant weight $\xi \in P$, let

$$\iota_{\Lambda_{+},\Lambda_{-}}^{\xi}: \mathbf{B}(\Lambda_{+}) \otimes \mathbf{B}(-\Lambda_{-}) \to \mathbf{B}(\Lambda_{+} + \xi) \otimes \mathbf{B}(-\xi - \Lambda_{-})$$
(2.2)

be a strict embedding given by the composition of the following two morphisms

$$\begin{split} \mathbf{B}(\Lambda_{+}) \otimes \mathbf{B}(-\Lambda_{-}) &\to \mathbf{B}(\Lambda_{+}) \otimes \mathbf{B}(\xi) \otimes \mathbf{B}(-\xi) \otimes \mathbf{B}(-\Lambda_{-}) \\ &\to \mathbf{B}(\Lambda_{+} + \xi) \otimes \mathbf{B}(-\xi - \Lambda_{-}), \end{split}$$

where

$$\begin{split} \tilde{f}_{i_1} \cdots \tilde{f}_{i_r} u_{\Lambda_+} \otimes \tilde{e}_{j_1} \cdots \tilde{e}_{j_s} u_{-\Lambda_-} \\ \mapsto (\tilde{f}_{i_1} \cdots \tilde{f}_{i_r} u_{\Lambda_+}) \otimes u_{\xi} \otimes u_{-\xi} \otimes (\tilde{e}_{j_1} \cdots \tilde{e}_{j_s} u_{-\Lambda_-}) \\ \mapsto \tilde{f}_{i_1} \cdots \tilde{f}_{i_r} u_{\Lambda_++\xi} \otimes \tilde{e}_{j_1} \cdots \tilde{e}_{j_s} u_{-\xi-\Lambda_-} \end{split}$$

for i_1, \ldots, i_r and j_1, \ldots, j_s such that $\tilde{f}_{i_1} \cdots \tilde{f}_{i_r} u_{\Lambda_+} \neq \mathbf{0}$ and $\tilde{e}_{j_1} \cdots \tilde{e}_{j_s} u_{-\Lambda_-} \neq \mathbf{0}$. Note that

$$\begin{split} \tilde{f}_{i_1} \cdots \tilde{f}_{i_r} u_{\Lambda_+ + \xi} &\equiv (\tilde{f}_{i_1} \cdots \tilde{f}_{i_r} u_{\Lambda_+}) \otimes u_{\xi}, \quad \text{if } \tilde{f}_{i_1} \cdots \tilde{f}_{i_r} u_{\Lambda_+} \neq \mathbf{0}, \\ \tilde{e}_{j_1} \cdots \tilde{e}_{j_s} u_{-\xi - \Lambda_-} &\equiv u_{-\xi} \otimes (\tilde{e}_{j_1} \cdots \tilde{e}_{j_s} u_{-\Lambda_-}), \quad \text{if } \tilde{e}_{j_1} \cdots \tilde{e}_{j_s} u_{-\Lambda_-} \neq \mathbf{0}. \end{split}$$

Since

$$\mathbf{B}(\infty) \otimes T_{\Lambda} \otimes \mathbf{B}(-\infty) = \bigcup_{\substack{\Lambda',\Lambda'':\mathfrak{gl}_{S}-\text{dominant}\\\Lambda'-\Lambda''=\Lambda}} \operatorname{Im}(\iota_{\Lambda',\Lambda''}),$$
$$\iota_{\Lambda'+\xi,\Lambda''+\xi} \circ \iota_{\Lambda',\Lambda''}^{\xi},$$
(2.3)

 $\{\mathbf{B}(\Lambda') \otimes \mathbf{B}(-\Lambda'') \mid \Lambda', \Lambda'' : \mathfrak{gl}_{S}$ -dominant with $\Lambda = \Lambda' - \Lambda''\}$ together with $\iota_{\Lambda',\Lambda''}^{\xi}$'s forms a direct system, whose limit is isomorphic to $\mathbf{B}(\infty) \otimes T_{\Lambda} \otimes \mathbf{B}(-\infty)$. Note that $\mathbf{B}(\Lambda)$ is also isomorphic to $\mathcal{C}(u_{\Lambda_{+}+\xi} \otimes u_{-\xi-\Lambda_{-}})$ in $\mathbf{B}(\Lambda_{+}+\xi) \otimes \mathbf{B}(-\xi-\Lambda_{-})$ for any \mathfrak{gl}_{S} -dominant weight ξ .

3. Young and Littlewood-Richardson tableaux

3.1. Let \mathscr{P} denote the set of partitions. We identify a partition $\lambda = (\lambda_i)_{i \ge 1}$ with a Young diagram or a subset $\{(i, j) \mid 1 \le j \le \lambda_i\}$ of $\mathbb{N} \times \mathbb{N}$ following [18]. Let $\ell(\lambda) = |\{i \mid \lambda_i \ne 0\}|$. We denote by $\lambda' = (\lambda'_i)_{i \ge 1}$ the conjugate partition of λ whose Young diagram is $\{(i, j) \mid (j, i) \in \lambda\}$. For $\mu, \nu \in \mathscr{P}, \mu \cup \nu$ is the partition obtained by rearranging $\{\mu_i, \nu_i \mid i \ge 1\}$, and $\mu + \nu = (\mu_i + \nu_i)_{i \ge 1}$.

Let \mathcal{A} be a linearly ordered set and λ/μ a skew Young diagram. A tableau T obtained by filling λ/μ with entries in \mathcal{A} is called a *semistandard tableau or Young tableau of shape* λ/μ if the entries in each row (resp. column) are weakly (resp. strictly) increasing from left to right (resp. from top to bottom). We denote by T(i, j) the entry of T at $(i, j) \in \lambda/\mu$. Let $SST_{\mathcal{A}}(\lambda/\mu)$ denote the set of all semistandard tableaux of shape λ/μ with entries in \mathcal{A} .

Suppose that \mathcal{A} is an interval in \mathbb{Z} with a usual linear ordering. Then \mathcal{A} is a regular $\mathfrak{gl}_{\mathcal{A}}$ -crystal, where wt(i) = ϵ_i ($i \in \mathcal{A}$) and $i \xrightarrow{i} i + 1$ ($i \in \mathcal{A}^\circ$). The image of $SST_{\mathcal{A}}(\lambda/\mu)$ in $\mathcal{A}^{\otimes r}$ ($r = |\lambda/\mu|$) under the map $T \mapsto w(T) = w_1 \cdots w_r$ or $w_1 \otimes \cdots \otimes w_r$ together with {0} is invariant under \tilde{e}_i , \tilde{f}_i ($i \in \mathcal{A}^\circ$), where w(T) is the word obtained by reading the entries of T column by column from right to left, and in each column from top to bottom. Hence $SST_{\mathcal{A}}(\lambda/\mu)$ is a subcrystal of $\mathcal{A}^{\otimes r}$ [13]. We may identify the dual crystal element $T^{\vee} \in SST_{\mathcal{A}}(\lambda/\mu)^{\vee}$ with the tableau obtained from T by 180°-rotation and replacing each entry a with a^{\vee} . So we have $SST_{\mathcal{A}}(\lambda/\mu)^{\vee} \simeq SST_{\mathcal{A}^{\vee}}((\lambda/\mu)^{\vee})$, where $a^{\vee} < b^{\vee}$ if and only if b < a for $a, b \in \mathcal{A}$ and $(\lambda/\mu)^{\vee}$ is the skew Young diagram obtained from λ/μ by 180°-rotation. We use the convention $(a^{\vee})^{\vee} = a$ and hence $(T^{\vee})^{\vee} = T$.

3.2. For $\lambda, \mu, \nu \in \mathscr{P}$ with $|\lambda| = |\mu| + |\nu|$, let $\mathbf{LR}_{\mu\nu}^{\lambda}$ be the set of tableaux *U* in $SST_{\mathbb{N}}(\lambda/\mu)$ such that

- (1) the number of occurrences of each $i \ge 1$ in U is v_i ,
- (2) for $1 \le k \le |\nu|$, the number of occurrences of each $i \ge 1$ in $w_1 \cdots w_k$ is no less than that of i + 1 in $w_1 \cdots w_k$, where $w(U) = w_1 \cdots w_{|\nu|}$.

We call $\mathbf{LR}_{\mu\nu}^{\lambda}$ the set of *Littlewood–Richardson tableaux of shape* λ/μ with content ν and put $c_{\mu\nu}^{\lambda} = |\mathbf{LR}_{\mu\nu}^{\lambda}|$ [18]. Let us introduce a variation of $\mathbf{LR}_{\mu\nu}^{\lambda}$, which is necessary for our later arguments. Let $\overline{\mathbf{LR}}_{\mu\nu}^{\lambda}$ be the set of tableaux U in $SST_{-\mathbb{N}}(\lambda/\mu)$ such that

- (1) the number of occurrences of each $-i \leq -1$ in U is v_i ,
- (2) for $1 \le k \le |\nu|$, the number of occurrences of each $-i \le -1$ in $w_k \cdots w_{|\nu|}$ is no less than that of -(i+1) in $w_k \cdots w_{|\nu|}$, where $w(U) = w_1 \cdots w_{|\nu|}$.

There are characterizations of $\mathbf{LR}_{\mu\nu}^{\lambda}$ and $\overline{\mathbf{LR}}_{\mu\nu}^{\lambda}$ using crystals. For $U \in SST_{\mathbb{N}}(\lambda/\mu)$, we can check that $U \in \mathbf{LR}_{\mu\nu}^{\lambda}$ if and only if U is $\mathfrak{gl}_{>0}$ -equivalent (or Knuth equivalent) to the highest weight element H_{ν} in $SST_{\mathbb{N}}(\nu)$, that is, $H_{\nu}(i, j) = i$ for $(i, j) \in \nu$. Similarly, for $U \in SST_{-\mathbb{N}}(\lambda/\mu)$, we have $U \in \overline{\mathbf{LR}}_{\mu\nu}^{\lambda}$ if and only if U is $\mathfrak{gl}_{<0}$ -equivalent (or Knuth equivalent) to the lowest weight element L_{ν} in $SST_{-\mathbb{N}}(\nu)$, that is, $L_{\nu}(i, j) = -\nu'_{i} + i - 1$ for $(i, j) \in \nu$.

There is a one-to-one correspondence between the set of $V \in SST_{\mathbb{N}}(v)$ such that $H_{\mu} \otimes V \equiv H_{\lambda}$ and $\mathbf{LR}_{\mu\nu}^{\lambda}$. Indeed, *V* corresponds to $\iota(V) = U \in \mathbf{LR}_{\mu\nu}^{\lambda}$, where the number of *k*'s in the *i*-th row of *V* is equal to the number of *i*'s in the *k*-th row of *U* for $i, k \ge 1$ [20].

Example 3.1. Consider

$$V = \begin{cases} 1 & 1 & 2 \\ 2 & 2 & 3 \\ 3 & 4 \end{cases} \in SST_{\mathbb{N}}((3,3,2)).$$

Then $H_{(3,1)} \otimes V \equiv H_{(5,4,2,1)}$ and

$$\iota(V) = \begin{array}{ccccc} \bullet & \bullet & \bullet & 1 & 1 \\ \bullet & 1 & 2 & 2 \\ 2 & 3 & & \\ 3 & & \end{array} \in \mathbf{LR}^{(5,4,2,1)}_{(3,1) \ (3,3,2)}.$$

3.3. Next, let us briefly recall the *switching algorithm* [2]. Suppose that A and B are two linearly ordered sets. Let λ/μ be a skew Young diagram. Let U be a tableau of shape λ/μ with entries in $A \sqcup B$, satisfying the following conditions:

(S1) $U(i, j) \leq U(i', j')$ whenever $U(i, j), U(i', j') \in \mathcal{X}$ for $(i, j), (i', j') \in \lambda/\mu$ with $i \leq i'$ and $j \leq j'$, (S2) in each column of U, entries in \mathcal{X} increase strictly from top to bottom,

where $\mathcal{X} = \mathcal{A}$ or \mathcal{B} . Suppose that $b \in \mathcal{B}$ and $a \in \mathcal{A}$ are two adjacent entries in U such that b is placed above or to the left of a. Interchanging a and b is called a *switching* if the resulting tableau still satisfies the conditions (S1) and (S2).

Let λ/μ and μ/η be two skew Young diagrams. For $S \in SST_{\mathcal{B}}(\mu/\eta)$ and $T \in SST_{\mathcal{A}}(\lambda/\mu)$, we denote by S * T the tableau of shape λ/η with entries $\mathcal{A} \sqcup \mathcal{B}$ obtained by gluing S and T, that is, (S * T)(i, j) =S(i, j) if $(i, j) \in \mu/\eta$, and T(i, j) if $(i, j) \in \lambda/\mu$. Let U be a tableau obtained from S * T by applying switching procedures as far as possible. Then it is shown in [2, Theorems 2.2 and 3.1] that

(1) U = T' * S', where $T' \in SST_{\mathcal{A}}(\nu/\eta)$ and $S' \in SST_{\mathcal{B}}(\lambda/\nu)$ for some ν ,

- (2) U is uniquely determined by S and T,
- (3) w(S) (resp. w(T)) is Knuth equivalent to w(S') (resp. w(T')).

Suppose that $\eta = \emptyset$ and $S = H_{\mu} \in SST_{\mathbb{N}}(\mu)$. We put

$$J(T) = T', \qquad J(T)_R = S'.$$
 (3.1)

Then we have the following.

Proposition 3.2. Suppose that A is an interval in \mathbb{Z} . The map sending T to $(_J(T), _J(T)_R)$ is an isomorphism of \mathfrak{gl}_A -crystals

$$SST_{\mathcal{A}}(\lambda/\mu) \to \bigsqcup_{\nu \in \mathscr{P}} SST_{\mathcal{A}}(\nu) \times \mathbf{LR}^{\lambda}_{\nu\mu}.$$

where $\tilde{x}_i(T', S') = (\tilde{x}_iT', S')$ for $i \in A^\circ$ and x = e, f on the right-hand side. In particular, the map $Q \mapsto J(Q)_R$ restricts to a bijection from $\mathbf{LR}^\lambda_{\mu\nu}$ to $\mathbf{LR}^\lambda_{\nu\mu}$, and from $\overline{\mathbf{LR}}^\lambda_{\mu\nu}$ to $\mathbf{LR}^\lambda_{\nu\mu}$ when $A = \pm \mathbb{N}$, respectively.

Proof. The map is clearly a bijection by [2, Theorem 3.1]. Moreover, $_J(T)$ is $\mathfrak{gl}_{\mathcal{A}}$ -equivalent to T and $_J(T)_R$ is invariant under \tilde{e}_i and \tilde{f}_i for $i \in \mathcal{A}^\circ$ (cf. [6, Theorem 5.9]). Hence the bijection is an isomorphism of $\mathfrak{gl}_{\mathcal{A}}$ -crystals. \Box

Remark 3.3. The inverse of the isomorphism in Proposition 3.2 is given directly by applying the switching process in a reverse way.

4. Extremal weight crystals of type $A_{+\infty}$

Note that for $r \in \mathbb{Z}$ the $\mathfrak{gl}_{>r}$ -crystals $[r+1,\infty)$ and $[r+1,\infty)^{\vee}$ are given by

$$r+1 \xrightarrow{r+1} r+2 \xrightarrow{r+2} r+3 \xrightarrow{r+3} \cdots,$$

$$\cdots \xrightarrow{r+3} (r+3)^{\vee} \xrightarrow{r+2} (r+2)^{\vee} \xrightarrow{r+1} (r+1)^{\vee}$$

For $\mu \in \mathscr{P}$, let

$$\mathbf{B}_{\mu}^{>r} = SST_{[r+1,\infty)}(\mu). \tag{4.1}$$

Then $\mathbf{B}_{\mu}^{>r}$ is a highest weight $\mathfrak{gl}_{>r}$ -crystal with highest weight element $H_{\mu}^{>r}$ of weight $\sum_{i \ge 1} \lambda_i \epsilon_{r+i}$, where $H_{\mu}^{>r}(i, j) = r + i$ for $(i, j) \in \mu$. We identify $(\mathbf{B}_{\mu}^{>r})^{\vee}$ with $SST_{[r+1,\infty)^{\vee}}(\mu^{\vee})$.

For $\nu \in \mathscr{P}$ and $s \ge \ell(\nu)$, let $E_{\nu}^{>r}(s) \in (\mathbf{B}_{\nu}^{>r})^{\vee}$ be given by

$$\left(E_{\nu}^{>r}(s)\right)^{\vee}(i,j) = r + s - \nu_j' + i$$
(4.2)

for $(i, j) \in v$. For $s \ge \ell(\mu) + \ell(v)$, let

$$\mathbf{B}_{\mu,\nu}^{>r} = C\left(H_{\mu}^{>r} \otimes E_{\nu}^{>r}(s)\right) \subset \mathbf{B}_{\mu}^{>r} \otimes \left(\mathbf{B}_{\nu}^{>r}\right)^{\vee}$$

$$\tag{4.3}$$

be the connected component including $H^{>r}_{\mu} \otimes E^{>r}_{\nu}(s)$ as a $\mathfrak{gl}_{>r}$ -crystal. Then we have the following by [14, Proposition 3.4] and [14, Theorem 3.5].

Theorem 4.1. For $\mu, \nu \in \mathcal{P}$,

(1) $\mathbf{B}_{\mu,\nu}^{>r}$ is the set of $S \otimes T \in \mathbf{B}_{\mu}^{>r} \otimes (\mathbf{B}_{\nu}^{>r})^{\vee}$ such that for each $k \ge 1$,

$$|\{i \mid S(i, 1) \leq r+k\}| + |\{i \mid T^{\vee}(i, 1) \leq r+k\}| \leq k,$$

(2) $\mathbf{B}_{\mu\nu}^{>r}$ is isomorphic to an extremal weight $\mathfrak{gl}_{>r}$ -crystal with extremal weight

$$\sum_{i=1}^{\ell(\mu)} \mu_i \epsilon_{r+i} - \sum_{j=1}^{\ell(\nu)} \nu_j \epsilon_{r+\ell(\mu)+\ell(\nu)-j+1}$$

Note that $\mathbf{B}_{\mu,\nu}^{>r}$ does not depend on the choice of *s*. Moreover, $\{\mathbf{B}_{\mu,\nu}^{>r} \mid \mu, \nu \in \mathcal{P}\}$ is a complete list of pairwise non-isomorphic extremal weight $\mathfrak{gl}_{>r}$ -crystals [14, Theorem 3.5 and Lemma 5.1] and the tensor product of extremal weight $\mathfrak{gl}_{>r}$ -crystals is isomorphic to a finite disjoint union of extremal weight crystals [14, Theorem 4.10].

To describe the tensor product of extremal weight $\mathfrak{gl}_{>r}$ -crystals, let us review an insertion algorithm for extremal weight crystal elements [14, Section 4], which is an infinite analogue of [25,26]. Recall that for $a \in A$ and $T \in SST_A(\lambda)$ ($\lambda \in \mathscr{P}$), $a \to T$ (resp. $T \leftarrow a$) denotes the tableau obtained by the Schensted column (resp. row) insertion, where A is a linearly ordered set (see for example [5, Appendix A.2]).

From now on, we denote $S \otimes T \in \mathbf{B}_{\mu,\nu}^{>r}$ by (S,T) following [14]. For $a \in [r+1,\infty)$, we define $a \to (S,T)$ in the following way.

Suppose first that *S* is the empty tableau \emptyset and *T* is a single column tableau. Let (T', a') be the pair obtained by the following process:

(1) If *T* contains a^{\vee} , $(a+1)^{\vee}$, ..., $(b-1)^{\vee}$ as its entries but not b^{\vee} , then *T'* is the tableau obtained from *T* by replacing a^{\vee} , $(a+1)^{\vee}$, ..., $(b-1)^{\vee}$ with $(a+1)^{\vee}$, $(a+2)^{\vee}$, ..., b^{\vee} , and put a' = b.

(2) If *T* does not contain a^{\vee} , then leave *T* unchanged and put a' = a.

Now, we suppose that *S* and *T* are arbitrary.

- (1) Apply the above process to the left-most column of T with a.
- (2) Repeat (1) with a' and the next column to the right.
- (3) Continue this process to the right-most column of *T* to get a tableau T' and a''.
- (4) Define $a \to (S, T)$ to be $((a'' \to S), T')$.

Then $(a \to (S, T)) \in \mathbf{B}_{\sigma, \nu}^{-, \nu}$ for some $\sigma \in \mathscr{P}$ with $|\sigma/\mu| = 1$ $(\mu \subset \sigma)$. For a finite word $w = w_1 \cdots w_n$ with letters in $[r + 1, \infty)$, we let $(w \to (S, T)) = (w_n \to (\cdots (w_1 \to (S, T)) \cdots))$.

For $a \in [r + 1, \infty)$ and $(S, T) \in \mathbf{B}_{\mu,\nu}^{>r}$, we define $(S, T) \leftarrow a^{\vee}$ to be the pair (S', T') obtained in the following way:

- (1) If the pair $(S, (T^{\vee} \leftarrow a)^{\vee})$ satisfies the condition in Theorem 4.1(1), then put S' = S and $T' = (T^{\vee} \leftarrow a)^{\vee}$.
- (2) Otherwise, choose the smallest k such that a_k is bumped out of the k-th row in the row insertion of a into T^{\vee} and the insertion of a_k into the (k + 1)-st row violates the condition in Theorem 4.1(1).
- (2-a) Stop the row insertion of *a* into T^{\vee} when a_k is bumped out and let T' be the resulting tableau after taking \vee .
- (2-b) Remove a_k in the left-most column of *S*, which necessarily exists, and then apply the *jeu de taquin* (see for example [5, Section 1.2]) to obtain a tableau *S'*.

In this case, $((S, T) \leftarrow a^{\vee}) \in \mathbf{B}_{\sigma,\tau}^{\circ,\tau}$, where either (1) $|\mu/\sigma| = 1$ ($\sigma \subset \mu$) and $\tau = \nu$, or (2) $\sigma = \mu$ and $|\tau/\nu| = 1$ ($\nu \subset \tau$). For a finite word $w = w_1 \cdots w_n$ with letters in $[r+1, \infty)^{\vee}$, we let $((S, T) \leftarrow w) = ((\cdots ((S, T) \leftarrow w_1) \cdots) \leftarrow w_n)$.

Let $\mu, \nu, \sigma, \tau \in \mathscr{P}$ be given. For $(S, T) \in \mathbf{B}_{\mu,\nu}^{>r}$ and $(S', T') \in \mathbf{B}_{\sigma,\tau}^{>r}$, we define

$$((S', T') \to (S, T)) = ((w(S') \to (S, T)) \leftarrow w(T'))$$

Then $((S', T') \to (S, T)) \in \mathbf{B}_{\zeta, \eta}^{>r}$ for some $\zeta, \eta \in \mathscr{P}$. Assume that $w(S') = w_1 \cdots w_s$ and $w(T') = w_{s+1} \cdots w_{s+t}$. For $1 \leq i \leq s+t$, let

$$\left(S^{i}, T^{i}\right) = \begin{cases} w_{1} \cdots w_{i} \to (S, T), & \text{if } 1 \leq i \leq s, \\ (S^{s}, T^{s}) \leftarrow w_{s+1} \cdots w_{i}, & \text{if } s+1 \leq i \leq s+t, \end{cases}$$

and $(S^0, T^0) = (S, T)$. We define

$$((S', T') \rightarrow (S, T))_R = (U, V)_R$$

where (U, V) is the pair of tableaux with entries in $\mathbb{Z} \setminus \{0\}$ determined by the following process:

- (1) *U* is of shape σ and *V* is of shape τ .
- (2) Let $1 \le i \le s$. If w_i is inserted into (S^{i-1}, T^{i-1}) to create a dot (or box) in the *k*-th row of the shape of S^{i-1} , then we fill the dot in σ corresponding to w_i with *k*.
- (3) Let $s + 1 \le i \le s + t$. If w_i is inserted into (S^{i-1}, T^{i-1}) to create a dot in the k-th row (from the bottom) of the shape of T^{i-1} , then we fill the dot in τ corresponding to w_i with -k. If w_i is inserted into (S^{i-1}, T^{i-1}) to remove a dot in the k-th row of the shape of S^{i-1} , then we fill the corresponding dot in τ with k.

We call $((S', T') \rightarrow (S, T))_R$ the recording tableau of $((S', T') \rightarrow (S, T))$. By [14, Theorem 4.10], we have the following.

Proposition 4.2. Under the above hypothesis, we have

- (1) $((S', T') \rightarrow (S, T)) \equiv (S, T) \otimes (S', T'),$
- (2) $((S', T') \rightarrow (S, T))_R \in SST_{\mathbb{N}}(\sigma) \times SST_{\mathbb{Z}}(\tau)$, where \mathbb{Z} is the set of non-zero integers with a linear ordering $1 \prec 2 \prec 3 \prec \cdots \prec -3 \prec -2 \prec -1$,
- (3) the recording tableaux are constant on the connected component of $\mathbf{B}_{\mu,\nu}^{>r} \otimes \mathbf{B}_{\sigma,\tau}^{>r}$ including $(S,T) \otimes (S',T')$.

Suppose that $\mu, \nu \in \mathscr{P}$ and $W \in SST_{\mathcal{Z}}(\nu)$ are given with $w(W) = w_{|\nu|} \cdots w_1$. Let (α^0, β^0) , $(\alpha^1, \beta^1), \ldots, (\alpha^{|\nu|}, \beta^{|\nu|})$ be the sequence, where $\alpha^i = (\alpha^i_j)_{j \ge 1}$ and $\beta^i = (\beta^i_j)_{j \ge 1}$ $(1 \le i \le |\nu|)$ are sequences of integers defined inductively as follows:

(1) $\alpha^0 = \mu$ and $\beta^0 = (0, 0, ...)$.

(2) If w_i is positive, then αⁱ is obtained by subtracting 1 in the w_i-th part of αⁱ⁻¹, and βⁱ = βⁱ⁻¹. If w_i is negative, then αⁱ = αⁱ⁻¹ and βⁱ is obtained by adding 1 in the (-w_i)-th part of βⁱ⁻¹.

Then for $\sigma, \tau \in \mathscr{P}$ we define $\mathcal{C}_{(\sigma,\tau)}^{(\mu,\nu)}$ to be the set of $W \in SST_{\mathcal{Z}}(\nu)$ such that $\alpha^i, \beta^i \in \mathscr{P}$ for $1 \leq i \leq |\nu|$, and $(\alpha^{|\nu|}, \beta^{|\nu|}) = (\sigma, \tau)$.

For $S \in \mathbf{B}_{\mu}^{>r}$ and $T \in (\mathbf{B}_{\nu}^{>r})^{\vee}$, we have $((\emptyset, T) \to (S, \emptyset))_R = (\emptyset, W)$ for some $W \in \mathcal{C}_{(\sigma, \tau)}^{(\mu, \nu)}$ by Proposition 4.2(2). For convenience, we identify W with $((\emptyset, T) \to (S, \emptyset))_R$. Then, we have the following decomposition as a special case of [14, Theorem 4.10].

Proposition 4.3. For $\mu, \nu \in \mathscr{P}$, we have an isomorphism of $\mathfrak{gl}_{>r}$ -crystals

$$\mathbf{B}_{\mu}^{>r} \otimes \left(\mathbf{B}_{\nu}^{>r}\right)^{\vee} \to \bigsqcup_{\sigma,\tau \in \mathscr{P}} \mathbf{B}_{\sigma,\tau}^{>r} \times \mathcal{C}_{(\sigma,\tau)}^{(\mu,\nu)},$$

where $S \otimes T$ is sent to $(((\emptyset, T) \rightarrow (S, \emptyset)), ((\emptyset, T) \rightarrow (S, \emptyset))_R)$.

Further, we can characterize $\mathcal{C}^{(\mu,\nu)}_{(\sigma,\tau)}$ as follows.

Proposition 4.4. For $\mu, \nu, \sigma, \tau \in \mathcal{P}$, there exists a bijection

$$\mathcal{C}^{(\mu,\nu)}_{(\sigma,\tau)} \to \bigsqcup_{\lambda \in \mathscr{P}} \mathbf{LR}^{\mu}_{\sigma\lambda} \times \mathbf{LR}^{\nu}_{\tau\lambda}$$

Proof. Suppose that $W \in \mathcal{C}_{(\sigma,\tau)}^{(\mu,\nu)}$ is given. Let W_+ (resp. W_-) be the subtableau in W consisting of positive (resp. negative) entries.

We have $W_+ \in SST_{\mathbb{N}}(\lambda)$ and $W_- \in SST_{-\mathbb{N}}(\nu/\lambda)$ for some $\lambda \subset \nu$. By definition of $W \in \mathcal{C}^{(\mu,\nu)}_{(\sigma,\tau)}$, we have $\iota(W_+) \in \mathbf{LR}^{\mu}_{\sigma\lambda}$ and $W_- \in \overline{\mathbf{LR}}^{\nu}_{\lambda\tau}$, hence $J(W_-)_R \in \mathbf{LR}^{\nu}_{\tau\lambda}$ by Proposition 3.2.

We can check that the correspondence

$$W \mapsto (W_1, W_2) := \left(\iota(W_+), J(W_-)_R \right)$$
(4.4)

is reversible and hence gives a bijection $\mathcal{C}_{(\sigma,\tau)}^{(\mu,\nu)} \to \bigsqcup_{\lambda \in \mathscr{P}} \mathbf{LR}_{\sigma\lambda}^{\mu} \times \mathbf{LR}_{\tau\lambda}^{\nu}$. \Box

Example 4.5. Consider

$$S = \frac{1}{2} \quad \frac{1}{3} \quad \frac{2}{3} \in \mathbf{B}_{(3,2)}^{>0}, \qquad T = \frac{4^{\vee}}{3^{\vee}} \in \left(\mathbf{B}_{(3,2,1)}^{>0}\right)^{\vee}.$$

Then we have

$$\begin{pmatrix} 1 & 1 & 2 \\ 2 & 3 & \cdot \\ \end{pmatrix} \leftarrow 4^{\vee} = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 3 & \cdot \\ \end{pmatrix} \begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 2 \\ 2 & 3 & \cdot \\ \end{pmatrix} \leftarrow 2^{\vee} = \begin{pmatrix} 1 & 1 & 2 \\ 3 & \cdot \\ \end{pmatrix} \begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 2 \\ 3 & \cdot \\ \end{pmatrix} \leftarrow 4^{\vee} \end{pmatrix} \leftarrow 2^{\vee} = \begin{pmatrix} 1 & 2 \\ 3 & \cdot \\ \end{pmatrix} \begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 3 & , & 4^{\vee} \end{pmatrix} \leftarrow 3^{\vee} = \begin{pmatrix} 1 & 2 \\ 3 & , & 3^{\vee} \end{pmatrix} \qquad \begin{array}{cccc} 1 & \bullet & \bullet \\ 2 & -2 & \\ -1 & & \\ \begin{pmatrix} 1 & 2 \\ 3 & , & 3^{\vee} \end{pmatrix} \leftarrow 2^{\vee} = \begin{pmatrix} 1 & 2 \\ & , & 2^{\vee} \end{pmatrix} \qquad \begin{array}{cccc} 1 & 2 \\ 2 & -2 & \\ -1 & & \\ 1 & 2 & -2 & \\ -1 & & \\ \begin{pmatrix} 1 & 2 \\ & , & 2^{\vee} \end{pmatrix} \leftarrow 2^{\vee} = \begin{pmatrix} 1 & 2 \\ & , & 2^{\vee} & 2^{\vee} \end{pmatrix} \qquad \begin{array}{cccc} 1 & 2 \\ 2 & -2 & \\ -1 & & \\ 1 & 2 & -1 \\ -1 & & \\ \end{array}$$

Hence,

$$\begin{pmatrix} (\emptyset, T) \to (S, \emptyset) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4^{\vee} \\ & & 2^{\vee} & 2^{\vee} \end{pmatrix} \in \mathbf{B}_{(2), (2, 1)}^{>0}, \\ \begin{pmatrix} (\emptyset, T) \to (S, \emptyset) \end{pmatrix}_{R} = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -2 & e \\ -1 & e \end{pmatrix} \in \mathcal{C}_{(2), (2, 1)}^{(3, 2), (3, 2, 1)}.$$

If we put $W = ((\emptyset, T) \to (S, \emptyset))_R$, then

$$W_{+} = \frac{1}{2} \, \frac{2}{2} \, , \qquad W_{-} = \stackrel{\bullet}{\underset{-1}{\bullet}} \, \stackrel{-1}{\underset{-2}{\bullet}} \, .$$

Since

$$\iota(W_{+}) = {f \circ} {f \circ} {f 1}_{2}, \qquad J(W_{-}) = {-2 \ -1}_{-1}, \qquad J(W_{-})_{R} = {f \circ} {f 0}_{2} {f 1}_{1}$$

(see Proposition 3.2), we have

$$(W_1, W_2) = \begin{pmatrix} \bullet & \bullet & 1 & \bullet & \bullet & 1 \\ 1 & 2 & , & \bullet & 2 \\ & & & 1 & \end{pmatrix} \in \mathbf{LR}_{(2)(2,1)}^{(3,2)} \times \mathbf{LR}_{(2,1)(2,1)}^{(3,2,1)}.$$

Now, the multiplicity of each connected component can be written in terms of Littlewood–Richardson coefficient as follows. We remark that it was already given in [14, Corollary 7.3], while Proposition 4.4 gives a bijective proof of it.

Corollary 4.6. For $\mu, \nu \in \mathcal{P}$, we have

$$\mathbf{B}_{\mu}^{>r} \otimes \left(\mathbf{B}_{\nu}^{>r}\right)^{\vee} \simeq \bigsqcup_{\sigma,\tau \in \mathscr{P}} \left(\mathbf{B}_{\sigma,\tau}^{>r}\right)^{\oplus c_{(\sigma,\tau)}^{(\mu,\nu)}},$$

where

$$c_{(\sigma,\tau)}^{(\mu,\nu)} = \sum_{\lambda \in \mathscr{P}} c_{\sigma\lambda}^{\mu} c_{\tau\lambda}^{\nu}.$$

Proposition 4.7. For $\mu, \nu \in \mathscr{P}$, we have an isomorphism of $\mathfrak{gl}_{>r}$ -crystals

$$\left(\mathbf{B}_{\nu}^{>r}\right)^{\vee}\otimes\mathbf{B}_{\mu}^{>r}\to\mathbf{B}_{\mu,\nu}^{>r},$$

where $T \otimes S$ is mapped to $((S, \emptyset) \rightarrow (\emptyset, T))$.

Proof. For $T \otimes S \in (\mathbf{B}_{\nu}^{>r})^{\vee} \otimes \mathbf{B}_{\mu}^{>r}$, it follows from Proposition 4.2(2) that

 $\begin{array}{l} (1) \ ((S, \emptyset) \rightarrow (\emptyset, T))_R = (H_\mu, \emptyset), \\ (2) \ ((S, \emptyset) \rightarrow (\emptyset, T)) \in \mathbf{B}_{\mu, \nu}^{> r}. \end{array}$

Therefore, by [14, Theorem 4.10] the map

$$\left(\mathbf{B}_{\nu}^{>r}\right)^{\vee}\otimes\mathbf{B}_{\mu}^{>r}\to\mathbf{B}_{\mu,\nu}^{>r}\times\left\{\left(H_{\mu},\emptyset\right)\right\}$$

sending $T \otimes S$ to $(((S, \emptyset) \to (\emptyset, T)), ((S, \emptyset) \to (\emptyset, T))_R)$ is an isomorphism of $\mathfrak{gl}_{>r}$ -crystals. \Box

Example 4.8. Let

$$(U, V) = \begin{pmatrix} 1 & 2 & 4^{\vee} \\ & 2^{\vee} & 2^{\vee} \end{pmatrix} \in \mathbf{B}_{(2), (2, 1)}^{>0}$$

be as in Example 4.5. If we put

$$\tilde{V} \otimes \tilde{U} = \begin{array}{cc} 4^{\vee} & 1 & 1 \\ 2^{\vee} & 1^{\vee} & \end{array} \quad \in \left(\mathbf{B}_{(2,1)}^{>0}\right)^{\vee} \otimes \mathbf{B}_{(2)}^{>0},$$

then

$$((\tilde{U}, \emptyset) \to (\emptyset, \tilde{V})) = (U, V).$$

5. Combinatorial description of $B(\tilde{U}_q(\mathfrak{gl}_{>0}))$

5.1. For simplicity, we put for a skew Young diagram λ/μ

$$\mathcal{B}_{\lambda/\mu} = SST_{\mathbb{N}}(\lambda/\mu),$$

and for $\mu, \nu \in \mathscr{P}$

$$\mathcal{B}_{\mu,\nu} = \mathbf{B}_{\mu,\nu}^{>0}$$

For $S \otimes T \in \mathcal{B}_{\mu} \otimes \mathcal{B}_{\nu}^{\vee}$, suppose that

$$(U, V) = ((\emptyset, T) \to (S, \emptyset)) \in \mathcal{B}_{\sigma, \tau},$$
$$W = ((\emptyset, T) \to (S, \emptyset))_R \in \mathcal{C}^{(\mu, \nu)}_{(\sigma, \tau)},$$

for some $\sigma, \tau \in \mathscr{P}$. (Recall that we identify W with $(\emptyset, W) = ((\emptyset, T) \to (S, \emptyset))_R$.) By Proposition 4.7, there exist unique $\tilde{U} \in \mathbb{B}_{\sigma}$ and $\tilde{V} \in \mathbb{B}_{\tau}^{\vee}$ such that $\tilde{V} \otimes \tilde{U} \equiv (U, V)$. The bijection (4.4) maps W to

$$(W_1, W_2) \in \mathbf{LR}^{\mu}_{\sigma\lambda} \times \mathbf{LR}^{\nu}_{\tau\lambda}$$

for some $\lambda \in \mathscr{P}$. By Proposition 3.2, there exist unique $X \in \mathcal{B}_{\mu/\lambda}$ and $Y \in \mathcal{B}_{\nu/\lambda}$ such that

$$J(X) = \tilde{U}, \qquad J(X)_R = W_1,$$

$$J(Y)^{\vee} = \tilde{V}, \qquad J(Y)_R = W_2.$$

Now, we define

$$\psi_{\mu,\nu}(S \otimes T) = Y^{\vee} \otimes X \in \mathcal{B}_{\nu/\lambda}^{\vee} \otimes \mathcal{B}_{\mu/\lambda}.$$
(5.1)

By construction, $\psi_{\mu,\nu}$ is bijective and commutes with \tilde{x}_i for x = e, f and $i \ge 1$. Hence we have the following.

Proposition 5.1. For $\mu, \nu \in \mathcal{P}$, the map

$$\psi_{\mu,\nu}: \mathbb{B}_{\mu}\otimes \mathbb{B}_{\nu}^{\vee} \to \bigsqcup_{\lambda \subset \mu,\nu} \mathbb{B}_{\nu/\lambda}^{\vee}\otimes \mathbb{B}_{\mu/\lambda}$$

is an isomorphism of $\mathfrak{gl}_{>0}$ -crystals.

Example 5.2. Let *S* and *T* be the tableaux in Example 4.5. Let

$$X = \stackrel{\bullet}{\underset{\bullet}{\bullet}} 1 \stackrel{1}{,} \qquad Y = \stackrel{\bullet}{\underset{4}{\bullet}} 1 \stackrel{2}{,}$$

Following the above notations, we have

$$H_{(2,1)} * X = \begin{array}{ccccc} \mathbf{1} & \mathbf{1} & 1 & \text{switching} & 1 & 1 & \mathbf{1} \\ \mathbf{2} & 1 & & & \mathbf{1} & \mathbf{2} \\ \mathbf{1} & \mathbf{1} & \mathbf{2} & & \\ \mathbf{1} & \mathbf{1} & \mathbf{2} & & \\ H_{(2,1)} * Y = \begin{array}{cccc} \mathbf{1} & \mathbf{1} & 2 & \mathbf{1} \\ \mathbf{2} & 1 & & & \\ \mathbf{4} & & & \mathbf{1} \end{array} = J(Y) * J(Y)_R = (\tilde{V})^{\vee} * W_2,$$

.

where \tilde{U} , \tilde{V} , W_i (i = 1, 2) are as in Examples 4.5 and 4.8. Hence,

$$\psi_{\mu,\nu}(S \otimes T) = Y^{\vee} \otimes X$$
$$= \begin{pmatrix} \bullet & \bullet & 2 \\ \bullet & 1 & \\ 4 & \end{pmatrix}^{\vee} \otimes \begin{pmatrix} \bullet & \bullet & 1 \\ \bullet & 1 & \\ \\ = & 1^{\vee} & \bullet & \otimes \begin{pmatrix} \bullet & \bullet & 1 \\ \bullet & 1 & \\ & \bullet & 1 & \\ \end{pmatrix}$$

For a skew Young diagram λ/μ and $k \ge 1$, we define

$$\kappa_k : \mathcal{B}_{\lambda/\mu} \to \mathcal{B}_{(\lambda+(1^k))/(\mu+(1^k))}$$
(5.2)

by $\kappa_k(S) = S'$ with

$$S'(i, j) = \begin{cases} S(i, j), & \text{if } i > k, \\ S(i, j-1), & \text{if } i \le k. \end{cases}$$

By definition, κ_k is a strict embedding of crystals.

Example 5.3.

$$\kappa_1 \begin{pmatrix} \bullet & \bullet & 1 \\ \bullet & 2 \\ 1 & \end{pmatrix} = \begin{pmatrix} \bullet & \bullet & 1 \\ \bullet & 2 \\ 1 & \end{pmatrix}, \quad \kappa_2 \begin{pmatrix} \bullet & \bullet & 1 \\ \bullet & 2 \\ 1 & \end{pmatrix} = \begin{pmatrix} \bullet & \bullet & \bullet & 1 \\ \bullet & \bullet & 2 \\ 1 & \end{pmatrix}.$$

For $k \ge 1$ and $\lambda \in \mathscr{P}$, we put

$$\omega_k = \epsilon_1 + \dots + \epsilon_k,$$

$$\omega_\lambda = \lambda_1 \epsilon_1 + \lambda_2 \epsilon_2 + \dots.$$

Now, we have the following combinatorial interpretation of the embedding (2.2) in terms of *sliding* skew tableaux horizontally. It will play a crucial role in proving our main theorem.

Proposition 5.4. For $\mu, \nu \in \mathscr{P}$ and $k \ge 1$, we have the following commutative diagram of $\mathfrak{gl}_{>0}$ -crystal morphisms

where $\iota_{\omega_{\mu},\omega_{\nu}}^{\omega_{k}}$ is the strict embedding in (2.2) and $\kappa_{k}^{\vee} = \lor \circ \kappa_{k} \circ \lor$.

Proof. Let $S \otimes T \in \mathcal{B}_{\mu} \otimes \mathcal{B}_{\nu}^{\vee}$ be given. We keep the previous notations. Note that

$$S \otimes u_{\omega_k} = S \otimes H_{(1^k)} \equiv S\{k\} := (k \to (\dots (1 \to S) \dots)) \in \mathcal{B}_{\mu+(1^k)},$$
$$u_{-\omega_k} \otimes T = H_{(1^k)}^{\vee} \otimes T \equiv T\{k\} := (k \to (\dots (1 \to T^{\vee}) \dots))^{\vee} \in \mathcal{B}_{\nu+(1^k)}^{\vee}.$$

Hence by (2.2) we have $\iota_{\omega_{\mu},\omega_{\nu}}^{\omega_{k}}(S \otimes T) = S\{k\} \otimes T\{k\}$. Since $S\{k\} \otimes T\{k\} \equiv S \otimes T$, we have

$$\left(U\{k\}, V\{k\}\right) := \left(\left(\emptyset, T\{k\}\right) \to \left(S\{k\}, \emptyset\right)\right) \equiv \left(\left(\emptyset, T\right) \to \left(S, \emptyset\right)\right) = (U, V),$$

which implies that $(U\{k\}, V\{k\}) = (U, V)$ by [14, Lemma 5.1]. Put

 $W\{k\} = \left(\left(\emptyset, T\{k\} \right) \to \left(S\{k\}, \emptyset \right) \right)_{R},$

and suppose that the bijection (4.4) maps $W\{k\}$ to

$$\left(W_1\{k\}, W_2\{k\}\right) \in \mathbf{LR}^{\mu+(1^k)}_{\sigma \eta} \times \mathbf{LR}^{\nu+(1^k)}_{\tau \eta}$$

for some $\eta \in \mathscr{P}$.

Since *W* is invariant under \tilde{e}_i and \tilde{f}_i $(i \ge 1)$, we may assume that $(U, V) = (H_{\sigma}^{>0}, E_{\tau}^{>0}(n))$ for a sufficiently large n > k (see (4.2)). As a $\mathfrak{gl}_{[n]}$ -crystal element, (U, V) is a highest weight element, and $\varsigma_n^p(U, V) = (H_{\zeta}^{>0}, \emptyset)$, where $p \ge \tau_1$ and $\zeta = \sigma + (p - \tau_n, \dots, p - \tau_1)$ (see [14, Section 4.1] for the definition of the map ς_n). This also implies that $S = H_{\mu}^{>0}$. By [26, Lemma 7.6], we have

$$\left(\emptyset, \left(W\{k\} \downarrow n\right)^{\vee}\right) = \varsigma_n^{-p} \left[\left(\varsigma_n^p \left(\emptyset, T\{k\}\right) \to \left(S\{k\}, \emptyset\right)\right)_R \right]$$
(5.3)

where $(W\{k\} \downarrow n)$ is the tableau obtained from $W\{k\}$ by replacing -i with n - i + 1 (see also the proof of [14, Lemma 4.8]). Since $S\{k\} = H_{\mu+(1^k)}^{>0}$, we have $(\varsigma_n^p(\emptyset, T\{k\}) \to (S\{k\}, \emptyset))_R = \varsigma_n^p(\emptyset, T\{k\})$ and hence $(W\{k\} \downarrow n)^{\vee} = T\{k\}$. Similarly, we have $(W \downarrow n)^{\vee} = T$.

Now, it is straightforward to check that

$$W\{k\} = \frac{1}{k} * \kappa_k(W) = H_{(1^k)} * \kappa_k(W).$$

This implies that

$$W_1\{k\} = W_1 * \Sigma_k$$
$$W_2\{k\} = W_2 * \Sigma'_k$$

where Σ_k and Σ'_k are vertical strips of shape $(\mu + (1^k))/\mu$ and $(\nu + (1^k))/\nu$ filled with $1, \ldots, k$ from top to bottom, respectively. Now, we have

$$\begin{split} \tilde{U} * W_1\{k\} &= \tilde{U} * W_1 * \Sigma_k \iff H_\lambda * X * \Sigma_k \quad (\text{switching } \tilde{U} \text{ and } W_1) \\ & \iff H_{\lambda+(1^k)} * \kappa_k(X) \quad (\text{switching } X \text{ and } \Sigma_k), \\ (\tilde{V})^{\vee} * W_2\{k\} &= (\tilde{V})^{\vee} * W_2 * \Sigma'_k \iff H_\lambda * Y * \Sigma'_k \quad (\text{switching } (\tilde{V})^{\vee} \text{ and } W_2) \\ & \iff H_{\lambda+(1^k)} * \kappa_k(Y) \quad (\text{switching } Y \text{ and } \Sigma'_k). \end{split}$$

Therefore, it follows that

$$\begin{split} \psi_{\mu+(1^k),\nu+(1^k)} (\iota_{\omega_{\mu},\omega_{\nu}}^{\omega_k}(S\otimes T)) &= \psi_{\mu+(1^k),\nu+(1^k)} (S\{k\}\otimes T\{k\}) \\ &= \kappa_k(Y)^{\vee} \otimes \kappa_k(X) \\ &= \kappa_k^{\vee} \otimes \kappa_k (\psi_{\mu,\nu}(S\otimes T)). \quad \Box \end{split}$$

5.2. Let \mathfrak{M} be the set of $\mathbb{N} \times \mathbb{N}$ matrices $A = (a_{ij})$ such that $a_{ij} \in \mathbb{Z}_{\geq 0}$ and $\sum_{i,j \geq 1} a_{ij} < \infty$. Let $A = (a_{ij}) \in \mathfrak{M}$ be given. For $i \geq 1$, the *i*-th row $A_i = (a_{ij})_{j \geq 1}$ is naturally identified with a unique semistandard tableau in $\mathfrak{B}_{(m_i)}$, where $m_i = \sum_{j \geq 1} a_{ij}$ and $\operatorname{wt}(A_i) = \sum_{j \geq 1} a_{ij} \epsilon_j$. Hence A can be viewed as an element in $\mathfrak{B}_{(m_1)} \otimes \cdots \otimes \mathfrak{B}_{(m_r)}$ for some $r \geq 0$. This defines a $\mathfrak{gl}_{>0}$ -crystal structure on \mathfrak{M} . Now, we put

$$\widetilde{\mathcal{M}} = \mathcal{M}^{\vee} \times \mathcal{M}, \tag{5.4}$$

which can be viewed as a tensor product of $\mathfrak{gl}_{>0}$ -crystals. Let $\mathcal{P} = \bigoplus_{i \ge 1} \mathbb{Z} \epsilon_i$ be the integral weight lattice for $\mathfrak{gl}_{>0}$. For $\omega \in \mathcal{P}$, let

$$\tilde{\mathcal{M}}_{\omega} = \{ (M^{\vee}, N) \in \tilde{\mathcal{M}} \mid \mathsf{wt}(N^t) - \mathsf{wt}(M^t) = \omega \}.$$

Here A^t denotes the transpose of $A \in \mathcal{M}$. Then $\tilde{\mathcal{M}}_{\omega}$ is a subcrystal of $\tilde{\mathcal{M}}$. Now, we can state the main result in this section.

Theorem 5.5. For $\omega \in \mathcal{P}$, we have

$$\mathcal{M}_{\omega} \simeq \mathbf{B}(\infty) \otimes T_{\omega} \otimes \mathbf{B}(-\infty).$$

Proof. Let $\mu, \nu \in \mathscr{P}$ be such that $\omega = \omega_{\mu} - \omega_{\nu}$. Suppose that $\psi_{\mu,\nu}(S \otimes T) = Y^{\vee} \otimes X$ for $S \otimes T \in \mathcal{B}_{\mu} \otimes \mathcal{B}_{\nu}^{\vee}$, where $\psi_{\mu,\nu}$ is the isomorphism in Proposition 5.1. Let $M = (m_{ij})$ (resp. $N = (n_{ij})$) be the unique matrix in \mathcal{M} such that the *i*-th row of M (resp. N) is $\mathfrak{gl}_{>0}$ -equivalent to the *i*-th row of Y (resp. X). Since $\sum_{j \ge 1} m_{ij}$ (resp. $\sum_{j \ge 1} n_{ij}$) is equal to y_i (resp. x_i) the number of dots or boxes in the *i*-th row of Y (resp. X) for $i \ge 1$ and $\omega = \sum_{i \ge 1} (x_i - y_i)\epsilon_i$ by Proposition 5.1, we have $wt(N^t) - wt(M^t) = \omega$. Then we define

$$\iota'_{\mu,\nu}: \mathcal{B}_{\mu} \otimes \mathcal{B}_{\nu}^{\vee} \to \tilde{\mathcal{M}}_{\omega}$$

by $\iota'_{\mu,\nu}(S \otimes T) = (M^{\vee}, N)$. By Proposition 5.1, it is easy to see that $\iota'_{\mu,\nu}$ is a strict embedding and

$$\tilde{\mathcal{M}}_{\omega} = \bigcup_{\substack{\mu,\nu \in \mathscr{P} \\ \omega_{\mu} - \omega_{\nu} = \omega}} \operatorname{Im} \iota'_{\mu,\nu}.$$

For $k \ge 1$, we have $\iota'_{\mu,\nu} = \iota'_{\mu+(1^k),\nu+(1^k)} \circ \iota^{\omega_k}_{\omega_\mu,\omega_\nu}$ by Proposition 5.4. Using induction, we have

$$\iota_{\mu,\nu}' = \iota_{\mu+\xi,\nu+\xi}' \circ \iota_{\omega_{\mu},\omega_{\nu}}^{\omega_{\xi}} \quad (\xi \in \mathscr{P}).$$

Therefore, by (2.3), it follows that $\tilde{\mathcal{M}}_{\omega} \simeq \mathbf{B}(\infty) \otimes T_{\omega} \otimes \mathbf{B}(-\infty)$. \Box

Corollary 5.6. As a $\mathfrak{gl}_{>0}$ -crystal, we have

$$\mathbf{B}(U_q(\mathfrak{gl}_{>0})) \simeq \mathcal{M}.$$

Proof. It follows from $\tilde{\mathcal{M}} = \bigsqcup_{\omega \in \mathcal{P}} \tilde{\mathcal{M}}_{\omega}$. \Box

For $A \in \mathcal{M}$ and $i \ge 1$, we also define

$$\tilde{e}_i^t A = \left(\tilde{e}_i A^t\right)^t, \qquad \tilde{f}_i^t A = \left(\tilde{f}_i A^t\right)^t. \tag{5.5}$$

Then \mathcal{M} has another $\mathfrak{gl}_{>0}$ -crystal structure with respect to \tilde{e}_i^t , \tilde{f}_i^t and wt^t, where wt^t(A) = wt(A^t). By [4], \mathcal{M} is a $(\mathfrak{gl}_{>0}, \mathfrak{gl}_{>0})$ -bicrystal, that is, \tilde{e}_i, \tilde{f}_i on $\mathcal{M} \cup \{\mathbf{0}\}$ commute with $\tilde{e}_i^t, \tilde{f}_i^t$ for $i, j \ge 1$, and so is the tensor product $\tilde{\mathcal{M}} = \mathcal{M}^{\vee} \times \mathcal{M}$. Now we have the following Peter–Weyl type decomposition.

Corollary 5.7. As a $(\mathfrak{gl}_{>0}, \mathfrak{gl}_{>0})$ -bicrystal, we have

$$\mathbf{B}\big(\tilde{U}_q(\mathfrak{gl}_{>0})\big)\simeq\bigsqcup_{\mu,\nu\in\mathscr{P}}\mathcal{B}_{\mu,\nu}\times\mathcal{B}_{\mu,\nu}.$$

Proof. Note that the usual RSK correspondence gives an isomorphism of $(\mathfrak{gl}_{>0}, \mathfrak{gl}_{>0})$ -bicrystals $\mathcal{M} \simeq$ $\bigsqcup_{\lambda \in \mathscr{P}} \mathcal{B}_{\lambda} \times \mathcal{B}_{\lambda}$ [4]. We assume that \tilde{e}_i, \tilde{f}_i act on the first component, and $\tilde{e}_i^t, \tilde{f}_j^t$ act on the second component. The decomposition of $\mathbf{B}(\tilde{U}_q(\mathfrak{gl}_{>0}))$ follows from Proposition 4.7.

6. Extremal weight crystals of type A_{∞}

In this section, we describe the tensor product of \mathfrak{gl}_{∞} -crystals $\mathbf{B}(\Lambda) \otimes \mathbf{B}(-\Lambda')$ for $\Lambda, \Lambda' \in P^+$ in terms of extremal weight crystals.

6.1. For a skew Young diagram λ/μ , we put

$$\mathbf{B}_{\lambda/\mu} = SST_{\mathbb{Z}}(\lambda/\mu),\tag{6.1}$$

and we identify $\mathbf{B}_{\lambda/\mu}^{\vee}$ with $SST_{\mathbb{Z}^{\vee}}((\lambda/\mu)^{\vee})$. Note that for $\mu \in \mathscr{P}$, \mathbf{B}_{μ} has neither a highest weight nor lowest weight element. It is shown in [15] that for $\mu, \nu, \sigma, \tau \in \mathscr{P}$, $\mathbf{B}_{\mu} \otimes \mathbf{B}_{\nu}^{\vee}$ is connected, $\mathbf{B}_{\mu} \otimes \mathbf{B}_{\nu}^{\vee} \simeq$ $\mathbf{B}_{\nu}^{\vee} \otimes \mathbf{B}_{\mu}$, and $\mathbf{B}_{\mu} \otimes \mathbf{B}_{\nu}^{\vee} \simeq \mathbf{B}_{\sigma} \otimes \mathbf{B}_{\tau}^{\vee}$ if and only if $(\mu, \nu) = (\sigma, \tau)$. Put

$$\mathbf{B}_{\mu,\nu} = \mathbf{B}_{\mu} \otimes \mathbf{B}_{\nu}^{\vee}. \tag{6.2}$$

Note that $\mathbf{B}_{\mu,\nu}$ can be viewed as a limit of $\mathbf{B}_{\mu,\nu}^{>r}$ $(r \to -\infty)$ since $\mathbf{B}_{\mu,\nu}^{>r} \simeq (\mathbf{B}_{\nu}^{>r})^{\vee} \otimes \mathbf{B}_{\mu}^{>r}$. For $n \ge 1$, let $\mathbb{Z}_{+}^{n} = \{\lambda = (\lambda_{1}, \dots, \lambda_{n}) \in \mathbb{Z}^{n} \mid \lambda_{1} \ge \dots \ge \lambda_{n}\}$ be the set of generalized partitions of length *n*. For $\lambda \in \mathbb{Z}_{+}^{n}$, we put

$$\Lambda_{\lambda} = \Lambda_{\lambda_1} + \dots + \Lambda_{\lambda_n} \in P_n^+.$$

Theorem 6.1. (See Theorem 4.6 in [15].) For $\Lambda \in P_n$ $(n \ge 0)$, there exist unique $\lambda \in \mathbb{Z}_+^n$ and $\mu, \nu \in \mathscr{P}$ such that

 $\mathbf{B}(\Lambda) \simeq \mathbf{B}_{\mu,\nu} \otimes \mathbf{B}(\Lambda_{\lambda}).$

Here we assume that $\Lambda_{\lambda} = 0$ *when* n = 0*.*

Note that $\{\mathbf{B}_{\mu,\nu} \otimes \mathbf{B}(\Lambda) \mid \Lambda \in P^+, \ \mu, \nu \in \mathscr{P}\}$ forms a complete list of extremal weight crystals of non-negative level up to isomorphism.

6.2. For intervals I, J in \mathbb{Z} , let $M_{I,J}$ be the set of $I \times J$ matrices $A = (a_{ij})$ with $a_{ij} \in \{0, 1\}$. We denote by A_i the *i*-th row of A for $i \in I$.

Suppose that $A \in M_{I,I}$ is given. For $j \in J^{\circ}$ and $i \in I$, we define

$$\tilde{e}_{j}A_{i} = \begin{cases} A_{i} + E_{ij} - E_{ij+1}, & \text{if } (a_{ij}, a_{ij+1}) = (0, 1), \\ \mathbf{0}, & \text{otherwise}, \end{cases}$$
(6.3)

$$\tilde{f}_{j}A_{i} = \begin{cases} A_{i} - E_{ij} + E_{ij+1}, & \text{if } (a_{ij}, a_{ij+1}) = (1, 0), \\ \mathbf{0}, & \text{otherwise.} \end{cases}$$
(6.4)

Then we can regard A_i as an element of a regular $\mathfrak{gl}_{\{j,j+1\}}$ -crystal with weight $a_{ij}\epsilon_j + a_{ij+1}\epsilon_{j+1}$. So we have $\varepsilon_j(A_i) = \max\{k \mid \tilde{e}_j^k A_i \neq \mathbf{0}\} \in \{0, 1\}$ and $\varphi_j(A_i) = \max\{k \mid \tilde{f}_j^k A_i \neq \mathbf{0}\} \in \{0, 1\}$. We say that A is row *j*-admissible if there exist $L, L' \in I$ (L < L') such that (1) $\varphi_j(A_i) \neq 1$ for all i < L, and (2) $\varepsilon_j(A_i) \neq 1$ for all i > L'. Note that if I is finite, then A is row *j*-admissible for all $j \in J^\circ$. Suppose that A is row *j*-admissible. Then we can define $\tilde{x}_j A$ (x = e, f) by regarding A as $\cdots \otimes A_{i-1} \otimes A_i \otimes A_{i+1} \otimes \cdots$ (by abuse of notation) and applying tensor product rule of crystal or *signature rule* [13]. Note that when I is infinite, A cannot be viewed as an element of a $\mathfrak{gl}_{\{j,j+1\}}$ -crystal in general since the $\mathfrak{gl}_{\{j,j+1\}}$ -weight of A is not well defined in a natural way. But, $\tilde{x}_j A$ is still well defined since A is row *j*-admissible (see also [15, Section 3.1]).

Let $\rho: M_{I,J} \to M_{-J,I}$ be a bijection given by $\rho(A) = (a'_{-ji}) \in M_{-J,I}$ with $a'_{-ji} = a_{ij}$, where $-J = \{-j \mid j \in J\}$. For $i \in I^\circ$, we say that A is column *i*-admissible if $\rho(A)$ is row *i*-admissible. If A is column *i*-admissible, then we define

$$\tilde{E}_i(A) = \rho^{-1} \left(\tilde{e}_i \rho(A) \right), \qquad \tilde{F}_i(A) = \rho^{-1} \left(\tilde{f}_i \rho(A) \right).$$
(6.5)

If A is both row *j*-admissible and column *i*-admissible for some $i \in I^{\circ}$ and $j \in J^{\circ}$, then

$$\tilde{x}_i \tilde{X}_i A = \tilde{X}_i \tilde{x}_j A, \tag{6.6}$$

where x = e, f and X = E, F [15, Lemma 3.2].

For convenience, let us say that A is row admissible (resp. column admissible) if A is row *j*-admissible (resp. column *i*-admissible) for all $j \in J^{\circ}$ (resp. $i \in I^{\circ}$). Suppose that A is row admissible and column *i*-admissible for some $i \in I^{\circ}$. Then both A and $\tilde{X}_i A$ generate the same J° -colored oriented graph with respect to \tilde{e}_j and \tilde{f}_j for $j \in J^{\circ}$ whenever $\tilde{X}_i A \neq \mathbf{0}$ (X = E, F) [15, Lemma 3.3]. A similar fact holds when A is column admissible and row *j*-admissible for some $j \in J^{\circ}$.

If *I* and *J* are finite, then $M_{I,J}$ is a $(\mathfrak{gl}_I, \mathfrak{gl}_J)$ -bicrystal, where the \mathfrak{gl}_I -weight (resp. \mathfrak{gl}_J -weight) of $A = (a_{ij}) \in M_{I,J}$ is given by $\sum_{i \in I} (\sum_{j \in J} a_{ij}) \epsilon_i$ (resp. $\sum_{j \in J} (\sum_{i \in I} a_{ij}) \epsilon_j$). Note that $M_{I,J}$ is a regular \mathfrak{gl}_J -crystal (resp. \mathfrak{gl}_I -crystal) with respect to \tilde{e}_j , \tilde{f}_j for $j \in J^\circ$ (resp. \tilde{E}_i , \tilde{F}_i for $i \in I^\circ$).

6.3. For $n \ge 1$, let \mathcal{E}^n be the subset of $M_{[n],\mathbb{Z}}$ consisting of matrices $A = (a_{ij})$ such that $\sum_{i,j} a_{ij} < \infty$. It is clear that A is row admissible for $A \in \mathcal{E}^n$. If we define wt $(A) = \sum_{j \in \mathbb{Z}} (\sum_{i \in [n]} a_{ij}) \epsilon_j$, then \mathcal{E}^n is a regular \mathfrak{gl}_{∞} -crystal with respect to \tilde{e}_j , \tilde{f}_j $(j \in \mathbb{Z})$ and wt. For $r \in \mathbb{Z}$ and $\lambda \in \mathscr{P}$ with $\lambda_1 \le n$, let $A^*_{\lambda}(r) = (a_{ij}) \in \mathcal{E}^n$ $(* = \circ, \diamond)$ be such that for $i \in [n]$ and $j \in \mathbb{Z}$

$$a_{ij}^{\circ} = 1 \quad \Longleftrightarrow \quad 1 + r \leqslant j \leqslant \lambda'_{n-i+1} + r,$$

$$a_{ij}^{\circ} = 1 \quad \Longleftrightarrow \quad r - \lambda'_{n-i+1} + 1 \leqslant j \leqslant r.$$
(6.7)

Then $C(A_{\lambda}^*(r)) \simeq \mathbf{B}_{\lambda}$ (* = \circ, \diamond) (see (3.10) in [15]).

For $n \ge 1$, let \mathcal{F}^n be the set of matrices $A = (a_{ij})$ in $M_{[n],\mathbb{Z}}$ such that for each $i \in [n]$, $a_{ij} = 1$ if $j \ll 0$ and $a_{ij} = 0$ if $j \gg 0$. Note that A is row admissible for $A \in \mathcal{F}^n$. If we define wt $(A) = nA_0 + \sum_{j>0} (\sum_{i \in [n]} a_{ij}) \epsilon_j + \sum_{j \le 0} (\sum_{i \in [n]} (a_{ij} - 1)) \epsilon_j$, then \mathcal{F}^n is a regular \mathfrak{gl}_∞ -crystal with respect to \tilde{e}_j , \tilde{f}_j $(j \in \mathbb{Z})$ and wt. For $\lambda \in \mathbb{Z}^n_+$, let $A_\lambda = (a_{ij}) \in \mathcal{F}^n$ be such that for $i \in [n]$ and $j \in \mathbb{Z}$

$$a_{ij} = 1 \quad \Longleftrightarrow \quad j \leqslant \lambda_{n-i+1}.$$
 (6.8)

Then $C(A_{\lambda}) \simeq \mathbf{B}(A_{\lambda})$ (see (3.17) in [15]).

On the other hand, for $A = (a_{ij}) \in \mathcal{E}^n$ or \mathcal{F}^n , A is column admissible. Hence, \tilde{E}_i , \tilde{F}_i $(i \in [n]^\circ)$ are well defined on A, and they commute with \tilde{e}_j , \tilde{f}_j $(j \in \mathbb{Z})$.

For $A = (a_{ij}) \in \mathcal{E}^n$ or \mathcal{F}^n , we will identify its dual \mathfrak{gl}_{∞} -crystal element $A^{\vee} \in (\mathcal{E}^n)^{\vee}$ or $(\mathcal{F}^n)^{\vee}$ with the matrix $(a_{ij}^{\vee}) \in M_{[n],\mathbb{Z}}$ where $a_{ij}^{\vee} = 1 - a_{n-ij}$, since A^{\vee} and (a_{ij}^{\vee}) generate the same \mathbb{Z} -colored graph with respect to \tilde{e}_i , \tilde{f}_i $(j \in \mathbb{Z})$.

6.4. Let *m*, *n* be non-negative integers with $m \ge n$. In the rest of this section, we fix $\mu \in \mathbb{Z}^m_+$ and $\nu \in \mathbb{Z}^n_+$. We assume that $\mathbf{B}(\Lambda_{\mu}) = C(\Lambda_{\mu}) \subset \mathcal{F}^m$, $\mathbf{B}(-\Lambda_{\nu}) = C((\Lambda_{\nu})^{\vee}) \subset (\mathcal{F}^n)^{\vee}$, and hence

$$\mathbf{B}(\Lambda_{\mu})\otimes\mathbf{B}(-\Lambda_{\nu})\subset\mathfrak{F}^{m}\otimes\left(\mathfrak{F}^{n}\right)^{\vee}.$$

We also assume that $\mathfrak{F}^m \otimes (\mathfrak{F}^n)^{\vee}$ is a subset of $M_{[m+n],\mathbb{Z}}$ consisting of A such that $A_{[m],\mathbb{Z}} \in \mathfrak{F}^m$ and $A_{m+[n],\mathbb{Z}} \in (\mathfrak{F}^n)^{\vee}$. Here $A_{I',J'}$ denotes the $I' \times J'$ -submatrix of $A \in M_{I,J}$ for intervals $I' \subset I$, $J' \subset J$, and $m + [n] = \{m + 1, \dots, m + n\}$.

By [15, Proposition 4.5], $\mathcal{F}^m \otimes (\mathcal{F}^n)^{\vee}$ is a disjoint union of extremal weight \mathfrak{gl}_{∞} -crystals of level m - n, and hence so is $\mathbf{B}(\Lambda_{\mu}) \otimes \mathbf{B}(-\Lambda_{\nu})$. We will describe the multiplicity of each extremal weight crystal appearing in $\mathbf{B}(\Lambda_{\mu}) \otimes \mathbf{B}(-\Lambda_{\nu})$.

For $r \in \mathbb{Z}$, we define $\mathbf{B}^{>r}(\mu, \nu)$ to be the set of $A = (a_{ij}) \in \mathbf{B}(\Lambda_{\mu}) \otimes \mathbf{B}(-\Lambda_{\nu}) \subset M_{[m+n],\mathbb{Z}}$ such that

$$a_{ij} = \begin{cases} 1, & \text{for } i \in [m] \text{ and } j \leq r, \\ 0, & \text{for } i \in m + [n] \text{ and } j \leq r \end{cases}$$

We have

$$\mathbf{B}^{>r}(\mu,\nu) \subset \mathbf{B}^{>r-1}(\mu,\nu),$$
$$\mathbf{B}(\Lambda_{\mu}) \otimes \mathbf{B}(-\Lambda_{\nu}) = \bigcup_{r \in \mathbb{Z}} \mathbf{B}^{>r}(\mu,\nu).$$

Choose $r < \min\{\mu_m, \nu_n\}$ so that $\mu - (r^m) = (\mu_i - r)_{1 \le i \le m}$ and $\nu - (r^n) = (\nu_i - r)_{1 \le i \le n}$ are partitions. Note that

- (1) $\mathbf{B}^{>r}(\mu, \nu) \neq \emptyset$ since $A_{\mu} \otimes (A_{\nu})^{\vee} \in \mathbf{B}^{>r}(\mu, \nu)$,
- (2) A_{μ} (resp. $(A_{\nu})^{\vee}$) is $\mathfrak{gl}_{>r}$ -equivalent to $H_{(\mu-(r^m))'}^{>r}$ (resp. $(H_{(\nu-(r^n))'}^{>r})^{\vee}$),
- (3) for $A \in \mathbf{B}^{>r}(\mu, \nu)$, $A_{[m],\mathbb{Z}}$ (resp. $A_{m+[n],\mathbb{Z}}$) is connected to A_{μ} (resp. $(A_{\nu})^{\vee}$) under \tilde{e}_j , \tilde{f}_j for $j \in [r+1,\infty)$.

Hence, as a $\mathfrak{gl}_{>r}$ -crystal,

$$\mathbf{B}^{>r}(\mu,\nu) \simeq \mathbf{B}^{>r}_{(\mu-(r^m))'} \otimes \left(\mathbf{B}^{>r}_{(\nu-(r^n))'}\right)^{\vee}.$$
(6.9)

Now, let $A \in \mathbf{B}^{>r}(\mu, \nu)$ be given and $C^{>r}(A)$ the connected component in $\mathbf{B}^{>r}(\mu, \nu)$ including A as a $\mathfrak{gl}_{>r}$ -crystal. By (6.9) and Corollary 4.6, we have

 $C^{>r}(A) \simeq \mathbf{B}_{\sigma \tau}^{>r}$

for some $\sigma, \tau \in \mathscr{P}$ with $\sigma_1 \leq m$ and $\tau_1 \leq n$. On the other hand, consider C(A) the connected component in $\mathbf{B}(\Lambda_{\mu}) \otimes \mathbf{B}(-\Lambda_{\nu})$ including A as a \mathfrak{gl}_{∞} -crystal. Then by Theorem 6.1

$$C(A) \simeq \mathbf{B}_{\zeta,\eta} \otimes \mathbf{B}(\Lambda_{\xi})$$

for some $\zeta, \eta \in \mathscr{P}$ and $\xi \in \mathbb{Z}^{m-n}_+$.

Lemma 6.2. Under the above hypothesis, we have

$$\zeta = (\sigma'_{m-n+1}, \ldots, \sigma'_m)', \qquad \eta = \tau, \qquad \xi = (\sigma'_1, \ldots, \sigma'_{m-n}) + (r^{m-n}).$$

Proof. Let *A* be as above. Choose $s \gg r$ so that

$$a_{ij} = \begin{cases} 0, & \text{if } i \in [m] \text{ and } j > s, \\ 1, & \text{if } i \in m + [n] \text{ and } j > s \end{cases}$$

Considering the submatrix $A_{[m+n],[r+1,s]}$ as an element of a $(\mathfrak{gl}_{[r+1,s]},\mathfrak{gl}_{[m+n]})$ -bicrystal, A is connected to a unique matrix $A' = (a'_{ij}) \in \mathfrak{F}^m \otimes (\mathfrak{F}^n)^{\vee}$ satisfying

$$\begin{cases} a'_{ij} = a_{ij}, & \text{for } i \in [m+n] \text{ and } j \notin [r+1,s], \\ a'_{i-1j} = 0, & \text{if } a'_{ij} = 0 \text{ for } i \neq 1 \text{ and } j \in [r+1,s], \\ a'_{ij+1} = 0, & \text{if } a'_{ij} = 0 \text{ for } i \in [m+n] \text{ and } j+1 \in [r+1,s] \end{cases}$$

Equivalently, A' is a $\mathfrak{gl}_{[r+1,s]}$ -highest weight element and a $\mathfrak{gl}_{[m+n]}$ -lowest weight element. Note that

(1) $\mathcal{F}^m \otimes (\mathcal{F}^n)^{\vee} \subset M_{[m+n],\mathbb{Z}}$ is column admissible, (2) $(\tilde{x}_j A)_{[m+n],[r+1,s]} = \tilde{x}_j (A_{[m+n],[r+1,s]})$ for $j \in [r+1,s]^\circ$ and x = e, f, (3) $(\tilde{X}_i A)_{[m+n],[r+1,s]} = \tilde{X}_i (A_{[m+n],[r+1,s]})$ for $i \in [m+n]^\circ$ and X = E, F.

So, we have $C(A') \simeq C(A)$ and $C^{>r}(A') \simeq C^{>r}(A)$ by (6.6). By definition of A', we have

$$C^{>r}(A'_{[m],\mathbb{Z}})\simeq \mathbf{B}^{>r}_{\alpha}, \qquad C^{>r}(A'_{m+[n],\mathbb{Z}})\simeq (\mathbf{B}^{>r}_{\beta})^{\vee}$$

where $\alpha = (\alpha_k)_{k \ge 1}$ and $\beta = (\beta_k)_{k \ge 1} \in \mathscr{P}$ are given by $\alpha_k = \sum_{i=1}^m a'_{ir+k}$ for $1 \le k \le s-r$ and $\beta_k = \sum_{i=1}^n (1-a'_{m+i\ s-k+1})$ for $1 \le k \le s-r$. Indeed, $A'_{[m+n],[r+1,\infty)}$ is $\mathfrak{g}_{l>r}$ -equivalent to $H^{>r}_{\alpha} \otimes E^{>r}_{\beta}(s-r)$ (see (4.2)), and hence $C^{>r}(A') \simeq \mathbf{B}^{>r}_{\alpha,\beta}$. This implies that $(\alpha,\beta) = (\sigma,\tau)$ since $C^{>r}(A') \simeq C^{>r}(A) \simeq \mathbf{B}^{>r}_{\sigma,\tau}$.

Let $A'' = (a''_{ij}) \in M_{[m+n],\mathbb{Z}}$ be such that

$$A_{[n],\mathbb{Z}}^{\prime\prime} = A_{\zeta}^{\circ}(r) \in \mathcal{E}^{n}, \qquad A_{n+[n],\mathbb{Z}}^{\prime\prime} = \left(A_{\eta}^{\diamond}(s)\right)^{\vee} \in \left(\mathcal{E}^{n}\right)^{\vee}, \qquad A_{2n+[m-n],\mathbb{Z}}^{\prime\prime} = A_{\xi} \in \mathcal{F}^{m-n},$$

where $\zeta = (\sigma'_{m-n+1}, \ldots, \sigma'_m)', \eta = \tau$ and $\xi = (\sigma'_1, \ldots, \sigma'_{m-n}) + (r^{m-n})$ (see (6.7) and (6.8)). We assume that $A'' \in \mathcal{E}^n \otimes (\mathcal{E}^n)^{\vee} \otimes \mathcal{F}^{m-n}$. By definition, $C(A''_{[2n],\mathbb{Z}}) \simeq \mathbf{B}_{\zeta,\eta}, C(A''_{2n+[m-n],\mathbb{Z}}) \simeq \mathbf{B}(\Lambda_{\xi})$ and hence $C(A'') \simeq \mathbf{B}_{\zeta,\eta} \otimes \mathbf{B}(\Lambda_{\xi})$.

For $L \ll 0 \ll L'$, we have

$$A_{[m+n],[L,L']}'' = \begin{cases} X'X(A_{[m+n],[L,L']}), & \text{if } m > n, \\ X(A_{[m+n],[L,L']}), & \text{if } m = n, \end{cases}$$

where

$$X = (\tilde{F}_n^{\max} \cdots \tilde{F}_1^{\max}) \cdots (\tilde{F}_{m+n-2}^{\max} \cdots \tilde{F}_{m-1}^{\max}) (\tilde{F}_{m+n-1}^{\max} \cdots \tilde{F}_m^{\max}),$$

$$X' = (\tilde{E}_{2n}^{\max} \cdots \tilde{E}_{m+n-1}^{\max}) \cdots (\tilde{E}_{n+2}^{\max} \cdots \tilde{E}_{m+1}^{\max}) (\tilde{E}_{n+1}^{\max} \cdots \tilde{E}_m^{\max}).$$

Here $A'_{[m+n],[L,L']}$ and $A''_{[m+n],[L,L']}$ belong to a regular $\mathfrak{gl}_{[m+n]}$ -crystal $M_{[m+n],[L,L']}$ with respect to \tilde{E}_i , \tilde{F}_i $(i \in [m+n]^\circ)$ and $\tilde{E}_i^{\max}b = \tilde{E}_i^{\varepsilon_i(b)}b$ and $\tilde{F}_i^{\max}b = \tilde{F}_i^{\varphi_i(b)}b$ for $b \in M_{[m+n],[L,L']}$. Note that

(1) A' is column admissible, (2) $(\tilde{X}_i A')_{[m+n],[L,L']} = \tilde{X}_i (A'_{[m+n],[L,L']})$ for $i \in [m+n]^\circ$ and X = E, F.

Then by (6.6) we have

$$\tilde{x}_{j_1}\cdots \tilde{x}_{j_r}A' \neq \mathbf{0} \quad \Longleftrightarrow \quad \tilde{x}_{j_1}\cdots \tilde{x}_{j_r}A'' \neq \mathbf{0}$$

for $r \ge 1$ and $j_1, \ldots, j_r \in [L, L']^\circ$, where x = e, f for each j_k . Since L and L' are arbitrary and wt(A') = wt(A''), A' is \mathfrak{gl}_{∞} -equivalent to A''. Therefore, we have

 $C(A) \simeq C(A') \simeq C(A'') \simeq \mathbf{B}_{\zeta,\eta} \otimes \mathbf{B}(\Lambda_{\xi}).$

This completes the proof. \Box

For $\zeta, \eta \in \mathscr{P}$, $\xi \in \mathbb{Z}^{m-n}_+$ and $r \in \mathbb{Z}$, let $m^{(\mu,\nu)}_{(\zeta,\eta,\xi)}(r)$ be the number of connected components *C* in $\mathbf{B}(\Lambda_{\mu}) \otimes \mathbf{B}(-\Lambda_{\nu})$ such that

(1) $C \cap \mathbf{B}^{>r}(\mu, \nu) \neq \emptyset$, (2) $C \simeq \mathbf{B}_{\zeta, \eta} \otimes \mathbf{B}(\Lambda_{\xi})$.

Corollary 6.3. Under the above hypothesis,

(1) if $\xi_{m-n} < r$, then $m_{(\zeta,\eta,\xi)}^{(\mu,\nu)}(r) = 0$, (2) if $\xi_{m-n} \ge r$, then $m_{(\zeta,\eta,\xi)}^{(\mu,\nu)}(r) = c_{(\sigma,\eta)}^{((\mu-(r^m))',(\nu-(r^n))')}$, where $\sigma = [(\xi - (r^{m-n})) \cup \zeta']'$.

Proof. It follows from (6.9), Lemma 6.2 and Corollary 4.6. □

The following lemma shows that $m_{(\zeta,\eta,\xi)}^{(\mu,\nu)}(r)$ stabilizes as r goes to $-\infty$.

Lemma 6.4. For $\zeta, \eta \in \mathscr{P}$ and $\xi \in \mathbb{Z}^{m-n}_+$, there exists $r_0 \in \mathbb{Z}$ such that

$$m^{(\mu,\nu)}_{(\zeta,\eta,\xi)}(r) = m^{(\mu,\nu)}_{(\zeta,\eta,\xi)}(r_0),$$

for $r \leqslant r_0$.

Proof. For $r \in \mathbb{Z}$ with $r < \min\{\mu_m, \nu_n\}$, put

$$\mathcal{C}^{(\mu,\nu)}_{(\zeta,\eta,\xi)}(r) = \bigsqcup_{\lambda \in \mathscr{P}} \mathbf{LR}^{(\mu-(r^m))'}_{\sigma\lambda} \times \mathbf{LR}^{(\nu-(r^n))'}_{\eta\lambda}$$

where $\sigma = [(\xi - (r^{m-n})) \cup \zeta']'$. Then

$$\mathcal{C}^{(\mu,\nu)}_{(\zeta,\eta,\xi)}(r-1) = \bigsqcup_{\delta \in \mathscr{P}} \mathbf{LR}^{(\mu-(r^m))' \cup \{(m)\}}_{\overline{\sigma}\,\delta} \times \mathbf{LR}^{(\nu-(r^n))' \cup \{(n)\}}_{\eta\,\delta}$$

where $\overline{\sigma} = [(\xi - (r^{m-n}) + (1^{m-n})) \cup \zeta']'$. By Corollary 6.3, we have

$$\mathcal{C}^{(\mu,\nu)}_{(\zeta,\eta,\xi)}(r)\big|=c^{((\mu-(r^m))',(\nu-(r^n))')}_{(\sigma,\eta)}=m^{(\mu,\nu)}_{(\zeta,\eta,\xi)}(r).$$

For a sufficiently small *r*, we define a map

$$\theta_r: \mathcal{C}^{(\mu,\nu)}_{(\zeta,\eta,\xi)}(r) \to \mathcal{C}^{(\mu,\nu)}_{(\zeta,\eta,\xi)}(r-1)$$

as follows:

STEP 1. Suppose that $S_1 \in \mathbf{LR}_{\sigma\lambda}^{(\mu-(r^m))'}$ is given. Put $\ell = \xi_{m-n} - r$. Define T_1 to be the tableau in $\mathbf{LR}_{\sigma\lambda}^{(\mu-(r^m))' \cup \{(m)\}}$, which is obtained from S_1 as follows:

- (1) The entries of T_1 in the *i*-th row $(1 \le i \le \ell)$ are equal to those in S_1 .
- (2) The entries of T_1 in the $(\ell + 1)$ -st row are given by

$$a_1+1\leqslant a_2+1\leqslant \cdots \leqslant a_n+1,$$

where $a_1 \leq a_2 \leq \cdots \leq a_n$ are the entries in the ℓ -th row in S_1 .

(3) Let S'_1 (resp. T'_1) be the subtableau of S_1 (resp. T_1) consisting of its *i*-th row for $\ell < i$ (resp. $\ell + 1 < i$). Then we define

$$T'_{1}(p+1,q) = \begin{cases} S'_{1}(p,q), & \text{if } S'_{1}(p,q) \leq a_{1} \\ S'_{1}(p,q) + 1, & \text{if } S'_{1}(p,q) > a_{1} \end{cases}$$

for (p,q) in the shape of S'_1 .

Since $\ell \gg 0$, we can check that T'_1 is a well-defined Littlewood–Richardson tableau.

STEP 2. Let $S_2 \in \mathbf{LR}_{\eta\lambda}^{(\nu-(r^n))'}$ be given. Applying the same argument as in STEP 1 (when m = n), we obtain $T_2 \in \mathbf{LR}_{\eta\lambda\cup\{(n)\}}^{(\nu-(r^n))'\cup\{(n)\}}$.

Now we define

$$\theta_r(S_1, S_2) = (T_1, T_2) \in \mathcal{C}^{(\mu, \nu)}_{(\zeta, \eta, \xi)}(r-1).$$

By construction, we observe that θ_r gives a bijection

$$\mathbf{LR}_{\sigma\lambda}^{(\mu-(r^m))'} \times \mathbf{LR}_{\eta\lambda}^{(\nu-(r^n))'} \to \mathbf{LR}_{\overline{\sigma} \ \lambda \cup \{(n)\}}^{(\mu-(r^m))' \cup \{(m)\}} \times \mathbf{LR}_{\eta \ \lambda \cup \{(n)\}}^{(\nu-(r^n))' \cup \{(n)\}}$$

for $\lambda \in \mathscr{P}$. In particular, θ_r is one-to-one. On the other hand, if r is sufficiently small (or $\ell \gg 0$), then we have $(n) \subset \delta$ for $\delta \in \mathscr{P}$ with

$$\mathbf{LR}_{\overline{\sigma}\delta}^{(\mu-(r^m))'\cup\{(m)\}}\times\mathbf{LR}_{\eta\delta}^{(\nu-(r^n))'\cup\{(n)\}}\neq\emptyset,$$

that is, $\delta = \lambda \cup \{(n)\}$ for some $\lambda \in \mathscr{P}$, which implies that θ_r is onto. Therefore, θ_r is a bijection and $m_{(\zeta,\eta,\xi)}^{(\mu,\nu)}(r)$ stabilizes as r goes to $-\infty$. \Box

Theorem 6.5. Suppose that $m \ge n$. For $\mu \in \mathbb{Z}^m_+$ and $\nu \in \mathbb{Z}^n_+$, we have

$$\mathbf{B}(\Lambda_{\mu}) \otimes \mathbf{B}(-\Lambda_{\nu}) \simeq \bigsqcup_{\substack{\zeta, \eta \in \mathscr{P} \\ \zeta_{1}, \eta_{1} \leqslant n}} \left(\bigsqcup_{\xi \in \mathbb{Z}_{+}^{m-n}} \mathbf{B}_{\zeta, \eta} \otimes \mathbf{B}(\Lambda_{\xi})^{\oplus m_{(\zeta, \eta, \xi)}^{(\mu, \nu)}} \right)$$

with

$$m_{(\zeta,\eta,\xi)}^{(\mu,\nu)} = \sum_{\lambda \in \mathscr{P}} c_{\sigma\lambda}^{\mu+(k^m)} c_{\eta'\lambda}^{\nu+(k^n)},$$

where k is a sufficiently large integer and $\sigma = (\xi + (k^{m-n})) \cup \zeta'$.

Proof. For $\zeta, \eta \in \mathscr{P}$ and $\xi \in \mathbb{Z}^{m-n}_+$, let $m^{(\mu,\nu)}_{(\zeta,\eta,\xi)}$ be the number of connected components in $\mathbf{B}(\Lambda_{\mu}) \otimes \mathbf{B}(-\Lambda_{\nu})$ isomorphic to $\mathbf{B}_{\zeta,\eta} \otimes \mathbf{B}(\Lambda_{\xi})$. Then by Lemma 6.4, we have

$$m_{(\zeta,\eta,\xi)}^{(\mu,\nu)} = m_{(\zeta,\eta,\xi)}^{(\mu,\nu)}(r)$$

for some $r \in \mathbb{Z}$. By Corollary 6.3, we have

$$m^{(\mu,\nu)}_{(\zeta,\eta,\xi)} = \sum_{\lambda \in \mathscr{P}} c^{\mu+(k^m)}_{\sigma\lambda} c^{\nu+(k^n)}_{\eta'\lambda},$$

where k = -r and $\sigma = (\xi + (k^{m-n})) \cup \zeta'$. \Box

The decomposition when $m \leq n$ can be obtained by taking the dual crystal of the decomposition in Theorem 6.5.

7. Combinatorial description of the level zero part of $B(\tilde{U}_q(\mathfrak{gl}_\infty))$

7.1. For $\mu, \nu \in \mathbb{Z}^n_+$ $(n \ge 1)$, let us describe the decomposition of $\mathbf{B}(\Lambda_\mu) \otimes \mathbf{B}(-\Lambda_\nu)$ in a bijective way. We assume that $\mathbf{B}(\Lambda_\mu) = C(\Lambda_\mu) \subset \mathcal{F}^n$ and $\mathbf{B}(-\Lambda_\nu) = C((\Lambda_\nu)^{\vee}) \subset (\mathcal{F}^n)^{\vee}$.

Suppose that $A \in \mathbf{B}(\Lambda_{\mu})$ and $A' \in \mathbf{B}(-\Lambda_{\nu})$ are given. Choose $r \in \mathbb{Z}$ such that $A \otimes A' \in \mathbf{B}^{>r}(\mu, \nu)$. Let $S^{>r} \otimes T^{>r} \in \mathbf{B}_{(\mu-(r^n))'}^{>r} \otimes (\mathbf{B}_{(\nu-(r^n))'}^{>r})^{\vee}$ correspond to $A \otimes A'$ under (6.9). Note that the set of entries in the *i*-th column of $S^{>r}$ (from the right) is $\{j \mid a_{ij} = 1, j > r\}$, and the set of entries in the *i*-th column of $T^{>r}$ (from the right) is $\{j^{\vee} \mid a_{ij} = 0, j > r\}$. Now we define

$$\psi_{\mu,\nu}^{\infty}(A \otimes A') = \psi_{(\mu-(r^n))',(\nu-(r^n))'}^{>r}(S^{>r} \otimes T^{>r}),$$
(7.1)

where $\psi_{(\mu-(r^n))',(\nu-(r^n))'}^{>r}$ denotes the isomorphism in Proposition 5.1 corresponding to $\mathfrak{gl}_{>r}$ -crystals.

Proposition 7.1. *For* μ , $\nu \in \mathbb{Z}^n_+$ *, the map*

$$\psi_{\mu,\nu}^{\infty}: \mathbf{B}(\Lambda_{\mu}) \otimes \mathbf{B}(-\Lambda_{\nu}) \to \bigsqcup_{\alpha,\beta} \mathbf{B}_{\alpha}^{\vee} \otimes \mathbf{B}_{\beta}$$

is an isomorphism of \mathfrak{gl}_{∞} -crystals, where the union is over all skew Young diagrams α and β such that $\alpha = (\nu - (r^n))'/\lambda$ and $\beta = (\mu - (r^n))'/\lambda$ for some $r \leq \min\{\mu_n, \nu_n\}$ and $\lambda \in \mathscr{P}$.

Proof. First, we will show that $\psi_{\mu,\nu}^{\infty}(A \otimes A')$ does not depend on the choice of *r*. Keeping the above notations, suppose that

$$\begin{pmatrix} U^{>r}, V^{>r} \end{pmatrix} = \left(\begin{pmatrix} \emptyset, T^{>r} \end{pmatrix} \to \begin{pmatrix} S^{>r}, \emptyset \end{pmatrix} \right) \in \mathbf{B}_{\sigma,\tau}^{>r},$$
$$W^{>r} = \left(\begin{pmatrix} \emptyset, T^{>r} \end{pmatrix} \to \begin{pmatrix} S^{>r}, \emptyset \end{pmatrix} \right)_{R} \in \mathcal{C}_{(\sigma,\tau)}^{((\mu-(r^{n}))', (\nu-(r^{n}))')}$$

for some $\sigma, \tau \in \mathscr{P}$. By Proposition 4.7, there exist unique $\tilde{U}^{>r} \in \mathbf{B}^{>r}_{\sigma}$ and $\tilde{V}^{>r} \in (\mathbf{B}^{>r}_{\tau})^{\vee}$ such that $\tilde{V}^{>r} \otimes \tilde{U}^{>r} \equiv (U^{>r}, V^{>r})$. Suppose that the bijection (4.4) maps $W^{>r}$ to

$$\left(W_1^{>r}, W_2^{>r}\right) \in \mathbf{LR}_{\sigma\lambda}^{(\mu - (r^n))'} \times \mathbf{LR}_{\tau\lambda}^{(\nu - (r^n))'}$$

for some $\lambda \in \mathscr{P}$. Then by definition of $\psi_{(\mu-(r^n))',(\nu-(r^n))'}^{>r}$, we have

$$\psi_{\mu,\nu}^{\infty}(A\otimes A')=Y^{\vee}\otimes X\in \mathbf{B}_{(\nu-(r^n))'/\lambda}^{\vee}\otimes \mathbf{B}_{(\mu-(r^n))'/\lambda},$$

where

$$J(X) = \tilde{U}^{>r}, \qquad J(X)_R = W_1^{>r},$$

 $J(Y)^{\vee} = \tilde{V}^{>r}, \qquad J(Y)_R = W_2^{>r}.$

Now, suppose that

$$S^{>r-1} \otimes T^{>r-1} \in \mathbf{B}^{>r-1}_{(\mu-(r^n))' \cup \{(n)\}} \otimes \left(\mathbf{B}^{>r-1}_{(\nu-(r^n))' \cup \{(n)\}}\right)^{\vee}$$

is $\mathfrak{gl}_{>r-1}$ -equivalent to $A \otimes A'$. Then

$$S^{>r-1} = (\underbrace{r \cdots r}_{n}) * S^{>r}, \qquad T^{>r-1} = T^{>r} * (\underbrace{r^{\vee} \cdots r^{\vee}}_{n}),$$

and

$$\left(\left(\emptyset, T^{>r-1}\right) \to \left(S^{>r-1}, \emptyset\right)\right) = \left(\left(\emptyset, T^{>r}\right) \to \left(S^{>r}, \emptyset\right)\right) = \left(U^{>r}, V^{>r}\right).$$

Hence we have $(U^{>r-1}, V^{>r-1}) = (U^{>r}, V^{>r}).$

Suppose that $W^{>r} = W_+^{>r} * W_-^{>r}$, where $W_+^{>r}$ (resp. $W_-^{>r}$) is the subtableau of $W^{>r}$ consisting of positive (resp. negative) entries. By definition of the insertion, it is straightforward to check that

(1)
$$W_{-}^{>r-1} = W_{-}^{>r}$$
,
(2) $W_{+}^{>r-1} = (\underbrace{\sigma'_{n} + 1 \cdots \sigma'_{1} + 1}_{n}) * W_{+}^{>r}[1]$,

where $W_+^{>r}[1]$ is the tableau obtained from $W_+^{>r}$ by increasing each entry by 1. Since $\iota(W_+^{>r-1}) = W_1^{>r-1}$, we have

$$W_1^{>r-1} = \Sigma_n * W_1^{>r}[1],$$

where Σ_n is the horizontal strip of shape $\sigma \cup \{(n)\}/\sigma$ filled with 1, and $W_1^{>r}[1]$ is the tableau obtained from $W_1^{>r}$ by increasing each entry by 1. Here, we assume that the shape of $W_1^{>r}$ is $(\mu - (r^n))' \cup \{(n)\}/\sigma \cup \{(n)\}$. Now, we have

$$\begin{split} \tilde{U}^{>r-1} * W_1^{>r-1} &= \tilde{U}^{>r} * \Sigma_n * W_1^{>r}[1] \\ & \longleftrightarrow (\underbrace{1 \cdots 1}_n) * \tilde{U}^{>r} * W_1^{>r}[1] \quad \left(\text{switching } \tilde{U}^{>r} \text{ and } \Sigma_n \right) \\ & \longleftrightarrow (\underbrace{1 \cdots 1}_n) * H_{\lambda}[1] * X \quad \left(\text{switching } \tilde{U}^{>r} \text{ and } W_1^{>r}[1] \right) \\ &= H_{\lambda \cup \{(n)\}} * X. \end{split}$$

This implies that X does not depend on r. Similarly, we have

$$W_2^{>r-1} = \Sigma_n' * W_2^{>r}[1],$$

where Σ'_n is the horizontal strip of shape $\tau \cup \{(n)\}/\tau$ filled with 1, and

$$(\tilde{V}^{>r-1})^{\vee} * W_2^{>r-1} = (\tilde{V}^{>r})^{\vee} * \Sigma_n' * W_2^{>r}[1]$$

$$\longleftrightarrow (\underbrace{1\cdots 1}_n) * (\tilde{V}^{>r})^{\vee} * W_2^{>r}[1] \quad (\text{switching } (\tilde{V}^{>r})^{\vee} \text{ and } \Sigma_n')$$

$$\longleftrightarrow (\underbrace{1\cdots 1}_n) * H_{\lambda}[1] * Y \quad (\text{switching } (\tilde{V}^{>r})^{\vee} \text{ and } W_2^{>r}[1])$$

$$= H_{\lambda \cup \{(n)\}} * Y.$$

This also implies that *Y* does not depend on *r*. Therefore, $\psi_{\mu,\nu}^{\infty}$ is well defined.

Since $\psi_{\mu,\nu}^{\infty}$ is a bijection and commutes with \tilde{e}_k and \tilde{f}_k $(k \in \mathbb{Z})$ by construction, it is an isomorphism of \mathfrak{gl}_{∞} -crystals. \Box

Example 7.2. Let $\mu = (2, 2, 1)$ and $\nu = (3, 2, 1)$. Consider

where • and · denote 1 and 0 in a matrix, respectively. Then $A \otimes A' \in \mathbf{B}^{>0}(\mu, \nu)$. Suppose that A (resp. A') is $\mathfrak{gl}_{>0}$ -equivalent to $S^{>0} \in \mathbf{B}_{(3,2)}^{>0}$ (resp. $T^{>0} \in (\mathbf{B}_{(3,2,1)}^{>0})^{\vee}$). Then $S^{>0} = S$ and $T^{>0} = T$, where S and T are the tableaux in Example 4.5. Hence, by Example 5.2 we have

$$\psi_{\mu,\nu}^{\infty}(A\otimes A') = \begin{array}{ccc} 4^{\vee} & \bullet & \bullet & 1\\ 2^{\vee} & \bullet & \bullet & \bullet & 1 \end{array}$$

7.2. Let us give an explicit description of $\mathbf{B}(\infty) \otimes T_A \otimes \mathbf{B}(-\infty)$ for $A \in P_0$. For this, we define an analogue of (5.2) for \mathfrak{gl}_{∞} -crystals. Suppose that $\mu \in \mathbb{Z}_+^n$ is given. For $k \in \mathbb{Z}$, let $\mu \cup \{(k)\}$ be the generalized partition in \mathbb{Z}_+^{n+1} given by rearranging μ_1, \ldots, μ_n and k. For $r \leq \mu_n$, we assume that the columns in $(\mu - (r^n))' \in \mathscr{P}$ are enumerated by 1, 2, ... from the left, and the rows are enumerated by $r + 1, r + 2, \ldots$ from the top, or we identify $(\mu - (r^n))'$ with $\{(i, j) \mid r + 1 \leq i \leq \mu_j, 1 \leq j \leq n\} \subset \mathbb{Z} \times \mathbb{Z}$. For a skew Young diagram $\alpha = (\mu - (r^n))'/\lambda$ and $S \in \mathbf{B}_{\alpha}$, we also denote by S(i, j) the entry in Slocated in the *i*-th row and the *j*-th column.

For $k \in \mathbb{Z}$, we define $\kappa_k : SST_{\mathbb{Z}}(\alpha) \to SST_{\mathbb{Z}}(\kappa_k(\alpha))$, where

$$\kappa_k(\alpha) = \left(\left(\mu \cup \left\{ (k) \right\} \right) - \left(r^{n+1} \right) \right)' / \left(\lambda + \left(1^{k-r} \right) \right)$$

and $\kappa_k(S) = S'$ is given by S'(i, j) = S(i, j) if i > k, and S(i, j - 1) if $i \le k$. We put $\kappa_k^{\vee} = \vee \circ \kappa_k \circ \vee$. Here, if k < r, then we assume that $\alpha = (\mu - (s^n))'/\lambda \cup \{(n^{r-s})\}$ for some $s \le k$.

By applying the arguments in Proposition 5.4 to Proposition 7.1 with a little modification, we obtain the following.

Proposition 7.3. For $\mu, \nu \in \mathbb{Z}^n_+$ and $k \in \mathbb{Z}$, we have the following commutative diagram of \mathfrak{gl}_{∞} -crystal morphisms.

$$\mathbf{B}(\Lambda_{\mu}) \otimes \mathbf{B}(-\Lambda_{\nu}) \xrightarrow{\iota_{\Lambda_{\mu,\Lambda_{\nu}}}^{\Lambda_{k}}} \mathbf{B}(\Lambda_{\mu} + \Lambda_{k}) \otimes \mathbf{B}(-\Lambda_{k} - \Lambda_{\nu}) \\
 \psi_{\mu,\nu}^{\infty} \bigvee_{\gamma} \bigvee_{\mu \cup \{(k\},\nu \cup \{(k\})\}} \bigvee_{\gamma,\delta} \mathbf{B}_{\gamma}^{\vee} \otimes \mathbf{B}_{\delta}$$

Let **M** be the set of $\mathbb{Z} \times \mathbb{Z}$ matrices $A = (a_{ij})$ such that $a_{ij} \in \mathbb{Z}_{\geq 0}$ and $\sum_{i,j \in \mathbb{Z}} a_{ij} < \infty$. As in Section 5.2, we have a $(\mathfrak{gl}_{\infty}, \mathfrak{gl}_{\infty})$ -bicrystal structure on **M** with respect to \tilde{e}_i, \tilde{f}_i and $\tilde{e}_j^t, \tilde{f}_j^t$ for $i, j \in \mathbb{Z}$. Now, we put

$$\tilde{\mathbf{M}} = \mathbf{M}^{\vee} \times \mathbf{M}, \\ \tilde{\mathbf{M}}_{\Lambda} = \left\{ \left(M^{\vee}, N \right) \in \tilde{\mathbf{M}} \mid \operatorname{wt}(N^{t}) - \operatorname{wt}(M^{t}) = \Lambda \right\} \quad (\Lambda \in P_{0}).$$
(7.2)

Note that $\tilde{\mathbf{M}}$ can be viewed as a tensor product of $(\mathfrak{gl}_{\infty}, \mathfrak{gl}_{\infty})$ -bicrystals and $\tilde{\mathbf{M}}_A$ is a subcrystal of $\tilde{\mathbf{M}}$ with respect to \tilde{e}_i, \tilde{f}_i . By Proposition 7.3, we have the following combinatorial realization, which is our second main result. The proof is almost the same as in Theorem 5.5.

Theorem 7.4. For $\Lambda \in P_0$, we have

 $\tilde{\mathbf{M}}_{\Lambda} \simeq \mathbf{B}(\infty) \otimes T_{\Lambda} \otimes \mathbf{B}(-\infty).$

Let $\mathbf{B}(\tilde{U}_q(\mathfrak{gl}_\infty))_0 = \bigsqcup_{\Lambda \in P_0} \mathbf{B}(\infty) \otimes T_\Lambda \otimes \mathbf{B}(-\infty)$ be the level zero part of $\mathbf{B}(\tilde{U}_q(\mathfrak{gl}_\infty))$. Since $\tilde{\mathbf{M}} = \bigsqcup_{\Lambda \in P_0} \tilde{\mathbf{M}}_\Lambda$ and $\mathbf{M} \simeq \bigsqcup_{\lambda \in \mathscr{P}} \mathbf{B}_\lambda \times \mathbf{B}_\lambda$ as a $(\mathfrak{gl}_\infty, \mathfrak{gl}_\infty)$ -bicrystal, we obtain the following immediately.

Corollary 7.5. As a \mathfrak{gl}_{∞} -crystal, we have

 $\mathbf{B}(\tilde{U}_q(\mathfrak{gl}_\infty))_0 \simeq \tilde{\mathbf{M}}.$

Corollary 7.6. As a $(\mathfrak{gl}_{\infty}, \mathfrak{gl}_{\infty})$ -bicrystal, we have

$$\mathbf{B}\big(\tilde{U}_q(\mathfrak{gl}_\infty)\big)_0 \simeq \bigsqcup_{\mu,\nu \in \mathscr{P}} \mathbf{B}_{\mu,\nu} \times \mathbf{B}_{\mu,\nu}.$$

In [1], Beck and Nakajima proved a Kashiwara's conjecture [12] on the Peter–Weyl type decomposition of the level zero part of $\mathbf{B}(\tilde{U}_q(\mathfrak{g}))$ for an affine Kac–Moody algebra \mathfrak{g} of finite rank, where the crystal structure induced from the involution * on $\tilde{U}_q(\mathfrak{g})$ gives a bicrystal structure on $\mathbf{B}(\tilde{U}_q(\mathfrak{g}))$ together with usual \tilde{e}_i , \tilde{f}_i . The second crystal structure on $\mathbf{B}(\tilde{U}_q(\mathfrak{g}))$ is usually known as *-crystal structure [10], say \tilde{e}_i^* and \tilde{f}_i^* . Based on some computation, we give the following conjecture.

Conjecture 7.7. The crystal structure on $\mathbf{B}(\tilde{U}_q(\mathfrak{gl}_{>0}))$ and $\mathbf{B}(\tilde{U}_q(\mathfrak{gl}_{\infty}))_0$ with respect to \tilde{e}_i^t and \tilde{f}_i^t is compatible with the dual of the *-crystal structure with respect to \tilde{e}_i^* and \tilde{f}_i^* . That is, $\tilde{e}_i^t = \tilde{f}_i^*$ and $\tilde{f}_i^t = \tilde{e}_i^*$ for all *i*.

Acknowledgments

The author would like to thank the referees for careful reading of the manuscript and many corrections of it.

References

- [1] J. Beck, H. Nakajima, Crystal bases and two-sided cells of quantum affine algebras, Duke Math. J. 123 (2004) 335-402.
- [2] G. Benkart, F. Sottile, J. Stroomer, Tableau switching: algorithms and applications, J. Combin. Theory Ser. A 76 (1996) 11-43.
- [3] V. Chari, A. Pressley, Weyl modules for classical and quantum affine algebras, Represent. Theory 5 (2001) 191–223.
- [4] V.I. Danilov, G.A. Koshevoy, Bi-crystals and crystal (GL(V), GL(W)) duality, RIMS preprint, 2004, No. 1458.
- [5] W. Fulton, Young Tableaux, London Math. Soc. Stud. Texts, vol. 35, Cambridge University Press, Cambridge, 1997.
- [6] A. Henriques, J. Kamnitzer, The octahedron recurrence and \mathfrak{gl}_n crystals, Adv. Math. 206 (2006) 211–249.
- [7] V. Kac, Infinite-Dimensional Lie Algebras, third ed., Cambridge University Press, Cambridge, 1990.
- [8] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991) 465–516.
- [9] M. Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69 (1993) 455-485.
- [10] M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994) 383-413.
- [11] M. Kashiwara, On crystal bases, in: Representations of Groups, in: CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155–197.
- [12] M. Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002) 117–175.
- [13] M. Kashiwara, T. Nakashima, Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Algebra 165 (1994) 295–345.
- [14] J.-H. Kwon, Differential operators and crystals of extremal weight modules, Adv. Math. 222 (2009) 1339–1369.
- [15] J.-H. Kwon, Crystal duality and Littlewood-Richardson rule of extremal weight crystals, preprint, arXiv:0909.1126v2 [math.QA], 2009; J. Algebra, in press.
- [16] B. Leclerc, J.-Y. Thibon, E. Vasserot, Zelevinsky's involution at roots of unity, J. Reine Angew. Math. 513 (1999) 33-51.

- [17] G. Lusztig, Canonical bases in tensor products, Proc. Natl. Acad. Sci. USA 89 (1992) 8177-8179.
- [18] I.G. Macdonald, Symmetric Functions and Hall Polynomials, second ed., Oxford University Press, 1995.
- [19] H. Nakajima, Extremal weight modules of quantum affine algebras, in: Representation Theory of Algebraic Groups and Quantum Groups, in: Adv. Stud. Pure Math., vol. 40, Math. Soc. Japan, Tokyo, 2004, pp. 343–369.
- [20] T. Nakashima, Crystal base and a generalization of the Littlewood-Richardson rule for the classical Lie algebras, Comm. Math. Phys. 154 (1993) 215-243.
- [21] T. Nakashima, Crystallized structure for level 0 part of modified quantum affine algebra $\tilde{U}_q(\hat{\mathfrak{sl}}_2)$, Compos. Math. 108 (1997) 1–33.
- [22] T. Nakashima, Crystallized Peter–Weyl type decomposition for level 0 part of modified quantum algebra $\tilde{U}_q(\widehat{\mathfrak{sl}}_2)_0$, J. Algebra 189 (1997) 150–186.
- [23] T. Nakashima, A. Zelevinsky, Polyhedral realizations of crystal bases for quantized Kac-Moody algebras, Adv. Math. 131 (1997) 253-278.
- [24] M. Reineke, On the coloured graph structure of Lusztig's canonical basis, Math. Ann. 307 (1997) 705-723.
- [25] J.R. Stembridge, Rational tableaux and the tensor algebra of \mathfrak{gl}_n , J. Combin. Theory Ser. A 46 (1987) 79–120.
- [26] J. Stroomer, Insertion and the multiplication of rational Schur functions, J. Combin. Theory Ser. A 65 (1994) 79-116.