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We give a new combinatorial realization of the crystal base of the
modified quantized enveloping algebras of type A+∞ or A∞. It is
obtained by describing the decomposition of the tensor product of
a highest weight crystal and a lowest weight crystal into extremal
weight crystals, and taking its limit using a tableaux model of
extremal weight crystals. This realization induces in a purely
combinatorial way a bicrystal structure of the crystal base of the
modified quantized enveloping algebras and hence its Peter–Weyl
type decomposition generalizing the classical RSK correspondence.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let Uq(g) be the quantized enveloping algebra associated with a symmetrizable Kac–Moody alge-
bra g. In [17], Lusztig introduced the modified quantized enveloping algebra Ũq(g) =⊕Λ Uq(g)aΛ ,
where Λ runs over all integral weight for g, and proved the existence of its global crystal basis or
canonical basis. In [10], Kashiwara studied the crystal structure of Ũq(g) in detail, and showed that

B
(
Uq(g)aΛ

)� B(∞) ⊗ TΛ ⊗ B(−∞),

where B(Uq(g)aΛ) denotes the crystal base of Uq(g)aΛ , B(±∞) is the crystal base of the negative
(resp. positive) part of Uq(g) and TΛ = {tΛ} is a crystal with wt(tΛ) = Λ and εi(tΛ) = ϕi(tΛ) = −∞.
It is also shown that the Lusztig’s involution on Ũq(g) provides the crystal B(Ũq(g)) =⊔Λ B(∞) ⊗
TΛ ⊗B(−∞) with another crystal structure so-called ∗-crystal structure and therefore a regular (g,g)-
bicrystal structure [10]. With respect to this bicrystal structure, a Peter–Weyl type decomposition for
B(Ũq(g)) was obtained when it is of finite type or affine type at non-zero levels by Kashiwara [10]
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and of affine type at level zero by Beck and Nakajima [1] (see also [21,22] for partial results). Note
that the crystal base of the quantized coordinate ring for g [9] is a subcrystal of B(Ũq(g)), and equal
to B(Ũq(g)) if and only if g is of finite type [10].

One of the essential ingredients for understanding the structure of Ũq(g) is the notion of extremal
weight Uq(g)-module introduced by Kashiwara [10]. An extremal weight module associated with an
integral weight Λ for g is an integrable Uq(g)-module, which is a generalization of a highest weight
and a lowest weight module, and it also has a (global) crystal base. When g is an affine algebra of
finite rank, it is shown by Kashiwara [19, Remark 2.15] that a level zero extremal weight module is
isomorphic to a Weyl module introduced by Chari and Pressley [3].

The main purpose of this work is to study the structure of B(Ũq(g)) when g is a general linear
Lie algebra of type A+∞ or A∞ (affine type of infinite rank following [7]) using the combinatorics of
Young tableaux, and understand its connection with the classical RSK correspondence. From now on,
we denote g by gl>0 and gl∞ when it is of type A+∞ and A∞ , respectively.

The main result in this paper gives a new combinatorial realization of B(∞) ⊗ TΛ ⊗ B(−∞) for
all integral gl>0-weights and all level zero integral gl∞-weights Λ as a set of certain bimatrices. This
also implies directly Peter–Weyl type decompositions of B(Ũq(gl>0)) and B(Ũq(gl∞))0, the level zero
part of B(Ũq(gl∞)), without using the ∗-crystal structure. Our approach is based on the combinatorial
models of extremal weight crystals of type A+∞ and A∞ developed in [14,15].

Let us state our results more precisely. Let M be the set of N×N matrices with non-negative inte-
gral entries and finitely many positive entries. Recall that M has a gl>0-crystal structure where each
row of a matrix in M is identified with a single row Young tableau or a crystal element associated
with the symmetric power of the natural representation. Let M∨ = {M∨ | M ∈ M} be the dual crystal
of M. For each integral weight Λ, let

M̃Λ = {M∨ ⊗ N
∣∣wt
(
Nt)− wt

(
Mt)= Λ

}⊂ M∨ ⊗ M.

Here wt denotes the weight with respect to gl>0-crystal structure and At denotes the transpose of
A ∈ M. Then we show that

M̃Λ � B(∞) ⊗ TΛ ⊗ B(−∞)

(Theorem 5.5). The crucial step in the proof is the description of the tensor product B(Λ′) ⊗ B(−Λ′′)
for dominant integral weights Λ′ , Λ′′ with Λ = Λ′ − Λ′′ in terms of skew Young bitableaux (Propo-
sition 5.1), and its embedding into B(Λ′ + ξ) ⊗ B(−ξ − Λ′′) for arbitrary dominant integral weight ξ

(Proposition 5.4). In fact, B(Λ′ + ξ)⊗ B(−ξ −Λ′′) is realized as a set of skew Young bitableaux whose
shapes are almost horizontal strips as ξ goes to infinity. This establishes the above isomorphism and
as a consequence

B
(
Ũq(gl>0)

)� M∨ ⊗ M,

since
⊔

Λ M̃Λ = M∨ ⊗ M.
Now, for partitions μ,ν , let Bμ,ν be the extremal weight crystal with the Weyl group orbit of

its extremal weight corresponding to the pair (μ,ν). Note that Bμ,∅ (resp. B∅,ν ) is a highest (resp.
lowest) weight crystal and Bμ,ν � B∅,ν ⊗ Bμ,∅ [14]. Then a (gl>0,gl>0)-bicrystal structure of M and
M∨ arising from the RSK correspondence [4] naturally induces a (gl>0,gl>0)-bicrystal structure of
B(Ũq(gl>0)) and the following Peter–Weyl type decomposition (Corollary 5.7)

B
(
Ũq(gl>0)

)�⊔
μ,ν

Bμ,ν × Bμ,ν .

Hence the decomposition of B(Ũq(gl>0)) into extremal weight crystals can be understood as the ten-
sor product of two RSK correspondences, which are dual to each other as a (gl>0,gl>0)-bicrystal.

Next, we prove analogues for B(Ũq(gl∞))0. This is done by taking the limit of the results in gl>0.
In this case, M is replaced by Z × Z-matrices and Bμ,ν is replaced by the level zero extremal weight
crystal with the same parameter (μ,ν). Finally, we conjecture that the second crystal structures aris-
ing from the RSK correspondence is compatible with the dual of ∗-crystal structure.
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There are several nice combinatorial descriptions of B(∞) for gl>0 and gl∞ (see e.g. [16,23,24]),
by which one can understand the structure of B(∞) ⊗ TΛ ⊗ B(−∞). But our description of B(∞) ⊗
TΛ ⊗ B(−∞) enables us to explain more explicitly the connected component of a given element by
applying usual Young tableaux insertion to the row word of its matrix form, an embedding of a tensor
product of a highest weight crystal and a lowest weight crystal into B(∞) ⊗ TΛ ⊗ B(−∞) in terms of
skew Young tableaux and hence a bicrystal structure on B(Uq(gl>0)) and B(Uq(gl∞))0 in connection
with RSK algorithm.

The paper is organized as follows. In Section 2, we give necessary background on crystals. In Sec-
tion 3, we recall some combinatorics of Littlewood–Richardson tableaux from a view point of crystals,
which is necessary for our later arguments. In Section 4, we review a combinatorial model of extremal
weight gl>0-crystals [14] and their non-commutative Littlewood–Richardson rule. Then in Section 5
we prove the main theorem. In Section 6, we recall a combinatorial model of extremal weight gl∞-
crystals [15] and describe the Littlewood–Richardson rule of the tensor product of a highest weight
crystal and a lowest weight crystal. In Section 7, we prove analogues of the results in Section 5
for gl∞ . We remark that the Littlewood–Richardson rule in Section 6 is not necessary for Section 7,
but is of independent interest, which completes the discussion on tensor product of extremal weight
gl∞-crystals in [15].

2. Crystals

2.1. Let gl∞ be the Lie algebra of complex matrices (aij)i, j∈Z with finitely many non-zero entries,
which is spanned by Eij (i, j ∈ Z), the elementary matrix with 1 at the i-th row and the j-th column
and zero elsewhere. Let h =⊕i∈Z

CEii be the Cartan subalgebra of gl∞ and let 〈·,·〉 denote the natural
pairing on h∗ × h. We denote by {hi = Eii − Ei+1 i+1 | i ∈ Z} the set of simple coroots, and denote by
{αi = εi − εi+1 | i ∈ Z} the set of simple roots, where εi ∈ h∗ is given by 〈εi, E jj〉 = δi j . The Dynkin
diagram associated with the Cartan matrix (〈α j,hi〉)i, j∈Z is

© © © © ©· · · · · ·· · · · · ·
α−n α−1 α0 α1 αn

.

Let P = ZΛ0 ⊕⊕i∈Z
Zεi = ⊕i∈Z

ZΛi be the weight lattice of gl∞ , where Λ0 is given by

〈Λ0, E− j+1 − j+1〉 = −〈Λ0, E jj〉 = 1
2 ( j � 1), and Λi = Λ0 +∑i

k=1 εk , Λ−i = Λ0 −∑0
k=−i+1 εk for i � 1.

We call Λi the i-th fundamental weight.
For k ∈ Z, let Pk = kΛ0 +⊕i∈Z

Zεi be the set of integral weights of level k. Let P+ = {Λ ∈ P |
〈Λ,hi〉 � 0, i ∈ Z} =∑i∈Z

Z�0Λi be the set of dominant integral weights. We put P+
k = P+ ∩ Pk

for k � 0. For Λ =∑i∈Z
ciΛi ∈ P , the level of Λ is

∑
i∈Z

ci . If we put Λ± =∑i;ci≷0 |ci|Λi , then
Λ = Λ+ − Λ− with Λ± ∈ P+ .

For i ∈ Z, let ri be the simple reflection given by ri(λ) = λ − 〈λ,hi〉αi for λ ∈ h∗ . Let W be the
Weyl group of gl∞ , that is, the subgroup of GL(h∗) generated by ri for i ∈ Z.

For p,q ∈ Z, let [p,q] = {p, p + 1, . . . ,q} (p < q), [p,∞) = {p, p + 1, . . .} and (−∞,q] = {. . . ,q −
1,q}. For simplicity, we denote [1,n] by [n] (n � 1). For an interval S in Z, let glS be the subalgebra
of gl∞ spanned by Eij for i, j ∈ S . (We have glZ = gl∞ .) We denote by S◦ the index set of simple
roots for glS . For example, [p,q]◦ = {p, . . . ,q − 1}. We also put gl>r = gl[r+1,∞) and gl<r = gl(−∞,r−1]
for r ∈ Z.

2.2. Let S be an interval in Z. Let Uq(glS ) be the quantized enveloping algebra associated with glS .
Then we can consider the crystal base of a Uq(glS )-module following Kashiwara [8]. Roughly speaking,
the crystal base of a Uq(glS)-module V is an S◦-colored oriented graph, which can be viewed as a
limit of V at q = 0, but still has important combinatorial information of V . The existence of the crystal
bases of Uq(glS)-modules which are related with the work in this paper can be found in [8–10,13].

Based on the properties of crystal bases, one can define the notion of crystal as follows (see [11]
for a general review and references therein).
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A glS -crystal is a set B together with the maps wt : B → P , εi,ϕi : B → Z ∪ {−∞} and ẽi, f̃ i : B →
B ∪ {0} (i ∈ S◦) such that for b ∈ B

(1) ϕi(b) = 〈wt(b),hi〉 + εi(b),
(2) εi(ẽib) = εi(b) − 1, ϕi(ẽib) = ϕi(b) + 1, wt(ẽib) = wt(b) + αi if ẽib �= 0,
(3) εi( f̃ ib) = εi(b) + 1, ϕi( f̃ ib) = ϕi(b) − 1, wt( f̃ ib) = wt(b) − αi if f̃ ib �= 0,
(4) f̃ ib = b′ if and only if b = ẽib′ for b,b′ ∈ B ,
(5) ẽib = f̃ ib = 0 if ϕi(b) = −∞,

where 0 is a formal symbol and −∞ is the smallest element in Z ∪ {−∞} such that −∞ + n = −∞
for all n ∈ Z. For example, the crystal base of an integrable Uq(glS )-module is a glS -crystal.

Note that B is equipped with an S◦-colored oriented graph structure, where b
i→ b′ if and only if

b′ = f̃ ib for b,b′ ∈ B and i ∈ S◦ . For b ∈ B , we denote by C(b) the connected component in B including
b as an S◦-colored graph. We say that B is connected if C(b) = B for some b ∈ B .

The dual crystal B∨ of B is defined to be the set {b∨ | b ∈ B} with wt(b∨) = −wt(b), εi(b∨) = ϕi(b),
ϕi(b∨) = εi(b), ẽi(b∨) = ( f̃ ib)∨ and f̃ i(b∨) = (ẽib)∨ for b ∈ B and i ∈ S◦ . We assume that 0∨ = 0.

Let B1 and B2 be crystals. A morphism ψ : B1 → B2 is a map from B1 ∪ {0} to B2 ∪ {0} such that
for b ∈ B1 and i ∈ S◦

(1) ψ(0) = 0,
(2) wt(ψ(b)) = wt(b), εi(ψ(b)) = εi(b), and ϕi(ψ(b)) = ϕi(b) if ψ(b) �= 0,
(3) ψ(ẽib) = ẽiψ(b) if ψ(b) �= 0 and ψ(ẽib) �= 0,
(4) ψ( f̃ ib) = f̃ iψ(b) if ψ(b) �= 0 and ψ( f̃ ib) �= 0.

We call ψ an embedding and B1 a subcrystal of B2 when ψ is injective, and call ψ strict if ψ : B1 ∪
{0} → B2 ∪ {0} commutes with ẽi and f̃ i for i ∈ S◦ , where we assume that ẽi0 = f̃ i0 = 0. If ψ is a
strict embedding, then B2 is isomorphic to B1 � (B2 \ B1).

For bi ∈ Bi (i = 1,2), we say that b1 is (glS -)equivalent to b2, and write b1 ≡ b2 if there exists an
isomorphism of crystals C(b1) → C(b2) sending b1 to b2.

For a crystal B and m ∈ Z�0, we denote by B⊕m the disjoint union B1 � · · · � Bm with Bi � B ,
where B⊕0 means the empty set.

We say that a crystal B is regular if B is as a glS ′ -crystal, isomorphic to the crystal base of an
integrable Uq(glS ′ )-module for any finite subinterval S ′ ⊂ S . In particular, if B is regular, then εi(b) =
max{k | ẽk

i b �= 0} and ϕi(b) = max{k | f̃ k
i b �= 0} for b ∈ B and i ∈ S◦ . Note that an embedding between

regular crystals is always strict.
A tensor product B1 ⊗ B2 of crystals B1 and B2 is defined to be B1 × B2 as a set with elements

denoted by b1 ⊗ b2, where

wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εi(b1 ⊗ b2) = max
(
εi(b1), εi(b2) − 〈wt(b1),hi

〉)
,

ϕi(b1 ⊗ b2) = max
(
ϕi(b1) + 〈wt(b2),hi

〉
,ϕi(b2)

)
,

ẽi(b1 ⊗ b2) =
{

ẽib1 ⊗ b2, if ϕi(b1) � εi(b2),

b1 ⊗ ẽib2, if ϕi(b1) < εi(b2),

f̃ i(b1 ⊗ b2) =
{

f̃ ib1 ⊗ b2, if ϕi(b1) > εi(b2),

b1 ⊗ f̃ ib2, if ϕi(b1) � εi(b2),

for i ∈ S◦ and b1 ⊗ b2 ∈ B1 ⊗ B2. Here we assume that 0 ⊗ b2 = b1 ⊗ 0 = 0. Then B1 ⊗ B2 is a crystal.
Note that B1 ⊗ B2 is regular if B1 and B2 are regular, and (B1 ⊗ B2)

∨ � B∨
2 ⊗ B∨

1 .

2.3. Let us briefly review the crystal bases of an extremal weight module and a modified quantized
enveloping algebra. We refer the reader to Kashiwara’s papers [8,10,12] for more details.
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Let S be an interval in Z. Let Λ ∈ P be given. We may regard Λ as an integral weight for glS by
restricting it to the weight lattice of glS (i.e.

⊕
i∈S Zεi when S �= Z). Let B(Λ) be the crystal base

of the extremal weight Uq(glS )-module with extremal weight vector uΛ of weight Λ, which is a
regular glS -crystal. When ±Λ is a dominant integral weight for glS , B(Λ) is the crystal base of the
integrable highest (resp. lowest) weight Uq(glS )-module with highest (resp. lowest) weight Λ. Also
we have B(Λ) � B(wΛ) for w ∈ W . When S is finite, Λ is Weyl group conjugate to a glS -dominant
integral weight and hence B(Λ) is isomorphic to the crystal base of a highest weight module and in
particular it is connected. When S is infinite, B(Λ) does not necessarily contain a highest weight or
lowest weight element, but it is shown in [14, Proposition 3.1] and [15, Proposition 4.1] that B(Λ) is
also connected.

Let B(±∞) be the crystal base of the negative (resp. positive) part of Uq(glS) with the highest
(resp. lowest) weight element u±∞ , which is a glS -crystal, and let TΛ = {tΛ} (Λ ∈ P ) be the crystal
with wt(tΛ) = Λ, ẽitΛ = f̃ itΛ = 0 and εi(tΛ) = ϕi(tΛ) = −∞ for i ∈ S◦ . Let Ũq(glS ) =⊕Λ Uq(glS )aΛ

be the modified quantized enveloping algebra associated with glS , where Λ runs over all integral
weights for glS , and let B(Ũq(glS )) =⊔Λ B(Uq(glS)aΛ) denote the crystal base of Ũq(glS ). Then it
was shown by Kashiwara that

B
(
Uq(glS)aΛ

)� B(∞) ⊗ TΛ ⊗ B(−∞).

Note that B(∞) ⊗ TΛ ⊗ B(−∞) is regular, and there is a strict embedding of B(Λ) into B(∞) ⊗ TΛ ⊗
B(−∞) sending uΛ to u∞ ⊗ tΛ ⊗ u−∞ . Hence B(Λ) is isomorphic to C(u∞ ⊗ tΛ ⊗ u−∞) since B(Λ)

is connected.
The crystal B(∞)⊗ TΛ ⊗B(−∞) can be understood as a limit of B(Λ′)⊗B(−Λ′′) for glS -dominant

weights Λ′ , Λ′′ with Λ′ −Λ′′ = Λ. First recall that there is an embedding B(Λ+) → B(∞)⊗ TΛ+ (resp.
B(−Λ−) → TΛ− ⊗ B(−∞)) sending uΛ+ to u∞ ⊗ tΛ+ (resp. u−Λ− to t−Λ− ⊗ u−∞). This gives a strict
embedding

ιΛ+,Λ− : B(Λ+) ⊗ B(−Λ−) → B(∞) ⊗ TΛ ⊗ B(−∞) (2.1)

sending uΛ+ ⊗ u−Λ− to u∞ ⊗ tΛ ⊗ u−∞ since tΛ ≡ tΛ+ ⊗ t−Λ− . For a glS -dominant weight ξ ∈ P , let

ι
ξ
Λ+,Λ− : B(Λ+) ⊗ B(−Λ−) → B(Λ+ + ξ) ⊗ B(−ξ − Λ−) (2.2)

be a strict embedding given by the composition of the following two morphisms

B(Λ+) ⊗ B(−Λ−) → B(Λ+) ⊗ B(ξ) ⊗ B(−ξ) ⊗ B(−Λ−)

→ B(Λ+ + ξ) ⊗ B(−ξ − Λ−),

where

f̃ i1 · · · f̃ ir uΛ+ ⊗ ẽ j1 · · · ẽ js u−Λ−

�→ ( f̃ i1 · · · f̃ ir uΛ+) ⊗ uξ ⊗ u−ξ ⊗ (ẽ j1 · · · ẽ js u−Λ−)

�→ f̃ i1 · · · f̃ ir uΛ++ξ ⊗ ẽ j1 · · · ẽ js u−ξ−Λ−

for i1, . . . , ir and j1, . . . , js such that f̃ i1 · · · f̃ ir uΛ+ �= 0 and ẽ j1 · · · ẽ js u−Λ− �= 0. Note that

f̃ i1 · · · f̃ ir uΛ++ξ ≡ ( f̃ i1 · · · f̃ ir uΛ+) ⊗ uξ , if f̃ i1 · · · f̃ ir uΛ+ �= 0,

ẽ j1 · · · ẽ js u−ξ−Λ− ≡ u−ξ ⊗ (ẽ j1 · · · ẽ js u−Λ−), if ẽ j1 · · · ẽ js u−Λ− �= 0.

Since

B(∞) ⊗ TΛ ⊗ B(−∞) =
⋃

Λ′,Λ′′:glS -dominant
Λ′−Λ′′=Λ

Im(ιΛ′,Λ′′),

ιΛ′,Λ′′ = ιΛ′+ξ,Λ′′+ξ ◦ ι
ξ

′ ′′ , (2.3)

Λ ,Λ
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{B(Λ′) ⊗ B(−Λ′′) | Λ′,Λ′′ : glS -dominant with Λ = Λ′ − Λ′′} together with ι
ξ

Λ′,Λ′′ ’s forms a direct
system, whose limit is isomorphic to B(∞) ⊗ TΛ ⊗ B(−∞). Note that B(Λ) is also isomorphic to
C(uΛ++ξ ⊗ u−ξ−Λ− ) in B(Λ+ + ξ) ⊗ B(−ξ − Λ−) for any glS -dominant weight ξ .

3. Young and Littlewood–Richardson tableaux

3.1. Let P denote the set of partitions. We identify a partition λ = (λi)i�1 with a Young diagram or
a subset {(i, j) | 1 � j � λi} of N×N following [18]. Let (λ) = |{i | λi �= 0}|. We denote by λ′ = (λ′

i)i�1
the conjugate partition of λ whose Young diagram is {(i, j) | ( j, i) ∈ λ}. For μ,ν ∈ P , μ ∪ ν is the
partition obtained by rearranging {μi, νi | i � 1}, and μ + ν = (μi + νi)i�1.

Let A be a linearly ordered set and λ/μ a skew Young diagram. A tableau T obtained by filling
λ/μ with entries in A is called a semistandard tableau or Young tableau of shape λ/μ if the entries in
each row (resp. column) are weakly (resp. strictly) increasing from left to right (resp. from top to
bottom). We denote by T (i, j) the entry of T at (i, j) ∈ λ/μ. Let SSTA(λ/μ) denote the set of all
semistandard tableaux of shape λ/μ with entries in A.

Suppose that A is an interval in Z with a usual linear ordering. Then A is a regular glA-crystal,

where wt(i) = εi (i ∈ A) and i
i→ i +1 (i ∈ A◦). The image of SSTA(λ/μ) in A⊗r (r = |λ/μ|) under the

map T �→ w(T ) = w1 · · · wr or w1 ⊗· · ·⊗ wr together with {0} is invariant under ẽi, f̃ i (i ∈ A◦), where
w(T ) is the word obtained by reading the entries of T column by column from right to left, and in
each column from top to bottom. Hence SSTA(λ/μ) is a subcrystal of A⊗r [13]. We may identify
the dual crystal element T ∨ ∈ SSTA(λ/μ)∨ with the tableau obtained from T by 180◦-rotation and
replacing each entry a with a∨ . So we have SSTA(λ/μ)∨ � SSTA∨((λ/μ)∨), where a∨ < b∨ if and only
if b < a for a,b ∈ A and (λ/μ)∨ is the skew Young diagram obtained from λ/μ by 180◦-rotation. We
use the convention (a∨)∨ = a and hence (T ∨)∨ = T .

3.2. For λ,μ,ν ∈ P with |λ| = |μ|+ |ν|, let LRλ
μν be the set of tableaux U in SSTN(λ/μ) such that

(1) the number of occurrences of each i � 1 in U is νi ,
(2) for 1 � k � |ν|, the number of occurrences of each i � 1 in w1 · · · wk is no less than that of i + 1

in w1 · · · wk , where w(U ) = w1 · · · w |ν| .

We call LRλ
μν the set of Littlewood–Richardson tableaux of shape λ/μ with content ν and put cλ

μν =
|LRλ

μν | [18]. Let us introduce a variation of LRλ
μν , which is necessary for our later arguments. Let

LRλ
μν be the set of tableaux U in SST−N(λ/μ) such that

(1) the number of occurrences of each −i � −1 in U is νi ,
(2) for 1 � k � |ν|, the number of occurrences of each −i � −1 in wk · · · w |ν| is no less than that of

−(i + 1) in wk · · · w |ν| , where w(U ) = w1 · · · w |ν| .

There are characterizations of LRλ
μν and LRλ

μν using crystals. For U ∈ SSTN(λ/μ), we can check

that U ∈ LRλ
μν if and only if U is gl>0-equivalent (or Knuth equivalent) to the highest weight element

Hν in SSTN(ν), that is, Hν(i, j) = i for (i, j) ∈ ν . Similarly, for U ∈ SST−N(λ/μ), we have U ∈ LRλ
μν if

and only if U is gl<0-equivalent (or Knuth equivalent) to the lowest weight element Lν in SST−N(ν),
that is, Lν(i, j) = −ν ′

j + i − 1 for (i, j) ∈ ν .
There is a one-to-one correspondence between the set of V ∈ SSTN(ν) such that Hμ ⊗ V ≡ Hλ and

LRλ
μν . Indeed, V corresponds to ı(V ) = U ∈ LRλ

μν , where the number of k’s in the i-th row of V is
equal to the number of i’s in the k-th row of U for i,k � 1 [20].

Example 3.1. Consider

V =
1 1 2
2 2 3
3 4

∈ SSTN((3,3,2)).
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Then H(3,1) ⊗ V ≡ H(5,4,2,1) and

ı(V ) =
• • • 1 1
• 1 2 2
2 3
3

∈ LR(5,4,2,1)
(3,1) (3,3,2)

.

3.3. Next, let us briefly recall the switching algorithm [2]. Suppose that A and B are two linearly
ordered sets. Let λ/μ be a skew Young diagram. Let U be a tableau of shape λ/μ with entries in
A � B, satisfying the following conditions:

(S1) U (i, j) � U (i′, j′) whenever U (i, j), U (i′, j′) ∈ X for (i, j), (i′, j′) ∈ λ/μ with i � i′ and j � j′ ,
(S2) in each column of U , entries in X increase strictly from top to bottom,

where X = A or B. Suppose that b ∈ B and a ∈ A are two adjacent entries in U such that b is placed
above or to the left of a. Interchanging a and b is called a switching if the resulting tableau still
satisfies the conditions (S1) and (S2).

Let λ/μ and μ/η be two skew Young diagrams. For S ∈ SSTB(μ/η) and T ∈ SSTA(λ/μ), we denote
by S ∗T the tableau of shape λ/η with entries A � B obtained by gluing S and T , that is, (S ∗T )(i, j) =
S(i, j) if (i, j) ∈ μ/η, and T (i, j) if (i, j) ∈ λ/μ. Let U be a tableau obtained from S ∗ T by applying
switching procedures as far as possible. Then it is shown in [2, Theorems 2.2 and 3.1] that

(1) U = T ′ ∗ S ′ , where T ′ ∈ SSTA(ν/η) and S ′ ∈ SSTB(λ/ν) for some ν ,
(2) U is uniquely determined by S and T ,
(3) w(S) (resp. w(T )) is Knuth equivalent to w(S ′) (resp. w(T ′)).

Suppose that η = ∅ and S = Hμ ∈ SSTN(μ). We put

j (T ) = T ′, j (T )R = S ′. (3.1)

Then we have the following.

Proposition 3.2. Suppose that A is an interval in Z. The map sending T to (j (T ), j (T )R ) is an isomorphism
of glA-crystals

SSTA(λ/μ) →
⊔

ν∈P

SSTA(ν) × LRλ
ν μ,

where x̃i(T ′, S ′) = (x̃i T ′, S ′) for i ∈ A◦ and x = e, f on the right-hand side. In particular, the map Q �→
j (Q )R restricts to a bijection from LRλ

μν to LRλ
ν μ , and from LRλ

μν to LRλ
ν μ when A = ±N, respectively.

Proof. The map is clearly a bijection by [2, Theorem 3.1]. Moreover, j (T ) is glA-equivalent to T
and j (T )R is invariant under ẽi and f̃ i for i ∈ A◦ (cf. [6, Theorem 5.9]). Hence the bijection is an
isomorphism of glA-crystals. �
Remark 3.3. The inverse of the isomorphism in Proposition 3.2 is given directly by applying the
switching process in a reverse way.

4. Extremal weight crystals of type A+∞

Note that for r ∈ Z the gl>r -crystals [r + 1,∞) and [r + 1,∞)∨ are given by

r + 1
r+1−→ r + 2

r+2−→ r + 3
r+3−→ · · · ,

· · · r+3−→ (r + 3)∨ r+2−→ (r + 2)∨ r+1−→ (r + 1)∨.
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For μ ∈ P , let

B>r
μ = SST[r+1,∞)(μ). (4.1)

Then B>r
μ is a highest weight gl>r -crystal with highest weight element H>r

μ of weight
∑

i�1 λiεr+i ,
where H>r

μ (i, j) = r + i for (i, j) ∈ μ. We identify (B>r
μ )∨ with SST[r+1,∞)∨ (μ∨).

For ν ∈ P and s � (ν), let E>r
ν (s) ∈ (B>r

ν )∨ be given by

(
E>r
ν (s)
)∨

(i, j) = r + s − ν ′
j + i (4.2)

for (i, j) ∈ ν . For s � (μ) + (ν), let

B>r
μ,ν = C

(
H>r

μ ⊗ E>r
ν (s)
)⊂ B>r

μ ⊗ (B>r
ν

)∨
(4.3)

be the connected component including H>r
μ ⊗ E>r

ν (s) as a gl>r -crystal. Then we have the following by
[14, Proposition 3.4] and [14, Theorem 3.5].

Theorem 4.1. For μ,ν ∈ P ,

(1) B>r
μ,ν is the set of S ⊗ T ∈ B>r

μ ⊗ (B>r
ν )∨ such that for each k � 1,

∣∣{i ∣∣ S(i,1) � r + k
}∣∣+ ∣∣{i ∣∣ T ∨(i,1) � r + k

}∣∣� k,

(2) B>r
μ,ν is isomorphic to an extremal weight gl>r -crystal with extremal weight

(μ)∑
i=1

μiεr+i −
(ν)∑
j=1

ν jεr+(μ)+(ν)− j+1.

Note that B>r
μ,ν does not depend on the choice of s. Moreover, {B>r

μ,ν | μ,ν ∈ P} is a complete list
of pairwise non-isomorphic extremal weight gl>r -crystals [14, Theorem 3.5 and Lemma 5.1] and the
tensor product of extremal weight gl>r -crystals is isomorphic to a finite disjoint union of extremal
weight crystals [14, Theorem 4.10].

To describe the tensor product of extremal weight gl>r -crystals, let us review an insertion algo-
rithm for extremal weight crystal elements [14, Section 4], which is an infinite analogue of [25,26].
Recall that for a ∈ A and T ∈ SSTA(λ) (λ ∈ P), a → T (resp. T ← a) denotes the tableau obtained
by the Schensted column (resp. row) insertion, where A is a linearly ordered set (see for example
[5, Appendix A.2]).

From now on, we denote S ⊗ T ∈ B>r
μ,ν by (S, T ) following [14]. For a ∈ [r + 1,∞), we define

a → (S, T ) in the following way.
Suppose first that S is the empty tableau ∅ and T is a single column tableau. Let (T ′,a′) be the

pair obtained by the following process:

(1) If T contains a∨, (a + 1)∨, . . . , (b − 1)∨ as its entries but not b∨ , then T ′ is the tableau obtained
from T by replacing a∨, (a + 1)∨, . . . , (b − 1)∨ with (a + 1)∨, (a + 2)∨, . . . ,b∨ , and put a′ = b.

(2) If T does not contain a∨ , then leave T unchanged and put a′ = a.

Now, we suppose that S and T are arbitrary.

(1) Apply the above process to the left-most column of T with a.
(2) Repeat (1) with a′ and the next column to the right.
(3) Continue this process to the right-most column of T to get a tableau T ′ and a′′ .
(4) Define a → (S, T ) to be ((a′′ → S), T ′).
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Then (a → (S, T )) ∈ B>r
σ ,ν for some σ ∈ P with |σ/μ| = 1 (μ ⊂ σ ). For a finite word w = w1 · · · wn

with letters in [r + 1,∞), we let (w → (S, T )) = (wn → (· · · (w1 → (S, T )) · · ·)).
For a ∈ [r + 1,∞) and (S, T ) ∈ B>r

μ,ν , we define (S, T ) ← a∨ to be the pair (S ′, T ′) obtained in the
following way:

(1) If the pair (S, (T ∨ ← a)∨) satisfies the condition in Theorem 4.1(1), then put S ′ = S and T ′ =
(T ∨ ← a)∨ .

(2) Otherwise, choose the smallest k such that ak is bumped out of the k-th row in the row in-
sertion of a into T ∨ and the insertion of ak into the (k + 1)-st row violates the condition in
Theorem 4.1(1).

(2-a) Stop the row insertion of a into T ∨ when ak is bumped out and let T ′ be the resulting tableau
after taking ∨.

(2-b) Remove ak in the left-most column of S , which necessarily exists, and then apply the jeu de
taquin (see for example [5, Section 1.2]) to obtain a tableau S ′ .

In this case, ((S, T ) ← a∨) ∈ B>r
σ ,τ , where either (1) |μ/σ | = 1 (σ ⊂ μ) and τ = ν , or (2) σ = μ and

|τ/ν| = 1 (ν ⊂ τ ). For a finite word w = w1 · · · wn with letters in [r + 1,∞)∨ , we let ((S, T ) ← w) =
((· · · ((S, T ) ← w1) · · ·) ← wn).

Let μ,ν,σ , τ ∈ P be given. For (S, T ) ∈ B>r
μ,ν and (S ′, T ′) ∈ B>r

σ ,τ , we define((
S ′, T ′)→ (S, T )

)= ((w(S ′)→ (S, T )
)← w

(
T ′)).

Then ((S ′, T ′) → (S, T )) ∈ B>r
ζ,η for some ζ,η ∈ P . Assume that w(S ′) = w1 · · · ws and w(T ′) =

ws+1 · · · ws+t . For 1 � i � s + t , let(
Si, T i)= {w1 · · · wi → (S, T ), if 1 � i � s,

(Ss, T s) ← ws+1 · · · wi, if s + 1 � i � s + t,

and (S0, T 0) = (S, T ). We define((
S ′, T ′)→ (S, T )

)
R = (U , V ),

where (U , V ) is the pair of tableaux with entries in Z \ {0} determined by the following process:

(1) U is of shape σ and V is of shape τ .
(2) Let 1 � i � s. If wi is inserted into (Si−1, T i−1) to create a dot (or box) in the k-th row of the

shape of Si−1, then we fill the dot in σ corresponding to wi with k.
(3) Let s + 1 � i � s + t . If wi is inserted into (Si−1, T i−1) to create a dot in the k-th row (from the

bottom) of the shape of T i−1, then we fill the dot in τ corresponding to wi with −k. If wi is
inserted into (Si−1, T i−1) to remove a dot in the k-th row of the shape of Si−1, then we fill the
corresponding dot in τ with k.

We call ((S ′, T ′) → (S, T ))R the recording tableau of ((S ′, T ′) → (S, T )). By [14, Theorem 4.10], we have
the following.

Proposition 4.2. Under the above hypothesis, we have

(1) ((S ′, T ′) → (S, T )) ≡ (S, T ) ⊗ (S ′, T ′),
(2) ((S ′, T ′) → (S, T ))R ∈ SSTN(σ )× SSTZ(τ ), where Z is the set of non-zero integers with a linear ordering

1 ≺ 2 ≺ 3 ≺ · · · ≺ −3 ≺ −2 ≺ −1,
(3) the recording tableaux are constant on the connected component of B>r

μ,ν ⊗ B>r
σ ,τ including (S, T ) ⊗

(S ′, T ′).

Suppose that μ,ν ∈ P and W ∈ SSTZ(ν) are given with w(W ) = w |ν| · · · w1. Let (α0, β0),

(α1, β1), . . . , (α|ν|, β |ν|) be the sequence, where αi = (αi
j) j�1 and β i = (β i

j) j�1 (1 � i � |ν|) are se-
quences of integers defined inductively as follows:
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(1) α0 = μ and β0 = (0,0, . . .).
(2) If wi is positive, then αi is obtained by subtracting 1 in the wi -th part of αi−1, and β i = β i−1. If

wi is negative, then αi = αi−1 and β i is obtained by adding 1 in the (−wi)-th part of β i−1.

Then for σ ,τ ∈ P we define C
(μ,ν)

(σ ,τ ) to be the set of W ∈ SSTZ(ν) such that αi , β i ∈ P for 1 � i � |ν|,
and (α|ν|, β |ν|) = (σ , τ ).

For S ∈ B>r
μ and T ∈ (B>r

ν )∨ , we have ((∅, T ) → (S,∅))R = (∅, W ) for some W ∈ C
(μ,ν)

(σ ,τ )
by Propo-

sition 4.2(2). For convenience, we identify W with ((∅, T ) → (S,∅))R . Then, we have the following
decomposition as a special case of [14, Theorem 4.10].

Proposition 4.3. For μ,ν ∈ P , we have an isomorphism of gl>r -crystals

B>r
μ ⊗ (B>r

ν

)∨ →
⊔

σ ,τ∈P

B>r
σ ,τ × C

(μ,ν)

(σ ,τ ),

where S ⊗ T is sent to (((∅, T ) → (S,∅)), ((∅, T ) → (S,∅))R).

Further, we can characterize C
(μ,ν)

(σ ,τ ) as follows.

Proposition 4.4. For μ,ν,σ , τ ∈ P , there exists a bijection

C
(μ,ν)

(σ ,τ ) →
⊔

λ∈P

LRμ
σλ × LRν

τλ.

Proof. Suppose that W ∈ C
(μ,ν)

(σ ,τ ) is given. Let W+ (resp. W−) be the subtableau in W consisting of
positive (resp. negative) entries.

We have W+ ∈ SSTN(λ) and W− ∈ SST−N(ν/λ) for some λ ⊂ ν . By definition of W ∈ C
(μ,ν)

(σ ,τ ) , we

have ı(W+) ∈ LRμ
σλ and W− ∈ LRν

λτ , hence j (W−)R ∈ LRν
τλ by Proposition 3.2.

We can check that the correspondence

W �→ (W1, W2) := (ı(W+), j (W−)R
)

(4.4)

is reversible and hence gives a bijection C
(μ,ν)

(σ ,τ ) →⊔λ∈P LRμ
σλ × LRν

τλ . �
Example 4.5. Consider

S = 1 1 2
2 3

∈ B>0
(3,2), T =

4∨
3∨ 2∨

2∨ 2∨ 1∨
∈ (B>0

(3,2,1)

)∨
.

Then we have

(
1 1 2
2 3

, ∅
)

← 4∨ =
(

1 1 2
2 3

,
4∨
) • • •

• •
−1(

1 1 2
2 3

,
4∨
)

← 2∨ =
(

1 1 2
3

,
4∨
) • • •

2 •
−1(

1 1 2
3

,
4∨
)

← 1∨ =
(

1 2
3

,
4∨
) 1 • •

2 •
−1
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(
1 2
3

,
4∨
)

← 3∨ =
(

1 2
3

,
4∨
3∨
) 1 • •

2 −2
−1(

1 2
3

,
4∨
3∨
)

← 2∨ =
(

1 2
,

4∨
2∨
) 1 2 •

2 −2
−1(

1 2
,

4∨
2∨
)

← 2∨ =
(

1 2
,

4∨
2∨ 2∨

) 1 2 −1
2 −2
−1

.

Hence,

(
(∅, T ) → (S,∅)

)= ( 1 2
,

4∨
2∨ 2∨

)
∈ B>0

(2),(2,1),

(
(∅, T ) → (S,∅)

)
R =

1 2 −1
2 −2
−1

∈ C
(3,2),(3,2,1)
(2),(2,1)

.

If we put W = ((∅, T ) → (S,∅))R , then

W+ = 1 2
2

, W− =
• • −1
• −2
−1

.

Since

ı(W+) = • • 1
1 2

, j (W−) = −2 −1
−1

, j (W−)R =
• • 1
• 2
1

(see Proposition 3.2), we have

(W1, W2) =
⎛
⎝ • • 1

1 2 ,

• • 1
• 2
1

⎞
⎠ ∈ LR(3,2)

(2)(2,1) × LR(3,2,1)
(2,1)(2,1).

Now, the multiplicity of each connected component can be written in terms of Littlewood–
Richardson coefficient as follows. We remark that it was already given in [14, Corollary 7.3], while
Proposition 4.4 gives a bijective proof of it.

Corollary 4.6. For μ,ν ∈ P , we have

B>r
μ ⊗ (B>r

ν

)∨ �
⊔

σ ,τ∈P

(
B>r

σ ,τ

)⊕c(μ,ν)

(σ ,τ ) ,

where

c(μ,ν)

(σ ,τ ) =
∑
λ∈P

cμ
σλcν

τλ.

Proposition 4.7. For μ,ν ∈ P , we have an isomorphism of gl>r -crystals(
B>r

ν

)∨ ⊗ B>r
μ → B>r

μ,ν,

where T ⊗ S is mapped to ((S,∅) → (∅, T )).
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Proof. For T ⊗ S ∈ (B>r
ν )∨ ⊗ B>r

μ , it follows from Proposition 4.2(2) that

(1) ((S,∅) → (∅, T ))R = (Hμ,∅),
(2) ((S,∅) → (∅, T )) ∈ B>r

μ,ν .

Therefore, by [14, Theorem 4.10] the map(
B>r

ν

)∨ ⊗ B>r
μ → B>r

μ,ν × {(Hμ,∅)
}

sending T ⊗ S to (((S,∅) → (∅, T )), ((S,∅) → (∅, T ))R ) is an isomorphism of gl>r -crystals. �
Example 4.8. Let

(U , V ) =
(

1 2
,

4∨
2∨ 2∨

)
∈ B>0

(2),(2,1)

be as in Example 4.5. If we put

Ṽ ⊗ Ũ = 4∨
2∨ 1∨ ⊗ 1 1 ∈ (B>0

(2,1)

)∨ ⊗ B>0
(2),

then (
(Ũ ,∅) → (∅, Ṽ )

)= (U , V ).

5. Combinatorial description of B(Ũq(gl>0))

5.1. For simplicity, we put for a skew Young diagram λ/μ

Bλ/μ = SSTN(λ/μ),

and for μ,ν ∈ P

Bμ,ν = B>0
μ,ν .

For S ⊗ T ∈ Bμ ⊗ B∨
ν , suppose that

(U , V ) = ((∅, T ) → (S,∅)
) ∈ Bσ ,τ ,

W = ((∅, T ) → (S,∅)
)

R ∈ C
(μ,ν)

(σ ,τ ),

for some σ ,τ ∈ P . (Recall that we identify W with (∅, W ) = ((∅, T ) → (S,∅))R .) By Proposition 4.7,
there exist unique Ũ ∈ Bσ and Ṽ ∈ B∨

τ such that Ṽ ⊗ Ũ ≡ (U , V ). The bijection (4.4) maps W to

(W1, W2) ∈ LRμ
σλ × LRν

τλ

for some λ ∈ P . By Proposition 3.2, there exist unique X ∈ Bμ/λ and Y ∈ Bν/λ such that

j (X) = Ũ , j (X)R = W1,

j (Y )∨ = Ṽ , j (Y )R = W2.

Now, we define

ψμ,ν(S ⊗ T ) = Y ∨ ⊗ X ∈ B∨
ν/λ ⊗ Bμ/λ. (5.1)

By construction, ψμ,ν is bijective and commutes with x̃i for x = e, f and i � 1. Hence we have the
following.
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Proposition 5.1. For μ,ν ∈ P , the map

ψμ,ν : Bμ ⊗ B∨
ν →

⊔
λ⊂μ,ν

B∨
ν/λ ⊗ Bμ/λ

is an isomorphism of gl>0-crystals.

Example 5.2. Let S and T be the tableaux in Example 4.5. Let

X = • • 1
• 1

, Y =
• • 2
• 1
4

.

Following the above notations, we have

H(2,1) ∗ X = 1 1 1
2 1

switching� 1 1 1
1 2

= j (X) ∗ j (X)R = Ũ ∗ W1,

H(2,1) ∗ Y =
1 1 2
2 1
4

switching�
1 2 1
4 2
1

= j (Y ) ∗ j (Y )R = (Ṽ )∨ ∗ W2,

where Ũ , Ṽ , W i (i = 1,2) are as in Examples 4.5 and 4.8. Hence,

ψμ,ν(S ⊗ T ) = Y ∨ ⊗ X

=
⎛
⎝ • • 2

• 1
4

⎞
⎠∨

⊗ • • 1
• 1

=
4∨

1∨ •
2∨ • •

⊗ • • 1
• 1

.

For a skew Young diagram λ/μ and k � 1, we define

κk : Bλ/μ → B(λ+(1k))/(μ+(1k)) (5.2)

by κk(S) = S ′ with

S ′(i, j) =
{

S(i, j), if i > k,

S(i, j − 1), if i � k.

By definition, κk is a strict embedding of crystals.

Example 5.3.

κ1

⎛
⎝ • • 1

• 2
1

⎞
⎠=

• • • 1
• 2
1

, κ2

⎛
⎝ • • 1

• 2
1

⎞
⎠=

• • • 1
• • 2
1

.

For k � 1 and λ ∈ P , we put

ωk = ε1 + · · · + εk,

ωλ = λ1ε1 + λ2ε2 + · · · .
Now, we have the following combinatorial interpretation of the embedding (2.2) in terms of sliding
skew tableaux horizontally. It will play a crucial role in proving our main theorem.



2144 J.-H. Kwon / Journal of Combinatorial Theory, Series A 118 (2011) 2131–2156
Proposition 5.4. For μ,ν ∈ P and k � 1, we have the following commutative diagram of gl>0-crystal mor-
phisms

Bμ ⊗ B∨
ν

ι
ωk
ωμ,ων

ψμ,ν

Bμ+(1k) ⊗ B∨
ν+(1k)

ψ
μ+(1k),ν+(1k)⊔

λ B∨
ν/λ ⊗ Bμ/λ

κ∨
k ⊗κk ⊔

η B∨
(ν+(1k))/η

⊗ B(μ+(1k))/η

where ι
ωk
ωμ,ων

is the strict embedding in (2.2) and κ∨
k = ∨ ◦ κk ◦ ∨.

Proof. Let S ⊗ T ∈ Bμ ⊗ B∨
ν be given. We keep the previous notations. Note that

S ⊗ uωk = S ⊗ H(1k) ≡ S{k} := (k → (· · · (1 → S) · · ·)) ∈ Bμ+(1k),

u−ωk ⊗ T = H∨
(1k)

⊗ T ≡ T {k} := (k → (· · · (1 → T ∨) · · ·))∨ ∈ B∨
ν+(1k)

.

Hence by (2.2) we have ι
ωk
ωμ,ων

(S ⊗ T ) = S{k} ⊗ T {k}. Since S{k} ⊗ T {k} ≡ S ⊗ T , we have(
U {k}, V {k}) := ((∅, T {k})→ (S{k},∅))≡ ((∅, T ) → (S,∅)

)= (U , V ),

which implies that (U {k}, V {k}) = (U , V ) by [14, Lemma 5.1]. Put

W {k} = ((∅, T {k})→ (S{k},∅))R ,

and suppose that the bijection (4.4) maps W {k} to

(
W1{k}, W2{k}) ∈ LRμ+(1k)

σ η × LRν+(1k)
τ η

for some η ∈ P .
Since W is invariant under ẽi and f̃ i (i � 1), we may assume that (U , V ) = (H>0

σ , E>0
τ (n)) for a

sufficiently large n > k (see (4.2)). As a gl[n]-crystal element, (U , V ) is a highest weight element, and
ς

p
n (U , V ) = (H>0

ζ ,∅), where p � τ1 and ζ = σ + (p − τn, . . . , p − τ1) (see [14, Section 4.1] for the

definition of the map ςn). This also implies that S = H>0
μ . By [26, Lemma 7.6], we have

(∅,
(
W {k} ↓ n

)∨)= ς
−p
n
[(

ς
p

n
(∅, T {k})→ (S{k},∅))R] (5.3)

where (W {k} ↓ n) is the tableau obtained from W {k} by replacing −i with n − i + 1 (see also the
proof of [14, Lemma 4.8]). Since S{k} = H>0

μ+(1k)
, we have (ς

p
n (∅, T {k}) → (S{k},∅))R = ς

p
n (∅, T {k})

and hence (W {k} ↓ n)∨ = T {k}. Similarly, we have (W ↓ n)∨ = T .
Now, it is straightforward to check that

W {k} =
1
...

k

∗ κk(W ) = H(1k) ∗ κk(W ).

This implies that

W1{k} = W1 ∗ Σk,

W2{k} = W2 ∗ Σ ′
k,

where Σk and Σ ′
k are vertical strips of shape (μ + (1k))/μ and (ν + (1k))/ν filled with 1, . . . ,k from

top to bottom, respectively. Now, we have
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Ũ ∗ W1{k} = Ũ ∗ W1 ∗ Σk � Hλ ∗ X ∗ Σk (switching Ũ and W1)

� Hλ+(1k) ∗ κk(X) (switching X and Σk),

(Ṽ )∨ ∗ W2{k} = (Ṽ )∨ ∗ W2 ∗ Σ ′
k � Hλ ∗ Y ∗ Σ ′

k

(
switching (Ṽ )∨ and W2

)
� Hλ+(1k) ∗ κk(Y )

(
switching Y and Σ ′

k

)
.

Therefore, it follows that

ψμ+(1k),ν+(1k)

(
ι
ωk
ωμ,ων

(S ⊗ T )
)= ψμ+(1k),ν+(1k)

(
S{k} ⊗ T {k})

= κk(Y )∨ ⊗ κk(X)

= κ∨
k ⊗ κk

(
ψμ,ν(S ⊗ T )

)
. �

5.2. Let M be the set of N × N matrices A = (aij) such that aij ∈ Z�0 and
∑

i, j�1 aij < ∞. Let
A = (aij) ∈ M be given. For i � 1, the i-th row Ai = (aij) j�1 is naturally identified with a unique
semistandard tableau in B(mi) , where mi =∑ j�1 aij and wt(Ai) =∑ j�1 aijε j . Hence A can be viewed
as an element in B(m1) ⊗ · · · ⊗ B(mr ) for some r � 0. This defines a gl>0-crystal structure on M. Now,
we put

M̃ = M∨ × M, (5.4)

which can be viewed as a tensor product of gl>0-crystals. Let P =⊕i�1 Zεi be the integral weight
lattice for gl>0. For ω ∈ P, let

M̃ω = {(M∨, N
) ∈ M̃

∣∣wt
(
Nt)− wt

(
Mt)= ω

}
.

Here At denotes the transpose of A ∈ M. Then M̃ω is a subcrystal of M̃. Now, we can state the main
result in this section.

Theorem 5.5. For ω ∈ P, we have

M̃ω � B(∞) ⊗ Tω ⊗ B(−∞).

Proof. Let μ,ν ∈ P be such that ω = ωμ −ων . Suppose that ψμ,ν(S ⊗ T ) = Y ∨ ⊗ X for S ⊗ T ∈ Bμ ⊗
B∨

ν , where ψμ,ν is the isomorphism in Proposition 5.1. Let M = (mij) (resp. N = (nij)) be the unique
matrix in M such that the i-th row of M (resp. N) is gl>0-equivalent to the i-th row of Y (resp. X ).
Since

∑
j�1 mij (resp.

∑
j�1 nij) is equal to yi (resp. xi ) the number of dots or boxes in the i-th row

of Y (resp. X ) for i � 1 and ω =∑i�1(xi − yi)εi by Proposition 5.1, we have wt(Nt) − wt(Mt) = ω.
Then we define

ι′μ,ν : Bμ ⊗ B∨
ν → M̃ω

by ι′μ,ν(S ⊗ T ) = (M∨, N). By Proposition 5.1, it is easy to see that ι′μ,ν is a strict embedding and

M̃ω =
⋃

μ,ν∈P
ωμ−ων=ω

Im ι′μ,ν .

For k � 1, we have ι′μ,ν = ι′
μ+(1k),ν+(1k)

◦ ι
ωk
ωμ,ων

by Proposition 5.4. Using induction, we have

ι′μ,ν = ι′μ+ξ,ν+ξ ◦ ι
ωξ
ωμ,ων

(ξ ∈ P).

Therefore, by (2.3), it follows that M̃ω � B(∞) ⊗ Tω ⊗ B(−∞). �
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Corollary 5.6. As a gl>0-crystal, we have

B
(
Ũq(gl>0)

)� M̃.

Proof. It follows from M̃ =⊔ω∈P M̃ω . �
For A ∈ M and i � 1, we also define

ẽt
i A = (ẽi At)t, f̃ t

i A = ( f̃ i At)t . (5.5)

Then M has another gl>0-crystal structure with respect to ẽt
i , f̃ t

i and wtt , where wtt(A) = wt(At).

By [4], M is a (gl>0,gl>0)-bicrystal, that is, ẽi, f̃ i on M ∪ {0} commute with ẽt
j, f̃ t

j for i, j � 1, and so

is the tensor product M̃ = M∨ × M. Now we have the following Peter–Weyl type decomposition.

Corollary 5.7. As a (gl>0,gl>0)-bicrystal, we have

B
(
Ũq(gl>0)

)� ⊔
μ,ν∈P

Bμ,ν × Bμ,ν .

Proof. Note that the usual RSK correspondence gives an isomorphism of (gl>0,gl>0)-bicrystals M �⊔
λ∈P Bλ × Bλ [4]. We assume that ẽi, f̃ i act on the first component, and ẽt

j, f̃ t
j act on the second

component. The decomposition of B(Ũq(gl>0)) follows from Proposition 4.7. �
6. Extremal weight crystals of type A∞

In this section, we describe the tensor product of gl∞-crystals B(Λ) ⊗ B(−Λ′) for Λ,Λ′ ∈ P+ in
terms of extremal weight crystals.

6.1. For a skew Young diagram λ/μ, we put

Bλ/μ = SSTZ(λ/μ), (6.1)

and we identify B∨
λ/μ with SSTZ∨ ((λ/μ)∨). Note that for μ ∈ P , Bμ has neither a highest weight nor

lowest weight element. It is shown in [15] that for μ,ν,σ , τ ∈ P , Bμ ⊗ B∨
ν is connected, Bμ ⊗ B∨

ν �
B∨

ν ⊗ Bμ , and Bμ ⊗ B∨
ν � Bσ ⊗ B∨

τ if and only if (μ,ν) = (σ , τ ). Put

Bμ,ν = Bμ ⊗ B∨
ν . (6.2)

Note that Bμ,ν can be viewed as a limit of B>r
μ,ν (r → −∞) since B>r

μ,ν � (B>r
ν )∨ ⊗ B>r

μ .
For n � 1, let Z

n+ = {λ = (λ1, . . . , λn) ∈ Z
n | λ1 � · · · � λn} be the set of generalized partitions of

length n. For λ ∈ Z
n+ , we put

Λλ = Λλ1 + · · · + Λλn ∈ P+
n .

Theorem 6.1. (See Theorem 4.6 in [15].) For Λ ∈ Pn (n � 0), there exist unique λ ∈ Z
n+ and μ,ν ∈ P such

that

B(Λ) � Bμ,ν ⊗ B(Λλ).

Here we assume that Λλ = 0 when n = 0.

Note that {Bμ,ν ⊗ B(Λ) | Λ ∈ P+, μ,ν ∈ P} forms a complete list of extremal weight crystals of
non-negative level up to isomorphism.

6.2. For intervals I , J in Z, let MI, J be the set of I × J matrices A = (aij) with aij ∈ {0,1}. We
denote by Ai the i-th row of A for i ∈ I .
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Suppose that A ∈ MI, J is given. For j ∈ J◦ and i ∈ I , we define

ẽ j Ai =
{

Ai + Ei j − Ei j+1, if (ai j,ai j+1) = (0,1),

0, otherwise,
(6.3)

f̃ j Ai =
{

Ai − Ei j + Ei j+1, if (ai j,ai j+1) = (1,0),

0, otherwise.
(6.4)

Then we can regard Ai as an element of a regular gl{ j, j+1}-crystal with weight ai jε j + ai j+1ε j+1. So

we have ε j(Ai) = max{k | ẽk
j Ai �= 0} ∈ {0,1} and ϕ j(Ai) = max{k | f̃ k

j Ai �= 0} ∈ {0,1}. We say that A is
row j-admissible if there exist L, L′ ∈ I (L < L′) such that (1) ϕ j(Ai) �= 1 for all i < L, and (2) ε j(Ai) �= 1
for all i > L′ . Note that if I is finite, then A is row j-admissible for all j ∈ J◦ . Suppose that A is row
j-admissible. Then we can define x̃ j A (x = e, f ) by regarding A as · · · ⊗ Ai−1 ⊗ Ai ⊗ Ai+1 ⊗ · · · (by
abuse of notation) and applying tensor product rule of crystal or signature rule [13]. Note that when I
is infinite, A cannot be viewed as an element of a gl{ j, j+1}-crystal in general since the gl{ j, j+1}-weight
of A is not well defined in a natural way. But, x̃ j A is still well defined since A is row j-admissible
(see also [15, Section 3.1]).

Let ρ : MI, J → M− J ,I be a bijection given by ρ(A) = (a′
− j i) ∈ M− J ,I with a′

− j i = aij , where − J =
{− j | j ∈ J }. For i ∈ I◦ , we say that A is column i-admissible if ρ(A) is row i-admissible. If A is column
i-admissible, then we define

Ẽ i(A) = ρ−1(ẽiρ(A)
)
, F̃ i(A) = ρ−1( f̃ iρ(A)

)
. (6.5)

If A is both row j-admissible and column i-admissible for some i ∈ I◦ and j ∈ J◦ , then

x̃ j X̃i A = X̃i x̃ j A, (6.6)

where x = e, f and X = E, F [15, Lemma 3.2].
For convenience, let us say that A is row admissible (resp. column admissible) if A is row j-admissible

(resp. column i-admissible) for all j ∈ J◦ (resp. i ∈ I◦). Suppose that A is row admissible and column
i-admissible for some i ∈ I◦ . Then both A and X̃i A generate the same J◦-colored oriented graph with
respect to ẽ j and f̃ j for j ∈ J◦ whenever X̃i A �= 0 (X = E, F ) [15, Lemma 3.3]. A similar fact holds
when A is column admissible and row j-admissible for some j ∈ J ◦ .

If I and J are finite, then MI, J is a (glI ,gl J )-bicrystal, where the glI -weight (resp. gl J -weight)
of A = (aij) ∈ MI, J is given by

∑
i∈I (
∑

j∈ J ai j)εi (resp.
∑

j∈ J (
∑

i∈I ai j)ε j ). Note that MI, J is a regular

gl J -crystal (resp. glI -crystal) with respect to ẽ j , f̃ j for j ∈ J◦ (resp. Ẽ i , F̃ i for i ∈ I◦).

6.3. For n � 1, let En be the subset of M[n],Z consisting of matrices A = (aij) such that∑
i, j ai j < ∞. It is clear that A is row admissible for A ∈ En . If we define wt(A) =∑ j∈Z

(
∑

i∈[n] aij)ε j ,

then En is a regular gl∞-crystal with respect to ẽ j, f̃ j ( j ∈ Z) and wt. For r ∈ Z and λ ∈ P with
λ1 � n, let A∗

λ(r) = (aij) ∈ En (∗ = ◦,�) be such that for i ∈ [n] and j ∈ Z

a◦
i j = 1 ⇐⇒ 1 + r � j � λ′

n−i+1 + r,

a�
i j = 1 ⇐⇒ r − λ′

n−i+1 + 1 � j � r. (6.7)

Then C(A∗
λ(r)) � Bλ (∗ = ◦,�) (see (3.10) in [15]).

For n � 1, let Fn be the set of matrices A = (aij) in M[n],Z such that for each i ∈ [n], aij = 1 if
j � 0 and aij = 0 if j � 0. Note that A is row admissible for A ∈ Fn . If we define wt(A) = nΛ0 +∑

j>0(
∑

i∈[n] aij)ε j +∑ j�0(
∑

i∈[n](aij − 1))ε j , then Fn is a regular gl∞-crystal with respect to ẽ j, f̃ j

( j ∈ Z) and wt. For λ ∈ Z
n+ , let Aλ = (aij) ∈ Fn be such that for i ∈ [n] and j ∈ Z

aij = 1 ⇐⇒ j � λn−i+1. (6.8)

Then C(Aλ) � B(Λλ) (see (3.17) in [15]).
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On the other hand, for A = (aij) ∈ En or Fn , A is column admissible. Hence, Ẽ i , F̃ i (i ∈ [n]◦) are
well defined on A, and they commute with ẽ j , f̃ j ( j ∈ Z).

For A = (aij) ∈ En or Fn , we will identify its dual gl∞-crystal element A∨ ∈ (En)∨ or (Fn)∨ with
the matrix (a∨

i j ) ∈ M[n],Z where a∨
i j = 1 − an−i j , since A∨ and (a∨

i j ) generate the same Z-colored graph

with respect to ẽ j , f̃ j ( j ∈ Z).

6.4. Let m, n be non-negative integers with m � n. In the rest of this section, we fix μ ∈ Z
m+ and

ν ∈ Z
n+ . We assume that B(Λμ) = C(Aμ) ⊂ Fm , B(−Λν) = C((Aν)∨) ⊂ (Fn)∨ , and hence

B(Λμ) ⊗ B(−Λν) ⊂ Fm ⊗ (Fn)∨.

We also assume that Fm ⊗ (Fn)∨ is a subset of M[m+n],Z consisting of A such that A[m],Z ∈ Fm and
Am+[n],Z ∈ (Fn)∨ . Here AI ′, J ′ denotes the I ′ × J ′-submatrix of A ∈ MI, J for intervals I ′ ⊂ I , J ′ ⊂ J , and
m + [n] = {m + 1, . . . ,m + n}.

By [15, Proposition 4.5], Fm ⊗ (Fn)∨ is a disjoint union of extremal weight gl∞-crystals of level
m − n, and hence so is B(Λμ) ⊗ B(−Λν). We will describe the multiplicity of each extremal weight
crystal appearing in B(Λμ) ⊗ B(−Λν).

For r ∈ Z, we define B>r(μ,ν) to be the set of A = (aij) ∈ B(Λμ) ⊗ B(−Λν) ⊂ M[m+n],Z such that

aij =
{

1, for i ∈ [m] and j � r,
0, for i ∈ m + [n] and j � r.

We have

B>r(μ,ν) ⊂ B>r−1(μ,ν),

B(Λμ) ⊗ B(−Λν) =
⋃
r∈Z

B>r(μ,ν).

Choose r < min{μm, νn} so that μ−(rm) = (μi −r)1�i�m and ν−(rn) = (νi −r)1�i�n are partitions.
Note that

(1) B>r(μ,ν) �= ∅ since Aμ ⊗ (Aν)∨ ∈ B>r(μ,ν),
(2) Aμ (resp. (Aν)∨) is gl>r -equivalent to H>r

(μ−(rm))′ (resp. (H>r
(ν−(rn))′ )

∨),

(3) for A ∈ B>r(μ,ν), A[m],Z (resp. Am+[n],Z) is connected to Aμ (resp. (Aν)∨) under ẽ j , f̃ j for j ∈
[r + 1,∞).

Hence, as a gl>r -crystal,

B>r(μ,ν) � B>r
(μ−(rm))′ ⊗

(
B>r

(ν−(rn))′
)∨

. (6.9)

Now, let A ∈ B>r(μ,ν) be given and C>r(A) the connected component in B>r(μ,ν) including A
as a gl>r -crystal. By (6.9) and Corollary 4.6, we have

C>r(A) � B>r
σ ,τ

for some σ ,τ ∈ P with σ1 � m and τ1 � n. On the other hand, consider C(A) the connected compo-
nent in B(Λμ) ⊗ B(−Λν) including A as a gl∞-crystal. Then by Theorem 6.1

C(A) � Bζ,η ⊗ B(Λξ )

for some ζ,η ∈ P and ξ ∈ Z
m−n+ .

Lemma 6.2. Under the above hypothesis, we have

ζ = (σ ′
m−n+1, . . . , σ

′
m

)′
, η = τ , ξ = (σ ′

1, . . . , σ
′
m−n

)+ (rm−n).
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Proof. Let A be as above. Choose s � r so that

aij =
{

0, if i ∈ [m] and j > s,
1, if i ∈ m + [n] and j > s.

Considering the submatrix A[m+n],[r+1,s] as an element of a (gl[r+1,s],gl[m+n])-bicrystal, A is connected
to a unique matrix A′ = (a′

i j) ∈ Fm ⊗ (Fn)∨ satisfying⎧⎪⎨
⎪⎩

a′
i j = aij, for i ∈ [m + n] and j /∈ [r + 1, s],

a′
i−1 j = 0, if a′

i j = 0 for i �= 1 and j ∈ [r + 1, s],
a′

i j+1 = 0, if a′
i j = 0 for i ∈ [m + n] and j + 1 ∈ [r + 1, s].

Equivalently, A′ is a gl[r+1,s]-highest weight element and a gl[m+n]-lowest weight element. Note that

(1) Fm ⊗ (Fn)∨ ⊂ M[m+n],Z is column admissible,
(2) (x̃ j A)[m+n],[r+1,s] = x̃ j(A[m+n],[r+1,s]) for j ∈ [r + 1, s]◦ and x = e, f ,
(3) ( X̃i A)[m+n],[r+1,s] = X̃i(A[m+n],[r+1,s]) for i ∈ [m + n]◦ and X = E, F .

So, we have C(A′) � C(A) and C>r(A′) � C>r(A) by (6.6). By definition of A′ , we have

C>r(A′
[m],Z
)� B>r

α , C>r(A′
m+[n],Z

)� (B>r
β

)∨
,

where α = (αk)k�1 and β = (βk)k�1 ∈ P are given by αk =∑m
i=1 a′

i r+k for 1 � k � s − r and βk =∑n
i=1(1 − a′

m+i s−k+1) for 1 � k � s − r. Indeed, A′
[m+n],[r+1,∞) is gl>r -equivalent to H>r

α ⊗ E>r
β (s − r)

(see (4.2)), and hence C>r(A′) � B>r
α,β . This implies that (α,β) = (σ , τ ) since C>r(A′) � C>r(A) �

B>r
σ ,τ .

Let A′′ = (a′′
i j) ∈ M[m+n],Z be such that

A′′
[n],Z = A◦

ζ (r) ∈ En, A′′
n+[n],Z = (A�

η(s)
)∨ ∈ (En)∨, A′′

2n+[m−n],Z = Aξ ∈ Fm−n,

where ζ = (σ ′
m−n+1, . . . , σ

′
m)′ , η = τ and ξ = (σ ′

1, . . . , σ
′
m−n)+ (rm−n) (see (6.7) and (6.8)). We assume

that A′′ ∈ En ⊗ (En)∨ ⊗ Fm−n . By definition, C(A′′
[2n],Z) � Bζ,η , C(A′′

2n+[m−n],Z) � B(Λξ ) and hence
C(A′′) � Bζ,η ⊗ B(Λξ ).

For L � 0 � L′ , we have

A′′
[m+n],[L,L′] =

{
X ′ X(A′

[m+n],[L,L′]), if m > n,

X(A′
[m+n],[L,L′]), if m = n,

where

X = ( F̃ max
n · · · F̃ max

1

) · · · ( F̃ max
m+n−2 · · · F̃ max

m−1

)(
F̃ max

m+n−1 · · · F̃ max
m

)
,

X ′ = (Ẽmax
2n · · · Ẽmax

m+n−1

) · · · (Ẽmax
n+2 · · · Ẽmax

m+1

)(
Ẽmax

n+1 · · · Ẽmax
m

)
.

Here A′
[m+n],[L,L′] and A′′

[m+n],[L,L′] belong to a regular gl[m+n]-crystal M[m+n],[L,L′] with respect to Ẽ i ,

F̃ i (i ∈ [m + n]◦) and Ẽmax
i b = Ẽεi(b)

i b and F̃ max
i b = F̃ ϕi(b)

i b for b ∈ M[m+n],[L,L′] . Note that

(1) A′ is column admissible,
(2) ( X̃i A′)[m+n],[L,L′] = X̃i(A′

[m+n],[L,L′]) for i ∈ [m + n]◦ and X = E, F .

Then by (6.6) we have

x̃ j1 · · · x̃ jr A′ �= 0 ⇐⇒ x̃ j1 · · · x̃ jr A′′ �= 0
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for r � 1 and j1, . . . , jr ∈ [L, L′]◦ , where x = e, f for each jk . Since L and L′ are arbitrary and wt(A′) =
wt(A′′), A′ is gl∞-equivalent to A′′ . Therefore, we have

C(A) � C
(

A′)� C
(

A′′)� Bζ,η ⊗ B(Λξ ).

This completes the proof. �
For ζ,η ∈ P , ξ ∈ Z

m−n+ and r ∈ Z, let m(μ,ν)

(ζ,η,ξ)(r) be the number of connected components C in
B(Λμ) ⊗ B(−Λν) such that

(1) C ∩ B>r(μ,ν) �= ∅,
(2) C � Bζ,η ⊗ B(Λξ ).

Corollary 6.3. Under the above hypothesis,

(1) if ξm−n < r, then m(μ,ν)

(ζ,η,ξ)(r) = 0,
(2) if ξm−n � r, then

m(μ,ν)

(ζ,η,ξ)(r) = c((μ−(rm))′,(ν−(rn))′)
(σ ,η) ,

where σ = [(ξ − (rm−n)) ∪ ζ ′]′ .

Proof. It follows from (6.9), Lemma 6.2 and Corollary 4.6. �
The following lemma shows that m(μ,ν)

(ζ,η,ξ)(r) stabilizes as r goes to −∞.

Lemma 6.4. For ζ,η ∈ P and ξ ∈ Z
m−n+ , there exists r0 ∈ Z such that

m(μ,ν)

(ζ,η,ξ)(r) = m(μ,ν)

(ζ,η,ξ)(r0),

for r � r0 .

Proof. For r ∈ Z with r < min{μm, νn}, put

C
(μ,ν)

(ζ,η,ξ)(r) =
⊔

λ∈P

LR(μ−(rm))′
σλ × LR(ν−(rn))′

ηλ ,

where σ = [(ξ − (rm−n)) ∪ ζ ′]′ . Then

C
(μ,ν)

(ζ,η,ξ)(r − 1) =
⊔

δ∈P

LR(μ−(rm))′∪{(m)}
σ δ

× LR(ν−(rn))′∪{(n)}
η δ ,

where σ = [(ξ − (rm−n) + (1m−n)) ∪ ζ ′]′ .
By Corollary 6.3, we have∣∣C(μ,ν)

(ζ,η,ξ)(r)
∣∣= c((μ−(rm))′,(ν−(rn))′)

(σ ,η) = m(μ,ν)

(ζ,η,ξ)(r).

For a sufficiently small r, we define a map

θr : C(μ,ν)

(ζ,η,ξ)(r) → C
(μ,ν)

(ζ,η,ξ)(r − 1)

as follows:

Step 1. Suppose that S1 ∈ LR(μ−(rm))′
σλ is given. Put  = ξm−n − r.

Define T1 to be the tableau in LR(μ−(rm))′∪{(m)}
σ λ∪{(n)} , which is obtained from S1 as follows:
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(1) The entries of T1 in the i-th row (1 � i � ) are equal to those in S1.
(2) The entries of T1 in the ( + 1)-st row are given by

a1 + 1 � a2 + 1 � · · · � an + 1,

where a1 � a2 � · · · � an are the entries in the -th row in S1.
(3) Let S ′

1 (resp. T ′
1) be the subtableau of S1 (resp. T1) consisting of its i-th row for  < i (resp.

 + 1 < i). Then we define

T ′
1(p + 1,q) =

{
S ′

1(p,q), if S ′
1(p,q) � a1,

S ′
1(p,q) + 1, if S ′

1(p,q) > a1,

for (p,q) in the shape of S ′
1.

Since  � 0, we can check that T ′
1 is a well-defined Littlewood–Richardson tableau.

Step 2. Let S2 ∈ LR(ν−(rn))′
ηλ be given. Applying the same argument as in Step 1 (when m = n), we obtain

T2 ∈ LR(ν−(rn))′∪{(n)}
ηλ∪{(n)} .

Now we define

θr(S1, S2) = (T1, T2) ∈ C
(μ,ν)

(ζ,η,ξ)
(r − 1).

By construction, we observe that θr gives a bijection

LR(μ−(rm))′
σλ × LR(ν−(rn))′

ηλ → LR(μ−(rm))′∪{(m)}
σ λ∪{(n)} × LR(ν−(rn))′∪{(n)}

η λ∪{(n)}
for λ ∈ P . In particular, θr is one-to-one. On the other hand, if r is sufficiently small (or  � 0), then
we have (n) ⊂ δ for δ ∈ P with

LR(μ−(rm))′∪{(m)}
σδ

× LR(ν−(rn))′∪{(n)}
ηδ �= ∅,

that is, δ = λ ∪ {(n)} for some λ ∈ P , which implies that θr is onto. Therefore, θr is a bijection and
m(μ,ν)

(ζ,η,ξ)(r) stabilizes as r goes to −∞. �
Theorem 6.5. Suppose that m � n. For μ ∈ Z

m+ and ν ∈ Z
n+ , we have

B(Λμ) ⊗ B(−Λν) �
⊔

ζ,η∈P
ζ1,η1�n

( ⊔
ξ∈Z

m−n+

Bζ,η ⊗ B(Λξ )
⊕m(μ,ν)

(ζ,η,ξ)

)

with

m(μ,ν)

(ζ,η,ξ) =
∑
λ∈P

cμ+(km)
σλ cν+(kn)

η′ λ ,

where k is a sufficiently large integer and σ = (ξ + (km−n)) ∪ ζ ′ .

Proof. For ζ,η ∈ P and ξ ∈ Z
m−n+ , let m(μ,ν)

(ζ,η,ξ) be the number of connected components in B(Λμ) ⊗
B(−Λν) isomorphic to Bζ,η ⊗ B(Λξ ). Then by Lemma 6.4, we have

m(μ,ν)

(ζ,η,ξ)
= m(μ,ν)

(ζ,η,ξ)
(r)

for some r ∈ Z. By Corollary 6.3, we have
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m(μ,ν)

(ζ,η,ξ) =
∑
λ∈P

cμ+(km)
σλ cν+(kn)

η′λ ,

where k = −r and σ = (ξ + (km−n)) ∪ ζ ′ . �
The decomposition when m � n can be obtained by taking the dual crystal of the decomposition

in Theorem 6.5.

7. Combinatorial description of the level zero part of B(Ũq(gl∞))

7.1. For μ,ν ∈ Z
n+ (n � 1), let us describe the decomposition of B(Λμ) ⊗ B(−Λν) in a bijective

way. We assume that B(Λμ) = C(Aμ) ⊂ Fn and B(−Λν) = C((Aν)∨) ⊂ (Fn)∨ .
Suppose that A ∈ B(Λμ) and A′ ∈ B(−Λν) are given. Choose r ∈ Z such that A ⊗ A′ ∈ B>r(μ,ν).

Let S>r ⊗ T >r ∈ B>r
(μ−(rn))′ ⊗ (B>r

(ν−(rn))′ )
∨ correspond to A ⊗ A′ under (6.9). Note that the set of entries

in the i-th column of S>r (from the right) is { j | aij = 1, j > r}, and the set of entries in the i-th
column of T >r (from the right) is { j∨ | aij = 0, j > r}. Now we define

ψ∞
μ,ν

(
A ⊗ A′)= ψ>r

(μ−(rn))′,(ν−(rn))′
(

S>r ⊗ T >r), (7.1)

where ψ>r
(μ−(rn))′,(ν−(rn))′ denotes the isomorphism in Proposition 5.1 corresponding to gl>r -crystals.

Proposition 7.1. For μ,ν ∈ Z
n+ , the map

ψ∞
μ,ν : B(Λμ) ⊗ B(−Λν) →

⊔
α,β

B∨
α ⊗ Bβ

is an isomorphism of gl∞-crystals, where the union is over all skew Young diagrams α and β such that α =
(ν − (rn))′/λ and β = (μ − (rn))′/λ for some r � min{μn, νn} and λ ∈ P .

Proof. First, we will show that ψ∞
μ,ν(A ⊗ A′) does not depend on the choice of r. Keeping the above

notations, suppose that(
U>r, V >r)= ((∅, T >r)→ (S>r,∅)) ∈ B>r

σ ,τ ,

W >r = ((∅, T >r)→ (S>r,∅))R ∈ C
((μ−(rn))′,(ν−(rn))′)
(σ ,τ ) ,

for some σ ,τ ∈ P . By Proposition 4.7, there exist unique Ũ>r ∈ B>r
σ and Ṽ >r ∈ (B>r

τ )∨ such that
Ṽ >r ⊗ Ũ>r ≡ (U>r, V >r). Suppose that the bijection (4.4) maps W >r to(

W >r
1 , W >r

2

) ∈ LR(μ−(rn))′
σλ × LR(ν−(rn))′

τλ

for some λ ∈ P . Then by definition of ψ>r
(μ−(rn))′,(ν−(rn))′ , we have

ψ∞
μ,ν

(
A ⊗ A′)= Y ∨ ⊗ X ∈ B∨

(ν−(rn))′/λ ⊗ B(μ−(rn))′/λ,

where

j (X) = Ũ>r, j (X)R = W >r
1 ,

j (Y )∨ = Ṽ >r, j (Y )R = W >r
2 .

Now, suppose that

S>r−1 ⊗ T >r−1 ∈ B>r−1
(μ−(rn))′∪{(n)} ⊗ (B>r−1

(ν−(rn))′∪{(n)}
)∨

is gl>r−1-equivalent to A ⊗ A′ . Then
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S>r−1 = ( r · · · r︸ ︷︷ ︸
n

) ∗ S>r, T >r−1 = T >r ∗ ( r∨ · · · r∨︸ ︷︷ ︸
n

)
,

and

((∅, T >r−1)→ (S>r−1,∅))= ((∅, T >r)→ (S>r,∅))= (U>r, V >r).
Hence we have (U>r−1, V >r−1) = (U>r, V >r).

Suppose that W >r = W >r+ ∗ W >r− , where W >r+ (resp. W >r− ) is the subtableau of W >r consisting of
positive (resp. negative) entries. By definition of the insertion, it is straightforward to check that

(1) W >r−1− = W >r− ,
(2) W >r−1+ = (σ ′

n + 1 · · ·σ ′
1 + 1︸ ︷︷ ︸

n

) ∗ W >r+ [1],

where W >r+ [1] is the tableau obtained from W >r+ by increasing each entry by 1. Since ı(W >r−1+ ) =
W >r−1

1 , we have

W >r−1
1 = Σn ∗ W >r

1 [1],
where Σn is the horizontal strip of shape σ ∪ {(n)}/σ filled with 1, and W >r

1 [1] is the tableau
obtained from W >r

1 by increasing each entry by 1. Here, we assume that the shape of W >r
1 is

(μ − (rn))′ ∪ {(n)}/σ ∪ {(n)}. Now, we have

Ũ>r−1 ∗ W >r−1
1 = Ũ>r ∗ Σn ∗ W >r

1 [1]
� (1 · · · 1︸ ︷︷ ︸

n

) ∗ Ũ>r ∗ W >r
1 [1] (switching Ũ>r and Σn

)
� (1 · · · 1︸ ︷︷ ︸

n

) ∗ Hλ[1] ∗ X
(
switching Ũ>r and W >r

1 [1])
= Hλ∪{(n)} ∗ X .

This implies that X does not depend on r. Similarly, we have

W >r−1
2 = Σ ′

n ∗ W >r
2 [1],

where Σ ′
n is the horizontal strip of shape τ ∪ {(n)}/τ filled with 1, and

(
Ṽ >r−1)∨ ∗ W >r−1

2 = (Ṽ >r)∨ ∗ Σ ′
n ∗ W >r

2 [1]
� (1 · · · 1︸ ︷︷ ︸

n

) ∗ (Ṽ >r)∨ ∗ W >r
2 [1] (switching

(
Ṽ >r)∨ and Σ ′

n

)

� (1 · · · 1︸ ︷︷ ︸
n

) ∗ Hλ[1] ∗ Y
(
switching

(
Ṽ >r)∨ and W >r

2 [1])
= Hλ∪{(n)} ∗ Y .

This also implies that Y does not depend on r. Therefore, ψ∞
μ,ν is well defined.

Since ψ∞
μ,ν is a bijection and commutes with ẽk and f̃k (k ∈ Z) by construction, it is an isomor-

phism of gl∞-crystals. �
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Example 7.2. Let μ = (2,2,1) and ν = (3,2,1). Consider

A =
−3 −2 −1 0 1 2 3 4 5

1 · · · • • • • · • · · · · · ·
2 · · · • • • • • · • · · · · ·
3 · · · • • • • • • · · · · · ·

∈ B(Λμ) ⊂ F3,

A′ =
−3 −2 −1 0 1 2 3 4 5

1 · · · · · · · · · • · • · · ·
2 · · · · · · · • · · • • · · ·
3 · · · · · · · • · • • • · · ·

∈ B(−Λν) ⊂ (F3)∨,

where • and · denote 1 and 0 in a matrix, respectively. Then A ⊗ A′ ∈ B>0(μ,ν). Suppose that A
(resp. A′) is gl>0-equivalent to S>0 ∈ B>0

(3,2) (resp. T >0 ∈ (B>0
(3,2,1))

∨). Then S>0 = S and T >0 = T ,
where S and T are the tableaux in Example 4.5. Hence, by Example 5.2 we have

ψ∞
μ,ν

(
A ⊗ A′)= 4∨

1∨ •
2∨ • •

⊗ • • 1
• 1

.

7.2. Let us give an explicit description of B(∞) ⊗ TΛ ⊗ B(−∞) for Λ ∈ P0. For this, we define
an analogue of (5.2) for gl∞-crystals. Suppose that μ ∈ Z

n+ is given. For k ∈ Z, let μ ∪ {(k)} be the
generalized partition in Z

n+1+ given by rearranging μ1, . . . ,μn and k. For r � μn , we assume that the
columns in (μ− (rn))′ ∈ P are enumerated by 1,2, . . . from the left, and the rows are enumerated by
r + 1, r + 2, . . . from the top, or we identify (μ− (rn))′ with {(i, j) | r + 1 � i � μ j, 1 � j � n} ⊂ Z×Z.
For a skew Young diagram α = (μ − (rn))′/λ and S ∈ Bα , we also denote by S(i, j) the entry in S
located in the i-th row and the j-th column.

For k ∈ Z, we define κk : SSTZ(α) → SSTZ(κk(α)), where

κk(α) = ((μ ∪ {(k)
})− (rn+1))′/(λ + (1k−r))

and κk(S) = S ′ is given by S ′(i, j) = S(i, j) if i > k, and S(i, j − 1) if i � k. We put κ∨
k = ∨ ◦ κk ◦ ∨.

Here, if k < r, then we assume that α = (μ − (sn))′/λ ∪ {(nr−s)} for some s � k.
By applying the arguments in Proposition 5.4 to Proposition 7.1 with a little modification, we

obtain the following.

Proposition 7.3. For μ,ν ∈ Z
n+ and k ∈ Z, we have the following commutative diagram of gl∞-crystal mor-

phisms.

B(Λμ) ⊗ B(−Λν)
ι
Λk
Λμ,Λν

ψ∞
μ,ν

B(Λμ + Λk) ⊗ B(−Λk − Λν)

ψ∞
μ∪{(k)},ν∪{(k)}⊔

α,β B∨
α ⊗ Bβ

κ∨
k ⊗κk ⊔

γ ,δ B∨
γ ⊗ Bδ

Let M be the set of Z × Z matrices A = (aij) such that aij ∈ Z�0 and
∑

i, j∈Z
aij < ∞. As in Sec-

tion 5.2, we have a (gl∞,gl∞)-bicrystal structure on M with respect to ẽi, f̃ i and ẽt
j, f̃ t

j for i, j ∈ Z.
Now, we put

M̃ = M∨ × M,

M̃Λ = {(M∨, N
) ∈ M̃

∣∣wt
(
Nt)− wt

(
Mt)= Λ

}
(Λ ∈ P0). (7.2)
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Note that M̃ can be viewed as a tensor product of (gl∞,gl∞)-bicrystals and M̃Λ is a subcrystal of M̃
with respect to ẽi, f̃ i . By Proposition 7.3, we have the following combinatorial realization, which is
our second main result. The proof is almost the same as in Theorem 5.5.

Theorem 7.4. For Λ ∈ P0 , we have

M̃Λ � B(∞) ⊗ TΛ ⊗ B(−∞).

Let B(Ũq(gl∞))0 =⊔Λ∈P0
B(∞) ⊗ TΛ ⊗ B(−∞) be the level zero part of B(Ũq(gl∞)). Since M̃ =⊔

Λ∈P0
M̃Λ and M �⊔λ∈P Bλ × Bλ as a (gl∞,gl∞)-bicrystal, we obtain the following immediately.

Corollary 7.5. As a gl∞-crystal, we have

B
(
Ũq(gl∞)

)
0 � M̃.

Corollary 7.6. As a (gl∞,gl∞)-bicrystal, we have

B
(
Ũq(gl∞)

)
0 �

⊔
μ,ν∈P

Bμ,ν × Bμ,ν .

In [1], Beck and Nakajima proved a Kashiwara’s conjecture [12] on the Peter–Weyl type decom-
position of the level zero part of B(Ũq(g)) for an affine Kac–Moody algebra g of finite rank, where
the crystal structure induced from the involution ∗ on Ũq(g) gives a bicrystal structure on B(Ũq(g))

together with usual ẽi , f̃ i . The second crystal structure on B(Ũq(g)) is usually known as ∗-crystal
structure [10], say ẽ∗

i and f̃ ∗
i . Based on some computation, we give the following conjecture.

Conjecture 7.7. The crystal structure on B(Ũq(gl>0)) and B(Ũq(gl∞))0 with respect to ẽt
i and f̃ t

i is compatible

with the dual of the ∗-crystal structure with respect to ẽ∗
i and f̃ ∗

i . That is, ẽt
i = f̃ ∗

i and f̃ t
i = ẽ∗

i for all i.

Acknowledgments

The author would like to thank the referees for careful reading of the manuscript and many cor-
rections of it.

References

[1] J. Beck, H. Nakajima, Crystal bases and two-sided cells of quantum affine algebras, Duke Math. J. 123 (2004) 335–402.
[2] G. Benkart, F. Sottile, J. Stroomer, Tableau switching: algorithms and applications, J. Combin. Theory Ser. A 76 (1996) 11–43.
[3] V. Chari, A. Pressley, Weyl modules for classical and quantum affine algebras, Represent. Theory 5 (2001) 191–223.
[4] V.I. Danilov, G.A. Koshevoy, Bi-crystals and crystal (GL(V ),GL(W )) duality, RIMS preprint, 2004, No. 1458.
[5] W. Fulton, Young Tableaux, London Math. Soc. Stud. Texts, vol. 35, Cambridge University Press, Cambridge, 1997.
[6] A. Henriques, J. Kamnitzer, The octahedron recurrence and gln crystals, Adv. Math. 206 (2006) 211–249.
[7] V. Kac, Infinite-Dimensional Lie Algebras, third ed., Cambridge University Press, Cambridge, 1990.
[8] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991) 465–516.
[9] M. Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69 (1993) 455–485.

[10] M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994) 383–413.
[11] M. Kashiwara, On crystal bases, in: Representations of Groups, in: CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence,

RI, 1995, pp. 155–197.
[12] M. Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002) 117–175.
[13] M. Kashiwara, T. Nakashima, Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Algebra 165

(1994) 295–345.
[14] J.-H. Kwon, Differential operators and crystals of extremal weight modules, Adv. Math. 222 (2009) 1339–1369.
[15] J.-H. Kwon, Crystal duality and Littlewood–Richardson rule of extremal weight crystals, preprint, arXiv:0909.1126v2

[math.QA], 2009; J. Algebra, in press.
[16] B. Leclerc, J.-Y. Thibon, E. Vasserot, Zelevinsky’s involution at roots of unity, J. Reine Angew. Math. 513 (1999) 33–51.



2156 J.-H. Kwon / Journal of Combinatorial Theory, Series A 118 (2011) 2131–2156
[17] G. Lusztig, Canonical bases in tensor products, Proc. Natl. Acad. Sci. USA 89 (1992) 8177–8179.
[18] I.G. Macdonald, Symmetric Functions and Hall Polynomials, second ed., Oxford University Press, 1995.
[19] H. Nakajima, Extremal weight modules of quantum affine algebras, in: Representation Theory of Algebraic Groups and

Quantum Groups, in: Adv. Stud. Pure Math., vol. 40, Math. Soc. Japan, Tokyo, 2004, pp. 343–369.
[20] T. Nakashima, Crystal base and a generalization of the Littlewood–Richardson rule for the classical Lie algebras, Comm.

Math. Phys. 154 (1993) 215–243.
[21] T. Nakashima, Crystallized structure for level 0 part of modified quantum affine algebra Ũq(ŝl2), Compos. Math. 108 (1997)
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