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Let C: belong to one of the three fan&es of complex classical lmear groups 
or to one of the seven fan-&es of correspondmg real forms Let L denote its Lx 
algebra. We give a sample and effective method for f?ndmg all conjugacy classes of 
G and all orbrts of G m L. We also descrtbe the sphttmg of classes and orbits 
when G IS replaced by a normal subgroup. We discuss the situation for other 
fields. 

INTRODUCTION 

Let G be a complex or real lmear Lie group. Let L denote rts linear Lie algebra 
so that G acts naturally on L by conjugation. When G is simple there arise two 
important and closely connected problems: (I) describe all conjugacy classes in G, 
and (ii) describe all orbits in L under the action of 6. In thus article we give a 
complete solution to these problems when G belongs to any of the nonexceptronal 
series of simple groups. A descrrptron of the groups G IS given in Section 1. 

There has been extensive previous work on the above problems and on related 
varrations. For those groups leaving invariant a bilmear or Hermitian form this 
work begms wrth Weierstrass [l], Kronecker [2], and Frobenius [3], then during 
the first half of this century continues with a series of papers by Wrlliamson [4] 
as well as work by many others (see [5] for references). More recently we partic- 
ularly note the results of Zassenhaus [6], Wall [7], Clkunov [S], Springer and 
Steinberg [9], and Milnor [lo]. 

With the exception of Wall the above authors always deal with classical hnear 
groups over a commutative field (usually arbitrary and of odd or zero charac- 
teristic). Thus they do not include those families of real Lie groups which may 
he described as classical groups over a quaternionic vector space. Wall allows 
noncommutative fields, but there are still certain difficulties m using his methods 
when the field is noncommutative. 

* The authors wish to thank the U. S. Army Research OEce for support through 
Grant DA-ARO-G168. 
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Our approach differs from the prevrous work in several respects. We always 
work over a complex vector space and consider the real Lre groups as fixed point 
sets of a certain involutary automorphrsm of then corespondmg complex group. 
This allows us to give a unified and srmultaneous treatment for all the cases. 
In particular, the quaternionic groups are handled as easrly as the real groups. 
We make constant use of the umque decompositron of any linear mappmg mto 
a sum of commutmg semrsrmple and mlpotent parts. By thus techmque we can 
quickly reduce questions about conjugacy to the corresponding question for the 
semisimple part, a useful srmplificatron. In (2.1) and (2.2) we mtroduce the idea 
of a “type” and an “mdecomposable type.” For example, if G N GL(n, C), an 
mdecomposable type is just an abstraction for the usual Jordan matrrx with some 
5 E C on its diagonal and l’s on its superdragonal. Although elementary, we find 
that this concept of “types” results m a concrse and convenient language for 
stating results and proofs 

The main results are contained m the four proposmons m (2.4) and the 
theorem m (2 2) In (2 7) we use these results to solve problem (11) above. In 
Section 3 we give the mmor modificatrons necessary to solve problem (i). In (2 8) 
we give examples which hopefully demonstrate the ease with which our results 
may be used. Our methods also provide an effective algorithm for finding m 
which orbit (or class) a given element ofL (or G) lies. This could be interpreted as 
a generalization of the Jordan-normal form for GL(n, C), although there is little 
point m wrrtmg down “normal-form” matrices in general. In Section 4 we 
describe the sphtting of orbits or classes when G is replaced by a normal 
subgroup. 

Our results in (2.1)-(2.6) hold f or classical groups over more general 
(commutative) fields. In Section 5 we briefly frscuss this. Our aim IS 
merely to show that problems (1) and (ii) can be reduced to a purely field theoreti- 
cal question. Since thus case is fully discussed in, for example, [8,9] and especially 
[lo] we omit proofs. 

Appendix 1 collects some information on mvolutary automorphisms Appendrx 
2 contains some elementary and repetrtrve calcuIations connected with Table II 
m (2 7). Our arguments mvolve only simple linear algebra and we only need to 
quote one result, Sylvester’s theorem on the signature (see for example, [l 11). 

I. NOTATION 

(1 .l) The Complex Classical Groups. Let V be a complex vector space of 
finite drmensron. Let GL( V) denote the general linear group on V. 

Let 7 be a nondegenerate symmetric or alternating bilinear form on V. For 
g E GL(V) define + by T~(u, V) = T(gu, gv) for u, e, E V. The isometry group of 
7 IS {g E GL(V)I 7.9 = T} and is denoted by 0( V, T) or Sp( Y, T) depending on 
whether 7 is symmetric or alternating 
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(1.2) The Red Foms. Let G denote one of the groups m (3.1). All of its 
real forms may be described as subgroups GQ = (g F G /g” = g], where D 
1s an automorphism of order 2 of G and is either (i) an anti-linear map of 5’ onto 
V such that d = c+ga or frif an ant&near map of V onto V* such that g” = 
u-xg$lcr, lf G = GL(V). H ere V* denotes the dual space of 5’ and g, E GL(T’*) 
is defined by g+++(cLI) = Z+&ZJ) for u* E V*, w E 5; Antilinear means 
ff(cm + f&f) = &JU -+ fim for a, p E C 

For a grven G we say that al and a2 are equivalent if for some k E 6: both oI 
and k-lo& (K,v,K m case (ii)) induce the same automorphrsm of G. If or and cz 
are equivalent then Go, iz( G, . 

Replacing (r by an equivaleit choice we may suppose m case (I) that & = &I 
and r(au, CSJ) = T(IC, 8) and m case (n) that US(S) = +g). In this fatter case we 
put T*(U, V) = (328(V) and from now on wilI use the Hermitran form T* instead of 
the corresponding o. 

Usmg the ~r~-~~h~dt algorithm the equivalence classes for CT and 7* 

are easily described. The calculations are well known so we only sketch them m 
Appendix 1. We summarize the results in Table I Column I gives the complex 

TABLE I 

group G. Column 2 gives our notation for the possible G, . The class represen- 
tatives o+ , a- ,. are described in Appendix 1. The subscript -&- indicates the 
sign of us m case (1). The superscript p in $‘, o(_), a(?)) is the index of certain 
complex-, real-, quaternion-valued forms which are defined m Appendix 1 
and are naturally associated with G, In particular G, is compact for the cases 
where p = 0. In column 3 we give the notation of Nelgason 112, Chap. IX] 
for the corresponding matrix groups. We let n = dim I’ and note that for 
G = Sp{V, 7), n is always even. 

Thus, besides the three complex families, there are seven families of real 
forms. Among the latter the three families of case (i) with o2 = $1 may be 
described as real linear groups on V,+ (see Appendix 1) while the three families 
with u2 = -1 may be described as quatemionic linear groups on I&--. 

In those famihes where the index p occurs, rf the particular value of p is not 
relevant, we often omit it and just write GL(V, T*), Q(V> 7, c+), etc. 
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(1.3) The Lie Algebra. For GL(V) its Lie algebra, as represented on V, is 
End( 5’). For 0( V; T > or Sp( Y, T) the correspondmg Lte algebra is @I f End(V) j 
T(Au, v> + T(U, Av) = 0, all zc, er E Y). For the unitary groups GL(V, T*) is 
obtained by replacing 7 by r* above. For the real forms ,in case (1) there is the 
additional condrtion oA = Ao. 

(1.4) Notatio~z and Conventions. In Sectrons 2 and 3 we find it convenient to 
Introduce a generic symbol G( V, C, 7) to denote any one of the groups from the 
10 far&es defined in (1.1) or (I 2). Th us either cr or 7 or both may not actually 
occur m the defimtion of the group Furthermore T may also denote 7* , as 
defined in (1 2), and m thus case o 1s absent. We let L( V, o, T) denote the Lie 
algebra of G( V, o, T). 

In Sections 2 and 3 statements are formulated wrth the’assumptron that both CT 
and 7 occur in the definmon of the group G(V, o, T). To adapt the defimtions 
and proofs to the other cases lt IS only necessary omit any irrelevant statements 

If W C V IS a subspace let WL = {V E V / ~(‘u, w) = 0 all w E IV). We often 
allow a symbol, such as (J, 7, ,. to denote both an object defined on V and also, by 
restrrctron, the corresponding object defined on W. If u, o m* E Y let (u, V, .) 
denote them span. 

2. MAIN RESULTS 

(2 1) Types. Using the notatron of (1.4) let A E L( V, u, 7). We require a 
notion of eqmvalence among pans of the form (A, V). Let A’ EL( V’, u’, 7’) then 
we write (A, V) c-’ (A’, Y’) rf there exists an rsomorphism 4 of V onto V’ such 
that #A = A’$, ~$0 = cr’# and T = ~‘4, i.e., T(U, V) = T’(&, $v) Note that + 
defines an rsomorphism G( V, o, T) rzi G( V’, cr’, 7’). 

It is clear that - defines an equivalence relation. An eqmvalence class for N 
is called a type. If d denotes a type and (A, V) E d put dim d = dim V. 

The motivation for mtroducmg types comes from the following result, the 
proof of which IS a consequence of the definitions. 

PROPOSITION 1 Let A, I3 E L( V, u, 7) then there exists a g E G( V, u, T), such 
that g-lAg = B, if and only if (A, V) and (B, V) belong to the same type. 

(2 2) Indecomposable Types. Let A EL( V, u, T) and Iet d denote the type 
containmg (A, V). Suppose Y == I&‘, + IV, is a sum of proper, disjoint, A- 
invariant, a-invarrant, and orthogonal subspaces. Since the restriction of r to 
each W, is nondegenerate the groups G(W, , CT, T} are well defined and so, by 
restrrction, A EL;(W, , (T, T). Let d, denote the type containmg (A, W,) for 
z = 1,2.Thenwewrited =dl+,cJ,. 

The type A IS called andecomposable if rt cannot be written as the sum of two or 
more types. For any type il we can write d = d, + . * + A, , where all A, are 
indecomposable. We have 
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THEOREM. The decompositaon A = A, + * -j- A, into indecomposable types 
fs unzque. 

The proof IS in (2.4) but depends on results whose proofs are m (2.6). As a 
corollary to this theorem note that if A, + A, = A, i A, then A, = A, . 

(2 3) Semtimple Types. Let A E L( V, 0, T) then we can, in a umque way, 
write A = S + N, where S, NE L( V, q, T), S IS semisrmple, N is mlpotent 
and SN = NS. 

Suppose m is a nonnegative integer such that N” # 0 and Nfl+r = 0. We call 
m the height of the pair (A, V). Let (A, V) belong to the type A. Clearly m is an 
invanant of A which we call its height and denote by ht A. 

Let K = Ker Nm then K 1 NV. If K = NV we say that the pan (A, V) 1s 
unaform. Smce equivalent pairs are either both umform or not we may speak of 
uniform types. 

If ht A = 0 we say that A IS a semzsimple type Note that a semrslmple type 1s 
uniform 

Let A be umform and m = ht A, If (A, V) E A put @ = V/NV and for 21 E V 
put@=u+NV.Define&~,~on~by~~===~,~~=Zi?,andb(i&~)= 
~(u, N%) Since 7 is nondegenerate on V and (A, V) 1s umform hence ? IS non- 
degenerate on v. Thus G( 7, 5,~) is well defined. Let d denote the type con- -- 
taining (A, V). d 1s semrsimple and 1s uniquely determined by A. 

Note that A IS semrsimple d and only if L3 = d. Observe that the bar notation 
used above has no connectron with complex conjugatron in C. 

(2.4) Proof of the Theorem. In (2.6) we prove the followmg four results. A 
denotes a type. 

PROPOSITION 2. If A is unzform rt is uniquely determined by ht A and 3. 

PROPOSITION 3. If A is ilzdecomposable then A zs uniform and d is wde- 
composable. 

PROPOSITION 4. If A is not uniform there exist unique types A, and A,, such that 
A = A, + A, with A, unniform, ht A, = ht A and ht A, < ht A. 

PROPOSITION 5. If A is semasimple then ats decomposition &to indecompos&e 
types is unique. 

Proof of the Theorem of (2 2). Let A denote any type. By Proposttron 4 we 
can wnte m a unique way 

A = A(m) +QW’ + e. + A(k) + 

where m > m’ > . > k > and each A(k) 1s a uniform type of height k 
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Let d(“) = d, -/- _ + A, , where all A, are indecomposable Using Proposi- 
tion 3, do = ‘;jl + + zfl and each z8 is indecomposable. By Propositron 5 
tlus decomposrtron of d(“, 1s umque. Hence, by Proposition 2 the decompositron 
of A(“) is umque Q.E.D. 

(2.5) Some Preliminary Lemmas The folfowmg results are needed m (2.6). 
They do not mvolve 7 Let A, 5, N be elements of L( V, o, 7) and, as m (2.3), 
1etA = S+N. 

hMMA 1. ~~~0s~ (s, Y) ss a pa& where S zs se~s~rnp~e. Let u be away pY#per 

subspace of V whzch zs S-invariant and u-invariant. Then there exists a complement 
to U in V which as also S-invariant and a-invaTzant. 

Proof. Since S is semisrmple we may choose IV to be an S-mvariant comple- 
ment to U m V. If 0W = Wwe are done. If 6.7W # Wwe can write, for all w E W 

aw = UlW + a,w, 

where u I , as are ant&near maps of W mto Wand of W mto U, respectively. 
Suppose a2 = ~1, where E = &I then or2 = ~1 and asa, + au2 = 0 Let W 

be the image of W under the isomorphism 

w --+ w’ = (1 - (I/26) (TcTs)w, w E w. 

Then aw’ = (oxw)’ and so w’ is a-mvariant. W’ IS S-mvariant and is a com- 
plement to U m V, Q.E.D. 

LEMMA 2. Suppose (A, V) is a uniform pair of heaght m. Then there exzsts an 
S-i~v~~~t aad a-invariant subspace H szlch that V = H + NH f ** + N”.@ zs 
a sum of rn~t~al~y disjbint subspaces ~uytheyrnoye drm hT"H = drm N fbr 
Q,(i<m 

Proof. NV is S-mvarxant and a-mvariant so by Lemma 1 we may find an 
S-invariant and a-mvarrant subspace U which is a complement to NV in V. 
Hence, since height = m, we have V = H + NH + -se + N”H 

If NzH n NJH + 0 for some i < j then for some nonzero h1 , h, E H we have 
N”(lb, + Nj-%,) =; 0. Hence h, + NJ-Zh, E Ker NW and since (A, V) is uniform 
and j - i > 0 therefore hl E Ker N”. So h, = 0, a contradictron. Q E.D. 

LEMMA 3. Let (A, V) be a pair of he@ht m. Let lJ be a pro$w A&variant and 
a-invarzant subspace of V. Suppose (A, U) is uniform and U ,$ Ker Nm. Then there 
exists a complement to U in V which is A-invarzant and a-invariant. 

Proof. Use mduction on m. If m = 0 then, by Lemma 1 we are done. So 
suppose m 3 1. Put K = Kex N”. 
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By Lemma 2 there exists a subspace H of U wh.rch 1s S-mvarrant and CT- 
mvarlant and a complement to K n U m U and, using U $ K, such that U = 
H-j-NHi + NmH Note that U n I< = NU and also that (A, NU) IS 
uniform. 

First suppose U + k’ = V. Since the height of the pan (A, K) 1s m - 1 and 
since U n K 9 Ker N+* we may, by induction, find a subspace 2 which is 
A-mvanant, a-Invariant, and a complement to U n K m K. Hence Z is also a 
complement to U in K and we are done. 

Now suppose U + K # V. By Lemma 1 we may choose a subspace F whrch 
1s S-mvanant, a-invariant and a complement to U -/- K m V. Put W = F + 

NFS - NnlF and observe that W 1s A-invariant, o-invariant and (A, W) is 
umform of height m. If U n W # 0 then for some nonzero h E H we have 
N”h -+ u E W, where u E N@U and i < m Hence N”h E W and since h f 0 
there exists a nonzerof E F such that NTn(h - f) = 0. This imphes f E U + K, a 
contradmtion, and hence U n W = 0. Put U, = U + W If U, = V we are done. 
If U, f V then since 77, + K = V we are done by the result of the previaus 
paragraph Q E. 

(2.6) Proofs of the Propositions. We use the notation of (2 l)-(2.3). In partic- 
ular, If (A, V) G A then A = S + Nis as m (2.3), and m = ht A 

Proof of Proposztion 2. Smce A is uniform, by Lemma 2, we may choose a 
complement E to NV such that E is S-mvanant and o-mvanant Then V = 
E+NE-J-. + NmE 1s a sum of disjoint subspaces 

For 0 < j < m define the bilinear forms TV on E by T~(z.J, r~) = T(U, NJu) for 
u, v E E. Let +, denote the linear map from E to E* corresponding to T] , i.e., 
+p(v) = T~(u, v). Since NV = Ker N” T,~ is nondegenerate on E and hence 
i, is an isomorphism of E onto E* 

Suppose for some 0 < k < m - 1 that Fix # 0 while, d k f m - 1, +XI-a = 0 
for i=l,. , m - k - 1. Then let E’ denote the image of E under the iso- 
morphism e + e’ = (1 - N+“p)e for e E E, where p E End(E) is defined by 

p = (-y-“/2 +;I& . 

Since S,?, = -+,S we see that E’ is S-invariant Define CT* as an antrlmear 
map of Vx onto Itself by a++(v) = U*(UZJ). The condition TV = 5 becomes 
cr*+,~ = 6, and hence E’ is u-invariant E’ is a complement to NV in V. The 
forms rj canbedefinedonV.Since~,C,,~OonEfori=1,..,m-k-lthe 
same result holds on E’. 

On E* the transpose of p 1s p.+ = Q +fk+;‘. Hence +% = p*+, + (-l)“-“imp 
on E This IS equivalent to rk = 0 on E’. Hence, by repeating this procedure, at 
most m times, we wrll obtain a subspace F which is S-invarrant, a-mvariant, 
a complement to NV in V and such that 7, = 0 on F for j = 0,. m - 1. 
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We may suppose that S E L(F, u, T~J and hence have the pair (S, F). There 1s 
a natural lsomorphism of F onto r = V/NV given by f -+ f + NV It defines the -- 
equivalence (S, F) N (A, V) and hence (5, F) E a. 

Now suppose A’ 1s another umform type and ht A’ = ht d and 6’ = d Let 
(A’, V’) Ed’ and let S’, N’, F’,... be analogs of S, N, F,.. . Hence (S’, 5”) ~2. 
Let 4 denote an lsomorphlsm of F onto F’ which gives the equivalence (S, F) - 
(s’, F’). Extend + to V by putting $(Nv) = N’+v for z, E V. Smce ht A’ = ht d 
atid sfnce Lemma 2 applies to both V and V’ we see that 4 1s an isomorphism of 
V onto V’ Clearly A’$ = $A and a’$ = $0 If v, , vz E V we may write, m a 
umque way, vz=Cr=“=, N’f%,,, where ft., E F. Thus Cv,=J$,. iVp+ft,, . Now by the 
property of F we have 7(v1, VJ =CT+r,=m (- 1)’ T,,(fi,T, fi,,,) and smce 7, =~z 
on F we see that 7 = ~‘4 on V Hence (A, V) - (A’, Y’) and so d = A’. Q.E.D 

Proof of Proposztzon 3. Proposltlon 2 Implies that d 1s uniform. If d is 
decomposable suppose that d = d,’ + A,’ and let A, and d, denote the umque 
uniform types of height equal to ht d satisfying $ = 8,’ for z = 1,2. 

Let (A, V) EA and let F denote the subspace constructed m the proof of -- 
Proposltlon 2. Since (S, F) N (A, V) we may suppose that F = Fl + F, is a 
decomposltlon correspondmg to d = A,’ + A,‘. For z = 1, 2 put W, = 
Fz + NFt + + NmF, , where m = ht A. Then W, + W, = V and by the 
properties of F we see that W, is A-invariant, a-invariant, and orthogonal. 
Arguing as m the last paragraph of the proof of Lemma 3 we get WI r~ W, = 0. 
Hence A = A, + A, , a contradictlon. Q E D. 

Proof of Proposztzon 4. Let K = Ker Nm, where m = ht A. By Lemma 1 we 
can choose an S-Invariant and a-invanant subspace E which is a complement to 
KmV.PutY=E+NE+ + N”E Then Y is umform and Y $ K. 

If 7 1s not involved in the definition of G( V, (T, T) then by Lemma 3 we can 
find an A-invariant, a-invariant subspace Z which is a complement to Y m V. 
If A, denotes the type of (A, Y) and A, that of (A, 2) then d = A, + A, and 
ht A, = ht A. Smce 2 2 K we have ht A,, < ht A. 

If 7 1s involved m G( V, 0, T) we first show that 7 is nondegenerate on Y. 
Suppose that 7(x, y) = 0 for some x E Y and all y E Y. If x # 0 write x = 
NZe + X, for some nonzero e E E and some X, E NzflY. Thus T(e, N”f) = 0 
forallf~E.Nowanyv~Vcanbewr~tten~=f+kforsomef~E~k~K. 
Thus T(e, N”v) = 0 all v E V. Since T(e, N”o) = (-1)” T(Nme, v) and T IS 
nondegenerate on V we have e E E n K = 0, a contradiction. Thus 7 1s non- 
degenerate on Y. Let A, denote the type of (A, Y) A, is uniform and ht A, = 
ht A. Put 2 = y-L and let A,, denote the type of (A, 2). Thus A = A, + A,. 
If z E 2 then arguing as above ~(2, Nmv) = 0 for all v E V and so Nmz = 0. 
ThusZCKandsohtd, < htd. 

By repeating this procedure for A, we obtain a decomposltlon A = 
4 + 4 + * where each d, is umform and ht A, > ht A, > . Suppose 
A = d,’ + d,’ + ... 1s another such decomposltlon. 
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We first show that 4; = 4, Suppose Y I- Yi’ + 2’ with (A, Y’) E 4,’ and 
2’ L .K. Then P’ = Y’jNY-l IS rsomorphic to V/K and hence to 7 = Y/NY. -- 
This yrelds (3, 7’) N (A, Y). By Propositron 2 we get (A, Y’) - (A, Y) and so 
A; = 4, * 

By ~ndu~t~o~ we may suppose 4,’ = 4, for z = 1, 2, . , $ - 1 To complete 
the proof we must show that 4, = A, * Suppose V = I&+ u = T/fi’+ U’, 
where (A, W) - (A, IV’) E 4, I- + d,-, and (13, U) E 4, + * whrfe 
(A, U’)Ed,, -+ * Let m, = ht 4, = ht A,’ and put T’, = V/Ker N’Q We use 
W, , U, , etc ~ to denote the Images m f Ts of IV, U, etc. Define the nonsmgular 
form ~~ on V, by ~,(e, ,fJ = ~(e, Nmsf) for e, f E V. Smce 4 ;, A, are uniform, by 
Proposrtion 2, rt suffices to prove that (A, , 77:) N (A, F U&where A, denotes 
the action of A induced on V,). If a’ E U’ we have the umque decompasition 
u’ = eu + u, where w E W and u E U. Hence in Vs we have us’ = w, -!- zc, I 
Define #usr = u, ; we now show that # grves the required equrvalence. 

Suppose U,’ n IV, f 0 Then, since ht 4,-r > m, we can find a nonzero 
e, E IV9 such that N6e, E U,‘. Now e, = ws’ + uqf for some w,’ E IV,‘, us’ E U,’ 
and, smce Nsu,’ = 0, we have N8e, E W,‘. Smce Ws’ n U,’ = 0 this is a con- 
tradrction. Hence U,’ (7 TVs = 0 and so $1~ an isomorphrsm of U,’ onto Us . 

Clearly $A? = A,$ and Z&J = U#I so it only remams to show that 

Smce W, and r;T, are orthogonal we need only show that. ~~((1 - Z/J) .u:> 
(1 - t/f} vs’) = 0 Now (I - 7jG) u,f G W, IT Ker hi, and so (1 - 16) uFr = 
Nse, for some e, E Ws . Combinmg this with NJ 1 - #) zti = (1 - $) N,cvi = 61 
we have the required result The proof is complete. Q.E.D. 

Proof of ~~0~~~~~~ 5. We need some notation. If (S, V) E A, where S rs 
semisimple, let eig 4 denote the set of eigenvalues of S on V with m~t~pl~cities 
counted. If 7 1s involved m G(V, u, T) we mtrqduce m Appendix 2 certain 
bilinear forms 0 on ‘V,*. Let sig 4 denote the signature of 0 

We need two results from Appendrx 2. 

(i) If 4, 1s a semrsimple and indecomposable type then it IS umquely 
determmed by eig 4, and, If relevant, sig 4, . 

(ii) If dd and 4, are distinct semisimple indecomposable types then either 
eigA,neigA, =(borergd, = ergd,andsrgd, + sig4, 

Now suppose we have some decomposrtion of d into a sum of semrsimple 
indecomposable types then put 4 = 4(r) + + + 4ct), where in each 4(Q all 
indecomposable components have the same etgenvalue set while rf i # j 
eig A(@ f2 eig 413) = #. Smce eig d = esg A(1j U U erg A@) each set eig4@, 
is umque, hence rf V = WI -+- + tjr/ 1s a decomposrtion corresponding to 
4 L- A’l’ + + Aft) the subspaces W,, are unique Thus, rf relevant, each 
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slg dc2) 1s uniquely determined by d. By (I), (u), and Sylvester’s theorem the 
mdecomposable components of each d(t) are unique. Q.E.D. 

(2 7) CZassificatzon of Types. We must first descrrbe all the indecomposable 
types Suppose d is mdecomposable and (A, V) E d, where A E L(V, o, r). 
Let G, = G( V, cr, T) be the correspondmg group G, 1s determined up to 
isomorphrsm by d. 

By Proposrtion 2, d is uniquely determined by ht d = m and by the structure 
of 2. By Propositron 3 the semrsrmple type d 1s indecomposable. Note that rf 
T(U, U) = XT(V, u), where X = h-1 then the 7 corresponding to d satisfies 
qir, q = X(-l)“?(v; n). 

The descrrptron of all semisimple indecomposable types is an easy calculation. 
We do this m Appendix 2 and summarize the results there in Table A. This 
table gives our notation for the possible d Note that [ E c (and % is its complex 
conlugate) and E = i-1. We can now write down all mdecomposable types d. 
This is done in Table II below. Column 1 lists the ten possible families for GA . 
Column 2 gives our notation for the mdecomposable types: The subscript m 
gives the height while the other symbols describe the structure of d and cor- 
respond to the notation of Table A m Appendix 2 If d = O,(c,.. ) then dim d = 
(m + 1) drm d and dim d =number of ergenvalues <,.. of 2 on v. Our use of 
the same notation for types belonging to different families of groups should not 
cause trouble. The meaning of, A,([, -[), f or example, should always be clear 
from context. 

In the last column of Table II we grve an integer s E (0, -&l, 12) which we 
now define Suppose Gd belongs to one of the families GL( V, T*), 0( V, Q-, u+) or 
Sp(V, 7, D-). Let 7 * , T+ , T- (see (I 2) and Appendix 1) be the related bilinear 
forms and let (n + , K) describe the signature of this form, where nk are non- 
negative integers grvmg the umque number of &l’s in this signature. We do not 
necessarily have n- < n, . Put s = n, - n- . It is a simple exercise, usmg the 
construction in the proof of Proposition 2, to find (n+ , a-) and hence s for each d. 

It is convenient to define ind A = n- , provided G, belongs to one of the 
three families mentioned above. With a slight abuse of notation we call ind A 
the index of d. Thus definition does not require d to be indecomposable. Since 
dim A = (n, + n-) for the families GL(V, T*) and O(V, 7, a+) and dim A = 
2(n+ + n-) for Sp(V, 7, u-) the index of A 1s easily found from s and dim A. 

For convenience, we put 6 = (-l)nz12, (for m even). 
Now let G = G(V, o, T) be fixed and let A EL( V, o, T) and (A, V) E A. In 

general d 1s not indecomposable so to describe it we must give its indecomposable 
components. First observe that if Lil = d, + d, and V = IV, + IV, is the 
corresponding decomposition of V then the groups G( W, , (T, T) for i = 1, 2 
below to the same family as G. 

Let d, and A, denote any types belonging to the same family, i.e., GA1 and Gde 
are in the same family. Suppose (A, , W,) E A, then construct W = W, @ W, 
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TABLE II 

WV) 

G-W’, 4 

GL(V, CL) 

GUV, ~a) 

ow, Q-1 

@VP 7, o+) 

ocv, 7, CL) 

SP( v, 7) 

SPh 7, 4 

aw’, 734 

5+ -% 
(cz -[ m even 

m odd 

5zo 
m even 

m odd 

5 f zttl: 

5=%#0 

5= -I#0 meven 
m odd 

m even 

m odd 

5z -% 
5= -%#O 

m even 

m odd 

5+0 

m even 

m odd 

5+ xt% 
C=%&O 
6=-5#0 

m even 

m odd 

5+ -% 

5 = -% # 0 

I 

meven 
m odd 

m even 

m odd 

0 

6 
0 

0 

0 

26 
0 

6 

0 

and define A, u, T as the obvious direct sum actions of A,, LT? , v-~ . Then (A, W) 
is well defined and its type d 1s uniquely determmed by A, and A, . Clearly 
A = A, + A, and dlmd = dim A, + dim d, If relevant, we also have 
indd =indd,+indA,. 

48~14-412-3 
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Nowdd = d, + - + n s IS the decomposition of d mto its indecomposable 
components we have 

and if relevant 

drmd = drm.4, + * + dim.4, 

mdn =md81+**+md4,. 

Conversely suppose d, ,..., A, are mdecomposable types belongmg to the same 
family and satisfying the above restrrctrons on dimension and index. Then, using 
the construction in the previous paragraph, d, + * + d, 1s a well-defined type 
whrch will contain a pan (A, V) for some A E L( V, o, 7). 

As a consequence of Proposition 1 in (2.1) we thus have a complete description 
of all orbits of G on its Lie algebra. 

(2.8) EXAMPLES. Note that if G belongs to one of the three famihes for which 
the index of a type is defined and If (A, V) E .4, where G = G(V, o, T) and 
A EL( V, Q, r> then md LI 1s the integer p given m Table I and described m 
Appendix 1. 

As a first example suppose G IS compact, i.e., G is one of GL( 7, r$‘}, 0( V, 
7, c$‘), Or sp(v, , - )- 7 cr(“) Thus for any type d correspondmg to G we have 
md B = 0. By mspectmg Table II the only mdecomposable types of mdex 0 
have herght 0 and pure rmagmary ergenvalues. For example, if drm li- = 5 and 
G = O(V, T, 0:“’ ) the possible mdecomposable types are A$(& -5) wnh 5 = 
-5 + 0 and Od(O). So the possible types for G are 

where we let 211 denote A + A, etc. 
A second example, for a noncompact group, IS G = Sp(Y, T, OF’) with 

dim V = 8. Thus if d 1s a type for G we have ind d = 2. We describe all 
“mlpotent” types, 1.e , those containing a pan (A, V) wrth A nilpotent. The 
possrble indecomposable types wrth drmension <S and index 62 are found 
In Table II: 

we dim md type dim ind 

Ao+(O, 0) 2 0 &-VA 0) 6 2 
4,-P, 0) 2 1 A,-(% 0) 6 1 

4Q 0) 4 1 40,O) 8 2. 



CONJUGACY CLASSES IN LINEAR GROUPS 351 

Hence there are six possible nilpotent types for G: 

2 4+(0,0> + 2 A,-(07 O)>, 

4+(0,0> + 43-P, 0) + 4(0, O), 

2 4(0, o>, 

43+(0,0) + A,+(& 01% 

A,(07 0) + A,-(0, O), 

40, 0). 

The first type has A T 0, the next two have A2 = 0, the next two have A3 = 0 
while the last has A4 = 0. 

From these examples rt should be clear that, usmg Table II, the types for any 
particular case are easily described. 

Our proofs in (2 6) give a practical algorithm for computing an explicrt 
representative (A, V) for any type A. If L1 is mdecomposable the structure of -- 
(A, Y) is grven in Appendix 2. Using the constructron m the proof of Proposition 
2 we can then describe (A, V). If A is decomposable use the direct sum construc- 
tion in (2.7). For example, suppose G = 0( V, 7, C-) and dim V = 10 and A = 
A,+(O, 0) + A,-([, -<), where 4 = -5 # 0. Then V = IV, + IV, , where 
IV, = (er , fi , Ne, , Nfl) and W, = (ez , fi , Ne, , Nse, , iV2f,) and A = N and 
N2 = 0 on WI while 

Ae, = Se2 -I- Ne, , 

Afi = -L’fi+Nfzi, 

and N3 = 0 on W,. We have uer = fi, Ge2 =f2 and 02 = -1. Wmle 
T(er , Nfi) = + 1 and T(e, , N2e2) = T(fi , N2f,) = -1 and hence +Ve, ) 
Ne2) = T(Nf2 , Nf2) = + 1. 0th er nonzero values of T are obtained from these 
by using T(U, V) = ~(0, ti). All other values of r on the basis elements are zero. 
Thus A, a, T are explicitly described 

Using the description of V,- in Appendix 1 It is an elementary exercise to 
rewrite the above description of A, u, T m terms of 5 X 5 quaternionic matrices. 
Similarly for any of the a+ families descriptions of A, (T, 7 as real matrices on 
V,+ can easily be given. 

Fmally we mentron the converse probIem: Given (A, V), determine its type 
as a sum of (unique) indecomposable types. This IS easily solved. Frrst find the 
eigenvalues of A on I’ and use them to get A = S + N. Find m such that 
Nn”+l = 0 but N* # 0. Use the construction m the proof of Proposition 4 to 
decompose V = W, + W2 + .. such that each (A, WJ is uniform and the -- 
heights are all sdistmct. For each such pair find (A, W) and use the eigenvalues of 
3 and, if relevant, the signature of 0 to describe the semislmple mdecomposable 
types occurring in the decomposition of (A, W). By Proposition 2 we now know 
all the indecomposable types occurring in the decomposition of the type of (R, V). 
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An example of such a calculatron occurs m [13] for the group Sp( V, T, o+). 
However, the notation and methods are rather more cumbersome than in the 
present article. 

3. CONJUGACY CLASSES IN THE GROUPS 

We show how the results of Section 2 allow one to descrrbe all conlugacy 
classes for the groups defined m Section 1. 

If A E G(V, (I, T) define equivalence of pans (A, V) exactly as m (2 1). Then 
Proposition 1 holds wrth A E L( V, cr, T) replaced by A E G( V, cr, T). 

The definmons of (2.2) and (2.3) go through with only one change: If 
A E G(V, IS, 7) and A = S + N1 as in (2.3) put U = (1 + S-l~~) then U IS 
unipotent, A = SU = US and both S, U lie in G( V, u, T) Put N = S-riV1 and 
note that if T is mvolved in G( V, cr, T) then T(SU, Ser) = r(u, V) and T(Nu, V) + 
T(U, NV) + T(Nu, NV) = 0. Th e as condition rmphes that, if N”+l = 0, then 1 t 
T(N%, v) + (-1)m T(U, N”V) = 0 and T(N%, N%) = 0 for all j + K > m. 
These two observatrons allow one to adapt the proofs m (2 5) and (2.6) almost 
verbatim In particular the calculations m the proof of Propositron 2 all go 
through. Note however that in the fourth paragraph S,+$ = -+,S becomes 
s-1 4 * r., = 9,s. As we wrll show, the classlfica~on of the semisimple mdecom- 
posable types is essentially the same. Hence the proof of Proposition 5 goes 
through unchanged and so the theorem holds. All statements in (2.7) hold in the 
group case 

It only remains to consider the classrficatron of the semisrmple indecomposable 
types We use a” to denote types corresponding to groups and A to denote 
types corresponding to their Lte algebras. Although It is easy to go through the 
calculatrons of Appendix 2 again and make the necessary changes a quicker 
approach 1s to use the Cayley transformatton. 

For a fixed family of groups let 9 denote the set of all semrsimple indecom- 
posable types. If 0” E g note that 0 # erg 0”. For the correspondmg family of Lie 
algebras let r1 denote the set of all semisimple indecomposable types d satisfying 
0, &l $ erg n and let To denote the set of semisrmple mdecomposable types d 
with 0 E eig d From Appendrx 2 we see that / Y0 j < 2. 

We now define two mappmgs, y+ and y- , of S, u & mto g If B E 9r u Y0 
and (S, W) E a put 

y+S = (1 - S)(l + S)-l and y-s = (S + l)(S - 1)“. 

Then y,S 1s an element of the group, 1s semisimple, and (y&!, W) is indecom- 
posable. If (y&$ IV) ~2 we put yk d = 0”. These two maps are well defined. 
If d EF~ and (S, W) Ed let d’ denote the type of (-S-l, W). Then y+ytd = 
‘y- d’. Hence y+.YX = y-Y1 . However, y+Y*, ~-9~ and y+Y1 are all drsjoint. 
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LEMMA g = y+F1uy+FOu ~-5~. 

Proof First observe that if 0” E .q and & 1 E eig 0” then, due to the mde- 
composabrlity, rf (3, IV) E 0” then s = &I on W Thus for any 3 E 9 
if (3, IV) E 0” we can define either 5’ = (1 - s)( 1 + #)-I or S = 
(3 + l)(s - 1)-r. This S ~111 be an element of the Lre algebra and if (S, W) E a 
then d E Y1 w Y0 . Thus we can invert y+ and y- QED 

Thus all results for the Lie algebra carry over to the correspondmg group. 
In particular, usmg the entries m Table II in (2.7), we can nomediately write 
down all the indecomposable types for any family of groups. For example, for 
Sp( V, 7, u-) we would get 

&(A, x-1, x, A-i-l), h f k-1, 

&$(A, A-l), x =X-l # &I, 

m = even, 

m = odd. 

The exphcit structure of these types IS found by applying the Cayley transforms 
Y+ or y- to the correspondmg semisimple type for the algebra and then con- 
structing o”, by the methods used m the proof of Proposttion 2 

As an example, from the calculations in the third paragraph of (2.8) we see 
that if dim I’ = 8 then the group 5’p( V, 7, Q(“)) has six umpotent classes. 

4. SPLITTING OVER SUBGROUPS 

Let G denote one of the groups defined m (1.1) or (1.2) and let G’ denote Its 
commutator subgroup and Z(G) its center. Let L denote its Lie algebra. 

In this section we describe how the orbns mL under G split when G 1s replaced 
by any subgroup M lymg between G’ and G. Using the correspondence given in 
Section 3 we will also see how to describe the sphttmg of coqugacy classes of G 
on restriction to M. 

(4.1) Norn~al Subgroups of G. Since the orbits m L under M are the same as 
under MZ(G) we need only consider those M which satrsfy G??(G) 2 h!I C CT. 
For the structure of G refer to [ll]. W e collect m Table III the relevant results. 
Let rt = dnn Y and suppose n >, 3, then column 3 describes the quotLent 
G/G’Z(G) for those families where it rs + 1. 

Let G denote one of the groups in Table III If g E G then detg is a real 
number and we put D(g) = sign(detg) = -&I. If g E O(V, T, WY’) andp f 0 let 
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TABLE III 

G 

GL( V, o+) 

NV, 4 

O( v, 7, 01”‘) 

Restnctlons G/G’Z(G) 

n = even Z, 

12 = even Z2 

p = 0 n = even Z, 
p # 0 n = odd -5 
p # 0 n = even, p = odd & 
p#O a=even,p=even ZL? x z2 

C(g) denote the spmor norm of g, see [ll, II Sect. 71. We may suppose that 
C(g) = il. Put E(g) = D(g) C(g) Note that C, D, E all define homomor- 
phisms of G onto {&l>. W e can now describe the various possibilities for M. 
If G 1s one of GL( V, u+), 0( V, T), 0( V, 7, uy’) or 0( V, r, uy’) with n = even, 
p = odd then G’Z(G) = Ker D If p # 0 and G = 0( V, 7, gy)) with n = odd 
then G’Z(G) = Ker C if p = odd and G’Z(G) = Ker E if p = even. Finally If 
both n andp f 0 are even G’Z(G) is Ker D n Ker C. 
R 
- (4.2) The Centrakzer Argument Suppose G and L are defined on V. If 

A EL let A denote the type of (A, V). Let C,(A) = {g E G / gA = Ag) and put 
M(A) = MCG(A) Since G/M is abehan the subgroup M(d) only depends on A. 

Now A represents a umque orblt m L under G and so we may speak of A 
“splitting” when G 1s restricted to M. Thus A splits if and only If M(A) f G 
and If R IS the index of M(A) in G th en A splits mto h distinct types. From 
Table III, k = 2 or 4 

Let g E C,(A) and write g = ZU, where z 1s semisimple, u is unipotent, and 
xu = uz Then both x, u E C,(A) an d smce u lies in the connected component 
of the ldentlty of G we have D(g) = D(z) and C(g) = C(x) Thus to determine 
M(A) we may restrict our attention to the s_emlslmple elements m C,(A) 

Let z E C,(A) b e semislmple and let d denote the type of (x, V). Write 
b =o”, + +&, where eachzz is the sum of all semisimple mdecomposables 
with the same elgenvalue set whde for z f j o”, and o”, have no eigenvalues in 
common Let V = U, + . + U, be the corresponding decomposition of V 
then each (A, U,) is a well-defined pair and hence gives a decomposition of A. 
Suppose (A, U,) E A, and A, = A,’ + A: + e**, where each summand is inde- 
composable By considering the various possibllitles for A, and the possibilities 
for the A,‘, A:,. It 1s a straightforward calculation to find the values of D(z) 
and C(x) on U, . It turns out that all possible values for D, C are exhausted by 
that o”, on which x = - 1 In Table IV we summarize the calculations. In column 
2 we list only those mdecomposable types for L for which a nonidentity contribu- 
tion to either D or C may occur atid in columns 3,4 we give the contribution. 
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TABLE IV 

G Tows D c 

G-U V, o+) 

ow7,4 

O( v, 7 P)) ) + 

O(V, 7, CT:“‘) 

Pi0 

4(5)5 = 5 m = even -1 

4dO) m = even -1 

Am+(O) m = even -1 

A&, -515 = 5 m = even +1 -1 

Am+(O) m = even -1 (- 1p12 

Am-(O) m = even -1 -( - 1)“‘” 

To determine M(d) write a as a sum of indecomposable types and then refer 
to Table IV For example, if d = d, + + rl, , where all d, are mde- 
composable and none of the d, occur in Table IV then M(d) = M Now 
suppose 34 = Ker D and from TabIe IV some d, contributes D = -1 (this 
means that there exists a x E C,(A) which will equal -1 on the subspaoe cor- 
responding to d E and will equal + 1 on a suitable complement), then M(d) = G. 

(4.3) EXAMPLES Let G = GL(V, c+) and n = even and suppose M = 
Ker D. Note that this is equivalent to considering the orbits in L under the 
action of SL(V, a,) = (g E G / det g = j-l}. Of course, G c: GL(n, R), 
SL( V, Q,) N SL(n, R) and L - (set of real n x n matrices) From Section 2 
the orbits in L under the action of G are of the form 

where 5, # cz and 5, = & . From Table IV we see that A splits under M if 
and only if no An)(&) with n, = even occurs m A If A splits there are two 
orbits under M. 

As a second example let G = 0( V, 7, 0:“‘) with dim V = 8, i.e., G N 0(6,2), 
Using Table II one finds that G has six unipotent classes, namely, (if n” denotes 
J(l), etc ) 

6 o”,+ + 2 o”,-, &- + 5 &+, 
o”,+ + 4 Jo+ + A*-, o”,+ + 3 .&+, 

2 &+ + 2 Jo+, o”, + 4 A,+. 

The possibilities for Mare G, Ker D, Ker C, Ker E, and 6’ = Ker D n Ker C. 
Using Table IV the only splitting occurs if M = Ker C or G’ in which case the 
three classes in the right-hand column each split into two. 
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5. OTHER FIELDS 

Let K be a perfect field of characteristic not 2 Let V be a vector space over K 
and 7 a nondegenerate symmetric or alternatmg b&near form on I/ Define the 
groups 0( V, T), Sp( V, T) as in (1 1). 

Note that, by omrttmg any reference to 0, all defimtrons in (2.1), (2 2) (2 3) 
carry over to the present case Smce k is perfect the S + N decomposmon m 
(2.3) holds. For a practical construction of S and N, see [14]. Next, note that 
Proposrtrons l-4 remam true The proofs are unchanged except that they become 
considerably shorter since u IS omitted The problem 1s entrrely wrth Proposmon 
5 and is, of course, due to the failure of Sylvester’s theorem. However, we show 
that there 1s a reasonable generahzatron of the arguments used to prove Propoa- 
tion 5 and hence of the theorem m (2 2) 

Let p E K[t] be a momc rrreducrble polynomral over k. Suppose p = t@r + 
cltr + + 0 + CT+1 thus degp=r+l. Define jek[t] by$=t?+r+ 
4t’ -I -I d,,, > where d, = c~+~-Jc,+~ with c,, = 1. Then p = $ If and only rf 
the inverse of every root of p 1s also a root. If p = $ and degp = 1 then p = 
t f 1, whtle d deg p > 2 then deg p 1s even and cr+r = 1 

If p 1s irreducrble and p = $ define the field K, = K[t]/(p>. For 5 E k, , 
let[+{b h e t e automorphrsm of k, induced by fixmg k and mapping t mto 
t-l. Let f, = (5 E k, 1 [ = l} and put np = {[[ / 5 E k,*}. Thus n, IS a subgroup 
of the multrphcatrve group f,“. Put T, = f,*/n, . 

For example: If R 1s algebrarcally closed then T,, = 1. If k is a fimte field then 
T,eZ, if degp = 1 and T, = 1 rf degp 22. If k = R then T,LEZ,. 
In general T, is not finite. 

We now describe all the mdecomposable types for 0( V, r). Let A be any 
indecomposable type of height m. d is characterized by an irreducible p E k[t] 
and, lfp = $, an element t E T, For a suitable group all suchp may occur and, 
ifp = $, all such t may occur. We give, m Table V, a hst of all possrble indecom- 
posable types for the family of groups containing 0( V, T). In brackets are the 
changes requned for the group Sp( V, T) Our notation is adapted from Table II 
(as it would appear m the group case, see the example at the end of Sect 3): 
p E k[t] 1s an rrreducrble polynomral, t E T, , and drstmct p, t give drstinct types, 
but A( p, $) = A( 4, p). The last column grves dim A. 

TABLE V 

A,(P, $1 
&YP) 
4U, 1) 
A,(--1, -1) 
AmV) 
AmY-1) 

P#B 2(m -I- 1) deg P 
p = b,degp ;f 1 (m + 1) deg P 

I 
nz = odd(even) 2(m + 1) 

I 
m = even(odd) cm+ 1) 
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Fori = 1 ,..., s, let t, E T, , wherep 1s nreducrble andp = $ The set (tl , , tJ 
defines an equrvalence class of s-drmensronal Hermitian forms over k, ; namely, 
let 4, E k, be any mverse image oft, then the form is ({r& yr + + 5Ay.J. We 
may call (tr , ., td the signature of this form. We have 

PROPOSITION 6 Let t, , u, E T, then 

tf and only zf the forms wzth szgnatures {tl , , b> and h ,.. , 11,) are equivalent 

(If deg p = 1 we understand d,t (t 5 1) to be d,’ (&I)). As a result of Propo- 
sitions 2-4 and the arguments given for the proof in (2 4) we see that the above 
result describes the only way m whrch nonuniqueness can occur in the decom- 
position of an arbitrary type into a sum of mdecomposables. 

The proofs of the statements in the two paragraphs which precede and follow 
Table V are easy and smce they occur as special cases of results m [lo, Sect. 3] 
we omit them 

As pointed out m [lo] the restrrctron to perfect fields is not fundamental. 
It is only necessary to avoid the S + N decomposmon 

APPENDIX 1: EQUIVALENCE CLASSES FOR G 

We use the notatron of Section 1. We first discuss case (i) of (1.2). Then o 
and u’ are equivalent If (T’ = mk-lak for some k E G and nonzero (y. E C. We may 
suppose that u2 = &l and, If 7 is involved, that TV = ?. Note that (r and -CJ 
are always equivalent Let n = dim v. 

u2 = +l. Let Y,+ = (ZJ E V / 02) = ~3. Then V,+ is a real n-dimensronal 
vector space. #If G = GL( V) there 1s clearly just one equivalence class for (T 

Let T+ denote the restrrctron of T to V,& It 1s a nondegenerate real brlinear 
form. 

If T 1s alternating then T+ is alternating Since all such forms are equrvalent 
we can always choose k E G = Sp( V, T) mapping V,+ onto &‘: . Hence there IS a 
single equivalence class for 0 

If T 1s symmetrrc let (n - p, p) denote the srgnature of r+ . Replacmg a by - c9 
if necessary, we may suppose that 0 < p < (n/2) Eachp corresponds to a drstinct 
equivalence class for cr. 

02 = -1 Let [HI =((Y.+@I~,PE@,J~ = -l,rxj==jZ] denote the qua- 
ternions and ‘let (a + fij)* = a! - j/3 be an anti-involution of W. 

Far TJ E V define (a + ,Q) 21 = 01v + Buv. Let Y,- denote the set ti considered 
as a vector space of dimension n/2 over W. Agam, for G = CL(v), there 1s 
just one equivalence class for C. 
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Define T- as a nondegenerate W-valued form on V,- by T-(u, V) = ~(u, V) + 
T(U, aw)g Then T-(AU, PU) = k-(2*, w) pg for X, TV E W 

If T 1s symmetric then T-(u, v) = T-(v, u)“. In this case all such forms are 
equivalent. To see this use the usual Gram-Schmidt algorithm to find a basis {e,} 
of V,- such that T-(e2, e,) = a,, . Hence there 1s a single equivalence class for (T. 

If 7 is alternating then T-(U, u) = -T-(21, u)” A basis can be found so that 
T-(e2 , 4 = &hj Let (42 - P, P) d enote the resulting signature of T- . 
Replacing u by -CT, if necessary, we have 0 < p < n/4 Each value of p 
corresponds to a dlstmct equrvalence class for CJ (see [ 11, I, Sect. 81 for details). 

7% case. In case (11) of (1.2) the equivalence of (3 and u’ becomes cr’ = &+ak, 
nonzero 01 E C, k E GL( V). We may suppose O-U(V) = “W(U) all u, 21 E V. Let 
(n - p, p) denote the srgnature of the correspondmg Hermrtran form T.+(u, V) = 
au(v). As above, we may suppose that 0 < p < n/2. Drstinct values of p cor- 
respond to distinct equtvalence classes for u. 

APPENDIX 2: THE SEMISIMPLE INDECOMPOSABLE TYPES 

Let (S, W) denote a pair belonging to a semrsrmple and mdecomposable 
type. Since S is semisrmple its ergenvectors span W. Let G denote one of the 
complex groups defined m (1.). We first discuss these groups. 

G = GL(V). Let Se = 5 e some 5 E C and non-zero e E W Clearly (e) = W, 
Denote the type of (S, W) by O(t). 

G=O(V,T) IfS#OletSe=[eand[#OandchoosefEWsuchthat 
f is an ergenvector of S and T(e, f) = 1. Since S E L( W, u, T) we have Sf = -[f 
and also T(e, e) = T(f, f) = 0 Thus dim (e, f) = 2 and 7 1s nondegenerate on 
(e, f). Hence W = (e, f). Denote thus type by A([, -4) 

If S = 0 choose e E W such that r(e, e) = 1. Thus W = (e) Denote this 

type by d (0) 

G = Sp( V, T) Let Se = [e and choose f such that T(e, f) = 1 As above, 
find Sf = -if, and dim <e, f > = 2 since T is alternating. Thus W = (e, f >. 
Denote thrs type by d(c, -5) Context ~111 distmguish rt from type A(<, -<) for 
o(v> 7). 

Now let G, denote one of the case (1) real forms of G It is straightforward to 
discuss these cases one by one, just as for the complex groups, but we prefer to 
give a more general discussion. 

Let n denote a semisimple mdecomposable type for G, . If (S, W) E d then, 
by omrttmg U, this pair may be considered as belonging to a type for G. Let 
dc denote thus type. It is semisimple and hence is a sum of types, described above. 
In the following discussion we use a superscript “c” to distinguish types for G 
from those for G, 
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Suppose 4,~ is an mdecomposable component of d”. Let (S, r/v,) E A<. Smce 
70 = 5 the pair (S, atV,) is well defined. Denote its type by (T Ore. Note 
that either oW, = W; or oW, n W, = 0 Then smce o2 = &l and A is 
~ndecom~osable we have three possible cases: 

(a) Ac=A~+uA~c and A2 J: 04, 
(b) 4” = 4,~ +- o 0,~ and A? I- aA<, 

(c) AC = A; and 0,~ = u Alo. 

Let erg dlf denote the set of ergenvalues of S on WI . 

LEMMA A I Case (a) occurs tj and oaly zf eig 82 #= eig A$. 

Proof. Observe that, in the above classification for G, each mdecomposable 
type is characterized by the set of eigenvalues. Q E.D. 

Proof By Lemma A.1 we may suppose D Ale = 4,‘. Fnst let dim 4~ = 1. 
LetSe=~ethen~=~#O.If*2=+1anddlm(e,ae)=2putel=e+cre. 
Then (er> is S-invariant and hence (S, (e&) E 4, a contradiction, since A 1s 
mdecomposable Hence dtm (e, ue) = 1 and so this is m case (c). If us = -1 
then necessarrly dim (e, oe> = 2 and so we have case (b). 

Wow let dim da = 2. Suppose Se = <e, Sf = -I;f and 7.(e, f) = 1. If 
02=+l and r=[ put e,=e+ae, &=f+uf while rf c=--< put 
el = e -I- T-J.., fl =f + y ue, where y = 1 if 7 is symmetrtc and y = i of 7 is 
alternatmg. If a2 = -1 and 5 = -Z: put ei = e + qmf, fi = f - zyoe. Then 
m each case (S, (er , fi>) E 4 and so this rs case (c). If 9 = -1 and c = 5 
then drm(e, ue) = 2 and so the ergenvalue 5 occurs with multtxplicity 2 m IV. 
Srnce 5 f 0 this rmphes that we have case (b). Q.E.D. 

It IS possible for distinct types 4, 8’ for G, to grve the same type 4” = 4’~ 
for G The next result shows that this can only happen in case (c). 

LE~MMA A 3 IS cases (a) and (b) if A, d’ are types for G, and AC = A’c then 
A =z A’. 

PJVO~. With the above notation we have W = W, + &I&‘, , a drsjoint, 
orthogonal sum. Suppose (S’, IV‘> E A’ and let IV = W1’ + o’wl’ be the 
corresponding decomposition. We may suppose (S, IV,‘) E 4$, 

Let 4 be any isomorphism of IV’.‘. onto N1’ which gives the equivalence 
(S, W,) - (S’, W,3. Then define the isomorphism 4 of W onto W’ by putting 
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II n 

Then $cr = ~‘45, smce we may suppose 3 = IJ’~ = &-I. The other conditions 
for equrvalence are immedrate. Thus 9 = A’. QED. 

Now consider case (c) when S # 0 First suppose 5 = 4 then by Lemma 

A 2, u2 = +l. Suppose drm d = 2 then choose e, ,fi spanning W, 
(see Appendrx 1) and such that Se1 = &, , Sfi = --[fi . Then ~(er , el) = 
~(fr , jr) = 0 and wrthout restrrctron we may choose e, , jr to sat&y T(er , jr) = 1. 
Now let (s’, W’) Ed’, where de = il’c. Then we may choose snnrlar ezfr fi’ m 
?JVg: Put #e, = el, $fl = fi, thus yields (S, IV) - (s’, FV’) and hence A = A’. 
The case dim a = 1 is srmrlar. 

Next, still m case (c) and S + 0, suppose c :=l -5. Then dim B = 2. If 
(r2 = +I define the symmetrrc, nondegenerate and real bilinear form 8+ on 
W,+ as follows. If 7 IS symmetrrc 8+ = T+ (see Appendix l), and rf 7 rs alternatmg 
e+(u, v) = T&.4, Sv) for 28, 0 E K0 +. We can choose e, , jz spanning IVc+ such 
that Se, = zcfl , S’r = -zcer and from T,(SU, v) + T+(u, SV) =: 0 we have 

e+(e, ,h) = 0 &de e+(q , 1 e ) = O+(fl ,fJ. Without restrictions we can choose 
e., , fi so that 8+(er , e,) = &l Let d + and A- denote types for G, givmg the 
two possible cases B+(e, , I - e ) - + 1 or -1. Arguing as m the prevrous para- 
graph one sees that d* # il- while If 8’ IS any type for G, wrth d’c = (A*) 
then rl’ = d+ or d’ = d- 

Contmumg case (c) with S # 0, we now suppose cr2 = - 1. As m Appendix 1 
consider W as one-drmensional over [HI. Define the Skew-Hermrtran form 8- 
on W,- as follows Put 8- = T- d T 1s alternating and 19~(u, V) = T-(u, Su) if 
7 is symmetrrc. Now choose er so that Se, = [er . From r-(Se, , e,) + T-(er , 
Se,) = 0 we may suppose e, chosen so that &(e, , el) = &j. As m the prevrous 
paragraph there are two drstmct types d+, A- for G, with (O+p = (d-) 

Finally suppose S = 0 Then we have exactly the situation discussed m 
Appendix 1 For G = GL(V) an d o2 = +I there is one type of case (c) and for 
o2 = - 1 it is case (b) For G = 0( V, 7) if 02 = + 1 there are two types df, d- 
wrth (4’)” = (O-)c = JO) whil ei ~2=--I~tiscase(b).ForG==Sp(V,~)if f 
o2 = + 1 there IS one type of case (c) if o2 = - 1 there are two types. 

In the unitary case, i.e , case (ii) of (1.2), a dnect calculation quickly gives the 
semi-simple mdecomposable types Let Se = Se and suppose 5 #= -5 Choose 
fan eigenvalue of S such that T,(e, f) = De(f) = 1. Then we have T*(e, e) = 
T*(f, f) = 0 and Sf = -cf H ence drm <e, f) = 2 and so W = (e, f). Denote 
this type by n(c, -c). If 5 = -5 and T&e, e) # 0 renormallze e to get ~*(e, e) = 
il. The two signs grve drstmct types 0*(c). If 7&e, 8) = 0 choose ergenvectorf 
such that T*(e,f) = 1 then a suitable Imear combmatron e, of e and f gives 
T+(el , er) f 0 and Se, = [er so W = (eJ, a contradrctron. 

These results are summarized in the followmg table. The notation for an 
indecomposable type d for G,, rs the same as for do m case (c), but wrth super- 
scripts & as defined above. In eases (a) and (b) an obvious concatenation is used, 
for example, if do = 4(c) + a(c) for G = GL(‘c/) we use the notation d(<, c} for 
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TABLE A 

TYPO Condltlons 

il 

-1 

4-l 

alt 

alt 

-1 

$1 

alt 

SYm 

wm 

-1 vm 

* 

5+i 
r;=i 

5# -b 
5= -%sto 

5 + -% 
g= -[ 

A. Note that the ordering of the elgenvalues m A([,. .) IS ummportant, for 
example, A([, c) = .Ll(c, 5). C o umns 1 and 2 give u2 and the symmetry of T, 1 
a blank denotes that cr or T (or both) not mvolved m this case. 

Since the forms 02 are referred to several times in Section 2 we summarize 
their definition: 

e&J, 4 = T+(% v> 
= T+(U, SV) 

if T is symmetric, 

if S f 0 and T is alternating, 

where U, v E V,+. 
e-(24, v) = T-(24, v) 

= T-(u, Sv) 

if T is alternating, 

if &’ # 0 and T is symmetric, 
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where U, ZI E V,-. Note that 0, are well defined even if (S, V) IS not mdecom- 
posable. Thus if (S, V) E A with d semisimple by Sylvester’s theorem the 
signature of 0 IS umquely determined by A. We denote this srgnature by sig d. 
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