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Let G belong to one of the three familres of complex classical linear groups
or to one of the seven families of corresponding real forms Let L denote its Lae
algebra. We give a simple and effective method for finding all conjugacy classes of
G and all orbits of G in L. We also describe the splitting of classes and orbits

when G 1s replaced by a normal subgroup. We discuss the situation for other
fields.

INTRODUCTION

Let G be a complex or real linear Lie group. Let L denote its linear Lae algebra
so that G acts naturally on L. by conjugation. When G is simple there arise two
important and closely connected problems: (1) describe all conjugacy classes in G,
and (ii) describe all orbits in L under the action of G. In thus article we give a
complete solution to these problems when G belongs to any of the nonexceptional
sertes of simple groups. A description of the groups G 1s given in Section 1.

There has been extensive previous work on the above problems and on related
vartations. For those groups leaving invariant a bilinear or Hermitian form this
work begins with Weierstrass 1], Kronecker [2], and Frobenius [3], then during
the first half of this century continues with a series of papers by Williamson [4]
as well as work by many others (see [5] for references). More recently we partic-
ularly note the results of Zassenhaus [6], Wall [7], Cikunov [8}, Springer and
Steinberg {9], and Milnor [10].

With the exception of Wall the above authors always deal with classical linear
groups over a commutative field (usually arbitrary and of odd ot zero charac-
teristic), Thus they do not include those families of real Lie groups which may
be described as classical groups over a quaternionic vector space. Wall allows
noncommutative fields, but there are still certain difficulties m using his methods
when the field is noncommutative.

* The authors wish to thank the U, S. Army Research Office for support through
Grant DA-ARO-G168.
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340 BURGOYNE AND CUSHMAN

Our approach differs from the previous work in several respects. We always
work over a complex vector space and consider the real Lie groups as fixed point
sets of a certain involutary automorphism of their coresponding complex group.
This allows us to grve a unified and sumultaneous treatment for all the cases.
In particular, the quaternionic groups are handled as easily as the real groups.
We make constant use of the unique decomposition of any linear mapping into
a sum of commuting sermsimple and nilpotent parts. By this technique we can
quickly reduce questions about conjugacy to the corresponding question for the
semisimple part, a useful sumplification. In (2.1) and (2.2) we introduce the idea
of a “type” and an “indecomposable type.” For example, if G ~ GL(#n, C), an
mndecomposable type is just an abstraction for the usual Jordan matrix with some
{ € C on its diagonal and 1’s on its superdiagonal. Although elementary, we find
that this concept of “types” results in a concise and convenient language for
stating results and proofs

The main results are contained m the four propositions in (2.4) and the
theorem 1 (22) In (27) we use these results to solve problem (1) above. In
Section 3 we give the mmor modifications necessary to solve problem (i). In (2 8)
we give examples which hopefully demonstrate the ease with which our results
may be used. Qur methods also provide an effective algorithm for finding 1n
which orbit (or class) a given element of L (or G) lies. This could be interpreted as
a generalization of the Jordan-normal form for GL(n, C), although there is little
pomnt m writing down “normal-form” matrices 1n general. In Section 4 we
describe the splitting of orbits or classes when G is replaced by a normal
subgroup.

Our results in (2.1)+(2.6) hold for classical groups over more general
(commutative) fields. In Section 5 we briefly fiscuss this. Our aim 1s
merely to show that problems (1) and (if) can be reduced to a purely field theoreti-
cal question. Since this case is fully discussed in, for example, [8, 9] and especially
[10] we omit proofs.

Appendix 1 collects some information on mvolutary automorphisms Appendix
2 contains some elementary and repetitive calculations connected with Table IT
mn (2 7). Our arguments mvolve only simple linear algebra and we only need to
quote one result, Sylvester’s theorem on the signature (see for example, [11]).

1. NoTaTion

(1.1) The Complex Classical Groups. Let V be a complex vector space of
finite dimension. Let GL(V) denote the general linear group on V.

Let 7 be a nondegenerate symmetric or alternating bilinear form on V. For
2 € GL(V) define 79 by 1%(u, v) = 7(gu, gv) for u, v € V. The isometry group of
718 {ge GL(V)| ¢ = 7} and is denoted by O(V, 1) or Sp(V, 7) depending on
whether 7 is symmetric or alternating
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(1.2) The Real Forms. Let G denote one of the groups m (1.1). All of its
real forms may be described as subgroups G, = {ge G |g® = g}, where ¢
18 an automorphusm of order 2 of G and 1s exther (i) an anti-linear map of V onto
V such that g° = ¢~'ge or (1i} an antiinear map of V onto V* such that g7 =
ol te, if G = GL(V). Here V* denotes the dual space of 1" and g, € GL(I"*}
is defined by guu. (o) = u,(gv) for u, € V* o e " Antilinear means
o{o -+ fv) = &ou + Bov for o, e C

For a given G we say that o; and o, are equivalent if for some k€ G both oy
and k-to,k (R,.0.k 1 case (ii)) induce the same automorphism of G\ If o, and oy
are equivalent then G, =~ G,

Replacing o by an equlvaient choice we may suppose in case {1) that ¢* == +1
and r{on, 6v) = T{u, v) and in case (1) that ou(v) = co(u). In this latter case we
put 7,(w, v} = ou{v) and from now on will use the Hermitian form r,, instead of
the corresponding o.

Using the Gram-Schmudt algorithm the equivalence classes for o and 7,
are easily described. The calculations are well known so we only sketch them n
Appendix 1. We summarize the results in Table I Column 1 gives the complex

TABLE I
GL{V) GL(V,0,) GL(n, )
GI(V, o) #n = even U*{n)
GL(V, )  0<p <) Ul ~ p, )
KV, 7) oW, 7d™ 0<p <@ Ofn — p, )
NV, 7,0.) n = even, O*(n)
SP€V’ T) SP(V Ty G+} Sﬁ(ﬁ, &)
Sp(V, 7,6 0 <p < (n/d) Spn — p, p)

group G. Column 2 gives our notation for the possible &, . The class represen-
tatives o, o_,. are described in Appendix 1. The subscript - indicates the
sign of ¢® m case (1). The superscript p in 7§, o', ¢!’ is the index of certain
complex-, real-, quaternion-valued forms which are defined m Appendix 1
and are naturaily associated with G, In particular G, is compact for the cases
where p = 0. In column 3 we give the notation of Helgason [12, Chap. IX]
for the corresponding matrix groups. We let #» = dim I and note that for
G = Sp(V, 7), n is always even.

Thus, besides the three complex families, there are seven families of real
forms. Among the latter the three families of case (i) with o = 41 may be
described as real linear groups on V,* (see Appendix 1) while the three families
with ¢ == —1 may be described as quaternionic linear groups on V.

In those families where the index p occurs, if the particular value of p 15 not
relevant, we often omit it and just write GL(V, 7}, O(V, 7, 0.}, ctc.
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(1.3) The Lie Algebra. For GL(V) its Lie algebra, as represented on V, is
End(V). For O(V, 7) or Sp(V, ) the corresponding Lie algebra is {4 € End(V)
1(Au, ) -+ r(u, Av) = 0, all u, v € V}. For the unitary groups GL(V, 74) is
obtained by replacing = by 7, above. For the real forms in case (1) there is the
additional condition ¢4 = Ao.

(1.4) Notation and Conventions. In Sections 2 and 3 we find 1t convenient to
mtroduce a generic symbeol G(V, o, 7) to denote any one of the groups from the
10 families defined in (1.1) or (1 2). Thus either o or = or both may not actually
occur 1n the definition of the group Furthermore 7 may also denote 7., as
defined in (1 2), and 1n this case o 1s absent. We let L(V, o, 7) denote the Lie
algebra of G(V, o, 7). ‘

In Sections 2 and 3 statements are formulated with the assumption that both ¢
and 7 occur in the definttion of the group G(V, o, 7). To adapt the defimtions
and proofs to the other cases 1t 1s only necessary omit any irrelevant statements

If W C V 1s a subspace let W+ = {ve V| (v, w) = 0 all we W}. We often
allow a symbol, such as o, 7, .. to denote both an object defined on V" and also, by
restriction, the corresponding object defined on W. If u, v -~ eV let (u, v, >
denote their span.

2. Mamxw Resurts

(21) Types. Using the notation of (1.4) let AeL(V, o,7). We require 2
notion of equivalence among pars of the form (4, V). Let A" e L(V", o', 7'} then
we write (4, V) ~ (4’, V') if there exists an 1somorphism ¢ of I onto 7’ such
that ¢4 = A'$, po = o’$ and 7 = 7'¢, re., (4, v) = 7'(¢u, $v) Note that ¢
defines an 1somorphism G(V, o, 7} =~ G(V’, o/, ')

It is clear that ~ defines an equivalence relation. An equivalence class for ~
is called a type. If 4 denotes a type and (4, V) e 4 put dim 4 = dim V.

The motivation for mntroducmg types comes from the following result, the
proof of which 1s a consequence of the definitions.

PropostrioN 1 Let A, BeL(V, o, 7) then there exists a g€ G(V, o, 7), such
that g2 Ag = B, if and only if (4, V) and (B, V') belong to the same type.

(2 2) Indecomposable Types. Let AeL(V, o,7) and let 4 denote the type
containing (4, V). Suppose V = W; + W, is a sum of proper, disjoint, 4~
invariant, c-invarnant, and orthogonal subspaces. Since the restriction of = to
each W, is nondegenerate the groups G(W, , o, 7} are well defined and se, by
restriction, A e L(W,, o, 7). Let 4, denote the type containmg (4, W,) for
2 = 1,2. Then we write 4 = 4, - 4,. ‘

The type 4 1s called indecomposable if 1t cannot be written as the sum of two or
more types. For any type 4 we can write 4 = 4y + - - -+ 4, where all 4, are
indecomposable. We have
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TaeEOREM. The decomposition 4 = 4, -+ - -+ 4, into indecomposable types
1S unique.

The proof 15 in (2.4) but depends on results whose proofs are in (2.6). As a
corollary to this theorem note that if 4, + 4, = 4, -+ 4, then 4, = 4.

(2 3) Semisimple Types. Let AeL(V, o,7) then we can, in a umque way,
witte A = S+ N, where S, NeL(V, o,7), S 1s semisimple, NV is nilpotent
and SN = NS.

Suppose m is a nonnegative integer such that N™ == 0 and N™H = 0, We call
m the height of the pair (4, V). Let (4, V') belong to the type 4. Clearly m is an
invariant of 4 which we call its height and denote by 7z 4.

Let K = Ker N™ then KO NV. If K = NV we say that the pair (4, V) 15
uniform. Since equivalent pairs are either both umform or not we may speak of
uniform types.

If ht 4 = 0 we say that 4 1s a semusimple type Note that a semusimple type 1s
uniform

Let 4 be uniform and m = ht 4. If (4, V)ed put V = V/NV and for ve
put 7 = v + NV. Define 4, &, 7on V by A7 = Av, 6 7 = 00, and #(&, 7) =
w{u, N™9) Since 7 is nondegenerate on V and (4, V') 1s uniform hence 7 1s non-
degenerate on V. Thus G(7, 6, 7) is well defined. Let 4 denote the type con-
taining (4, 7). 4 1s senmsimple and 1s uniquely determined by 4.

Note that 4 1s semusimple if and only if 4 = 4. Observe that the bar notation
used above has no connection with complex conjugation in C.

(2.4) Proof of the Theorem. In (2.6) we prove the following four results. 4
denotes a type.

PROPOSITION 2. If 4 is umform 1t is uniquely determined by ht 4 and 4.

ProrosiTiON 3. If 4 is indecomposable then A 15 uniform and A is inde-
composable.

ProrositioN 4. If 4 is not uniform there exist unique types 4, and 4, such that
A4 = 4, + A, with A, uniform, ht 4 = ht 4 and ht 4, < ht 4.

PrOPOSITION 5. If 4 is senmusimple then 1ts decomposition into indecomposable
types is unique.

Proof of the Theorem of (22). Let 4 denote any type. By Proposition 4 we

can write 1n a unique way
A = A o Ao Lo o AR

where m > m’ > - >k >  and each 4% 15 a uniform type of height %
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Let 4% = 4, + - 1 4,, where all 4, are indecomposable Using Proposi-
tion 3, 4% =4, + 4 4, and each 4, is indecomposable. By Proposttion 5
this decomposition of 4% 1s unique. Hence, by Proposition 2 the decomposition
of 4® is unique Q.ED.

(2.5) Some Preliminary Lemmas 'The following results are needed 1 (2.6).
They do not involve 7 Let A, S, N be elements of L(V, o, 7) and, as mn (2.3),
let 4 =S+ N.

Levma 1. Suppose (S, V) w5 a pair where S 15 semzssmple. Let U be any proper
subspace of V which 1s S-invariant and o-invariant. Then there exists a complement
to Uin V which 1s also S-invariant and c-invarant.

Proof. Since S is semismmple we may choose W to be an S-invariant comple-
mentto U V.Y oW = Wwearedone. If oW o= W wecanwrite, forallwe W

oW = oW -+ oW,

where o7 , 0, are antthnear maps of W mto W and of W nto U, respectively.
Suppose o2 = ¢l, where € = -1 then 0,® = €l and oy0; + oo, = 0 Let W’
be the image of W under the isomorphism

w—>w = (1 — (1/2) oogjw, welW.

Then ow’ = (o) and so W' is o-mvariant. W’ 1s S-mvariant and is 2 com~
plement to Um V., QE.D.

Lenma 2. Suppose (4, V) is a uniform pair of height m. Then there exists an
S-invariant and c-invariant subspace H such that V. —=H + NH + - 4 N™His
a sum of mutually disjoint subspaces Furthermore dim N*H = dim H for
0Lism

Proof. NV is S-invariant and o-invariant so by Lemma 1 we may find an
S-invariant and o-mnvanant subspace H which is a complement to NV mn V.
Hence, since height = m, we have ¥V = H -}- NH - --- + N7»H

If N*H n N'H 0 for some ¢ < j then for some nonzero %, , h, € H we have
N¥(hy + N=*hy) = 0. Hence hy ++ N'—*h, € Ker N™ and since (4, V') 1s uniform
and j — ¢ > 0 therefore %, € Ker N™. So hy = 0, a contradicton. QE.D.

Lemma 3. Let (A, V) be a pair of height m. Let U be a proper A-invariant and
o~tnvariant subspace of V. Suppose (A, U) is uniform and U  Ker N™. Then there
exists a complement to U in V which is A-invariant and c-invariant.

Proof. Use induction on m. If m = 0 then, by Lemma 1 we are done. So
suppose m = 1. Put K = Ker N™,



CONJUGACY CLASSES IN LINEAR GROUPS 345

By Lemma 2 there exists a subspace H of U which 18 S<invanant and o-
mvariant and a complement to K N U n U and, using U L K, such that U =
H - NH - 4 NmH Note that U N K = NU and also that (4, NU) 1s
uniform.

First suppose U + K = V. Since the height of the pair (4, K)ism — 1 and
since U N K € Ker N*! we may, by induction, find a subspace Z which is
A-nvanant, c-nvarniant, and a complement to U N K 1n K, Hence 7 is also a
complement to U in K and we are done.

Now suppose U -+ K 5 V. By Lemma 1 we may choose a subspace F which
18 S-invariant, g-invariant and a complement to U -+ K V. Put W = F +
NF +  — N7™F and observe that W is 4-invanant, o-invariant and (4, W) is
untform of height m. If U N W 54 0 then for some nonzero h € H we have
N 4+ ue W, where ue N*1U and 1 <. m Hence N™he W and since & 5 0
there exists a nonzero f € F such that N™(h — f) = 0. This implies fe U + K, a
contradiction, and hence UN W = 0.Put U; = U + W If U; = V" we are done.
If U, 55 V then since U; + K = V we are done by the result of the previous
paragraph QED

(2.6) Proofs of the Propositions. We use the notation of (2 1)~(2.3). In partic-
ular, f (4, V)edthen A = S+ Nisasm (2.3), and m = ht 4

Proof of Proposition 2. Smee 4 is uniform, by Lemma 2, we may choose a
complement E to NV such that E is S-invanant and o-mvariant Then 7V =
E -+ NE -+ + NmE1s a sum of disjoint subspaces

For 0 << j < m define the bilinear forms 7, on E by 7,(%, v) = 7(u, N'v) for
u, v € E. Let #, denote the linear map from E to E* corresponding to r, , 1e.,
+u(v) = 7{u, v). Since NV = Ker N™ r,, 1s nondegenerate on F and hence
7, 1s an isomorphism of E onto E*

Suppose forsome 0 < & < m — 1that#, s Owhile, if & 56 m — 1,7, =0
for i = 1,. ,m — k — 1. Then let E’ denote the image of E under the iso-
morphism ¢ — ¢’ = (1 — N”¥*p)e for e € E, where p € End(E) is defined by

p = (=12 £

Since S,.7, = —7,S we see that E is S-invariant Define o, as an antiinear
map of 77 onto utself by o.u.(v) = u,(ov). The condition 77 = ¥ becomes
o4 f,0 = 7, and hence E' is g-invariant E’ is a complement to NV in V. The
forms 7, can be defined on V. Since 7, == Oon Efori == 1,..,m — &k — 1 the
same result holds on E’.

On E* the transpose of p 1s p, = § #,#,,. Hence 7, == pf, + (—1y"F 70
on E This 1s equivalent to 7, = 0 on E’. Hence, by repeating this procedure, at
most m times, we will obtain a subspace F which is S-invanant, g-invariant,
a complement to NV in ¥ and such that 7, = QonFforj =0, m — 1.
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We may suppose that S € L(F, o, 7,,,) and hence have the pair (S, F). There 1s
a natural 1somorphism of F onto V' = V[NV given by f—f + NV It defines the
equivalence (S, F) ~ (4, V) and hence (S, F) € 4.

Now suppose 4’ 1s another uniform type and 42 4’ = ht A and 4’ = 4 Let
(4, V')ed and let S’, N’, F",... be analogs of S, N, F,.. . Hence (S', F') e 4.
Let ¢ denote an 1somorphism of F onto F’ which gives the equivalence (S, F) ~
(S, F'). Extend ¢ to V by putting $(Nv) = N'¢vforve V. Smce At 4" = ht A
and since Lemma 2 applies to both ¥ and V' we see that ¢ 1s an isomorphism of
Vonto V' Clearly A'¢ = A and a’¢ = do If v, , v, € VV we may write, in a
umique way, v,=3 o Nf, ., where f, , € F. Thus ¢v,=Y, N'7¢f, .. Now by the
property of F we have (v, v) =3 1 (— 1) 70 fir» fo.r’) and since 7, =78
on F we see that 7 = 74 on IV Hence (4, V) ~(4', V)andsod = 4". Q.E.D

Proof of Proposition 3. Proposition 2 mmphes that 4 1s uniform. If 4 is
decomposable suppose that 4 = 4," - 4," and let 4, and 4, denote the unique
uniform types of height equal to &t 4 satisfying 4, = 4, for 1 = 1, 2.

Let (4, V)ed and let F denote the subspace constructed in the proof of
Proposttion 2. Since (S, F) ~ (4, V) we may suppose that F = F; + F, is a
decomposttion corresponding to 4 = 4;,' + 4. For 2 =1, 2 put W, =
F,4- NF,+ - N»F,, where m = ht 4. Then W; + W, = V and by the
properties of F' we see that W, is A-invanant, o-nvanant, and orthogonal.
Arguing as 1n the last paragraph of the proof of Lemma 3 we get W; N W, = 0.
Hence 4 = 4, + 4,, a contradiction. QED.

Proof of Proposiion 4. Let K = Ker N™, where m = ht 4. By Lemma 1 we
can choose an S-invariant and o-invariant subspace E which is a complement to
KmV.PutY =E+ NE+ -+ N®E Then Y is uniform and Y € K.

If = 1s not involved in the definition of G(V, o, v) then by Lemma 3 we can
find an A-invariant, c-invanant subspace Z which is a complement to ¥ n V.
If 4, denotes the type of (4, Y) and 4, that of (4, Z) then 4 = 4, 4 4, and
htd; = ht 4. Since Z C K we have ht 4y < ht 4.

If 7 1s mnvolved in G(V, o, 7) we first show that 7 is nondegenerate on Y.
Suppose that r(x, y) = 0 for some x€ Y and all ye V. If ¥ = 0 wrnte x =
Ne + x, for some nonzero ¢ € E and some x, € N**'Y. Thus +(e, N*f) =0
for all fe E. Now any v € V can be written v = f + k for some fe E, ke K,
Thus 7(e, N"v) = 0 all ve V. Since (e, N"v) = (—1)" 7(N™e, v) and = 15
nondegenerate on ¥ we have e E N K = 0, a contradiction. Thus = 1s non-
degenerate on Y. Let 4, denote the type of (4, Y) 4, is uniform and At 4, =
ht 4. Put Z = Y* and let 4, denote the type of (4, Z). Thus 4 = 4, 4 4,.
If 2z € Z then arguing as above 7(2, N™o) = 0 for all v € V and so N™z = Q.
Thus Z C K and so kt 4, << ht 4.

By repeating this procedure for 4, we obtamm a decomposition 4 ==
4, + 4, + - where each 4, is uniform and At 4, > ht 4, > . Suppose
4 = 4, + 4, - --- 1s another such decomposition.
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We first show that 4 = 4; Suppose V' =Y’ + Z'with {4, Yy e 4, and
Z'CK. Then Y' = Y'/NY"' 1s 1somorphic to V/K and hence to ¥ == Y/NV.
This yields (4, V') ~ (4, Y). By Proposition 2 we get (4, Y') ~ (4, ¥) and so
4y = 4.

By induction we may suppose 4, =4, forz =1, 2, ., s — I To complete
the proof we must show that 4, = 4,. Suppose V =W+ U =W+ U,
where (4, WYy~ (4, Whedi+ + 4,3 and (4, U)ed, + - while
(A, UNed! + - Letm,=htd, = ht A/ and put V = V[Ker N*= We use
W, U, etc, to denote the mmages in ¥V, of W, U, etc. Define the nonsingular
formroon V by rde,, fo) = vle, N*sfyfore, fe V. Smee d/, 4, are uniform, by
Proposition 2, 1t suffices to prove that (4, , U,) ~ (4, Uy)(where 4, denotes
the action of 4 induced on V). If 4’ € U’ we have the unique decomposition
u' = @ -} u, where we W and we U. Hence in V, we have u, = w, -+ u, .
Define ¢u,” = u, ; we now show that ¢ gives the required equivalence.

Suppose U, N W, 5£ 0 Then, since At 4, ; > m, we can find a nonzero
e, & W, such that Ne e U/, Now ¢, = w, -+ u,’ for some w,/ € W, u, e U/
and, since Nau, == 0, we have Ne, e W, . Since W, n U,” = 0 this is a con-
tradiction. Hence U/ n W, = 0 and so ¢ 1s an isomorphism of U onte U, .

Clearly ¢4, = Ags and o = o3 so it only remains to show that

(g, o) = T{Puy, Yv.) for u/ v/elU,/.

Smee W, and U, are orthogonal we need only show that (1 — ¢}«
(I—$)o))=0 Now (1 —Pa/eW,NnKer N, and so {1 —¢) u,/ =
N, for some e, € W, . Combinmg this with Ny(1 — ) v, = (1 — ) Nw, =0
we have the required result The proof is complete. QED.

Proof of Proposition 5. We need some notation. If (8, ¥Ye 4, where S 15
semisimple, let eig 4 denote the set of eigenvalues of S on ¥ with multiphcities
counted. If = 1s involved mn G(V, o, 7) we introduce in Appendix 2 certain
bilinear forms 6 on V_*. Let sig 4 denote the signature of §

We need two results from Appendix 2.

() I 4, s 2 serusimple and indecomposable type then it 15 umquely
determuned by eig 4, and, if relevant, sig 4, .

(i) If 4, and 4, are distinet semisimple indecomposable types then either
eigd, Neigd, =doregd, = eigd, and sig 4, 3£ sig 4,

Now suppose we have some decomposition of 4 into a sum of sermsimple
indecomposable types then put 4 = 4% 4 -« 4 A® where in each A% all
indecomposable components have the same eigenvalue set while «f ¢ 47
eg A Neig AV = ¢. Since eigd = e1g AV U U eig AP each set eig 4@
is umque, hence f ¥V = W, 4+  + W, 1s a decomposition corresponding to
4 = A4 L - A the subspaces W, are unique Thus, if relevant, each
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sig 4 1s uniquely determmed by 4. By (1), (11), and Sylvester’s theorem the
indecomposable components of each 4% are umque. Q.E.D.

(27) Classification of Types. We must first describe all the indecomposable
types Suppose 4 is mdecomposable and (4, V') € 4, where 4 € L(V, o, 7).
Let G, = G(V, o,7) be the corresponding group G, 1s determined up to
isomorphism by 4.

By Proposttion 2, 4 is uniquely determined by 42 4 = m and by the structure
of 4. By Proposition 3 the semisimple type 4 1s indecomposable. Note that if
7(4, v) = M(v, ), where A = L1 then the F corresponding to 4 satisfies
(i, 7) = N—1)y"#(%, #).

The description of all semisimple indecomposable types is an easy calculation.
We do this in Appendix 2 and summarize the results there in Table A. This
table gives our notation for the possible 4 Note that { € C (and { is its complex
conjugate) and € = 1. We can now write down all indecomposable types 4.
This is done in Table II below. Column 1 lists the ten possible families for G .
Column 2 gives our notation for the indecomposable types: The subscript m
gives the height while the other symbols describe the structure of 4 and cor-
respond to the notation of Table A 1n Appendix 2 If 4 = 4,,({,.. ) thendim 4 =
(m 4 1) dim 4 and dim 4 =number of eigenvalues {,.. of A on V. Our use of
the same notation for types belonging to different families of groups should not
cause trouble. The meaning of, 4,,(Z, —{), for example, should always be clear
from context.

In the last column of Table IT we give an integer s €{0, 41, 42} which we
now define Suppose G, belongs to one of the families GL(V, 7,.), O(V, 1, o) ot
Sp(V, 7, 0.). Let 7, 7, , 7_ (see (1 2) and Appendix 1) be the related bilinear
forms and let (n, ,n_) describe the signature of this form, where #, are non-
negative integers giving the unique number of 4-1’s in this signature. We do not
necessarily have n_ <{ n,_ . Put s = n, — n_ . It is a simple exercise, using the
construction in the proof of Proposition 2, to find (n, , #_) and hence s for each 4.

It is convenient to define ind 4 = n_, provided G, belongs to one of the
three families mentioned above. With a slight abuse of notation we call ind 4
the index of 4. This definition does not require 4 to be indecomposable. Since
dim 4 = (n, -+ n_) for the families GL(V, r,.) and O(V, 7, 0,) and dim 4 =
2(n, + n_) for Sp(V, 7, ¢_) the index of 4 1s easily found from s and dim 4.

For convenience, we put 8 = (—1)™/%¢ (for m even).

Now let G = G(V, o, 7) be fixed and let A €L(V, o,7) and (4, V)e 4. In
general 4 1s not indecomposable so to describe it we must give its indecomposable
components. First observe that if 4 = 4; -~ 4, and V' = W; + W, is the
corresponding decomposition of ¥V then the groups G(W,, o, 7) for i =1, 2
below to the same family as G.

Let 4, and 4, denote any types belonging to the same family, i.e., G4 and G,
are in the same famuly. Suppose (4, , W,) € 4, then construct W = W, @& W,
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TABLE 1I
GL(V) 440
GL(V, 0.) 4.8 D L£1
4.(8) t=1
GL(V, 0.) 4,08, D
GL(V, %) 4,8~ {#+ —1 0
458 = -1 m even 5
m odd 0
4,(0) m even
Am(o, 0) m odd
O<V; T a'+) Am(Zr ’-Zy Z; ’Z) Z 7 iZ 0
4,0, ~0) —7%0 0
A5, =) {= —{+# 0{meven 28
m odd g
4,50) m even 8
Am(os 0) m odd
oy, Ts G-—) Am(C’ *—C, Zs _Z) {+# _‘Z
An<(L, —0) L=—-0+0
Am(oy 0) meven
4,40, 0) m odd
Sp(V, ) 4L —0) 1+#0
4,(0, 0) m even
SP(?’, 7, 0'+) Am(l: -, 5, "Z) { :Ef
4,40, 0) m even
Ame(o) modd
Sp(V, 7, 00) 4.8 —~4, 4 =D L+ -1 0
4.5(L, =0 = [0 {meven 5
m odd o
4,500, 0) meven §
4,(0, 0) m odd 0

and define 4, o, T as the obvious direct sum actions of 4, , ¢, , 7, . Then (4, W)
is well defined and its type 4 1s uniquely determmed by 4, and 4,. Clearly
A =4, +4, and dimd = dim4; - dim 4, If relevant, we also have
indd = ind 4, + ind 4, .

481/44/2-3
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Nowif 4 = 4, + -+ 415 the decomposition of 4 1nto 1ts indecomposable
components we have

dmd = dmd, + - -+ dimd,

and if relevant

mdd =mdd, + -+ mdd,.

Conversely suppose 4y ,..., 4, are indecomposable types belonging to the same
family and satisfying the above restrictions on dimension and index. Then, using
the construction in the previous paragraph, 4; + - -+ 4, 1s a well-defined type
which will contain a pair (4, V) for some 4 e L(V, v, 7).

As a consequence of Proposition 1 in (2.1) we thus have a complete description
of all orbits of G on its Lie algebra.

(2.8) ExampLEs. Note that if G belongs to one of the three famihes for which
the index of a type is defined and if (4, V) e d, where G = G(V, o, 7) and
AeL(V, o,7) then ind 4 1s the integer p given in Table I and described
Appendix 1.

As a first example suppose G 1s compact, ie., G is one of GL(V, %)), O(V,
, ¢{?), or Sp(V, 7, o). Thus for any type 4 corresponding to G we have
ind 4 = 0. By mspecting Table II the only mdecomposable types of index 0
have height 0 and pure mmagmary eigenvalues. For example, if dim V = 5 and
G = O(V, 7, 6'”) the possible mndecomposable types are 4,5(L, —{) with { =
— <= 0 and 4,(0). So the possible types for G are

A+ —&) + 4¢* (G s — L) + 447(0),
AgH(E, =) + 3 444(0),
5 4,70),

where we let 24 denote 4 + 4, ete.

A second example, for a noncompact group, 18 G = Sp(V, 7, ¢®) with
dim V = 8. Thus if 4 1s a type for G we have ind 4 == 2. We describe all
“milpotent” types, t.e, those containing a pair (4, V') with A nilpotent. The
possible indecomposable types with dimension <8 and index <2 are found
i Table II:

type dim md type dim ind
4,40, 0) 2 0 4,40, 0) 6 2
4,7(0,0) 2 1 4,70, 0) 6

4,(0, 0) 4 1 440, 0) 8 2



CONJUGACY CLASSES IN LINEAR GROUPS 351

Hence there are six possible nilpotent types for G:

2 4440, 0) + 2 4,70, 0),
4540, 0) + 4470, 0) + 44(0, 0),
2 44(0, 0),

4570, 0) + 4,%(0, 0),
447(0,0) 4 4,7(0, 0),
440, 0).

The first type has 4 = 0, the next two have A% = 0, the next two have 4% = 0
while the last has 4% = 0.

From these examples it should be clear that, using Table II, the types for any
particular case are easily described.

Our proofs in (2 6) give a practical algorithm for computing an expheit
representative (4, V) for any type 4. If 4 is indecomposable the structure of
(4, V)is given in Appendix 2. Using the construction in the proof of Proposition
2 we can then describe (4, V). If 4 is decomposable use the direct sum construc-
tion in (2.7). For example, suppose G = O(V, 7, ¢_) and dim I/ = 10 and 4 ==
4,40,0) + A,~(L, —0), where { = —{ # 0. Then ¥V = W, + W,, where
W, =<e;, fr, Ney, Nfy>and W, = <e, , f, , Ne,, N, , N3f,> and 4 = N and
N? = 0 on W, while

Ae, = Les + Ney,

Af2 = —gfz + Nfz s

and N3=0 on W,. We have oe; = f;, oe; = f, and o* = —1. While
(e s Nfy) = +1 and +(ey, N%,) = (fo, N3,) = —1 and hence 7(Ne,,
Ne,) = 7(Nf, , Nf,) = 1. Other nonzero values of r are obtained from these
by using +(u, v) = 7(2, «). All other values of + on the basis elements are zero.
Thus 4, a, r are explicitly described

Using the description of V,~ in Appendix 1 1t is an elementary exercise to
rewrite the above description of 4, o, 7 1n terms of 5 X 5 quaternionic matrices.
Similarly for any of the o, families descriptions of 4, o, T as real matrices on
V,* can easily be given.

Finally we mention the converse problem: Given (4, V), determine its type
as a sum of (unique) indecomposable types. This 1s easily solved. First find the
eigenvalues of 4 on 7 and use them to get 4 = S + N. Find m such that
Nmit = ( but N™ =£ 0. Use the construction in the proof of Proposition 4 to
decompose V = W, + W, + -- such that each (4, W) is uniform and the
heights are all distinct. For each such pair find (4, W) and use the eigenvalues of
A and, if relevant, the signature of 8 to describe the semisimple imndecomposable
types occurring in the decomposition of (4, W). By Proposition 2 we now know
all the indecomposable types occurring in the decomposition of the type of {4, 7).
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An example of such a calculation occurs 1n [13] for the group Sp(V, =, o).
However, the notation and methods are rather more cumbersome than in the
present article.

3. Conjucacy Crasses v THE GROUPS

We show how the results of Section 2 allow one to describe all conjugacy
classes for the groups defined in Section 1.

If Ae G(V, o, 7) define equivalence of pairs (4, V) exactly as m (2 1). Then
Proposition 1 holds with 4 e L(V, o, v) replaced by 4 € G(V, o, 7).

The definitions of (2.2} and (2.3) go through with only one change: If
AeGlV,e,7)and A = § 4+ Nyasin (2.3) put U = (1 -+ S7IN,) then U 1s
unipotent, 4 = SU = US and both S, Uliein G(V, o, v} Put N = S-1N, and
note that if 7 is mvolved in G(V, o, 7) then 7(Su, Sv) = +(u, v) and (Nu, v) +
7(u, Nv) 4 +(Nu, Nv) = 0. The last condition mmplies that, if N1 = 0, then
T(N"™u, ©) + (— 1y +(u, N*V) = 0 and +(N'u, N*0) =0 for all j &k > m.
These two observations allow one to adapt the proofs 1n (2 5) and (2.6) almost
verbatim In particular the calculations m the proof of Proposition 2 all go
through. Note however that in the fourth paragraph S,#, = —7,S becomes
S;1#, = 1,5, As we will show, the classification of the semsimple indecom-
posable types is essentially the same. Hence the proof of Proposition 5 goes
through unchanged and so the theorem holds. All statements in (2.7) hold in the
group case

It only remains to consider the classification of the semistmple indecomposable
types We use 4 to denote types corresponding to groups and 4 to denote
types corresponding to their Lie algebras. Although 1t is easy to go through the
calculations of Appendix 2 again and make the necessary changes a quicker
approach 1s to use the Cayley transformation.

For a fixed family of groups let 4 denote the set of all semusimple indecom~
posable types. If 4 € 9" note that 0 ¢ eig 4. For the corresponding family of Lie
algebras let 7, denote the set of all semisimple indecomposable types 4 satisfying
0, 41 ¢ e1g 4 and let 7 denote the set of semisimple indecomposable types 4
with 0 € eig 4 From Appendix 2 we see that | 75| < 2.

We now define two mappngs, y, and y_, of 7; U Tyinto I Hde T, U T,
and (S, W)e 4 put

S=@0—S8)(1+8"1 and y.S=(S+1)S—1)™

Then .S 1s an element of the group, 1s semisimple, and (yS, W) is indecom-
posable. If (y+S, W)ed we put y. 4 = 4. These two maps are well defined.
If 497 and (S, W)e d let 4" denote the type of (—S-, W). Then y 4 =
v_ A Hence y. 7, = y_ 7, . However, y, 9, y_F, and y,.F; are all disjoint.



CONJUGACY CLASSES IN LINEAR GROUPS 353

LevMa 9 =9, 7, Uy, TyVUy.T,.

Proof First observe that if AeF and +le eigﬁ then, due to the inde-
composability, if (S, W)ed then S = T on W Thus for any deJ
if (S, W)yed we can define either S = (1 — (1 + S or S =
(S -+ (S — 1)~ This S will be an element of the Lie algebra and if (S, W) e 4
then 4 € 7; U . Thus we can invert y, and y_ QED

Thus all results for the Lie algebra carry over to the corresponding group.
In particular, usimg the entries mn Table II in (2.7), we can immediately write
down all the indecomposable types for any famuly of groups. For example, for
Sp(V, 7, o_) we would get

IO N R

AEQ, XY, X=Xt 4],
4,11 _

Jmi(——l, _1)5 W == even,
4,1, 1) B

Zm(~—1, —1) m = odd.

The explictt structure of these types 1s found by applying the Cayley transforms
¥, or y_ to the corresponding semisimple type for the algebra and then con-
structing 4., by the methods used n the proof of Proposition 2

As an example, from the calculations in the third paragraph of (2.8) we see
that if dim ¥ = 8 then the group Sp(¥, v, ¢**) has six urupotent classes.

4. SPLITTING OVER SUBGROUPS

Let G denote one of the groups defined n (1.1) or (1.2) and let G’ denote i1ts
commutator subgroup and Z(G) its center. Let L denote its Lie algebra.

In this section we describe how the orbits in L under G split when G 1s replaced
by any subgroup M lying between G’ and G. Using the correspondence given in
Section 3 we will also see how to describe the sphitting of conjugacy classes of G
on restriction to M.

(4.1) Normal Subgroups of G. Since the orbits in I, under M are the same as
under MZ(G) we need only consider those M which satisfy G'Z(G)C M C G,
For the structure of G refer to [11]. We collect 1n Table IIT the relevant results.
Let n = dim V' and suppose z >> 3, then column 3 describes the quotient
G|G' Z(G) for those families where it 1s 5£1.

Let G denote one of the groups in Table III If ge & then detg is a real
number and we put D(g) = sign(detg) = +1.If g O(V, v, 6!”) and p + 0 let
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TABLE IIT

G Restrictions GIG'Z(G)
GL(V, ay) 7 = even Zy
o, ) n = even Zy
O(V’ Ts UE:J)) b= 0 n = even Zz
p#0 n=odd Zs
P #0 n=even p = odd Zy

p#0 n=even, p = even Zy X Zy

C(g) denote the spinor norm of g, see [11, II Sect. 7]. We may suppose that
C(g) = +1. Put E(g) = D(g) C(g) Note that C, D, E all define homomor-
phisms of G onto {+1}. We can now describe the various possibilities for M.
If G 1s one of GL(V, 0,), O(V, 7), O(V, 7, {7") or O(V, 7, o'?’) with n = even,
p = odd then G'Z(G) = Ker D If p £ 0 and G = O(V, 7, ¢!”) with = odd
then G'Z(G) = Ker Cif p = odd and G'Z(G) = Ker E if p = even. Finally 1f
both n and p = 0 are even G'Z(G) is Ker D N Ker C.

R

) (4.2) The Centrahzer Argument Suppose G and L are defined on V. If
A eL let 4 denote the type of (4, V). Let C4(4) = {ge G | g4 = Ag} and put
M4y = MCy(4) Since G/M is abelian the subgroup M(4) only depends on 4.

Now 4 represents a unique orbit in L under G and so we may speak of 4
“splitting” when G 1s restricted to M. Thus 4 splits if and only if M(4) = G
and if % 1s the index of M(4) in G then 4 sphts into & distinct types. From
Table 111, & = 2 or 4

Let g € Cg(A) and write g = 2u, where 2 1s semisimple, # is unipotent, and
zu = uz Then both 2, u e Cg(4) and since u lies in the connected component
of the 1dentity of G we have D(g) = D(z) and C(g) = C(2) Thus to determune
M(d4) we may restrict our attention to the semisimple elements 1n Cy(4)

Let z€ Cg(A4) be semisimple and let 4 denote the type of (z, V). Write
A =4, + 4 4d,,whereeachd, is the sum of all serusimple indecomposables
with the same eigenvalue set while for 2 + j A, and 4, have no eigenvalues in
common Let V = U; + - -+ U, be the corresponding decomposition of ¥
then each (4, U,) is a well-defined pair and hence gives a decomposition of 4.
Suppose (4, U)ed, and 4, = 4,' + 4] 4 -, where each summand is inde-
composable By considering the various possibilities for 4, and the possibilities
for the 4,), 4),. 1t 1s a straightforward calculation to find the values of D(z)
and C(z) on U, . It turns out that all possible values for D, C are exhausted by
that A, on which # = —1 In Table IV we summarize the calculations. In column
2 we list only those indecomposable types for L for which a nonidentity contribu-
tion to either D or C may occur and in columns 3, 4 we give the contribution.
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TABLE IV

G Types D C
GI(V, 0}) 400 =T m = even —1
oV, 7) 4,(0) m = even —1
o, r, o' 4,,7(0) m = even —1
o, r, '? AL —DL =1 m= even 41 —1

p#0 4,,10) m == even —1 (—1ym2
4,7(0) m = even —1 —(—1ymr

To determine M({4} write 4 as a sum of indecomposable types and then refer
to Table IV For example, if 4 =4, + -+ 4,, where all 4, are inde-
composable and none of the 4, occur in Table IV then M(4) = M Now
suppose M = Ker D and from Table IV some 4, contributes D == —1 (this
means that there exists a 2 € Cy(A4) which will equal —1 on the subspace cor~
responding to 4, and will equal +1 on a suitable complement), then M(4) = G.

(4.3) Exampres Let G = GL(V, 0,) and n = even and suppose M =
Ker D. Note that this is equivalent to considering the orbits in L under the
action of SL(V,6,) ={geG|detg = -+1}. Of course, G ~ GL(n, R},
SL(V, 6,) =~ SL(n, R) and L ~ {set of real n X 7 matrices} From Section 2
the orbits in L under the action of G are of the form

A=Y 4,0 + Y 4. (6)

where {, % [, and §, = £, . From Table IV we see that 4 splits under M if
and only if no 4, (£,) with #, == even occurs m 4 If 4 splis there are two
orbits under M.

As a second example let G = O(V, 7, 0@) with dim V = 8, i.e., G =~ O(6,2).
Using Table IT one finds that G has six unipotent classes, namely, (if 4 denotes
A(1), ete)

6J0+ + Zjo‘y Jf -+ 550—;-,
Ay +ad¢ 4y, A 340,
24,0 + 24+, 4, + 445"

The possibilities for M are G, Ker D, Ker C, Ker E, and G’ == Ker D N Ker C.
Using Table IV the only splitting occurs if M = Ker C or G' in which case the
three classes in the right-hand column each split into two.
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5. Oruer FreLps

Let & be a perfect field of charactenistic not 2 Let I be a vector space over k&
and T a nondegenerate symmetric or alternating bilinear form on ¥ Define the
groups O(V, 7), Sp(V, r) asmn (1 1).

Note that, by omutting any reference to o, all definitions in (2.1), (2 2), (2 3)
carry over to the present case Since k& is perfect the S + N decomposition 1n
(2.3) holds. For a practical construction of .S and N, see [14]. Next, note that
Propositions 1-4 remain true The proofs are unchanged except that they become
considerably shorter since o 1s omitted The problem 1s entirely with Proposition
5 and is, of course, due to the failure of Sylvester’s theorem. However, we show
that there 1s a reasonable generalization of the arguments used to prove Proposi-
tion 5 and hence of the theorem 1n (2 2)

Let p € £[] be a monic irreductble polynomal over k. Suppose p == ¢+ 4
at' + ¢t + ¢yq thus deg p =7 - 1. Define p € &[t] by p = ¢+ +
dit" -+ -+ d.y, whered, = c¢,,y_,jc,;; With ¢y = 1. Then p = p 1f and only 1f
the 1nverse of every root of p 1s also a root. If p == p and deg p = 1 then p =
t 4 1, while if deg p > 2 then deg p 1s even and ¢,; = 1

If p 1s irreducible and p = p define the field &k, = k[t]/{ p>. For {ck,,
let {— £ be the automorphism of %, mduced by fixing & and mapping ¢ mto
+1. Letf, = {{ck,| L = ¢} and put n, = {{{| { € k,*}. Thus n, 1s a subgroup
of the multiplicative group f,*. Put T, = f,*/n,,.

For example: If % 1s algebraically closed then T, = 1.If £ is a finite field then
T,~Z,if degp=1and T, =1 1f degp >2. if k=R then T, ~7Z,.
In general T, is not finite.

We now describe all the indecomposable types for O(V, 7). Let 4 be any
indecomposable type of height m. 4 is characterized by an irreducible p € k[¢]
and, if p = P, an element t € T, For a suitable group all such p may occur and,
if p = p, all such # may occur. We give, 1n Table V, a list of all possible indecom-
posable types for the family of groups containing O(V, 7). In brackets are the
changes required for the group Sp(V, 7) Our notation is adapted from Table IT
(as it would appear 1n the group case, see the example at the end of Sect 3):
p € F[f] 1s an 1rreducible polynomual, ¢ € T, , and distinct p, ¢ give distinct types,
but 4( p, $) == A( §, p). The last column gives dim 4.

TABLE V
4,(p, $) p#b 2(m - 1) deg p
4,4 p) p = p,degp # 1 (m + 1) degp
j:EI—, ;,) —1 gm = odd(even) 2m + 1)
4.4(1) ;m = even(odd) (m+ 1)

4,4—1)
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Fori == 1,..,s,lett,e T, , where p1surreducible and p = p Theset{t;, , 1}
defines an equivalence class of s-dimensional Hermutian forms over &, ; narely,
let {, € k, be any 1nverse image of ¢, then the form is ({# y; +  + (&, y,). We
may call {#; , ., ¢} the signature of this form. We have

Prorosition 6  Lett,,u,e T, then
Axp)+ - AP = AR+ + A0(P)
1f and only 1f the forms with signatures {t; , , t;} and {u, ,.. , u,} ave equivalent

(If deg p == 1 we understand 4,,° (¢ 4 1) to be 4,7 (4-1)). As a result of Propo-~
sitions 2-4 and the arguments given for the proof in (2 4) we see that the above
result describes the only way mn which nonuniqueness can occur in the decom-
position of an arbitrary type into a sum of mdecomposables.

The proofs of the statements in the two paragraphs which precede and follow
Table V are easy and since they occur as special cases of results n {10, Sect. 3]
we onut them

As pointed out mn {10] the restriction to perfect fields is not fundamental.
It is only necessary to avoid the S -+ N decomposition

APPENDIX 1: EourvaLence CLASSES FOR o

We use the notation of Section 1. We first discuss case (i) of (1.2). Then ¢
and o’ are equuvalent if ¢ = ak~lok for some % € G and nonzero o € C. We may
suppose that o® = 41 and, if + is involved, that r* = #. Note that o and —¢
are always equivalent Let # = dim V.

o = +1. Let V,;t ={velV|ov =o} Then V,* is a real n-dimensional
vector space. If G = GL(V) there 15 clearly just one equivalence class for ¢

Let 7, denote the restriction of = to V™ It 18 a nondegenerate real bilinear
form.

If 7 1s alternating then =, is alternating Since all such forms are equivalent
we can always choose k € G = Sp(V, 7) mapping V" onto V! . Hence there 1s a
single equivalence class for ¢

If v 18 symmetric let ( — p, p) denote the signature of 7, . Replacing o by —o,
if necessary, we may suppose that 0 < p < (n/2) Each p corresponds to a distinet
equivalence ¢lass for o.

o= —1 LetH ={a+pj|o,feC,j* = —1, of = j&} denote the qua-
ternions and let (« -+ Bf)¥ = o — jB be an anti-involution of H.

For v e V define (a + Bf) v = aw -+ Bowv. Let V,~ denote the set V' considered
as a vector space of dimension /2 over H. Again, for G = GL(V), there 1s
just one equivalence class for o.
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Define 7_ as a nondegenerate H-valued form on V,~ by 7_(x, ¢) = (u, v) +
(u, ov)j Then v_(\u, pu) = Ar_(u, v) p?for A, ueH

If 7 1s symmetric then 7_(u, v) = 7_(v, u)%. In this case all such forms are
equivalent. To see this use the usual Gram—Schmidt algorithm to find a basis {e,}
of V,~ such that r_(e,, ¢,) = 8,,. Hence there 1s a single equivalence class for o.

If 7 is alternating then 7_(u, v) = —r_(w, #)? A basis can be found so that
T_(e,,¢) = 48,7 Let (n/2 — p, p) denote the resulting signature of 7_.
Replacing o by -0, if necessary, we have 0 < p < n/4 Each value of p
corresponds to a distinct equivalence class for ¢ (see [11, I, Sect. 8] for details).

7, case. In case (1) of (1.2) the equivalence of ¢ and ¢’ becomes ¢’ = ak ok,
nonzero a€ C, ke GL(V). We may suppose ou(v) = oov(u) all u, ve V. Let
(n — p, p) denote the signature of the corresponding Hermutian form 7,(x, v) =
ou(v). As above, we may suppose that 0 < p <C n/2. Dastinct values of p cor-
respond to distinct equivalence classes for o.

APPENDIX 2: Tur SEMISIMPLE INDECOMPOSABLE TYPES

Let (S, W) denote a pair belonging to a semusimple and indecomposable
type. Simnce S is semisimple its eigenvectors span W. Let G denote one of the
complex groups defined 1n (1.). We first discuss these groups.

G = GL(V). LetSe = [esome [ e Candnon-zero e W Clearly {e) = W.
Denote the type of (S, W) by 4(¢).

G=0W,7) IS #0let Se = Leand { 5= 0 and choose fe W such that
fis an eigenvector of S and (e, f) = 1. Since S e L(W, o, v) we have Sf = —{f
and also (e, &) == (f, f) = 0 Thus dim {¢, f> = 2 and = 1s nondegenerate on
{e, f>. Hence W = (e, f). Denote this type by A({, —{)

If S = 0 choose ¢ € W such that (e, ¢) = 1. Thus W = {¢> Denote this
type by 4(0)

G = Sp(V, ) Let Se = le and choose f such that 7(e, f) = 1 As above,
find Sf = —f, and dim {e, f> = 2 since + is alternating. Thus W = (¢, .
Denote ths type by 4({, —{) Context will distinguish 1t from type 4({, —Z) for
oV, ).

Now let G, denote one of the case (1) real forms of G It is straightforward to
discuss these cases one by one, just as for the complex groups, but we prefer to
give a more general discussion.

Let 4 denote a semisimple indecomposable type for G, . If (S, W) € 4 then,
by onutting o, this pair may be considered as belonging to a type for G. Let
4¢ denote this type. It is semisimple and hence is a sum of types, described above.
In the following discussion we use a superscript “c” to distinguish types for G
from those for G,
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Suppose 4,¢ is an indecomposable component of 4% Let (S, W;) € 4;°. Since
7 =F the pawr (S, oW,) 1s well defined. Denote its type by ¢ 4,°. Note
that etther oWy = W, or oW, W, =0 Then since ¢ = +1 and 4 is
mdecomposable we have three possible cases:

(a) 4° =47+ o4y and FARaE a/jlc,
(b) 4°=Ap+ode and  Af = ady,
(C) 40 = A4r and Af = o'Alc.

Let esg 4,° denote the set of eigenvalues of S on W, .

Levva A1 Case () occurs of and only if eig 4 = eig A

Proof. Observe that, in the above classification for G, each mdecomposable
type 1s characterized by the set of eigenvalues. QE.D.

Levma A2, Suppose S <O then case (b) occurs of and only of o® = —1
and all elements of eig 4,° are real.

Proof By Lemma A.]1 we may suppose o 4,° = Ay*. First let dim 4,° = 1.
Let Se = fethen { = { # 0.1f 0 = -1 and dim (e, 0e> = 2pute, — ¢ + oe.
Then <{e> 18 S-invariant and hence (S, {¢,>) €4, a contradiction, since 4 18
indecomposable Hence dim {e, o¢) =1 and so thus is 1n case (¢). If ¢® = —1
then necessarily dim (e, ce> = 2 and so we have case (b).

Now let dim 4,° = 2. Suppose Se = {e, Sf = —{f and (e, f) = 1. If
o*=-+1and { = put ¢, = e+ oe, fy =f+ of while if { = —{ put
e, = e+ yof, f = f -} yoe, where v = 1 if r is symmetric and y =7 f 7 is
alternating, If o2 = —1 and { = —{ put ¢, = e + tydf, f, = f — 1yoe. Then
i each case (S, <{e;, fi>) €4 and so this 1s case (c). If 6 = —1 and { = {
then dimmde, o¢) = 2 and so the eigenvalue { occurs with multiplicity 2 m W.
Since { == O this imples that we have case (b). Q.ED.

It 1s possible for distinct types 4, 4° for G, to give the same type 4° = 4'°
for G' The next result shows that this can only happen in case (¢).

Leviva A3 In cases (a) and (b) if 4, A" are types for G, and A° = A'¢ then
4 =4.

Progf. With the above notation we bave W = W, + oW, 2 disjoint,
orthogonal sum. Suppose (S, Wed” and let W' = W) + o'W, be the
corresponding decomposition. We may suppose (8", Wy') e 4,°.

Let ¢ be any isomorphism of W, onto W," which gives the equivalence
(S, Wy) ~ (8, Wy'). Then define the isomorphism ¢ of W onto W’ by putting

$wy + owy) = dw, + ddw,  for w,wee W,.
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Then ¢o = o’d smce we may suppose a®> = o’2 = -+1. The other conditions
for equivalence are immediate. Thus 4 = 4. QED.

Now consider case (c¢) when S % 0 First suppose { = { then by Lemma
A2, o® = 1. Suppose dim 4 = 2 then choose ¢ ,f; spanmng W,
(see Appendix 1) and such that Se; = le;, Sfy = —{f;. Then (¢, &) =
7(fy, /1) = 0and without restriction we may choose ¢, , f; to satisfy (e, , f;) = 1.
Now let (S, W)€ 4’, where 4¢ = 4'°. Then we may choose sumilar ¢, f," 1n
W, Putde; = e, f; = f;', this yields (S, W) ~ (S, W’) and hence 4 = 4'.
The case dim 4 = 1 is simular.

Next, still n case (c) and S 5= 0, suppose { = —{. Then dim 4 = 2. If
o? = 41 define the symmeiric, nondegenerate and real bilinear form €, on
Wt as follows, If 7 1s symmetric 8, = 7, (see Appendix 1), and 1f 7 1s alternating
8, (u, v) = 7.(u, Sv) for u, v W,+*. We can choose ¢, , f; spanning W * such
that Se; = {fy, Sf; = —le, and from 7,(Su, v) + 7.{u, Sv) = 0 we have
0.(er , f) = 0 while 0, (e, , &) = 0,(f , f1). Without restrictions we can choose
e, f, so that (e, , ¢) = 41 Let 4+ and 4~ denote types for G, giving the
two possible cases 8.(e;, ¢) = -1 or —1. Arguing as in the previous para-
graph one sees that A% = 4~ while if 4’ 1s any type for G, with 4'¢ = (4%)°
then 4’ = d+or 4’ = 4~

Continuing case (¢) with .S s£ 0, we now suppose 0% = —1. As1n Appendix 1
consider W as one-dimensional over H. Define the Skew-Hermutian form 6_
on W, as follows Put 8_ = »_ 1f = 1s alternating and 8_(u, v) == +_(u, Sv) 1f
7 is symmetric. Now choose ¢; so that Se, = le, . From = (Se;, ¢) + 7 (¢,
Se,) = 0 we may suppose ¢; chosen so that 8 (¢ , e,) = 7. As in the previous
paragraph there are two distinct types 4+, 4- for G, with (A7) = (4~)

Finally suppose S = 0 Then we have exactly the situation discussed in
Appendix 1 For G = GL(V) and ¢* = +1 there is one type of case (c) and for
o® == —11tis case (b) For G = O(V, 7)1f ¢ = -}-1 there are two types 4+, 4~
with (4+)° = (4-)¢ = 4(0) while if o* = —1 1t is case (b). For G = Sp(V, r) if
o? == 1 there 1s one type of case (¢) if 6> = —1 there are two types.

In the unitary case, i.e, case (i1) of (1.2), a direct calculation quickly gives the
semi-simple mndecomposable types Let Se = {e and suppose { 5= —{ Choose
f an eigenvalue of S such that r.(¢, f) = oe(f) = 1. Then we have T.(e, e) =
7(f, f) = 0 and Sf = —f Hence dim<e, f) =2 and so W = (e, f». Denote
this type by 4(Z, — ). If { = —Z and 7,(e, €) % O renormalize e to get 7,(e, ) =
1. The two signs give distinct types 4=({). If 7. (e, ¢) = 0 choose eigenvector f
such that 7.{e, f) = 1 then a swtable linear combnation e; of ¢ and f gives
T4(ey , &) 7 0 and Se; = e, so W == {e;), a contradiction.

These results are summarized in the following table. The notation for an
indecomposable type 4 for G, 1s the same as for 4° in case (c), but with super-
scripts - as defined above. In cases (a) and (b) an obvious concatenation is used,
for example, if 4¢ = A(L) + 4({) for G = GL(V) we use the notation 4(Z, ) for
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TABLE A
o? T Type Conditions
A
+1 4,0 {+ ¢
A0 t=1
—1 A48, D
alt A4, O
+1 alt AL —-4 4 -0 ¢+ £l
ai, -9 {=1
44, ~0) {=—L=0
—1 alt AL, 4,4 -0 {# =1
4L, — 1) {=~I
sym A, -9 {+0
4(0)
+1 sym A(C) ‘i, Z; 'Z’) Z #* ﬂ:z
4, ~ =[+0
A5, =0 {=—L#0
4%(0)
-1 sym ag, ~5,f, -9 L+ L
AL, — 1) {=—0+#0
4(0, 0)
* AL, -0 ;#+ —{
4D {= —{

4. Note that the ordering of the eigenvalues 1 4(Z,..) 1s unimportant, for
example, 4({, Z) = A(Z, ). Columns 1 and 2 give ¢* and the symmetry of =,
a blank denotes that o or 7 (or both) not involved 1n this case.

Since the forms 0. are referred to several times in Section 2 we summarize
their definition:

0. (u, 9) = v, {u, v) if 7 is symmetric,

= 7, (u, Sv) if S 5 0and 7 is alternating,
where u, ve V,*.

0_(u, vy = v_(u, v) if 7 1s alternating,
= r_(u, Sv) if S 5 0 and + is symmetric,
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where #, v € V,~. Note that 8. are well defined even if (S, V) 1s not indecom-
posable. Thus if (S, V)ed with 4 semisimple by Sylvester’s theorem the
signature of 6 1s uniquely determined by 4. We denote this signature by sig 4.
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