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1. Introduction

In this paper, we present some calculation of the Gromov-Witten invariastsxofl'2.
Since the symplectic Gromov-Witten invariants in fact only depend on the deformation
class of symplectic forms and we have shown in [10] that there is a unique deformation
class ons? x T2, we merely need to compute the Gromov—-Witten invariants for some spe-
cific symplectic structure. We will actually pick some Kahler structures in the computation.
Let (M,w) be a symplectics? x T2 and [$2] and [T?] be the homology classes
represented by? x pr and pt x T2, respectively, and pair positively with the symplectic
form w. Denote the homology class?] +d[T?] by A; 4 and we simply writed; ; asAg.
Our first result is about the embedded genus one curves of the sequence of glasses
More precisely, let us defin&1(A;,1) as the number of embedded genus 1 curves in the
classA1 4 and passing through points.

Theorem 1. The Gromov-\Wtten invariants N1(A;1) = 2.

The second resultis about the general nodal curves of the sequence of dlad3erote
N, (Ag) (orng(Ag)) the number of genygcurvesin classl 4, passing through+1 points
(or passing througlg points and intersecting two circles which generate the first integral
homology). Itis more illuminating to assemble them into generating functions. To that end,
we recall that the quasimodular for@y is defined by

1 o0
Ga=—o,+ > owar
k=1
whereo, = Zdlkd is the partition function.
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Theorem 2. The Gromov-Wtten invariants Ng(Ag) and n,(A4) are given by the
generating functions,

Y Ng(Ang” = (g + D(DG2())’,
d=0

o
Y ng(Ang? = (DGa(q))*,
d=0
where D isthe differential operator ¢ %.

Theorem 1 is proved by viewing/ as a nontrivial holomorphics? bundle (see
also [13]). ActuallyN1(A1,4) are just the Gromov invariants appeared in [18] (in [6], it
was shown that the Gromov—Taubes invariants can be obtained from the Ruan—Tian invari-
ants [15]). Therefore Theorem 1 follows immediately from Taubes’s celebrated theorem
‘SW = Gr’ [19] and our wall crossing formula of the Seiberg—Witten invariants [9]. How-
ever, we think the direct counting presented here is still interesting. Theorem 2 is proved
by viewing M as a trivial product holomorphic bundle, similar to the approach in [2].

These invariants are enumerative. Thus it is natural to compare with Gottsche’s beautiful
conjectural functions of the number of curves on algebraic surfaces [4,8].

The organization of this note is as follows. In Section 2 we define the Gromov-Witten
invariants of symplectic four manifolds. In Section 3 we prove Theorems 1 and 2.

2. Stable mapsand Gromov—Witten invariants

Let M be a closed symplectic four manifold with the symplectic fapnand a com-
patible almost complex structute A (g, k) prestable map is a tuplgf, X, x1, ..., xx),
whereX = X; is a connected projective curve of gerusith at worst ordinary double
points as singularities; are distinct smooth points aB, f is a continuous map fror’
to M, and pseudo-holomorphic on ea&h. A prestable map is in clasé € Hx(M; Z) if
S« X]=A.

f is called stable if the automorphism group is finite. Two stable maps are equivalent if
there is a biholomorphism: ¥ — X’ such thav (x;) =x/ and f' = f o o.

We denote the equivalence classeggok) stable maps in class by M, (A, M, w, J).
There is an evaluation map

v Mg (A, M, w,J) — M,

(fs X x1, o ;) = (f(x1), .o, f (),
which is crucial to the definition of the Gromov-Witten invariants. Li and Tian [12] (see
also [3,14,16]) construct a virtual fundamental cyiche , 1 (A, M, w, J)]V" (in fact since
four manifolds are positive, for generit, Ruan and Tian construct actual fundamental
cycles in [15]) which have real dimension

dek(A)=—2K, A+ 2k —2(1—g),

whereK,, is the symplectic canonical class.
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The Gromov-Witten invariants are defined by pulling back cohomology class&& on
via the evaluation mapv. More precisely, givery circlesys, ..., y, in M with Poincaré
dualsyn, ..., 74, define the Gromov—Witten invariant

Ve k(A y1, .., vg) = / v ([M]P x p1x -+ X 7y),
Mg k(A M0, )"
where[M] is the fundamental conomology class gnet k —g. Givenp pointsy, ..., yp,
Y, k(A, y1,..., ¥y counts the number dafg, k)-stable maps in class such thatf (x;) =
vi, 1<i<p,andf(x,1j) €, 1<j<q.
Three kinds of Gromov—Witten invariants are of particular interest. Giveand g,
introduce

kga=—Ky-A—(1-yg),
lga=kga—bi(M)/2.
Define
Ng(A) =Wy, ,(A),
ng(A) = lI/g,lgVA (A9 Vl, s yb]_)’

where y1,...,yp, IS an integral basis of{1(M;Z)/Tor. In case both of them are
enumerativeN, (A) counts the number of gengscurves in classt and passing through
kg, 4 number of points, while, (A), by a result in [2], counts the number of gergusurves
in a fixed linear system and passing throuigla number of points.

To introduce the third interesting invariaNt,4)(A), we need to defing(A) the genus
of A,

g(A)=7K‘”'A2+A'A +1.
By the adjunction formula [13], it is the maximal genus of any curve represeAtirgnd
any curve with such genus must be embedded. It is shown in [EMhat (A) is the same
as Taubes’s Gromov invariantin [18].

We want to remark that Gromov-Witten invariants actually count the number of maps
instead of just the image curves as in traditional algebraic geometry. Though these two
ways of counting often coincide as is the case in the present paper, the Gromov—Witten
invariants do differ from the enumerative invariants sometimes and tend to be easier to
calculate. They have richer structures like the composition law [15] and the fascinating
Virasoro constraints.

3. Enumeration of curves

In this section we will prove Theorems 1 and 2. Bdr= $2 x T2 with a symplectic
form w, [S?] and [T?] are the two positive homology classes representing the factors.
Denote the Poincaré dual 2] still by [72], the symplectic canonical class is then simply

K, =-2[T?].
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Therefore easy computations show that

g(A1q) = d-DI+1,
kag-1+1,4,, = (d+ D),
kg,Ad =g+ 1.

In broader terms, our strategy of proving Theorems 1 and 2 is similar. To calculate the
Gromov-Witten invariants, we have the freedom to choose any compatible almost complex
structure and any configuration of points and circles on the symplectic four manifold. We
will choose some very special integrable complex structure (and some natural Kahler form
which we will not make explicit) such that is holomorphically fibered by rational curves.

And we pick the points and the circles carefully so that the domain curves of the maps are
forced to be degenerate and simple and thus make the final enumeration a fairly easy task.

We start with Theorem 1.

Proof of Theorem 1. Consider the complex structure coming from the projectivization of

L & O over an elliptic curvel’, whereQ is the trivial holomorphic line bundle antl a
nontrivial holomorphic line bundle with degree zero. The two line bundlesmd O give

rise to two disjoint sections of the projective bundle, which all represent the[@lasince

the two line bundles are topologically trivial. Since there are no other line subbundles, these
two tori 71 and 7> are the only two curves in the clagg?]. By the adjunction formula,
there are no multiplicity one curves in the clasggg?] for anyd greater than one. So any
connected curve representifit?] or its multiples has eitheF; or 7» as its image.

Now let us consider the classgg;. Sinceg; 1 = 1 andky 4, , = 2/, we will count genus
one curves with Pmarked points mapping td 8pecified points1, ..., yo on M. We have
freedom to pick where these pointsare and we will make a convenient choice to make
the calculations simpler. First we pic¢kdistinct fibressSs, ..., 7, then we take 2 distinct
points on each fiber.

Let (f, 2, x1....,x;4+1) be such a stable map in clags ;. The first observation
is that with the selection of; as above all the chosen fibefs, ..., S; have to be
contained inf(X). If a fiber is not in the image, then it intersecf§X’) at one point
since[$?] - A;1 =1 and each point of intersection contributes positively. But each fiber
S; intersects the image in at least two poings_1, y2;, SO it has to be part of the image.
Clearly, the domain’ must include disjoint rational curvess, ..., X, each of which
has 2 marked points, and is embedded with im&§jes

The other components & have no marked points. Since they repre$@s{ under f,
there can be only one component which we denoteChyand as argued abovg(C)
has to be eitheff7 or T». Since X' is of genus oneC must be of genus one as well,
and must intersect each rational component exactly afide . mapped isomorphically to
eitherTy or Ty, so the number of stable maps is exactly two and the proof of Theorem 1 is
complete. O

Now we count curves with arbitrary number of nodes in clagges
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Proof of Theorem 2. Fix an integrable product complex structupé x T whereT is an
elliptic curve. We will consider it as an elliptic surface.

First we computeV, (A4). We pickk, 4, = g + 1 pointsyz, ..., y,+1, such that no two
of them lie in the same fiber or in the same section.

Let (f, ¥, x1,...,xg41) be a(g, g + 1) stable map in clasd; and f(x;) = y;, 1 <
i < g + 1. Since the projection from to P! is holomorphic and there is no degree one
holomorphic map from a smooth connected positive genus projective curve to a rational
curve, we conclude that the image ffconsists of a single section curve and a number of
fiber curves. Since the poinis are in different fibers and in different sections pairwisely,
it is easy to see that the image ffhas to consist of exactly fibres and a section, each
containing one of the;. Since the domairx has arithmetic genug, this is possible
only if X hasg 4+ 1 componentsg of which have genus one and one is a rational curve,
and each component contains a marked point. Furthernfaestricted to each genus one
componentf; is a covering of a fibre and the rational componentis mapped isomorphically
to the section.

Let us first assume that 11 lies in the section curve. Label the genus one components
Y, 1<i < g such thatx; is contained inX;. Suppose the covering degree pfon
X is «;, then Zf:la,- =d. Given a fixed elliptic curve, it is well known that there are
preciselyoy = Zmlkm number of elliptic curves which admit degrdecovering to the
given curve. Since the marked poittcan be any of the preimage gffl(y,-), there are

f:loe,-o(oz,-) of (g, g + 1) stable maps in clasg, for which the image of the rational
component containg, 1 and f is a degreey; covering of the genus one component
fori=1,...,g.

Denote theg tuple (ag, ..., o) by d and write|a| for }_; ;. Taking into account that
any of they; can lie in the section curve, it is evident that the total numbegop + 1)
stable maps in clas$,; and sending; to y; is given by

8
@+D Y. JJeio@.

d,|al=d i=1

By resummation, we obtain the final formula

00 00 8
D NeAng? = q'e+D Y [[eo@)
d=0 d=0

d,|a|=d i=1

00 8
=(g+D ( Zao(u)q“) =(g+ D (DG2q))*.
a=1

To prove the second formula, consider two oriented loops of the farmsy x S x ug
andy, = so x 12 x S, andlg 4, = g pointsys, ..., y such that

(1) s1 ands; are different points omP*.

(2) y; does not lie in the sectiof x » x u1 or the fiberss; x T andsz x T for

i=1...,g.
(3) no two of they; lie in the same fiber or in the same section.
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As in the preceding discussion, the image of a stable map in dlagsis to consist of a
section and some fibers. We require that the image intersegtgbtsy;, . .., y, and the
two loopsy; andy». A simple observation is that there is no fiber intersecting betand
y2 and the only section intersecting bgthandy» is S x > x u1. From this observation
and the properties 1, 2 and 3, we conclude that the number of fibers in the image is no less
thang, and the number ig only when the section i§ x > x u1. This forces the domain
to have at leasg + 1 components, one of which is rational. Since the arithmetic genus of
the domain ig, there are precisely genus one components. The distribution of ghe 2
marked points is easy to determine: one on each genus one component, two on the rational
component.

An argument identical to the one before gives

8
ng(Ang’= Y [Jeio@,

d,|a|=d i=1
and the final formula

o0
Y ng(Ang? = (DGa(q))*.
d=0
The proof of Theorem 2 is complete

We can show that our invariants are actually enumerative. Gottsche [4] made a very
appealing conjecture about the generating function of the numbers of nodal curves in
sufficiently ample linear systems on algebraic surfaces (now proved in [8]). The linear
systems in our paper are not ample. Nevertheless, we think it is still interesting to compare
our generating function with Géttsche’s conjectural function.

In Gottsche’s notationg, (d 4 1, —2) is the number of the nodal gengscurves in a
fixed linear system of the clast; passing througlg points. Then

ng(Aq) =mg(d+1,-2).

Gottsche’s conjectural function reads

o

> “mg(d +1,-2)g" = Ba(q)*(D*G2())(DGa(q))*.

d=0
whereB; is an explicit power series.

Our generating function differs by a factBs(¢) ~2D%G2(q). Itis interesting to observe

the generating function of(1) in [1] differs from Goéttsche’s conjectural generating
function by a similar factotB2(¢)~2D?G2(q))Y2. In fact, for the elliptic surfaces (n),
using the parametrized Gromov-Witten invariants (see [1,2,7,11]) with a ball of real
dimension 2, as the base, it should be possible to show that the ggngmsnerating
function of the classed, is given by

qn/ZA(q)—n/Z(DGZ(q))é”

whereA(g) =q [0 (1 - g™?* is a modular form of weight 24. Again, the difference
from Géttsche’s formula is a similar factoB2(q) ~2D?G 2(g))"/?.



T.-J. Li, A.-K. Liu/ Topology and its Applications 124 (2002) 347-353 353

Acknowledgement

The authors wish to thank R. Fintushel and L. Gottsche for their interest in this work.
We would also like to acknowledge the support of IAS.

References

[1] J. Bryan, C. Leung, The enumerative geometryk@ surfaces and modular forms, J. Amer.
Math. Soc. 13 (2) (2000) 371-410.

[2] J. Bryan, C. Leung, Generating functions for the number of curves on Abelian surfaces, Duke
Math. J. 99 (2) (1999) 311-328.

[3] K. Fukaya, K. Ono, Arnold conjecture and Gromov—-Witten invariant, Topology 38 (5) (1999)
933-1048.

[4] L. Gottsche, A conjectural generating function for numbers of curves on surfaces, Comm. Math.
Phys. 196 (3) (1998) 523-533.

[5] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307—
347.

[6] E.-N. lonel, T. Parker, The Gromov invariants of Ruan-Tian and Taubes, Math. Res. Lett. 4
(1997) 521-532.

[7] P. Kronheimer, Some nontrivial families of symplectic structures, Preprint.

[8] A. Liu, Family blow up formula and nodal curves in Kahler surfaces, Preprint.

[9] T.J. Li, A. Liu, General wall crossing formula, Math. Res. Lett. 2 (1995).

[10] T.J. Li, A. Liu, Symplectic structures on ruled surfaces and a generalized adjunction inequality,
Math. Res. Lett. 2 (1995) 453-471.

[11] T.J. Li, A. Liu, Family Seiberg—Witten invariants and the wall crossing formula, Comm. Anal.
Geom., to appear.

[12] J. Li, G. Tian, Virtual moduli cycles and Gromov—Witten invariants of general symplectic
manifolds, in: Topics in Symplectic 4-Manifolds, Irvine, CA, 1996, in: First. Int. Press Lect.
Ser., |, Internat. Press, Cambridge, MA, 1998, pp. 47-83.

[13] D. McDuff, Lectures on Gromov invariants for symplectic 4-manifolds, in: Gauge Theory and
Symplectic Geometry, Montreal, 1995, Kluwer Academic, Deventer, 1997, pp. 175-210.

[14] Y. Ruan, Virtual neighborhoods and pseudo-holomorphic curves, Proceedings of 6th Gokova
Geometry-Topology Conference, Turkish J. Math. 23 (1) (1999) 161-231.

[15] Y. Ruan, G. Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (2)
(1995) 259-367.

[16] B. Siebert, Gromov—Witten invariants for general symplectic manifolds, Preprint.

[17] N. Seiberg, E. Witten, Electric-magnetic duality, monopole condensation, and confinement in
N = 2 supersymmetric Yang—Mills theory, Nuclear Phys. B 426 (1994) 19-52.

[18] C.H. Taubes, Counting pseudo-holomorphic submanifolds in dimension four, J. Differential
Geom. 44 (4) (1996) 818—893.

[19] C.H. Taubes, G& SW, Counting curves and connections, Diff. Geom. 52 (3) (1999) 453—609.

[20] S.T. Yau, E. Zaslow, BPS states, string duality, and nodal curvéSXiNuclear Phys. B 471 (3)
(1996) 503-512.



