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Abstract

Linear feedback shift registers (LFSR) are important building blocks in stream cipher cryptosys-
tems. To be cryptographically secure, the connection polynomials of the LFSRs need to be primitive
over GF(2). Moreover, the polynomials should have high weight and they should not have sparse
multiples at low or moderate degree. Here we provide results ont-nomial multiples of primitive
polynomials and their products. We present results for countingt-nomial multiples and also analyse
the statistical distribution of their degrees. The results in this paper helps in deciding what kind of
primitive polynomial should be chosen and which should be discarded in terms of cryptographic
applications. Further the results involve important theoretical identities in terms oft-nomial multiples
which were not known earlier.
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1. Introduction

Linear feedback shift register (LFSR) is one of the most important building blocks in
stream ciphers. In almost all the well-known stream cipher designs, LFSRs play a very im-
portant role. The connection polynomials of the LFSRs are usually polynomials over GF(2).
The relationship between a polynomial and the connection pattern of the corresponding
LFSR is explained in[3,2,16]. It is important to note that towards resisting cryptanalytic
attacks, the LFSRs should be designed keeping the following points in mind [15,1].

(1) The connection polynomial must be primitive over GF(2).
(2) The weight of the connection polynomial must be high.
(3) There should not be any sparse multiple of moderate degree for the connection

polynomial.

Note that throughout this paper we only consider polynomials over GF(2). We always
assumed�2 for a primitive polynomial of degreed, i.e., (x + 1) is not considered as a
primitive polynomial in this paper. It is known that for a primitive polynomialf (x)of degree
d and any multipleg(x) of f (x), the recurrence relation (of the LFSR whose connection
polynomial isf (x)) induced byf (x) will also be satisfied byg(x). In particular ifg(x) is
of moderate degree and with low weight, then one can very well exploit the attack proposed
in [15] by choosing the recurrence relation induced byg(x). Whatever be the weight of the
primitive polynomialf (x) (it does not matter whether it is of high or low weight as we
have a low weight multiple), it is possible to attack the system usingg(x). Note that we
are interested in sparse multiplesg(x) with constant term 1, i.e.,g(0) = 1. The reason is
if g(0) = 0, theng(x) can be written asxih(x). This h(x) satisfies the same recurrence
relation asg(x) and also of lower degree. With this context we analyse the sparse multiples
(with constant term 1) of primitive polynomials. Similarly, it is also important in some
situations to find out sparse multiples of product of primitive polynomials [1]. We also
analyse that case in detail.

The main issue is, one should not use a primitive polynomial which by itself is of low
weight or which has a sparse multiple at lower degree. We discuss this in Section 3. In this
direction, we identify a class of primitive polynomials having sparse multiples at a very low
degree. Iff (x) is a primitivet-nomial of degreed, then there exists primitive polynomial
of degreed with a t-nomial multiple of degreesdwhere gcd(s,2d − 1) = 1. Using this we
show that there are trinomial multiples of degreesd (which is low whens is small) for a
large class of primitive polynomials of degreed. These primitive polynomials should not
be used in stream cipher systems.

Given a primitive polynomialf (x) of degreed, we will present a recurrence formula
for the number oft-nomial multiples (with constant term 1) off (x) having degree at most
2d − 2. We denote this number byNd,t and it can be seen that

Nd,t =
(

2d−2
t−2

)
−Nd,t−1 − t−1

t−2(2
d − t + 1)Nd,t−2

t − 1
,

with initial conditionsNd,2 = Nd,1 = 0. Section4 discusses this result and related issues.
Note that the count in more general setting has been discussed in [9]. Further the count
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can easily be achieved from the weight enumerator of Hamming code[13, p. 129]. Still we
discuss these results in our framework to motivate the results in the later sections.

In Section 5 we consider thet-nomial multiples of product of primitive polynomials.
Considerkmany primitive polynomialsf1(x), f2(x), . . . , fk(x)over GF(2)having degrees
d1, d2, . . . , dk such thatd1, d2, . . . , dk are pairwise coprime. We analyse the multiples of
f1(x)f2(x) · · · fk(x). It is shown that the number oft-nomial multiples with degree<
(2d1 − 1)(2d2 − 1) · · · (2dk − 1) of

f1(x)f2(x) · · · fk(x) is at least((t − 1)!)k−1
k∏
r=1
Ndr ,t .

In fact the section discusses more generalized results in this aspect. Considerkmany poly-
nomialsf1(x), f2(x), . . . , fk(x) (not needed to be primitive) over GF(2) having degrees
d1, d2, . . . , dk and exponentse1, e2, . . . , ek respectively, with the following conditions:

(1) e1, e2, . . . , ek are pairwise coprime,
(2) f1(0) = f2(0) = · · · = fk(0) = 1,
(3) gcd(fr(x), fs(x)) = 1 for 1�r �= s�k,
(4) number oft-nomial multiples (with degree< er ) of fr(x) is nfr ,t .

Then the number oft-nomial multiples with degree< e1e2 · · · ek of the product polynomial
f1(x)f2(x) · · · fk(x) is at least((t − 1)!)k−1nf1,t nf2,t · · · nfk,t .

Though in Section3 we show that a class of primitive polynomials have sparse mul-
tiples in lower degree, this is, however, not the general trend. In Section 6 we analyse
this case in detail. It is identified that the distribution of the degrees oft-nomial multiples
(having constant term 1) of a degreed primitive polynomialf (x) is very close with the
distribution of the maximum of the tuples having size(t − 1) in the range 1 to 2d − 2.
Some experimental support helps in observing this initially. However, we substantiate this
claim using theoretical results afterwards. The results involve important identities in terms
of degrees and square of degrees oft-nomial multiples which were not known earlier. As
example, take any primitive polynomialf (x) of degreed. Consider that the degree of the
trinomial multiples (having degree�2d − 2) of f (x) ared1, d2, . . . , dNd,3. Then we show

that
∑Nd,3
s=1 d

2
s = (2/3)(2d − 1)(3 · 2d−2 − 1)Nd,3.

Similar kind of results have been discussed for multiples of products of primitive poly-
nomials in Section 7. In this case the analysis becomes more complicated. In course of
presenting the statistical trend of the degrees oft-nomial multiples of product polynomials
we get the following two important identities.

(1) Consider a polynomialf (x) over GF(2)with exponentesuch that 1+x does not divide
f (x). Then the average degree oft-nomial multiples (with degree< e and constant term
1) of f is [(t − 1)/t]e. This shows that generally the multiples occur at higher degrees.

(2) Takekmany primitive polynomialsf1(x), f2(x), . . . , fk(x) over GF(2) having degrees
d1, d2, . . . , dk (pairwise coprime) and exponentser = 2dr − 1, for 1�r�k. Then sum
of squares of degrees of trinomial multiples off (x) = f1(x)f2(x) · · · fk(x)with degree
< e = e1e2 · · · ek is fixed and equal to

e2

6
2k−1

k∏
r=1
(2dr−1 − 1)+ (e − 1)e(2e − 1)

12
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+1

2

k−1∑
r=1

∑
Ar⊂{e1,e2,...,ek}


(−1)r

( ∏
ej∈Ar

ej
2

)e/
∏
ej∈Ar ej−1∑
l=1

l2




 ,

where|Ar | = r.
Though the results of Section3 show that the designer should be cautious in selecting a

primitive polynomial, the average case analysis demonstrates that it is generally not expected
to have a sparse multiple at a lower degree. Roughly speaking, given a randomly chosen
primitive polynomial (or a polynomial which is product of randomly chosen primitive
polynomials of degrees mutually coprime) of degreed, it is expected that the minimum
degreet-nomial multiple will be available at a degree around 2d/(t−1).

The definitions and basic concepts are available in Section 2. Section 8 concludes the
paper.

2. Preliminaries

In this section we make precise certain terms and also present some basic results. Most
of these concepts are taken from [11,13]. We will denote the field ofp elements (p is prime)
by GF(p) and the extension field of dimensiond over GF(p) by GF(pd). In this paper base
field is GF(2) if not otherwise stated.

Definition 1. For every primep and positive integerd there is exactly one finite field (up
to isomorphism) of orderpd . This field GF(pd) is usually referred to as the Galois Field
of orderpd , andp is called the characteristic of GF(pd). The nonzero elements of GF(pd)
forms a cyclic group under multiplication. So it will have a generator� which will generate
all the elements of GF(pd) except zero and�p

d−1 = 1. These generators are called primitive
elements of GF(pd).

For example ifp = 2 andd = 4, GF(24) = {0, �0, �1, �2, . . . , �14}.

Definition 2. A polynomialf (x) ∈ GF(pd)[x] is said to be irreducible over GF(pd) if
f (x) has positive degree andf (x) = g(x)h(x) with g(x), h(x) ∈ GF(pd)[x] implies that
eitherg(x) or h(x) is a constant polynomial.

For examplex4 + x + 1 is an irreducible polynomial of degree 4 over GF(2) but x4 +
x3 + x2 + 1 is not irreducible becausex4 + x3 + x2 + 1 = (x3 + x + 1)(x + 1).

Definition 3. An irreducible polynomial of degreed is called primitive polynomial if its
roots are primitive elements in the field GF(pd). It can be proved that there are�(pd − 1)/d
number of primitive polynomials, where� is Euler phi-function.

For example ifp = 2 andd = 4,�(24 − 1)/4 = 2, i.e., there exists exactly two primitive
polynomials of degree 4 over GF(2).
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Definition 4. Letf (x) be a polynomial of degreed�1 withf (0) �= 0. Then there exists a
least positive integere�pd − 1 such thatf (x) dividesxe − 1, i.e.,xe ≡ 1 modf (x). This
e is called exponent/order of the polynomialf (x) and we say the polynomialf (x) belongs
to exponente.

It can be proved that iff (x) is primitive polynomial of degreed thene = 2d − 1. Thus
for a primitive polynomialx4 + x + 1, we havee = 15. However, the result is not similar
for irreducible polynomials. As example, the irreducible polynomialx4 + x3 + x2 + x + 1
belongs to exponent 5, sincex5 ≡ 1 mod(x4 + x3 + x2 + x + 1).

Definition 5. A polynomial with t nonzero terms, one of them being the constant term is
calledt-nomial, or in other words a polynomial of weightt with nonzero constant term.

As example,xa + xb + 1 is 3-nomial (trinomial), andxa + xb + xc + 1 is a 4-nomial,
wherea �= b �= c ∈ N. For cryptographic purpose, by a polynomial withsparseweight
generally meanst�10 [15, p. 160].

3. On t-nomial multiples at lower degrees

Given a primitive polynomial it is important to discuss the issues ont-nomial multiples
when t is low, as example, 3� t�10. If one can find at-nomial multiple of a primitive
polynomial (may be of high weight), wheret is low, then the system may get suscepti-
ble to cryptanalytic attacks. In this direction we provide the following result which is a
generalization of [7, Theorem 7].

Theorem 1. Let there exists a primitive t-nomialf (x) of degree d. Then there exists a
degree d primitive polynomialg(x) which divides some t-nomial of degree sd(s odd) when
gcd(s,2d − 1) = 1. In fact the primitive polynomialg(x) = gcd(f (xs), x2d−1 − 1).

Proof. Let f (x) be a primitivet-nomial of degreed and� be a root of it. Clearly� is
a primitive element of GF(2d). Let s be an odd integer such that gcd(s,2d − 1) = 1.
Let � be thesth root of�, i.e.,�s = �. As gcd(s,2d − 1) = 1, there existss′ such that

gcd(s′,2d − 1) = 1 andss′ ≡ 1 mod 2d − 1. Now�s = � gives�ss
′ mod(2d−1) = �s

′
, i.e.,

� = �s
′
. Since gcd(s′,2d − 1) = 1, � is a primitive element of GF(2d).

Note that, minimal polynomialg(x) of � is primitive polynomial and its degree isd.
Now, f (�s) = f (�) = 0, i.e.,� is a root off (xs). On the other handg(x) is the minimal
polynomial of�. Henceg(x) dividesf (xs). It is clear to see thatf (xs) is t-nomial and its
degree issd. Hence one can produce a primitive polynomialg(x) of degreed which divides
a t-nomial of degreesd.

There is only one element� satisfying� = �s
′

in the finite field GF(2d) with ss′ ≡
1 mod 2d − 1. Therefore gcd(f (xs), x2d−1 − 1) must be a primitive polynomial of degree
d since� is a primitive element in GF(2d). �

Note that in the above theorem we have takens odd as we are working over GF(2). If s
is even, then we can writes = 2r s1, wheres1 is odd and replaces by s1 in Theorem1.
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The importance of Theorem1 is that there exists a lot of primitive polynomials of degreed
which have sparse multiple at a low degree making them susceptible to cryptanalytic attacks.
As example, consider a primitive trinomial ofx7 +x+1. Also we have gcd(3,27 −1) = 1.
Now consider the trinomialx21+x3+1. Theorem 1 guarantees that there exists a primitive
polynomial of degree 7, which divides the trinomialx21 + x3 + 1. In fact, the primitive
polynomial isx7 + x6 + x4 + x + 1, which is also of high weight. Hence when we are
choosing a primitive polynomial of some degreed, even if we go for a high weight, it is no
way guaranteed that it will not have a sparse multiple of low degreesd.

Let us consider the case for primitive polynomials with degreed = 23. Note that
gcd(3,223 − 1) = 1. Now look into the weight distribution of degree 23 polynomials
[21]. There are 4 primitive trinomials. Hence there must be 4 primitive polynomials of
degree 23 which divide trinomials of degree 3· 23 = 69. Similarly, there are 292 primitive
5-nomials of degree 23. Thus, there are 292 primitive polynomials of degree 23 which di-
vides 5-nomials of degree 3· 23 = 69. Once again, there are 4552 primitive 7-nomials of
degree 23. This gives that, there are 4552 primitive polynomials of degree 23 which divides
7-nomials of degree 3· 23 = 69.

This has different implications to the attackers and designers. For the existing systems, the
attackers may try to find outt-nomial (smallt) moderate degree multiples of the primitive
polynomials. On the other hand, the designers should not use the primitive polynomials
with sparse multiples. That is, given a degreed, the designer should find out the primitive
polynomialsf (x) of low weight. Then if gcd(s,2d−1) = 1, for some smalls, then compute
g(x) = gcd(f (xs), x2d−1 − 1). Clearly from Theorem 1,g(x) is a primitive polynomial of
degreed. Now, this primitive polynomialg(x) (even if of high weight) should not be used
in the system. Thus, using this idea, one can identify a large class of primitive polynomials
of high weight which have sparse multiples at a moderate degree. These should not be
recommended in a cryptographic scheme.

Hence, one may choose a primitive polynomialf (x) of certain degreed of lower weight
and a small numberssatisfying gcd(s,2d−1) = 1.Then a calculation of gcd(f (xs), x2d−1−
1) yields another primitive polynomial of degreed, may be of high weight. So the algorithm
to generate a database of primitive polynomials that should not be used is as follows.

(1) Select some small values ofssuch that gcd(s,2d−1) = 1 and select some small values
of t. The different values ofs, t chosen will be dependent on user requirement.

(2) For each pair of(s, t)
(a) Generate each of the primitivet-nomials of degreed, sayf (x).
(b) Compute the primitive polynomialg(x) = gcd(f (xs), x2d−1 − 1).
(c) Putg(x) in a databaseDd .

We can generate the complete list of polynomials over GF(2) of low weightt (say 3 or 5)

and then check for primitivity of each of these. This needs
(
d−1
t−2

)
primitivity testing and

may be executed for smallt. Once a primitive polynomialh(x) of degreed is chosen for
application in some cryptosystem one should check whether it is inDd . If it is there then
one should not use that and try for a different one.

To give a practical example, consider degreed = 257. Note that gcd(3,2257 − 1) = 1.
We choose a primitive trinomialf (x) = x257 + x12 + 1. Thus,f (x3) = x771 + x36 + 1.
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Computing gcd(f (xs), x2d−1−1)we get a primitive polynomialg(x) of degree 257 having
weight as large as 129. The polynomial

g(x)= x257 + x256 + x255 + x252 + x249 + x246 + x245 + x243 + x238 + x237

+x234 + x232 + x230 + x228 + x225 + x223 + x222 + x219 + x215 + x214

+x211 + x210 + x208 + x205 + x204 + x203 + x201 + x199 + x198 + x197

+x193 + x191 + x190 + x188 + x186 + x185 + x181 + x180 + x178 + x174

+x171 + x170 + x168 + x164 + x162 + x160 + x159 + x158 + x157 + x156

+x154 + x153 + x151 + x148 + x143 + x142 + x141 + x140 + x139 + x138

+x135 + x133 + x131 + x130 + x129 + x125 + x124 + x120 + x118 + x116

+x115 + x114 + x112 + x110 + x109 + x108 + x107 + x106 + x103 + x102

+x98 + x97 + x96 + x95 + x94 + x92 + x90 + x89 + x87 + x86

+x80 + x79 + x78 + x77 + x76 + x75 + x74 + x73 + x72 + x65

+x62 + x59 + x58 + x57 + x56 + x53 + x52 + x51 + x47 + x41

+x40 + x39 + x35 + x33 + x30 + x28 + x26 + x24 + x23 + x22

+x21 + x20 + x18 + x16 + x15 + x14 + x13 + x5 + 1.

Thisg(x) has a sparse multiplef (x3) = x771 + x36 + 1 and hence should not be used for
cryptographic purpose.

4. Enumerating t-nomial multiples of a primitive polynomial: revisiting some basic
results

Consider a primitive polynomialf (x) of degreed and its multiples up to degree 2d − 2.
This constructs a[2d − 1,2d − d − 1,3] linear code, which is the well-known Hamming
code[13]. By N∗

d,t we denote the number of code words of weight (number of 1’s in the

code word)t in the Hamming code[2d − 1,2d − d − 1,3]. Now we present the following
technical result which connectsNd,t andN∗

d,t .

Theorem 2. N∗
d,t = [(2d − 1)/t]Nd,t .

Proof. Consider a primitive polynomialf (x) of degreed over GF(2). Now,N∗
d,t is the

number of multiples of weightt with degree�2d − 2 of f (x). Note that, for each of these
multiples, the constant term can be either 0 or 1. On the other hand,Nd,t is the number of
t-nomial multiples (having constant term 1) with degree�2d − 2 of f (x).

Supposef (x) divides 1+ xi1 + xi2 + · · · + xit−2 + xit−1 for 1� i1 < i2 < · · · < it−2 <

it−1�2d − 2. Thenxi(1 + xi1 + xi2 + · · · + xit−2 + xit−1) is a multiple of weightt of
f (x) for 0� i�2d − 2. Thus, there are(2d − 1) number of distinct multiples of weightt
(having constant term either 0 or 1), corresponding to 1+ xi1 + xi2 + · · · + xit−2 + xit−1.
Out of these(2d − 1)multiples, there are exactlyt many multiples having constant term 1.
This happens with the originalt-nomial and wheni + ir = 2d − 1, for r = 1, . . . , t − 1.
Thus, corresponding to each of theNd,t number of multipleshaving constant term1, we
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get(2d − 1)/t number of distinct multiples of weightt having constant term either 0 or 1.
Hence the result. �

Theorem 3.

Nd,t =
(

2d−2
t−2

)
−Nd,t−1 − t−1

t−2(2
d − t + 1)Nd,t−2

t − 1
.

Proof. From weight enumerator of Hamming code[13, p. 129], we get

N∗
d,t =

(
2d−1
t−1

)
−N∗

d,t−1 − (2d − t + 1)N∗
d,t−2

t − 1
.

Hence, using Theorem2 we obtain the result. �

It should be noted that a much more general result related to countingt-nomial multiples
over arbitrary fields has been considered and solved in a very elegant way in [9]. However,
the discussion in this section will help in understanding our results in the next sections.

Corollary 1.

Nd,t

t
= Nd,2d−1−t

2d − 1 − t .

Proof. It is easy to see thatN∗
d,t = N∗

d,2d−1−t which gives the result using Theorem2. �

Corollary 2.

Nd,t∑
r=1
dr = t − 1

t
(2d − 1)Nd,t .

Proof. Consider at-nomial multiple 1+ xi1 + xi2 + · · · + xit−2 + xit−1 of a primitive
polynomialf (x) having degreed. Now, it is clear thatxi(1+xi1 +xi2 +· · ·+xit−2 +xit−1)

gives 2d−2− it−1 many multiples of weightt of f (x)with constant term 0 for 1� i�2d−
2− it−1. Thus, eacht-nomial multiple, of the form 1+xi1 +xi2 +· · ·+xit−2 +xit−1 counted
inNd,t produces onet-nomial multiple (itself, with constant term 1) and 2d−2− it−1 many

multiples of weightt with constant term 0. So,
∑Nd,t
r=1(2

d − 1 − dr) = N∗
d,t , wheredr is

the degree oft-nomial multiples (with constant term 1). Then using Theorem2 we get the
result. �

From the above theorem we get that the average degree of at-nomial multiple is[(t − 1)/t]
(2d − 1)Nd,t divided byNd,t , i.e., [(t − 1)/t](2d − 1). This gives that plenty oft-nomial
multiples are available at higher degree, whereas there are very few at the lower part.
A more general result in this direction is presented in Theorem 7 in Section 7.
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5. Enumerating t-nomial multiples of product of primitive polynomials

We have already mentioned in the Introduction that it is important to findt-nomial mul-
tiples of product of primitive polynomialsfurther to t-nomial multiples of just a single
primitive polynomial. Let us now briefly describe how the exact cryptanalysis works. For
definitions and more details about the cryptographic properties of the Boolean functions
mentioned below, see[1]. ConsiderF(X1, . . . , Xn) is ann-variable,m-resilient Boolean
function used in combining the output sequences ofn LFSRsSi having feedback polyno-
mialsci(x). The Walsh transform of the Boolean functionF gives,WF(�) �= 0 for some�
with weightwt(�) = m+ 1. This means that the Boolean functionF and the linear func-
tion

⊕n
i=1 �iXi are correlated. Let�i1 = · · · = �im+1 = 1. Now consider the composite

LFSR S which produces the same sequence as the XOR of the sequences of the LFSRs
Si1, . . . , Sim+1. The connection polynomial of the composite LFSR will be

∏m+1
j=1 cij (x).

SinceF and
⊕n
i=1 �iXi are correlated, the attacks target to estimate the stream generated

from the composite LFSRShaving the connection polynomial�(x) = ∏m+1
j=1 cij (x).

The attack heavily depends on sparse multiples of�(x). One such attack, presented in
[1], usest-nomial multiples fort = 3,4,5. In nonlinear combiner model of stream cipher,
generally the degree of the primitive polynomials are taken to be coprime to each other [12,
p. 224] to achieve better cryptographic properties. We here take care of that restriction also.

Note that in [1, p. 581], it has been assumed that the approximate count ofmultiples of
primitive polynomialsandmultiples of products of primitive polynomialsare close. However,
this is not always true. In fact, it is possible to find products of primitive polynomials having
same degree which do not have anyt-nomial multiple for somet. The construction of BCH
code [13] uses this idea. On the other hand, if the degree of the primitive polynomials
are pairwise coprime, then we show that it is always guaranteed to gett-nomial multiples
of their product, provided each individual primitive polynomial hast-nomial multiple(s).
Moreover, in Section 7 we will show that the approximate count of thet-nomial multiples
of a degree d primitive polynomialanda degree d polynomial which is product of some
primitive polynomials each having degreedr , i.e.,

∑
dr = d are close when the degree

dr ’s are mutually coprime (see Remark 2 in Section 7). So for this case the assumption of
[1, p. 581] is a good approximation. Let us now present the main theorem.

Theorem 4. Consider k many polynomialsf1(x), f2(x), . . . , fk(x) over GF(2) having
degreesd1, d2, . . . , dk and exponentse1, e2, . . . , ek respectively, with the following condi-
tions:

(1) e1, e2, . . . , ek are pairwise coprime,
(2) f1(0) = f2(0) = · · · = fk(0) = 1,
(3) gcd(fr(x), fs(x)) = 1 for 1�r �= s�k,
(4) number of t-nomial multiples(with degree< er ) of fr(x) is nfr ,t .

Then the number of t-nomial multiples with degree< e1e2 · · · ek of the product polynomial
f1(x)f2(x) · · · fk(x) is at least((t − 1)!)k−1nf1,t nf2,t · · · nfk,t .
Proof. Consider that any polynomialfr(x) has at-nomial multiplexi1,r + xi2,r + · · · +
xit−1,r + 1 of degree< er . Now we try to get at-nomial multiple off1(x)f2(x) · · · fk(x)
having degree< e1e2 · · · ek.
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Consider the set of equationsI1 ≡ i1,r moder , r = 1, . . . , k. Sincee1, . . . , ek are
pairwise coprime, we will have a unique solution ofI1 mode1e2 · · · ek by the Chinese
remainder theorem[8, p. 53]. Similarly, considerIj ≡ ij,r moder for r = 1, . . . , k
andj = 1, . . . , t − 1. By the Chinese remainder theorem, we get a unique solution of
Ij mode1e2 · · · ek.

First we like to show thatfr(x) (for r = 1, . . . , k) dividesxI1 + xI2 + · · · + xIt−1 + 1.
The exponent offr(x) is er . So we need to show thatfr(x) dividesxI1 moder + xI2 moder +
· · · + xIt−1 moder + 1. We haveij,r = Ij moder for r = 1, . . . , k, j = 1, . . . , t − 1. Thus,
xI1 moder + xI2 moder + · · · + xIt−1 moder + 1 is nothing butxi1,r + xi2,r + · · · + xit−1,r + 1.
Hencefr(x) (for r = 1, . . . , k) dividesxI1 + xI2 + · · · + xIt−1 + 1.

Here we need to show thatxI1 + xI2 + · · · + xIt−1 + 1 is indeed at-nomial, i.e.,
Ij /≡ Il mode1 · · · ek for j �= l. If Ij = Il , then it is easy to see thatij,r ≡ il,r moder
and hence,xi1,r + xi2,r + · · · + xit−1,r + 1 itself is not at-nomial for anyr, which is a
contradiction.

Moreover, we have gcd(fr(x), fs(x)) = 1 for r �= s. Thus,f1(x)f2(x) · · · fk(x) divides
xI1 + xI2 + · · · + xIt−1 + 1. Also it is clear that degree ofxI1 + xI2 + · · · + xIt−1 + 1 is less
thane1e2 · · · ek.

Corresponding to thet-nomial multiple off1(x), i.e.,xi1,1 + xi2,1 + · · · + xit−1,1 + 1, we
fix the elements in the orderi1,1, i2,1, . . . , it−1,1. Let us name themp1,1, p2,1, . . . , pt−1,1.

For r = 2, . . . k, the case is as follows. Corresponding to thet-nomial multiplexi1,r +
xi2,r+· · ·+xit−1,r+1 offr(x), we use any possible permutation of the elementsi1,r , i2,r , . . . ,

it−1,r asp1,r , p2,r , . . . , pt−1,r . Thus we will use any of the(t − 1)! permutations for each
t-nomial multiple offr(x) for r = 2, . . . , k.

Now we use the Chinese remainder theorem to getIj having value< e1e2 · · · ek from
pj,r ’s for r = 1, . . . , k. Eachpj,r is less thaner . Herep1,r , p2,r , . . . , pt−1,r (related to
fr(x)) can be permuted in(t − 1)! ways and we consider the permutation related to all the
t-nomials except the first one.

Corresponding tokmanyt-nomial multiples (one each forf1(x), . . . , fk(x)), we get((t−
1)!)k−1 manyt-nomial multiples (degree< e1e2 · · · ek) of the productf1(x)f2(x) · · · fk(x).
Using the Chinese remainder theorem, it is routine to check that all these((t − 1)!)k−1

multiples are distinct.
Since, eachfr(x) hasnfr ,t distinct t-nomial multiples of degree< er , the total number

of t-nomial multiples of the productf1(x)f2(x) · · · fk(x) having degree< e1e2 · · · ek is
((t − 1)!)k−1nf1,t nf2,t · · · nfk,t .

To accept the above count is a lower bound, one needs to show that thet-nomials generated
by this method are all distinct. Consider two collections oft-nomial multiplesxa1,r +xa2,r +
· · · + xat−1,r + 1 andxb1,r + xb2,r + · · · + xbt−1,r + 1 of fr(x) for r = 1, . . . , k. There
exists at least ones in the range 1, . . . , k such thatxa1,s + xa2,s + · · · + xat−1,s + 1 and
xb1,s +xb2,s +· · ·+xbt−1,s +1 are distinct. Let us consider that one of the common multiples
form these two sets oft-nomials are same, sayxA1,v + xA2,v + · · · + xAt−1,v + 1 (from the
setxa1,r + xa2,r + · · · + xat−1,r + 1) andxB1,v + xB2,v + · · · + xBt−1,v + 1 (from the set
xb1,r + xb2,r + · · · + xbt−1,r + 1).

Without loss of generality we considerA1,v > A2,v > · · · > At−1,v andB1,v > B2,v >

· · · > Bt−1,v. Since these twot-nomials are same, we haveAj,v ≡ Bj,v mode1e2 · · · ek.
This immediately says thatAj,v ≡ Bj,v moder , which impliesaj,r ≡ bj,r moder for each
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j in 1, . . . , t − 1 and eachr in 1, . . . , k. This contradicts to the statement thatxa1,s + xa2,s +
· · · + xat−1,s + 1 andxb1,s + xb2,s + · · · + xbt−1,s + 1 are distinct.

Thus it is clear that the number oft-nomial multiples with degree< e1e2 · · · ek of
f1(x)f2(x) · · · fk(x) is at least((t − 1)!)k−1nf1,t nf2,t · · · nfk,t . �

Corollary 3. Consider k many primitive polynomialsf1(x), f2(x), . . . , fk(x) having
degreed1, d2, . . . , dk respectively, whered1, d2, . . . , dk are pairwise coprime. Then the
number of t-nomial multiples with degree< (2d1 − 1)(2d2 − 1) · · · (2dk − 1) of
f1(x)f2(x) · · · fk(x) is at least((t − 1)!)k−1∏k

r=1Ndr ,t , whereNdr ,t is as defined in
Theorem2.

Proof. Since we are considering the primitive polynomials, the exponenter = 2dr − 1.
Also, givend1, d2, . . . , dk are mutually coprime,e1, e2, . . . , ek are also mutually coprime.
Moreover, There is no common divisor of any two primitive polynomials. The proof then
follows from Theorem 4 puttingnfr ,t = Ndr ,t . �

Corollary 4. In Theorem4, for t = 3, the number of trinomial multiples with degree<
e1e2 · · · ek of the product f1(x)f2(x) · · · fk(x) is exactly equal to2k−1nf1,3nf2,3
· · · nfk,3.

Proof. Consider a trinomial multiplexI1 +xI2 +1 with degree< e1e2 · · · ek of the product
f1(x)f2(x) · · · fk(x). Since, the productf1(x)f2(x) · · · fk(x) dividesxI1 + xI2 + 1, it is
clear thatfr(x) divides xI1 + xI2 + 1. Hence,fr(x) divides xI1 moder + xI2 moder + 1
having degree< er . Now take,i1,r = I1 moder andi2,r = I2 moder , for r = 1, . . . , k.
It is clear thatI1 /≡ I2 moder (i.e., i1,r �= i2,r ), otherwisefr(x) divides 1, which is not
possible.

Also note that eitheri1,r or i2,r cannot be zero, otherwisefr(x) divides eitherxi2,r or
xi1,r , which is not possible. Thus,fr(x) dividesxi1,r +xi2,r +1. Then using the construction
method in the proof of Theorem 4, one can get backxI1 + xI2 + 1 as the multiple of
f1(x)f2(x) · · · fk(x) which is already considered in the count 2k−1nf1,t nf2,t · · · nfk,t as
described in the proof of Theorem 4. Hence this count is exact.�

Corollary 5. Consider k many primitive polynomialsf1(x), f2(x), . . . , fk(x) having de-
greed1, d2, . . . , dk respectively, whered1, d2, . . . , dk are pairwise coprime. Then the num-
ber of trinomial multiples with degree< (2d1 − 1)(2d2 − 1) · · · (2dk − 1) of f1(x)f2(x)

· · · fk(x) is exactly equal to2k−1∏k
r=1 Ndr ,3, whereNdr ,3 is as defined in Theorem2.

Proof. The proof follows from Corollaries 3 and 4.�

Corollary 4 shows that number of trinomial multiples off1(x)f2(x) · · · fk(x) is
exactly 2k−1nf1,3nf2,3 · · · nfk,3. However, it is important to mention that fort�4,
((t − 1)!)k−1nf1,t nf2,t · · · nfk,t is indeed a lower bound and not an exact count. The reason
is as follows.

Supposefr(x) has a multiplexa1,r + xa2,r + · · · + xat−1,r + 1. Note that fort�5, we
get (t − 2)-nomial multiples offr(x) having degree< er . Consider the(t − 2)-nomial
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Table 1
Count fort-nomial multiples of product of primitive polynomials

t 3 4 5 6 7

Product of degree 3, 4
Lower bound 42 672 0 0 146 160
Exact count 42 1460 35 945 717 556 11 853 632

Product of degree 3, 5
Lower bound 90 3360 0
Exact count 90 6564 344 625

Product of degree 4, 5
Lower bound 210 23 520 1 128 960
Exact count 210 32 508 3 723 685

multiple asxa1,r + xa2,r + · · · + xat−3,r + 1. Now, from the(t − 2)-nomial multiple we
construct a multiplexa1,r +xa2,r +· · ·+xat−1,r +1, whereat−2,r = at−1,r = w < er . Then
if we apply the Chinese remainder theorem as in Theorem4, that will very well produce
a t-nomial multiple off1(x)f2(x) · · · fk(x) which is not counted in Theorem 4. Thus the
count is not exact and only a lower bound. For the case oft = 4, we can consider the
multiples of the formxir + xir + 1 + 1 of fr(x). These type of multiples offr(x)’s will
contribute additional multiples of the productf1(x)f2(x) · · · fk(x)which are not counted in
Theorem 4.

Corollary 6. In Theorem4, for t�4, the number of t-nomial multiples with degree<
e1e2 · · · ek of the productf1(x)f2(x) · · · fk(x) is strictly greater than((t−1)!)k−1nf1,t nf2,t

· · · nfk,t .

Let us consider the product of two primitive polynomials of degree 3, 4, degree 3, 5 and
degree 4, 5 separately. Table 1 compares the lower bound given in Theorem 4 and the exact
count by running computer program. Note that it is clear that fort = 3, the count is exact as
mentioned in Corollary 5. On the other hand, fort�4, the count is a lower bound (strictly
greater than the exact count) as mentioned in Corollary 6. In Table 1, for a few cases the
lower bound is zero, sinceN3,5 = N3,6 = 0.

We already know that the lower bound result presented in Corollary 3 is invariant on the
choice of the primitive polynomials. We observe that this is also true for the exact count
found by computer search. As example, if one chooses any primitive polynomial of degree
3 and any one of degree 4, the exact count does not depend on the choice of the primitive
polynomials.

Thus we make the following experimental observation. Considerk many primitive poly-
nomialsf1(x), f2(x), . . . , fk(x) having degreed1, d2, . . . , dk respectively, whered1, d2,

. . . , dk are pairwise coprime. Then the exact number oft-nomial multiples with degree
< (2d1 − 1)(2d2 − 1) · · · (2dk − 1) of the productf1(x)f2(x) · · · fk(x) is same irrespective
of the choice of primitive polynomialfr(x) of degreedr .
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5.1. Exact count vs lower bound

Note that the values in the Table1 shows that there are big differences between the
exact count and the lower bound. Note that the lower bound in some cases is zero, since
N3,5 = N3,6 = 0. We will now clarify these issues. Let us first present the following
result.

Proposition 1. Consider two primitive polynomialsf1(x), f2(x)of degreed1,d2 (mutually
coprime) and exponente1, e2, respectively. Then the exact number of4-nomial multiples of
f1(x)f2(x) is 6Nd1,4Nd2,4 + (e1 − 1)(e2 − 1) + (3(e1 − 1) + 1)Nd2,4 + (3(e2 − 1) + 1)
Nd1,4.

Proof. The term 6Nd1,4Nd2,4 follows from Theorem4.
Considerxi + xk1e1 + xk2e2 + 1, wherei < e1e2, imode1 /≡ 0, imode2 /≡ 0, and

i ≡ k2e2 mode1 ≡ k1e1 mode2, k1 < e2, k2 < e1. Thus it is clear that for a fixedi, we
will get uniquek1, k2. Now there are(e1e2 − 1)− (e1 − 1)− (e2 − 1) = (e1 − 1)(e2 − 1)
possible values ofi. Note that in each of the cases,xi + xk1e1 + xk2e2 + 1 is divisible by
f1(x)f2(x). So this will add to the count.

Fix a multiplexi + xj + xl + 1 of f2(x) wherei, j, l are unequal and degree ofxi +
xj + xl + 1 is less thane2. Now consider a multiplexa + xa + x0 + 1 of f1(x). As a
varies from 1 toe1 − 1, for eacha, we will get three different multiples off1(x)f2(x) by
using the Chinese remainder theorem. The reason is as follows. Fix the elementsa, a,0 in
order. Nowi, j, k can be placed in3!

2! = 3 ways to get distinct cases. Varyinga from 1 to
e1 − 1, we get 3(e1 − 1) multiples. Moreover, ifa = 0, then alsoxa + xa + x0 + 1 and
xi + xj + xl + 1 will provide only one multiple off1(x)f2(x). Thus, considering each
multiple off2(x)we get 3(e1−1)+1 multiples. Hence the total contribution is(3(e1−1)+1)
Nd2,4.

Similarly fixing a multiplexi + xj + xl + 1 of f1(x) andxa + xa + x0 + 1 of f2(x) we
get the count(3(e2 − 1)+ 1)Nd1,4.

It is a routine but tedious exercise to see that all these 4-nomial multiples off1(x)f2(x)

are distinct and there is no other 4-nomial multiples having degree< e1e2. �

Note that using this formula of Proposition 1, we get the exact counts for 4-nomial mul-
tiples as presented in Table 1. However, extending the exact formula of 4-nomial multiples
of product of two primitive polynomials seems extremely tedious. In fact, for cryptanalytic
purposes, we do not need the exact count; the requirement is only some sparse multiples at
lower degree.

Consider thatf1(x)f2(x) · · · fk(x) is itself a�-nomial with constant term 1. From crypt-
analytic point of view, it is interesting to findt-nomial multiples off1(x)f2(x) · · · fk(x)only
whent < � (in practical cases,t>�). Now we like to present an interesting experimental
observation.

Conjecture 1. LetxI1+xI2+· · ·+xIt−1+1be the least degree t-nomial multiple(4� t < �)
off1(x)f2(x) · · · fk(x)which itself is a�-nomial. Each polynomialfr(x) is a primitive poly-
nomial of degreedr (degrees are pairwise coprime) and exponenter = 2dr − 1. Moreover,
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Ndr ,t > 0. ThenIv /≡ Iw moder for any1�v �= w� t − 1 and for anyr = 1, . . . , k. That
is, the least degree t-nomial multiple off1(x)f2(x) · · · fk(x) is the one which is generated
as described in Theorem4.

As example, consider(x3 +x+1)(x4 +x+1) = x7 +x5 +x3 +x2 +1 which is itself a
5-nomial. Now the least degree 4-nomial multiple ofx7 +x5 +x3 +x2 +1, as generated in
the proof of Theorem 4, isx9 + x4 + x3 + 1. Note thatx9 mod 7+ x4 mod 7+ x3 mod 7+ 1 =
x2 + x4 + x3 + 1 andx9 mod 15+ x4 mod 15+ x3 mod 15+ 1 = x9 + x4 + x3 + 1. Thus the
multiplex9 + x4 + x3 + 1 is generated as in Theorem 4. On the other hand, the least degree
4-nomial multiple ofx7 + x5 + x3 + x2 + 1 isx16 + x14 + x9 + 1, which is not counted in
the proof of Theorem 4. In this case,x16 mod 7+x14 mod 7+x9 mod 7+1 = x2 +x0 +x2 +1
(basically 0). This supports the statement of Conjecture 1.

We have also checked that the Conjecture 1 is true considering products of two primitive
polynomialsf1(x), f2(x) having degreed1, d2 (mutually coprime) ford1, d2�6.

Remark 1. Let us once again consider the model where outputs of several LFSRs are
combined using a nonlinear Boolean function ofn variables to produce the key stream.
Consider that the combining Boolean function is(k − 1)th order correlation immune
(see[1]). Thus it is possible to mount a correlation attack by considering the product
of polynomialsfr(x), r = 1, . . . , k, corresponding tok inputs of the Boolean function.
Thus to execute the attack one has to consider thet-nomial multiples of

∏k
r=1 fr(x).

At this point consider thet-nomial multiples obtained in Theorem 4. Once we get at-
nomial multiplexI1 + xI2 + · · · + xIt−1 + 1 of

∏k
r=1 fr(x), we know when we reduce

it as xI1 moder + xI2 moder + · · · + xIt−1 moder + 1, then we will get at-nomial multiple
(having degree< er ) of fr(x). On the other hand, if we consider anyt-nomial multiple
xI1 + xI2 + · · · + xIt−1 + 1 of

∏k
r=1 fr(x), which is not considered in Theorem 4, then for

somer, xI1 moder +xI2 moder +· · ·+xIt−1 moder +1, will not be a “genuine”t-nomial multi-
ple (having degree< er ) of fr(x) (i.e., all the terms will not be distinct). That is we will get
either someu such thatIu ≡ 0 moder or get someu �= v, such thatIu ≡ Iv moder . Further
it can be easily seen that the degree of any multiple off1(x)f2(x) · · · fk(x) which we have
not been counted in the proof of Theorem 4 is greater than 2di − 1, wheredi is minimum
of d1, d2, . . . , dk. So if we consider moderately high degree polynomials, practically these
multiples are of very high degree and are not of our interest from cryptanalytic purpose.
Thus from cryptographic point of view, only the multiples considered in Theorem 4 are to be
considered.

However, in Section 7 we will consider all the multiples (not only those referred in
Theorem 4) for the degree distribution.

6. Degree distribution of t-nomial multiples of a primitive polynomial

Algorithms for finding sparse multiples of primitive polynomials are discussed in
[18,17,1,20]. The currently best known time and space complexities have been achieved
in [20], though the results are still of exponential complexity. In this paper we are not
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concentrating on providing algorithms to find sparse multiples. However, we need to state
the following exhaustive algorithm for statistical estimation. A trivial algorithm to find the
least degreet-nomial multiple of a degreed primitive polynomialf (x) is as follows.

Algorithm find-t-nomial-multiple
For i = d to 2d − 2,
(a) Consider all possiblet-nomialg(x) of degreei.
(b) If f (x) dividesg(x) then report thist-nomial and terminate.

If we consider that the least degreet nomial multiple has the valuecd,t , then the algorithm

will run for i = d to i = cd,t . In each step we have to consider
(
i−1
t−2

)
tuples. This is because

we consider thet-nomial multiple 1+ xi1 + · · · + xit−1, where 1� i1 < i2 < · · · < it−2 <

it−1�2d − 2. Now we have the value 1 and the valueit−1 = i fixed for theith step. Thus

we need to check whetherf (x) dividesg(x) for
∑cd,t
i=d

(
i−1
t−2

)
different t-nomials in total.

We like to estimate the value ofcd,t .
Once a primitive polynomialf (x) of degreed is specified, it is very clear thatf (x) has

Nd,t manyt-nomial multiples. Note that anyt-nomial multiple 1+xi1 +xi2 +· · ·+xit−2 +
xit−1 can be interpreted as an(t − 1)-tuple 〈i1, i2, . . . , it−2, it−1〉. We will show that by
fixing f (x), if we enumerate all theNd,t different (t − 1) tuples, then the distribution of
the tuples seems random. To analyse the degree of theset-nomial multiples, we consider
the random variateX which is max(i1, i2, . . . , it−2, it−1), where 1+ xi1 + xi2 + · · · +
xit−2 + xit−1 is a t-nomial multiple off (x). Also the value of max(i1, i2, . . . , it−2, it−1)

is it−1, since we consider the tuples as ordered ones. Let us look at the mean value of the
distribution ofX. From Corollary2, it is clear that the average degree of at-nomial multiple
is [(t − 1)/t](2d − 1)Nd,t divided byNd,t . Thus we get the mean valueX = [(t − 1)/t]
(2d − 1).

This mean valueX clearly identifies that thet-nomials are dense at higher degree
and there are very few at lower degree. On the other hand, for cryptanalysis, we are
not interested in getting all thet-nomial multiples. The cryptanalyst only concentrate
on the least degreet-nomial multipleg(x) of f (x). Thus our motivation is to get an
estimate on the degree ofg(x). This is not clear from the distribution ofX and that is
why we like to look into another distribution which seems to be close to the distribution
of X.

Let us consider all the(t−1)-tuples〈i1, i2, . . . , it−2, it−1〉 with component values in the

range 1 to 2d − 2. There are
(

2d−2
t−1

)
such tuples. We consider the tuples in ordered form

such that 1� i1 < i2 < · · · < it−2 < it−1�2d − 2. Now consider the random variateY
which is max(i1, i2, . . . , it−2, it−1), where〈i1, i2, . . . , it−2, it−1〉 is any(t − 1)-tuple from
the values 1 to 2d − 2. Also the value of max(i1, i2, . . . , it−2, it−1) is it−1 as we consider
the tuples as ordered ones. Note that there is only one tuple with maximum value(t − 1).

There are
(
t−1
t−2

)
tuples with maximum valuet,

(
t
t−2

)
tuples with maximum valuet + 1

and so on. Thus, the mean of this distribution is

Y =
2d−2∑
i=t−1

i

(
i − 1

t − 2

)/(
2d − 2

t − 1

)
.
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Now,

2d−2∑
i=t−1

i

(
i − 1

t − 2

)
= (t − 1)

2d−2∑
i=t−1

(
i

t − 1

)
= (t − 1)

(
2d − 1

t

)
.

Thus,Y = [(t − 1)/t](2d − 1). Note that this is equal to the value ofX. Thus we have the
following result.

Proposition 2. Given any primitive polynomialf (x) of degree d, the average degree of
its t-nomial multiples with degree�2d − 2 is equal to the average of maximum of all the
distinct(t − 1) tuples from1 to 2d − 2.

With the result of the above theorem, we assume that the distributionsX, Y are indis-
tinguishable. Later, in this document we will provide more support for this assumption.
ConsiderNd,t tuples which represent the actualt-nomial multiples off (x). Since the dis-
tribution of these tuples seems random, if we select any tuple, the probability that the

tuple will represent a genuinet-nomial multiple isNd,t /
(

2d−2
t−1

)
. Thus we can estimate the

expected number oft-nomials with degree less than or equal toc as

(
c

t − 1

)
Nd,t

/(
2d − 2

t − 1

)
.

At this point let us summarize our assumption for this estimate.

Assumption RandomEstimate.Letf (x) be a primitive polynomial of degree d. Consider
the set of all t-nomial multiples off (x) which are of the form1 + xi1 + xi2 + · · · +
xit−2 + xit−1 for 1� i1 < i2 < · · · < it−2 < it−1�2d − 2. Interpret each t-nomial
multiple as an ordered(t − 1) tuple 〈i1, i2, . . . , it−2, it−1〉. Note that the degree of this
t-nomial is it−1. Let Nd,t (c) denotes the number of t-nomial multiples which have the
degree at most c. Now we expect that

Nd,t (c)/Nd,t ≈
(

c

t − 1

)/(
2d − 2

t − 1

)
.

Given some t we like to get an estimate of c, such that

(
c

t − 1

)
Nd,t

/(
2d − 2

t − 1

)
≈ 1.

This value of c will give an expected value ofcd,t , the degree of the least degree t-
nomial multiple off (x).

Next we present some experimental results in support of our assumption in Table2.
We consider the trinomial multiples for this.
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Table 2
Degree distribution of trinomial multiples

(i) Results for degree 8 primitive polynomials
A 32 57 82 107 132 157 182 207 232 254 Total

B 2.05 4.1 6.15 9.22 11.25 14.35 17.85 18.48 21.6 21.95 127
C 2 5 5 11 11 12 20 20 20 21 127
D 32 66 116 146 182 228 284 288 348 342 2032
E 2 4.12 7.25 9.12 11.38 14.25 17.75 18 21.75 21.38 127

(ii) Results for degree 9 primitive polynomials

A 60 110 160 210 260 310 360 410 460 510 Total

B 3.05 9.08 13.1 18.15 23.19 27.22 32.26 38.3 43.07 47.58 255
C 3 8 12 23 24 25 32 38 43 47 255
D 166 398 629 880 1116 1337 1566 1818 2032 2298 12 240
E 3.46 8.29 13.1 18.33 23.27 27.85 32.62 37.87 42.34 47.87 255

(iii) Results for degree 10 primitive polynomials

A 111 212 313 414 515 616 717 818 919 1022 Total

B 6.02 15.05 26.1 36.14 46.18 55.22 66.26 76.3 85.34 98.39 511
C 5 16 26 35 49 54 65 77 86 98 511
D 360 938 1566 2142 2732 3386 3962 4544 5168 5862 30 660
E 6 15.63 26.12 35.7 45.53 56.43 66.03 75.73 86.13 97.7 511

In Table2, we consider the case for degree 8, 9 and 10. In the first rowA we provide some
intervals. These intervals represent the degree of the trinomial multiples. In the second row
B we provide the expected number of trinomial multiples less than or equal to the degree
given in rowA.As example, from the Table 2(i) we get that there are estimated 2.05 trinomial
multiples at degree less than or equal to 32, 4.1 trinomial multiples in the range of degree
32< d�57, 6.15 trinomial multiples in the range of degree 57< d�82, etc. Note that these
values are calculated from our assumption RandomEstimate and that is why these values
are fractional. In the third row C, we present the result corresponding to a randomly chosen
primitive polynomial. As example, from the Table 2(i) we get that there are 2 trinomial
multiples at degree less than or equal to 32, 5 trinomial multiples in the range of degree 32<

d�57, 5 trinomial multiples in the range of degree 57< d�82, etc. In the fourth row D,
we present the result corresponding to all the primitive polynomials. That is for degree 8, we
consider all the 16 primitive polynomials and check the result in aggregate.As example, from
the Table 2(i) we get that there are 32 trinomial multiples at degree less than or equal to 32, 66
trinomial multiples in the range of degree 32< d�57, 116 trinomial multiples in the range
of degree 57< d�82, etc. corresponding to all the primitive polynomials of degree 8. We
normalize the result of the fourth row D in the fifth row E. We divide the entries of the fourth
row by 16 (total number of primitive polynomials of degree 8) to get the values in the fifth
row E.

From the data in these three tables for the degree 8, 9 and 10, it is clear that our assumption
is supported by the empirical results. With this observation we land into the following result.
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Theorem 5. Given a primitive polynomialf (x) of degree d, under the assumption Ran-
domEstimate, there exists a t-nomial multipleg(x) of f (x) such that degree ofg(x) is less
than or equal to

2d/(t−1)+log2(t−1)+1.

Proof. From the assumption RandomEstimate, we need(
c

t − 1

)
Nd,t

/(
2d − 2

t − 1

)

approximately equal to 1. Let us consider the approximation as follows.(
c

t − 1

)
Nd,t

/(
2d − 2

t − 1

)
≈
(

c

t − 1

) (
2d − 2

t − 2

)/(
2

(
2d − 2

t − 1

)
(t − 1)

)
.

In this step we have approximated

Nd,t as

(
2d − 2

t − 2

)
/(2(t − 1)).

Note that(
c

t − 1

)(
2d − 2

t − 2

)/(
2

(
2d − 2

t − 1

)
(t − 1)

)

= 1

2

c!
(t−1)!(c−t+1)!

(2d−2)!
(t−1)!(2d−t−1)!

(2d−2)!
(t−2)!(2d−t)!
t − 1

= 1

2

(c!)
(c − t + 1)!(t − 1)!(2d − t)

= 1

2

c(c − 1) · · · (c − t + 1)

(t − 1)(t − 2) · · · 1

1

2d − t ≈ 1

2

(
c

t − 1

)t−1 1

2d
.

Here we underestimate the expression. Now we need the expression1
2(

c
t−1)

t−1 1
2d

to be
approximately equal to 1. This will give the estimate ofcd,t . Thus

cd,t ≈ 2(t − 1)2d/(t−1) = 2d/(t−1)+log2(t−1)+1. �

Let us also refer to a result on 4-nomial multiples of a primitive polynomial[15, p. 174].
It states that given a primitive polynomialf (x) of degreed, it is possible to get a 4-nomial
multiple off (x) having degree less than 2d/4 with high probability. This result is not exactly
true. By computer experiment we observe that for a randomly chosen primitive polynomial
f (x), in most of the timesf (x) does not have a 4-nomial multiple with degree less than
2d/4. As example, givenf (x) = x31 + x30 + x29 + x28 + x27 + x25 + x24 + x23 +
x22 + x21 + x16 + x14 + x13 + x11 + 1, it has the minimum degree 4-nomial multiple
x3286 + x2417 + x1001 + 1. Note that 3286 is much larger than 2d/4 = 231/4 ≈ 215 for
d = 31. On the other hand, our estimate

2d/(t−1)+log2(t−1)+1 = 2d/3+log2 3+1 = 2d/3+log2 3+1 = 2d/3+2.585

is much more reasonable. Our estimate gives the value 7740 ford = 31.



S. Maitra et al. / Theoretical Computer Science 341 (2005) 311–343 329

Table 3
Experimental results with respect to Theorem5

Degreed �(2d−1)
d

Estimatedcd,3 A Estimatedcd,4 B

8 16 64 0 38 0
9 48 90 0 48 0

10 60 128 0 60 0
11 176 181 0 76 0
12 144 256 0 96 0
13 630 362 0 120 0
14 756 512 0 153 0
15 1800 724 6 192 0
16 2048 1024 13 241 0

Our result in Theorem5 can be used to calculate the expected running time of the
Algorithm Find-t-Nomial-Multiple at the beginning of this section. Considering our estimate
of Theorem 5, we find that the value ofcd,t , in the discussion for complexity, should be
estimated as

2d/(t−1)+log2(t−1)+1.

Thus we need to check whetherf (x) dividesg(x) for

cd,t∑
i=d

(
i − 1

t − 2

)
≈

2d/(t−1)+log2(t−1)+1∑
i=d

(
i − 1

t − 2

)

different t-nomials in total. Note that the algorithm can be parallelized easily using more
than one machines for faster solution.

In Table3 we present some more experimental results to support Theorem 5. We consider
the primitive polynomials of degree 8–16 and present the results as follows. For each degree
d we provide how many primitive polynomials of that degree does not have at-nomial
multiple having degree

�2d/(t−1)+log2(t−1)+1

given in Theorem5. We consider trinomials and 4-nomials. In the first column we present
the degree of the primitive polynomial. In the second column we present the total number
of primitive polynomials of degreed, which is �(2d − 1)/d [11]. In the third column
we provide the estimated value ofcd,3 from Theorem 5. The fourth column A provides
the number of primitive polynomials for which the least degree trinomial multiples have
degree> cd,3. Similarly in the fifth column we provide the estimated value ofcd,4 and the
sixth column B provides the number of primitive polynomials for which the least degree
4-nomial multiples have degree> cd,4.

Table 3 strongly supports the estimation ofTheorem 5. However, it is interesting to see that
there are indeed a few primitive polynomials which do not have minimum degreet-nomials
in the range of estimated degree in Theorem 5. This kind of primitive polynomials are
more suitable for cryptographic purposes. In fact this motivates us to present the following
criteria in selection of primitive polynomials to be used as LFSR connection polynomials.



330 S. Maitra et al. / Theoretical Computer Science 341 (2005) 311–343

Given a set of primitive polynomials of degree d and weightw, we need to choose the one
out of those whose least degree t-nomial multiple has maximum degree for low values of t.
Currently the only available option to find out such a primitive polynomial is exhaustive
search technique.

6.1. Degree squares of t-nomial multiples

We here provide further experimental results in this direction and strengthen the claim
that the distributionsX, Y are very close. For this we first find the sum of squares of
max(i1, i2, . . . , it−2, it−1) for the distributionY.

Lemma 1. The average of squares of the values in Y is

t − 1

t
(2d − 1)

(
t2d

t + 1
− 1

)
.

Moreover, standard deviation of Y is

1

t

√
t − 1

t + 1
(2d − 1)(2d − t − 1).

Proof. Consider the random variateY which is max(i1, i2, . . . , it−2, it−1). We know that
〈i1, i2, . . . , it−2, it−1〉 is any ordered(t − 1)-tuple from the values 1 to 2d − 2. Note that

there is only 1 tuple with maximum value(t − 1). There are
(
t−1
t−2

)
tuples with maximum

valuet,
(
t
t−2

)
tuples with maximum valuet+1 and so on. Thus, the average of the squares

of the values in the distribution

Y =
2d−2∑
i=t−1

i2
(
i − 1

t − 2

)/(
2d − 2

t − 1

)
.

Now,
2d−2∑
i=t−1

i2
(
i − 1

t − 2

)
= (t − 1)t

2d−2∑
i=t−1

(
i + 1

t

)
− (t − 1)

2d−2∑
i=t−1

(
i

t − 1

)

= (t − 1)t

(
2d

t + 1

)
− (t − 1)

(
2d − 1

t

)
.

Simplifying we get,

2d−2∑
i=t−1

i2
(
i − 1

t − 2

)/(
2d − 2

t − 1

)
= t − 1

t
(2d − 1)

(
t2d

t + 1
− 1

)
.

Now standard deviation of

Y =
√
t − 1

t
(2d − 1)

(
t2d

t + 1
− 1

)
−
(
t − 1

t
(2d − 1)

)2

= 1

t

√
t − 1

t + 1
(2d − 1)(2d − t − 1). �
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Table 4
Average ofsum of squares for the degreesof t-nomial multiples

Primitive polynomial t = 3 t = 4 t = 5 t = 6 t = 7

x4 + x + 1 110 132.61 148.04 158.96 167.13
x4 + x3 + 1 110 132.61 148.04 158.96 167.13
Estimated 110 132.75 148 158.92 167.14

x5 + x2 + 1 475.33 571.48 636.67 682.78 717.40
x5 + x3 + 1 475.33 571.48 636.67 682.78 717.40
x5 + x3 + x2 + x + 1 475.33 571.48 636.43 682.81 717.44
x5 + x4 + x2 + x + 1 475.33 571.55 636.41 682.80 717.45
x5 + x4 + x3 + x + 1 475.33 571.55 636.41 682.80 717.45
x5 + x4 + x3 + x2 + 1 475.33 571.48 636.43 682.81 717.44
Estimated 475.33 571.95 636.53 682.73 717.42

x6 + x + 1 1974 2371.63 2636.76 2827.51 2969.98
x6 + x4 + x3 + x + 1 1974 2371.09 2636.71 2827.54 2969.99
x6 + x5 + 1 1974 2371.63 2636.76 2827.51 2969.98
x6 + x5 + x2 + x + 1 1974 2371.27 2636.46 2827.54 2970.01
x6 + x5 + x3 + x2 + 1 1974 2371.09 2636.71 2827.54 2969.99
x6 + x5 + x4 + x + 1 1974 2371.27 2636.46 2827.54 2970.01
Estimated 1974 2371.95 2637.60 2827.50 2970

x7 + x + 1 8043.33 9657.33 10 736.02 11 505.61 12 083.13
x7 + x3 + 1 8043.33 9656.92 10 736.05 11 505.62 12 083.13
x7 + x3 + x2 + x + 1 8043.33 9656.37 10 735.46 11 505.65 12 083.16
x7 + x4 + 1 8043.33 9656.92 10 736.05 11 505.62 12 083.13
x7 + x4 + x3 + x2 + 1 8043.33 9656.65 10 735.77 11 505.64 12 083.14
x7 + x5 + x2 + x + 1 8043.33 9656.66 10 735.87 11 505.64 12 083.14
x7 + x5 + x3 + x + 1 8043.33 9657.48 10 735.60 11 505.61 12 083.15
x7 + x5 + x4 + x3 + 1 8043.33 9656.65 10 735.77 11 505.64 12 083.14
x7 + x5 + x4 + x3 + x2 + x + 1 8043.33 9657.82 10 735.71 11 505.60 12 083.14
x7 + x6 + 1 8043.33 9657.33 10 736.02 11 505.61 12 083.13
x7 + x6 + x3 + x + 1 8043.33 9656.59 10 735.42 11 505.65 12 083.16
x7 + x6 + x4 + x + 1 8043.33 9656.59 10 735.42 11 505.65 12 083.16
x7 + x6 + x4 + x2 + 1 8043.33 9657.48 10 735.60 11 505.61 12 083.15
x7 + x6 + x5 + x2 + 1 8043.33 9656.66 10 735.87 11 505.64 12 083.14
x7 + x6 + x5 + x3 + x2 + x + 1 8043.33 9656.38 10 735.47 11 505.65 12 083.16
x7 + x6 + x5 + x4 + 1 8043.33 9656.37 10 735.46 11 505.65 12 083.16
x7 + x6 + x5 + x4 + x2 + x + 1 8043.33 9656.38 10 735.47 11 505.65 12 083.16
x7 + x6 + x5 + x4 + x3 + x2 + 1 8043.33 9657.82 10 735.71 11 505.60 12 083.14
Estimated 8043.33 9658.35 10 735.73 11 505.60 12 083.14

Primitive polynomials with degree 4, 5, 6, 7 are considered.

Let us present some experimental results in Table4 for multiples of primitive polynomials
having degreed = 4,5,6,7. We take each of the primitive polynomials and then find the
average of the square of degreesof t-nomial multiples fort = 3,4,5,6,7. In the last row
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we present the estimated value

t − 1

t

(
2d − 1

)( t2d

t + 1
− 1

)
.

From the above table it is clear that in terms of average of squares, the distributionsX, Y

are very close. The most interesting observation in this direction is the sum of square of the
degree of the trinomial multiples. Note that theaverage of the squares of the elements of
distributionY(consideringt = 3) andthe average of the squares of the degrees of trinomial
multiplesare same for all the experiments, which is2

3(2
d − 1)(3 × 2d−2 − 1). We now

present the formal proof of the result.

Theorem 6. Consider any primitive polynomialf (x) of degree d. Consider that the degree
of the trinomial multiples(having degree�2d − 2) of f (x) ared1, d2, . . . , dNd,3. Then

Nd,3∑
s=1
d2
s = (2/3)(2d − 1)(3 · 2d−2 − 1)Nd,3.

Proof. Consider a trinomial multiple off (x) of the formxi+xj +1, wherei > j . Lete =
2d−1. Leti �= 2(2d−1)/3, j �= (2d−1)/3. Thenx(e−i)+j +xe−i+1 andxe−j +xi−j +1
are two more distinct trinomial multiples off (x) (multiplyingxi+xj+1 byxe−i andxe−j ,
respectively). Now, consider the sum of differences(i2−j2)+((e−i+j)2−(e−i)2)+((e−
j)2−(i−j)2), which is equal toe2. Further take the casei = 2(2d−1)/3, j = (2d−1)/3,
whend is even. In that case all the three trinomials generated in the above manner are same.
Thus we will only consider one difference,(2(2d − 1)/3)2 − ((2d − 1)/3)2 = e2/3.

Let the trinomial multiples (having degree< e) of f (x) be xis + xjs + 1, for s =
1, . . . , Nd,3. We will consider

∑Nd,3
s=1 (i

2
s − j2

s ). If d is odd we will getNd,3/3 different
groups each contributinge2 in this sum. Ifd is even, we will get(Nd,3 − 1)/3 different
groups each contributinge2 in this sum except one term which contributese2/3 when
is = 2(2d − 1)/3, js = (2d − 1)/(3).

Thus,

Nd,3∑
s=1
(i2s − j2

s ) = Nd,3e2/3.

Now add

Nd,3∑
s=1
(i2s + j2

s )

in both sides. Then

2
Nd,3∑
s=1
i2s = Nd,3e2/3 +

Nd,3∑
s=1
(i2s + j2

s ).



S. Maitra et al. / Theoretical Computer Science 341 (2005) 311–343 333

Note that, considering the values ofis , js for all swe basically get all the integers in the
range 1 toe − 1. Thus,

Nd,3∑
s=1
(i2s + j2

s ) = 12 + 22 + · · · + (e − 1)2.

We already know thatNd,3 = 2d−1 − 1. Simplifying, we get

Nd,3∑
s=1
i2s = (2/3)(2d − 1)(3 · 2d−2 − 1)Nd,3. �

This is now theoretically proved that fort = 3, the average of squares of the values inY,

i.e., 2
3(2

d − 1)(3·2d
4 − 1) is exactly equal to the average of square of the values inX.

6.2. Reciprocal polynomials

Consider two primitive polynomialsf (x) andg(x) of degreed, such that they are recip-
rocal to each other. That is, if� is a root off (x), then�−1 = �2d−2 is the root ofg(x).
Consider the multisetW(f (x), d, t), which contains the degree of all thet-nomial multiples
(having degree< 2d−1) of a degreedpolynomialf (x). Now we have the following result.

Lemma 2. Let f (x) andg(x) be two reciprocal primitive polynomials of degree d. Then
W(f (x), d, t) = W(g(x), d, t).

Proof. Note thatf (x) divides at-nomialxi1 +xi2 +· · ·+xit−2 +xit−1 +1 iff g(x) divides a
t-nomialxi1 +xi1−i2 +· · ·+xi1−it−2 +xi1−it−1 +1. Without loss of generality, we consider
thati1 > i2 > · · · > it−2 > it−1. This gives the proof. �

From Lemma2 we get that, sinceW(f (x), d, t) = W(g(x), d, t), the statistical param-
eters based onW(f (x), d, t) orW(g(x), d, t) are also same. In Table 4, it is clear that the
entries corresponding to any primitive polynomial and its reciprocal are same.

7. Degree distribution of t-nomial multiples of product of primitive polynomials

From the cryptanalytic point of view, it is important to find thet-nomial multiples (of
product of primitive polynomials) having lower degrees. One way to obtain the minimum
degreet-nomial multiple of product of polynomials is to start checking thet-nomials from
lower to higher degrees and see when the first time we get onet-nomial multiple. This pro-
vides the minimum degreet-nomial multiple of product of the polynomials. Similar method
can be continued further to get more multiples. On the other hand, to resist cryptanalytic
attack, it is important to select primitive polynomials such that they will not have at-nomial
multiple at lower degree for smallt, sayt�10. Thus it is important to analyse the degree
distribution oft-nomial multiples of product of primitive polynomials.
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Let us now concentrate on the case when the primitive polynomials are of degree
pairwise coprime. We like to estimate how the degree of thet-nomial multiples are dis-
tributed. Consider a primitive polynomialfr(x) of degree dr . It has Ndr ,t many
t-nomial multiples of degree< 2dr − 1. Now we like to highlight the following
points.

(1) Considert-nomial multiples of the formxp1,r + xp2,r + · · · + xpt−1,r + 1 of a prim-
itive polynomialfr(x). Note thatp1,r , p2,r , . . . , pt−1,r are not ordered and they are
distinct moduloer . Experimental study shows that the valuesp1,r , p2,r , . . . , pt−1,r are
uniformly distributed in the range 1,2, . . . , 2dr − 2 = er − 1 for eachr.

(2) Then using the Chinese remainder theorem (see the proof of Theorem4), we find
that f1(x)f2(x) · · · fk(x) divides xI1 + xI2 + · · · + xIt−1 + 1 which has degree<
e1e2 · · · ek. Now in the proof of Theorem 4, it is clear that the valueIj is decided
from the valuespj,r ’s for r = 1, . . . , k. Since,pj,r ’s are uniformly distributed and
the Chinese remainder theorem provides a bijection fromZe1 × Ze2 × · · · × Zek to
Ze1e2···ek , it is expected that the valuesI1, I2, . . . , It−1 are uniformly distributed in the
range 1,2, . . . , e1e2 · · · ek − 1. HereZa is the set of integers from 0 toa − 1.

(3) The distribution of the degrees of thet-nomial multiples of the product polynomial
f1(x)f2(x) · · · fk(x) is the distribution of max(I1, . . . , It−1). It can be assumed that
the valuesI1, I2, . . . , It−1 are chosen uniformly from the range 1, . . . , (2d1 − 1)(2d2 −
1) · · · (2dk − 1)− 1.

To analyse the degree distribution of theset-nomial multiples of the products of primitive
polynomials, let us consider the random variateX(d1,...,dk),t , which is max(I1, . . . , It−1),
wherexI1 + xI2 + · · · + xIt−1 + 1 is a t-nomial multiple off1(x)f2(x) · · · fk(x). Let
� = (2d1 − 1)(2d2 − 1) · · · (2dk − 1). On the other hand, consider all the(t − 1)-tuples

〈I1, . . . , It−1〉, with component values in the range 1 to�−1. There are
(

�−1
t−1

)
such tuples.

Consider the random variateY (d1,...,dk),t , which is max(I1, . . . , It−1), where〈I1, . . . , It−1〉
is any orderedt-tuple from the values 1 to� − 1. With the above explanation and the
following experimental studies, we consider that the distributionsX(d1,...,dk),t , Y (d1,...,dk),t

are very close.
Let us first concentrate on the experimental results presented in Table5. We consider the

degree distribution oft-nomial multiples of product of primitive polynomials of degree 3
and 4. The product polynomials of degree 7 are presented in the leftmost column of the table.
As example(x3 +x+1)(x4 +x+1) = x7 +x5 +x3 +x2 +1 is represented as 10101101.
The exponent of the polynomialx7+x5+x3+x2+1 is(23−1)(24−1) = 105. We present
the proportion oft-nomial multiples of degree< 15,25, . . . ,105, wheret = 3,4,5,6,7.

Corresponding to eacht, we also present the proportion
(
c
t−1

)
/
(

�−1
t−1

)
in the last row. Here,

� = 105 andc = 14,24, . . . ,104. Table 5 clearly identifies the closeness of the distributions
X(d1,...,dk),t , Y (d1,...,dk),t . Similar support is available from the Table 6 which considers
the t-nomial multiples (fort = 3,4,5) of product of degree 4 and degree 5 primitive
polynomials.

Take two sets of primitive polynomialsf1(x), . . . , fk(x) andg1(x), . . . , gk(x) of degree
d1, . . . , dk (pairwise coprime), such that eachfr(x) andgr(x) are reciprocal to each other.
Consider the multisetU(f1(x) · · · fk(x), d1, . . . , dk, t), which contains the degree of all
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Table 5
Degree distribution fort-nomial multiples of product of degree 3 and degree 4 primitive polynomials

Product < 15 < 25 < 35 < 45 < 55 < 65 < 75 < 85 < 95 < 105

10101101 0.0238 0.0714 0.1429 0.1429 0.2619 0.3571 0.5476 0.6429 0.7857 1.0000
11000111 0.0000 0.0476 0.1190 0.1905 0.3095 0.3810 0.5238 0.6190 0.7857 1.0000
11100011 0.0000 0.0476 0.1190 0.1905 0.3095 0.3810 0.5238 0.6190 0.7857 1.0000
10110101 0.0238 0.0714 0.1429 0.1429 0.2619 0.3571 0.5476 0.6429 0.7857 1.0000
t = 3 0.0170 0.0515 0.1047 0.1766 0.2672 0.3764 0.5043 0.6509 0.8161 1.0000

10101101 0.0014 0.0110 0.0329 0.0719 0.1349 0.2295 0.3568 0.5253 0.7370 1.0000
11000111 0.0021 0.0103 0.0308 0.0733 0.1349 0.2288 0.3575 0.5247 0.7370 1.0000
11100011 0.0021 0.0103 0.0308 0.0733 0.1349 0.2288 0.3575 0.5247 0.7370 1.0000
10110101 0.0014 0.0110 0.0329 0.0719 0.1349 0.2295 0.3568 0.5253 0.7370 1.0000
t = 4 0.0020 0.0111 0.0329 0.0727 0.1362 0.2288 0.3560 0.5232 0.7361 1.0000

10101101 0.0002 0.0021 0.0095 0.0298 0.0689 0.1388 0.2487 0.4196 0.6644 1.0000
11000111 0.0003 0.0024 0.0100 0.0293 0.0677 0.1378 0.2493 0.4204 0.6644 1.0000
11100011 0.0003 0.0024 0.0100 0.0293 0.0677 0.1378 0.2493 0.4204 0.6644 1.0000
10110101 0.0002 0.0021 0.0095 0.0298 0.0689 0.1388 0.2487 0.4196 0.6644 1.0000
t = 5 0.0002 0.0023 0.0101 0.0295 0.0688 0.1382 0.2502 0.4196 0.6632 1.0000

10110101 0.0000 0.0005 0.0030 0.0118 0.0345 0.0829 0.1752 0.3356 0.5968 1.0000
11100011 0.0000 0.0005 0.0031 0.0118 0.0345 0.0829 0.1751 0.3356 0.5968 1.0000
11000111 0.0000 0.0005 0.0031 0.0118 0.0345 0.0829 0.1751 0.3356 0.5968 1.0000
10101101 0.0000 0.0005 0.0030 0.0118 0.0345 0.0829 0.1752 0.3356 0.5968 1.0000
t = 6 0.0000 0.0005 0.0030 0.0118 0.0344 0.0829 0.1752 0.3357 0.5969 1.0000

11100011 0.0000 0.0001 0.0009 0.0047 0.0171 0.0494 0.1221 0.2679 0.5365 1.0000
10110101 0.0000 0.0001 0.0009 0.0047 0.0170 0.0494 0.1222 0.2679 0.5365 1.0000
11000111 0.0000 0.0001 0.0009 0.0047 0.0171 0.0494 0.1221 0.2679 0.5365 1.0000
10101101 0.0000 0.0001 0.0009 0.0047 0.0170 0.0494 0.1222 0.2679 0.5365 1.0000
t = 7 0.0000 0.0001 0.0009 0.0047 0.0170 0.0494 0.1221 0.2679 0.5366 1.0000

the t-nomial multiples (having degree< (2d1 − 1) · · · (2dk − 1)) of f1(x) · · · fk(x). The
following result is similar to Lemma2.

Lemma 3. U(f1(x) · · · fk(x), d1, . . . , dk, t) = U(g1(x) · · · gk(x), d1, . . . , dk, t).

Since,U(f1(x) · · · fk(x), d1, . . . , dk, t) = U(g1(x) · · · gk(x), d1, . . . , dk, t), the statisti-
cal parameters based on the multisetsU(f1(x) · · · fk(x), d1, . . . , dk, t),U(g1(x) · · · gk(x),
d1, . . . , dk, t) are exactly same. In Table5, it is clear that the entries corresponding to
the multiplesf1(x)f2(x) andg1(x)g2(x) are same wheref1(x), g1(x) are reciprocal and
f2(x), g2(x) are also reciprocal. Thus, in Table 6, we put only one row corresponding to
each such pair.

Now we present the following result. The proof is similar to that of Lemma 1.
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Table 6
Degree distribution fort-nomial multiples of product of degree 4 and degree 5 primitive polynomials

Product < 30 < 65 < 115 < 165 < 215 < 265 < 315 < 365 < 415 < 465

1101011101 0.0000 0.0286 0.0571 0.1238 0.2095 0.3238 0.4524 0.6095 0.7905 1.0000
1111110001 0.0048 0.0190 0.0619 0.1143 0.2238 0.3238 0.4333 0.6238 0.7952 1.0000
1011111111 0.0000 0.0143 0.0619 0.1333 0.2190 0.3238 0.4619 0.6095 0.7810 1.0000
1001010011 0.0048 0.0190 0.0667 0.1143 0.2190 0.3286 0.4524 0.6286 0.7952 1.0000
1110100111 0.0095 0.0190 0.0571 0.1286 0.2286 0.3238 0.4571 0.6095 0.7952 1.0000
1000000101 0.0095 0.0143 0.0524 0.1286 0.2000 0.3190 0.4571 0.6190 0.7952 1.0000
t = 3 0.0040 0.0188 0.0600 0.1244 0.2122 0.3232 0.4575 0.6150 0.7959 1.0000

1101011101 0.0002 0.0023 0.0145 0.0434 0.0969 0.1835 0.3090 0.4819 0.7099 1.0000
1111110001 0.0002 0.0025 0.0142 0.0434 0.0969 0.1834 0.3083 0.4820 0.7099 1.0000
1011111111 0.0002 0.0025 0.0146 0.0433 0.0977 0.1832 0.3091 0.4820 0.7097 1.0000
1001010011 0.0002 0.0023 0.0146 0.0428 0.0973 0.1835 0.3088 0.4820 0.7100 1.0000
1110100111 0.0003 0.0023 0.0145 0.0434 0.0973 0.1830 0.3093 0.4821 0.7099 1.0000
1000000101 0.0004 0.0022 0.0142 0.0433 0.0966 0.1829 0.3086 0.4820 0.7098 1.0000
t = 4 0.0002 0.0025 0.0145 0.0436 0.0974 0.1833 0.3089 0.4819 0.7098 1.0000

1101011101 0.0000 0.0003 0.0035 0.0152 0.0446 0.1038 0.2085 0.3774 0.6328 1.0000
1111110001 0.0000 0.0003 0.0035 0.0153 0.0445 0.1037 0.2086 0.3773 0.6328 1.0000
1011111111 0.0000 0.0003 0.0035 0.0152 0.0445 0.1038 0.2084 0.3774 0.6329 1.0000
1001010011 0.0000 0.0003 0.0035 0.0153 0.0445 0.1037 0.2085 0.3773 0.6328 1.0000
1110100111 0.0000 0.0003 0.0035 0.0152 0.0445 0.1037 0.2084 0.3774 0.6328 1.0000
1000000101 0.0000 0.0003 0.0035 0.0152 0.0446 0.1038 0.2084 0.3774 0.6328 1.0000
t = 5 0.0000 0.0003 0.0035 0.0152 0.0446 0.1038 0.2084 0.3774 0.6328 1.0000
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Lemma 4. Let� = (2d1 −1)(2d2 −1) · · · (2dk −1).The average of the values inY (d1,...,dk),t

is t−1
t

�. Moreover, the average of squares of the values inY (d1,...,dk),t is

t − 1

t
�
(
t (� + 1)

t + 1
− 1

)
.

In theTable7, we present the exact data for multiples of products of primitive polynomials.
We consider the product of primitive polynomials having degree(3,4), (3,5) and(4,5).
The product polynomials are presented in the leftmost column of the table. In each cell, we
present the experimental values for the distributionX(d1,d2),t . We present theaverage of the
degreesandaverage of the squares of the degreesof t-nomial multiples in the same cell of
the table. We also present the estimated values in the tables which gives the results related
to the distributionY (d1,d2),t . It is clear from the table that for the set of experiments we have
done, the results related to the distributionsX(d1,d2),t andY (d1,d2),t are very close. We like
to present the following observations (the formal proofs will be presented soon) from the
Table 7, which is related to the distributionX(d1,...,dk),t .
(1) The average of degree of thet-nomial multiples of

∏k
r=1 fr(x) is fixed and it is equal

to [(t − 1)/t]�, where� is the exponent of
∏k
r=1 fr(x).

(2) Average of the square of degree of the trinomial multiples of
∏k
r=1 fr(x) is fixed but

not exactly equal to the estimated value.
Now we will present a more general result than item(1). First we need a technical result.

Lemma 5. Letf (x) be a polynomial overGF(2) having degree d and exponent e and1+x
does not dividef (x). Let the number of t-nomial multiples(with degree< e and constant
term1) of f (x) benf,t . Thennf,t /t = nf,e−t /(e − t), where2< t < e − 2.

Proof. Note thatf (x) divides 1+ xe. Since 1+ x does not dividef (x), f (x) divides
(1 + xe)/(1 + x), i.e.,f (x) divides 1+ x+ x2 + · · · + xe−1. This is thee-nomial multiple
with degree less thane of f (x). Wheneverxi1 + xi2 + · · · + xit (constant term 0) is a
multiple off (x) (here 1� i1 < i2 < · · · < it < e), adding with 1+ x + x2 + · · · + xe−1,
we will get an(e − t)-nomial multiple

1 +
e−1∑

i=1,i �=i1,i2,...,it
xi

(having constant term 1) off (x).
We will count the number of such multiples off (x), which is equal to the number of

(e−t)-nomials. Consider at-nomial multiplexj1+xj2 +· · ·+xjt−1+1 off (x). Multiplying
it by xj for 0�j < e, we will get t manyt-nomial multiples having constant term 1 and
(e − t) many multiples of the formxi1 + xi2 + · · · + xit (having constant term 0) where
1� i1 < i2 · · · it < e. Considering any one of theset many t-nomials (having constant
term 1) will produce the same set of(e − t) many(e − t)-nomial multiples. So,t many
t-nomials giving(e − t) many (e − t)-nomials and vice versa. Hence, we getnf,t /t =
nf,e−t /(e − t). �

Let us now present the following theorem.
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Table 7
Average of degree and average of degree square oft-nomial multiples for product of primitive polynomials

Product polynomial t = 3 t = 4 t = 5

10110101 70.00, 5530.00 78.75, 6595.27 84.00, 7335.44
11100011 70.00, 5530.00 78.75, 6595.15 84.00, 7334.90
Estimated 70.00, 5495.00 78.75, 6599.25 84.00, 7336.00

101000111 144.67, 23580.67 162.75, 28212.40 173.60, 31363.62
100110011 144.67, 23580.67 162.75, 28214.39 173.60, 31362.93
100001001 144.67, 23580.67 162.75, 28213.60 173.60, 31363.82
110101111 144.67, 23580.67 162.75, 28213.88 173.60, 31363.46
111100001 144.67, 23580.67 162.75, 28214.15 173.60, 31362.90
111100001 144.67, 23580.67 162.75, 28216.71 173.60, 31363.33
Estimated 144.67, 23508.33 162.75, 28220.85 173.60, 31363.73

1101011101 310.00, 108190.00 348.75, 129651.90 372.00, 144087.34
1101011101 310.00, 108190.00 348.75, 129659.90 372.00, 144087.41
1101011101 310.00, 108190.00 348.75, 129656.72 372.00, 144086.58
1101011101 310.00, 108190.00 348.75, 129652.81 372.00, 144087.51
1101011101 310.00, 108190.00 348.75, 129652.43 372.00, 144087.20
1101011101 310.00, 108190.00 348.75, 129657.92 372.00, 144087.93
Estimated 310.00, 108035.00 348.75, 129665.25 372.00, 144088.00

Theorem 7. Consider a polynomialf (x) overGF(2)with exponent e such that1+x does
not dividef (x). Let the number of t-nomial multiples(with degree< e and constant term
1) of f benf,t . Then the sum of the degrees of all its t-nomial multiples with degree< e is
[(t − 1)/t]enf,t .

Proof. We have 1+ x does not dividef (x). Consider eacht-nomial multiple of degree
d̂s , where 1�s�nf,t . Now multiply eacht-nomial byxi , for 1� i�(e − d̂s − 1), we will
get multiples of the formxi1 + xi2 + · · · + xit , where 1� i1 < i2 < · · · < it < e. Thus
eacht-nomial will provide(e− d̂s − 1)many multiples of the above form and observe that
these are distinct. Similar to the proof of Lemma5,

∑nf,t
s=1 (e − d̂s − 1) gives the count of

(e − t)-nomial multiples. Moreover, from the proof of Lemma 5, we will get

nf,e−t = e − t
t
nf,t , i.e.,

nf,t∑
s=1
(e − d̂s − 1) = e − t

t
nf,t .

Hence
nf,t∑
s=1
d̂s =

(
e − 1 − e − t

t

)
nf,t = t − 1

t
enf,t . �

Corollary 7. Consider k many primitive polynomialsf1(x), f2(x), . . ., fk(x) having de-
greesd1, d2, . . . , dk respectively(the degrees are pairwise coprime). The average of degree
of the t-nomial multiples(with degree< �) of

∏k
r=1 fr(x) is fixed and it is equal to

[(t − 1)/t]�, where� is the exponent of
∏k
r=1 fr(x).
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Proof. Let f (x) = ∏k
r=1 fr(x). Since eachfr(x) is a primitive polynomial of degreedr ,

all the conditions of Theorem7 are satisfied. So,∑nf,t
s=1 d̂s

nf,t
= t − 1

t
�. �

Hence, we prove that the average of the values in distributionsX(d1,...,dk),t , andY (d1,...,dk),t

are same. Next we consider the square of the degrees of trinomial multiples of
∏k
r=1 fr(x),

the observation of item 2.

Theorem 8. Take k many primitive polynomialsf1(x), f2(x), . . . , fk(x) overGF(2) hav-
ing degreesd1, d2, . . . , dk (pairwise coprime) and exponentser = 2dr − 1, for 1�r�k.
Then the sum of squares of degrees of trinomial multiples off (x) = f1(x)f2(x) · · · fk(x)
with degree< e = e1e2 · · · ek is

e2

6
2k−1

k∏
r=1
(2dr−1 − 1)+ (e − 1)e(2e − 1)

12

+1

2

k−1∑
r=1

∑
Ar⊂{e1,e2,...,ek}


(−1)r

( ∏
ej∈Ar

ej
2

)e/
∏
ej ∈Ar ej−1∑
b=1

b2






where|Ar | = r.

Proof. Similar to the proof of Theorem6, considering all the trinomialsxis + xjs + 1 of
f (x) with 1�js < is < e for 1�s�nf,3, we have

2
nf,3∑
s=1
is

2 = nf,3

3
e2 +

nf,3∑
s=1
(is

2 + js2).

Now we will see the possible values foris , js in the range[1, e − 1]. It is important to
see that this is not exactly similar to that of the proof of Theorem6. We show that

(1) for any trinomial multiplexi +xj +1 off (x), where 1� i, j < e, we getimoder /≡ 0
andj moder /≡ 0 for all 1�r�k,

(2) for any integeri with 1� i < e andimoder /≡ 0 for all 1�r�k, we can get a trinomial
multiple off (x) wherei appears as a power ofx,

which implies that the only integers that appear as a power ofx in a trinomial multiple are
of the above form. The proof is as follows.

Consider a trinomial multiplexi + xj + 1 of f (x), where 1� i, j < e. Note that,
ximoder + xj moder + 1 is a multiple offr(x), for 1�r�k. Suppose thatimoder ≡ 0 for
somer, 1�r�k, then we getxj moder ≡ 0 modfr(x), which is not possible. Thus we have
imoder /≡ 0 for all 1�r�k. Similarly we can show thatj moder /≡ 0 for all 1�r�k.

On the other hand, considerxi + 1, where 1� i < e and i /≡ 0 moder , for all r =
1,2, . . . , k. Thenximoder + 1 is nonzero and/≡ 1 modulofr(x) for 1�r�k. Sincefr(x)
is a primitive polynomial, the set of all nonzero elements modulofr(x) can be identified
by xj modfr(x) for 0�j < er . Thus we will getximoder +1 ≡ xlr (modfr(x)), for some
lr , 1� lr < er , i.e.,ximoder +xlr +1 is a trinomial multiple offr(x). By using the Chinese
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remainder theorem[8, p. 53], we get a unique integerlmode, wherel ≡ lr moder , for
1�r�k, aser ’s are pairwise coprime. Thus we have a trinomial multiplexi + xl + 1 of
f (x).

Hence the only possible values foris , js arel such that 1� l < e and l /≡ 0 moder for
all 1�r�k. Then the summation can be written as

nf,3∑
s=1
(is

2 + js2) =
e−1∑
i=1
i2 − ∑

z∈S
z,

whereS = {y2 : 1�y < e andy ≡ 0 moder , for anyr,1�r�k}.
Consider the sets

Sr =
{
e2
r , (2 · er)2, . . . ,

((
e

er
− 1

)
· er
)2
}
, for 1�r�k.

Observe that
⋃k
r=1 Sr = S. We now calculate

∑
z∈S z using inclusion and exclusion

principle.
Take distinct integersa1, a2, . . . , ar in the range[1, k] for 1�r < k. Now consider

∩rq=1Saq , which contains

r∏
q=1

eaq
2,22 ·

r∏
q=1

eaq
2, . . . ,

(
e/

r∏
q=1

eaq − 1

)2

·
r∏
q=1

eaq
2.

Hence,

∑
z∈∩rq=1Saq

z =
(

r∏
q=1

eaq
2

)(e/
∏r
q=1 eaq−1)∑
b=1

b2


 .

DenoteAr to be a subset of{e1, e2, . . . , ek} with |Ar | = r. Finally,∑
z∈S
z= ∑

z∈∪kr=1 Sr

z

=
k−1∑
r=1

∑
Ar⊂{e1,e2,...,ek}


(−1)r+1

( ∏
ej∈Ar

ej
2

)(e/
∏
ej ∈Ar ej )−1∑
b=1

b2




 .

So,

2
nf,3∑
s=1
is

2 = nf,3

3
e2 +

nf,3∑
s=1
(is

2 + js2) = nf,3

3
e2 +

e−1∑
i=1
i2 − ∑

z∈S
z.

Hence
nf,3∑
s=1
is

2 = nf,3

6
e2 + (e − 1)e(2e − 1)

12

+1

2

k−1∑
r=1

∑
Ar⊂{e1,e2,...,ek}


(−1)r

( ∏
ej∈Ar

ej
2

)(e/
∏
ej ∈Ar ej )−1∑
b=1

b2




 .
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From Corollary5, we have the exact formula for the number of trinomial multiples (having
degree< e) of f (x), which is 2k−1∏k

r=1 (2
dr−1 − 1) and this is the value ofnf,3. Hence

the proof. �

As in the proof of Theorem 5, one can approximateNdr ,t as[1/(t − 1)!]2dr (t−2). Now
let us estimate considering the lower bound

((t − 1)!)k−1
k∏
r=1
Ndr ,t

mentioned in Theorem4. Approximating

Ndr ,t as
1

(t − 1)! 2dr (t−2),

we obtain

((t − 1)!)k−1
k∏
r=1
Ndr ,t ≈ ((t − 1)!)k−1

k∏
r=1

1

(t − 1)! 2dr (t−2) = 2

(∑k
r=1 dr

)
(t−2)

(t − 1)!
= 1

(t − 1)!2
d(t−2), whered =

k∑
r=1
dr ,

is the degree of
∏k
r=1 fr(x).

Remark 2. Consider a primitive polynomialf (x) having degreed and a polynomialg(x),
which is product ofk different primitive polynomials with degreed1, . . . , dk (pairwise co-
prime), whered = d1+· · ·+dk. From the above discussion, it follows that the approximate
count of thet-nomial multiples off (x) andg(x) are close.

From the distribution, it is expected that there are((
c

t − 1

)/(
�

t − 1

))
k∏
r=1
Ndr ,t

number oft-nomial multiples having degree�c. Consider that we need the lowest degree
t-nomial multiple (a single one) of

∏k
r=1 fr(x). Thus we expect((

c

t − 1

)/(
�

t − 1

))
k∏
r=1
Ndr ,t ≈ 1,

i.e., ((
c

t − 1

)/(
�

t − 1

))
1

(t − 1)!2
d(t−2) ≈ 1.

Now � = ∏k
r=1(2

dr − 1) ≈ 2d . Then we get thatc ≈ 2d/(t−1).
Note that the attacks presented by findingt-nomial multiples of product of primitive

polynomials require at least onet-nomial multiple. Consider a scheme using primitive
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polynomials of degree> 128. If the designer uses an 8-input, 3-resilient Boolean function,
then attacker has to consider product of at least 4 primitive polynomials. Thus the degree
of the product polynomial will be> 512. In such a scenario, the degree of the lowest
degreet-nomial multiple (of the product polynomial) will be approximately as large as
2256,2170,2128 for t = 3,4,5, respectively. This shows that in such a situation the attacks
presented in this direction (see[1]) will not succeed in practical sense. However, fort = 17,
the approximate degree of the lowest degreet-nomial multiple will be 232, which is at a
much lower degree (though there is no attack known with 17-nomial multiple). Thus, the
work presented in this paper clearly identifies how the parameters should be chosen for safe
design of stream cipher systems based on nonlinear combiner model given the currently
known cryptanalytic methods. On the other hand, existing systems can also be revisited to
see whether those are still secured given the computational power available now a days.

8. Conclusion

In this paper we have discussed results on multiples of primitive polynomials and their
products. We identify a class of primitive polynomials that are not recommended for crypto-
graphic purpose. Further, we analyse the complete class of primitive polynomials in general
and show that generally the sparse multiples occur at a relatively higher degree. Similar
trend is true for the polynomials which are product of primitive polynomials having mutually
coprime degree.

Number of questions are left open in this direction. Given a primitive polynomial (or a
product polynomial), no general algorithm is known yet (except the exhaustive search) to
find the minimum degreet-nomial algorithm. The problem seems to be at least as hard as
discrete log problem, though no theoretical proof is known yet.

The exact enumeration oft-nomial multiples of product of primitive polynomials for
t > 3 is an important theoretical question. Also it is interesting to see what happens when
the degrees or exponents are not mutually coprime. The solution of Conjecture 1 in Section
5 is important from cryptographic perspective.

We demonstrate some results in terms of statistical distribution of degree of thet-nomial
multiples. The question on average of degrees is completely solved and the case for average
of squares of degree are partially solved. It is not known what happens to the average of
some power of degrees. That analysis will strengthen the claim that the distribution of the
degrees oft-nomial multiples (having constant term 1) of primitive polynomials (or product
of primitive polynomials having degree mutually coprime) is almost indistinguishable with
the distribution of maximum of the tuples having size(t − 1).
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