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SUMMARY

Histone variant H2AX phosphorylation in re-
sponse to DNA damage is the major signal
for recruitment of DNA-damage-response
proteins to regions of damaged chromatin.
Loss of H2AX causes radiosensitivity, ge-
nome instability, and DNA double-strand-
break repair defects, yet the mechan-
isms underlying these phenotypes remain
obscure. Here, we demonstrate that mam-
malian MDC1/NFBD1 directly binds to
phospho-H2AX (gH2AX) by specifically
interacting with the phosphoepitope at
the gH2AX carboxyl terminus. Moreover,
through a combination of biochemical, cell-
biological, and X-ray crystallographic ap-
proaches, we reveal the molecular details
of theMDC1/NFBD1-gH2AXcomplex.These
data provide compelling evidence that the
MDC1/NFBD1 BRCT repeat domain is the
major mediator of gH2AX recognition fol-
lowing DNA damage. We further show that
MDC1/NFBD1-gH2AX complex formation
regulates H2AX phosphorylation and is
required for normal radioresistance and
efficient accumulation of DNA-damage-
response proteins on damaged chromatin.
Thus, binding of MDC1/NFBD1 to gH2AX
plays a central role in the mammalian re-
sponse to DNA damage.
Cell
INTRODUCTION

DNA double-strand breaks (DSBs) are highly toxic lesions

that, if unrepaired or repaired incorrectly, can cause cell

death, mutations, and chromosomal translocations and can

lead to cancer. Cells react to DSBs by rapidly deploying a

host of proteins to the damaged-chromatin regions. Some

of these factors engage in DNA repair, while others trigger

a signaling pathway (called the DNA-damage checkpoint)

that delays cell-cycle progression and coordinates repair

processes; together, these events comprise the DNA dam-

age response (DDR). Some DDR factors have intrinsic affinity

for free DNA ends, while others, many of which contain

BRCA1 carboxy-terminal (BRCT) domains, accumulate in

large nuclear aggregates that appear as IR-induced nuclear

foci (IRIF) by fluorescence microscopy. Increasing evidence

suggests that IRIF are required for accurate and coordinated

DSB repair in the context of chromatin.

A key regulator of IRIF formation in mammalian cells is the

histone H2A variant H2AX, a component of the nucleosome

core structure that comprises 10%–15% of total cellular H2A

in higher organisms (Fernandez-Capetillo et al., 2004). H2AX

is phosphorylated extensively on a conserved serine residue

at its carboxyl terminus (C terminus) in chromatin regions

bearing DSBs, and this is mediated by members of the phos-

phoinositide-3-kinase-related protein kinase (PIKK) family

(Rogakou et al., 1999). Of these PIKKs, ataxia telangiectasia

mutated (ATM) and DNA-dependent protein kinase catalytic

subunit (DNA-PKcs) phosphorylate H2AX in response to

DSBs in a partially redundant manner (Falck et al., 2005; Stiff

et al., 2004). Cells isolated from H2AX-deficient mice exhibit

radiation-induced chromosomal aberrations, indicating that

H2AX is involved in the signaling and/or repair of DSBs (Bass-

ing et al., 2002; Celeste et al., 2002). Indeed, H2AX modu-

lates both homologous recombination (HR) and nonhomolo-

gous end joining (NHEJ) pathways of DSB repair, although it
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Figure 1. MDC1 Interacts Directly with a H2AX Phosphopeptide via Its BRCT Domains

(A) Silver-stained SDS-polyacrylamide gel of H2AX peptide pull-down (ppd). ‘‘g’’ represents the phosphopeptide; ‘‘�’’ represents its unphosphorylated de-

rivative. Proteins marked by asterisks were identified by mass spectrometry.

(B) Western blot analysis of proteins pulled down by the H2AX phosphopeptide. ‘‘i’’ stands for input (10% of total protein input in the binding reaction); ‘‘b’’

stands for beads alone.
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is not an essential component of either (Bassing et al., 2002;

Celeste et al., 2002; Petersen et al., 2001; Xie et al., 2004).

Interestingly, analysis of complemented H2AX�/� mouse

cells showed that replacement of the phosphoacceptor ser-

ine residue at the H2AX C terminus with glutamic acid did not

rescue the DSB hypersensitivity or IRIF defects of H2AX-

deficient cells (Celeste et al., 2003a). This suggests that

phosphorylation of the H2AX C-terminal tail creates an epi-

genetic signal that is recognized by one or more sensor pro-

teins with specific affinity for the phosphoepitope. Here, we

identify the tandem BRCT domain of MDC1/NFBD1 (hence-

forth named MDC1) as the predominant functional gH2AX

phosphorecognition module in mammalian cells.

RESULTS AND DISCUSSION

MDC1 Interacts Directly with gH2AX via

Its BRCT Domains

To identify proteins that bind the phosphorylated H2AX C

terminus, we designed a phosphopeptide comprising the

last 20 C-terminal residues of human H2AX phosphorylated

on Ser139. The phosphopeptide and its unphosphorylated

derivative were coupled to magnetic beads and used to re-

trieve (‘‘pull down’’) proteins from HeLa nuclear extracts. In

contrast to the unphosphorylated peptide, the gH2AX phos-

phopeptide retrieved several proteins that appeared as pre-

dominant bands on an SDS-polyacrylamide gel (Figure 1A).

Mass spectrometry revealed that the two prominent bands

of �250 kDa were MDC1 (the two bands likely represent

splice variants), the bands of �150 kDa and �116 kDa

were RAD50 and PARP1 respectively, and a somewhat

weaker band of �95 kDa was NBS1. While the presence

of PARP1 in the pull-downs was not further analyzed, West-

ern blot analyses with antibodies against human MDC1 and

members of the MRE11/RAD50/NBS1 (MRN) complex con-

firmed the existence of these in the H2AX phosphopeptide

pull-downs (Figure 1B). By contrast, 53BP1, BRCA1, and

PTIP—BRCT-domain containing proteins that accumulate

in IRIF and colocalize with gH2AX (Manke et al., 2003; Paull

et al., 2000; Schultz et al., 2000)—were not efficiently re-

trieved by the gH2AX phosphopeptide. Furthermore, ATM,

DNA-PKcs, and the NHEJ factor Ku70 also did not associate

specifically with the gH2AX peptide. Weak association of

ATM with the H2AX phosphopeptide was, however, de-

tected in the absence of detergents in the washing buffer

(data not shown). This is consistent with our earlier finding

that ATM interacts directly with NBS1 (Falck et al., 2005)
Cell
and that the interaction between ATM and NBS1 is weak in

the absence of DNA and is disrupted by low detergent con-

centrations (Falck et al., 2005; You et al., 2005). Together

with our previous finding that the association of the MRN

complex with gH2AX depends on MDC1 (Lukas et al.,

2004), these results indicate that MDC1 is the predominant

gH2AX binding protein in nuclear extracts derived from cy-

cling undamaged human cells.

MDC1 contains two phosphospecific protein binding

domains: an FHA domain at its N terminus and a tandem

BRCT domain at its C terminus. However, phosphopeptide

pull-down experiments with bacterially expressed GST fu-

sions of these regions showed that only the tandem BRCT

domain bound tightly and specifically to the gH2AX phos-

phopeptide (Figure 1C). Consistent with this, only wild-type

MDC1 but not an MDC1 mutant lacking the BRCT domains

(DBRCT) was retrieved from nuclear extracts of transfected

293T cells (Figure 1D). These results thereby establish that

MDC1 interacts directly with the gH2AX phosphopeptide

via its C-terminal BRCT domains.

By isothermal titration calorimetry (ITC) measurements, we

established that the MDC1 BRCT region bound stoichiomet-

rically to a 10 residue phosphopeptide corresponding to the

gH2AX C terminus with an affinity of 2.2 mM (Figure 1E and

Table 1), similar to previously characterized BRCT-phospho-

peptide interactions (Manke et al., 2003; Rodriguez et al.,

2003; Yu et al., 2003). The addition of 6 H2AX residues at

Table 1. ITC Binding Measurements of MDC1 and
BRCA1 BRCT Domains with H2AX Peptides

Cell: BRCT Domain
Syringe: Peptide
Sequence Kd (mM)

MDC1 BRCT WT KKATQASQEY NDB

KKATQApSQEY 2.2

KKApTQApSQEY 2.0

KAPSGGKKATQApSQEY 2.3

KKATQApSQEYAA >500

KKATQApSQEA NDB

KKATQApSQEL NDB

MDC1 BRCT K1936M KKATQApSQEY 90

NDB indicates no detectable heat change for MDC1 BRCT con-
centrations of at least 80 mM. pT and pS denote phosphothreo-
nine and phosphoserine, respectively.
(C) Coomassie blue-stained SDS-polyacrylamide gel of an H2AX peptide pull-down experiment using purified GST-fusion fragments of the MDC1 FHA and

BRCT domains.

(D) Western blot analysis of proteins pulled down by the H2AX peptides from nuclear extracts of full-length GFP-MDC1-transfected 293T cells. Blots were

probed with an antibody against GFP.

(E) ITC binding isotherms show that the interaction between MDC1 BRCT and H2AX is phosphodependent. Symbols denote the following: d, MDC1 BRCT

binding to g-H2AX phosphorylated on Ser139; -, MDC1 BRCT titrated with nonphosphorylated H2AX peptide.

(F) Top: the MDC1 tandem BRCT domain binds to C-terminal phosphopeptide motifs. The peptide libraries used were pSer = XXXXpSXXXXXAKKK, pSer-

CT = XXXXpSXXX, Ser = XXXXSXXXXXAKKK, pSF = XXXXpSXXFXXAKKK, SF = XXXXSXXFXXAKKK, pThr = XXXXpTXXXXXAKKK, Thr =

XXXXTXXXXXAKKK, pSQ = XXXB(pS/pT)QJXXXAKKK, and SQ = XXXB(S/T)QJXXXAKKK. Bottom: the optimal motif of the tandem BRCTs of MDC1.

Bar graphs show the relative abundance of each amino acid at a given cycle of sequencing compared to its abundance in the starting peptide library mixture.
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the peptide’s N terminus did not enhance binding (Table 1),

so all further experiments were performed with derivatives of

the shorter peptide. Although examination of the H2AX fam-

ily reveals a second potential PIKK phosphorylation site in

mammalian species (Redon et al., 2002), the doubly phos-

phorylated peptide bound MDC1 equivalently to the peptide

phosphorylated on Ser139 alone (Table 1). Thus, if Thr136

is phosphorylated in vivo, it is unlikely to significantly affect

gH2AX recognition by MDC1. Further analyses revealed

that the residue at the pSer +3 position of gH2AX (Tyr142)

is critical for MDC1 binding, as its substitution by Ala or

Leu completely abrogated detectable binding to the MDC1

BRCT region (Table 1). Furthermore, the addition of 2 extra

Ala residues to the C terminus of the gH2AX peptide dra-

matically weakened binding (Kd > 500mM), indicating that

the MDC1 BRCT region is unable to accommodate extra

C-terminal residues.

MDC1 Selects a gH2AX-like Motif in Oriented

Library Screens

Oriented peptide library screening was used to define an op-

timal phosphopeptide binding motif for the MDC1 BRCT do-

main (Yaffe and Cantley, 2000). All libraries used in our initial

experiments failed to bind the MDC1 tandem BRCT region

in sufficient quantities for further analysis. These libraries all

contained residues C-terminal to the +3 position, so on the

basis of the dramatic loss of binding of C-terminally ex-

tended gH2AX phosphopeptides described above, we syn-

thesized a new library extending only to the +3 position. This

bound MDC1 BRCT in a phosphodependent manner with

clear sequence selection in the more C-terminal residues

(Figure 1F). The resulting motif, S-P/I/V-E/I/V-Y-COOH, is re-

markably similar to the H2AX C-terminal sequence (SQEY-

COOH). A related motif for the MDC1 BRCT region has been

previously obtained from a C-terminally extended library

(Rodriguez et al., 2003), but with additional selection of Phe

at the +3 position. Thus, it would appear that the presence of

the correct C terminus not only enhances overall binding but

also confers a more pronounced Tyr +3 selectivity.

Structure of the MDC1 BRCT-gH2AX Complex

To investigate the molecular basis for MDC1-gH2AX binding,

we crystallized the MDC1 tandem BRCT domain with a dual-

phosphorylated H2AX tail (KKA-pT136-QA-pS139-QEY; al-

though pThr136 is superfluous for MDC1 binding, crystals

grew more readily with this version of the peptide). The struc-

ture was determined by a single-wavelength anomalous dis-

persion experiment using selenomethionine-substituted

MDC1 BRCT and refined at 2.4 Å, resulting in a crystallo-

graphic residual of 19.0% (Rfree 24.9%) and good stereo-

chemistry (see Figure S1 in the Supplemental Data available

with this article online for a segment of the final electron den-

sity map and Table S1 for crystallographic statistics). The final

model comprises the conserved tandem BRCT domain of

MDC1 (residues 1891–2082) and residues 138–142 of

gH2AX for each of the two molecules in the asymmetric

unit. Residues N-terminal to Ser139 are disordered in the
1216 Cell 123, 1213–1226, December 29, 2005 ª2005 Elsevier In
structure, consistent with the absence of significant selection

at these positions in the oriented library screens.

The 207 residue C-terminal fragment of MDC1 retains the

typical tandem BRCT fold (Derbyshire et al., 2002; Joo et al.,

2002; Williams et al., 2001) in which each BRCT repeat

(BRCT 1 and BRCT 2) adopts a compact a/b fold and is con-

nected by a linker region to form an extended structure �70

Å long and �35 Å in diameter (Figure 2A). The MDC1 BRCT

region shows a conserved and characteristic assembly of

the two tandem motifs mediated through extensive interac-

tions between a2 of BRCT 1 and the a10-a30 pair of BRCT 2

with the BRCT-linker region. In MDC1, the 26 residue linker

adopts a helix-loop-helix structure (aL1 and aL2) and makes

contacts with both BRCT 1 and BRCT 2 at the domain inter-

face. aL2 packs against the C terminus of the a2-a10-a30 tri-

ple-helix bundle, primarily via hydrophobic interactions with

a2 and a30, while aL1, which is unique to MDC1, has only

limited contacts with the interface. gH2AX binds in an ex-

tended conformation to a groove at the interface between

the two BRCT repeats, interacting with the b1/a1 loop and

the N-terminal ends of a2 and a10 (Figure 2A). Structure

and sequence analysis of the MDC1 family reveals that the

gH2AX binding groove has been highly conserved through-

out evolution (Figure S2). Overall, the structure of the MDC1

BRCT-gH2AX complex explains the requirement for phos-

phorylation of H2AX Ser139, the overall sequence specific-

ity, and the importance of a free C terminus apparent from

our biochemical data (Figure 2B; see also below).

A Conserved Phosphobinding Mode in MDC1

and BRCA1

Recent crystallographic and NMR studies have shown how

the tandem BRCT domain from BRCA1 binds to phospho-

peptides derived from BACH1 (Botuyan et al., 2004; Clap-

perton et al., 2004; Shiozaki et al., 2004) and a library screen

(Williams et al., 2004). Superposition of the MDC1 BRCT-

gH2AX structure with our BRCA1-BACH1 structure (Clap-

perton et al., 2004) results in a rms deviation of 1.8 Å for

146 matched Ca atoms (Figure S3). The overall location of

the phosphopeptide is similar in both complexes, and both

proteins bind the phosphate moiety through direct interac-

tions with side- and main-chain atoms of three structurally

conserved residues: Lys1936, Thr1898, and Gly1899 in

MDC1 and Lys1702, Ser1655, and Gly1656 in BRCA1 (Fig-

ures 2C and 2D). Consistent with this, mutation of Lys1936

to Met reduces the affinity of MDC1 for gH2AX to�90 mM as

determined by ITC (Table 1). Even though the tandem BRCT

domains of MDC1 and BRCA1 exhibit only 17% sequence

identity, the direct protein-phosphate interactions—and

even interactions mediated through the solvent lattice—are

essentially identical. This extraordinary stereochemical simi-

larity in phosphate binding by two such highly diverged

BRCT tandem domains shows that phosphodependent

binding is an important and ancient activity of BRCT tandem

proteins.

Sequence Specificity of MDC1-gH2AX Binding

Our in vitro peptide library screens and ITC data show

a marked selectivity for tyrosine at the +3 position. Tyr142
c.



Figure 2. Structure of the MDC1 BRCT-g-H2AX Tail Complex

(A) Ribbon representation of the MDC1 BRCT-gH2AX tail complex. The gH2AX peptide (yellow stick model) binds at the interface between the two BRCT

repeats. The BRCT repeat linker is colored green.

(B) Schematic representation of protein-peptide contacts between MDC1 BRCT and the gH2AX tail. Hydrogen bonds, van der Waals interactions, and

water molecules are denoted by dashed lines, pink crescents, and red circles, respectively.

(C) Structure-based sequence alignment of the tandem BRCT domains of MDC1 and BRCA1. Regions shaded with pink spheres highlight residues involved

in phosphopeptide recognition.

(D) Detailed ball-and-stick superposition of the phosphate binding pockets from MDC1 BRCT-gH2AX and BRCA1 BRCT-BACH1 complexes. Water mol-

ecules are shown as red (MDC1) or white (BRCA1) spheres.
Cell 123, 1213–1226, December 29, 2005 ª2005 Elsevier Inc. 1217



of gH2AX sits at the interface between the two BRCT re-

peats, with its phenolic side chain making favorable ring-

stacking interactions with Pro2009 from a Pro-rich region

in the b10-a10 loop that is characteristic of MDC1 orthologs

(Figure 2B). Selection for Tyr rather than Phe is apparently

explained by a water-mediated hydrogen-bonding interac-

tion with the side-chain amide group of Gln2008. Of the re-

maining two H2AX residues involved in the MDC1 interaction,

selection for Glu at the pSer +2 position is consistent with the

presence of Glu or Asp at this position in known H2AX se-

quences (Glu141 in human H2AX). Glu141 forms a water-

mediated contact with Arg1933 via its carboxylate group,

van der Waals interactions with Arg1932 and Thr1934,

and electrostatic interactions with the basic region around

Arg1932 that likely favors acidic side chains at +2 (Figure 2B).

By contrast, Gln140, which forms part of the consensus

‘‘SQ’’ motif for PIKK phosphorylation of H2AX, is the only

site that deviates from the H2AX-like motif derived from ori-

ented library screens. Weak selection for Pro +1 may point

to a role for MDC1 binding to proline-directed kinase phos-

phorylation sites in other contexts, although the MDC1 tan-

dem BRCT region binds only very weakly (Kd � 100 mM) to

a phosphopeptide containing a known pSPTF cyclin-CDK

motif (data not shown). Regardless, the X-ray structure

shows that the Gln +1 side chain is directed away from the

MDC1 surface toward bulk solvent. This indicates that

the +1 position plays only a minor role in determining MDC1

binding specificity but is instead a crucial determinant of

H2AX phosphorylation by PIKKs. Interestingly, a search of

human sequences in the SwissProt/TrEMBL databases with

a variant of the selected motif S/T-X-E/I/V-Y-COOH (where

X is any amino acid) identified only 12 matches. Of these,

only 2, H2AX itself (H2AX_HUMAN) and a galactosyltrans-

ferase (B3G8_HUMAN) contain Gln +1, and none contain

Pro/Ile/Val at this position. Thus, the MDC1 BRCT bind-

ing site is tailored to recognize a highly conserved, PIKK-

phosphorylated C-terminal sequence motif that is rare or

even unique in the human proteome.

MDC1 Recognition of the gH2AX C Terminus

The importance of MDC1 specificity to the free pSer +3 C

terminus characteristic of all known H2AX sequences is

underlined by the adverse effect on binding of C-terminal ex-

tensions to the gH2AX phosphopeptide. Our X-ray structure

shows that the C-terminal residue, Tyr142, sits above the

patch of positive charge generated by MDC1 Arg1933 in

the binding cleft (Figure 2D). Main-chain interactions be-

tween Arg1933 and the peptide are similar to those ob-

served for Arg1699 in previous BRCA1 BRCT phosphopep-

tide structures. Indeed, the predicted structural homology of

these residues has led to the suggestion of a potential role for

MDC1 Arg1933 in binding to the H2AX C terminus (Glover

et al., 2004). Our structure now shows that Arg1933 is in-

deed crucial to C-terminal recognition, but its interactions

with the peptide differ from those made by Arg1699 of

BRCA1 in two significant ways (Figure 3). First, Arg1933

sits higher in the binding cleft due to an altered hydrogen-

bonding pattern of its terminal amino groups with a con-
1218 Cell 123, 1213–1226, December 29, 2005 ª2005 Elsevier In
served Glu (MDC1 2063/BRCA1 1836) located on a30. In

addition, the free carboxyl group of the phosphopeptide is ro-

tated with respect to the main-chain amide of the Phe993-

Gln994 peptide bond in the BRCA1-BACH1 complex. As a

result, Arg1933 of MDC1 is able to form a strong, dual

salt-bridging interaction with the negatively charged carboxyl

terminus, compared to the single, uncharged hydrogen

bond formed by BRCA1 Arg1699 with the BACH1 main-

chain carbonyl group. Thus, loss of affinity upon the addition

of extra C-terminal residues is attributable to removal of one

of the carboxylate oxygen atoms by peptide bond formation

and associated loss of negative charge, along with resulting

unfavorable changes in the orientation of the Tyr142 side

chain with respect to the +3 binding surface.

Conserved Residues within the MDC1 BRCT Region

and at the H2AX C Terminus Are Essential for Stable

MDC1-gH2AX Association and MDC1 IRIF Formation

In Vivo

Analysis of the MDC1 BRCT-gH2AX cocrystal structure re-

vealed that 3 residues of BRCT 1 engage in direct hydro-

gen-bond interactions with gH2AX: Thr1898 and Lys1936

Figure 3. MDC1 Recognition of the H2AX C Terminus

Comparison of the structures of MDC1-gH2AX (top) and BRCA1-BACH1

(bottom) shows a rearranged hydrogen-bonding pattern involving the

Arg1933 side chain that optimally presents it to the charged H2AX C ter-

minus. *The side-chain atoms of Gln994 have been removed for clarity.
c.



Figure 4. Conserved Residues within the Tandem BRCT Domain and at the H2AX C Terminus Are Essential for Stable MDC1-

gH2AX Association and MDC1 IRIF Formation

(A) Phosphopeptide pull-down titration analysis of wild-type and mutant purified GST-BRCT fragments. The GST-BRCT concentrations were 2.5, 10, 50,

and 250 mg/ml, respectively. The amount of protein loaded in the input lane (i) was 2.5 mg.

(B) Molecular competition experiment for phosphopeptide binding by endogenous MDC1 in HeLa nuclear extract and purified GST-BRCT fusion protein.

GST-BRCT concentration was 2.5, 50, and 250 mg/ml, respectively.

(C) IRIF formation of recombinant wild-type and mutant GFP-MDC1 fusion proteins (full-length) 1 hr after 10 Gy of IR in transiently transfected 293T cells.

(D) IRIF formation of endogenous MDC1 1 hr after 10 Gy in H2AX�/� p53�/� MEFs stably transfected with wild-type or mutant mouse H2AX.
contact the phosphoserine, and Arg1933 contacts both the

peptide backbone and the C-terminal carboxylate group.

Significantly, mutation of Arg1933 to Gln (R1933Q) com-

pletely abolished detectable phosphopeptide binding by

the MDC1 BRCT region, while mutating the two phospho-

serine-contacting residues had a less dramatic impact but

still significantly decreased binding (Figure 4A). The partial

defects of the T1898V and K1936M mutants can be ex-

plained by a synergistic contribution of both phosphoser-

ine-contacting residues to the overall stability of the com-

plex. However, unlike the situation for the intact BRCT

domain, the weak residual phosphopeptide binding activity

of the K1936M mutant was insufficient for it to competitively

inhibit binding of full-length HeLa cell MDC1 to the gH2AX

phosphopeptide (Figure 4B). Consistent with the MDC1-

gH2AX interaction being important for MDC1 IRIF formation,
Cell
we found through transient transfection studies that, while

full-length MDC1 fused to GFP formed IRIF effectively, the

R1933Q and K1936M point-mutated derivatives did not

(Figure 4C).

Next, we determined the effect of mutating the H2AX C

terminus on MDC1 IRIF formation. Consistent with previous

reports, we found that H2AX�/� p53�/� mouse embryonic

fibroblasts (MEFs) were defective for MDC1 IRIF formation

(Figure 4D; Lee et al., 2005; Stewart et al., 2003). However,

while reintroducing a genomic fragment carrying the entire

H2AX transcriptional unit (Celeste et al., 2003b) rescued

the MDC1 IRIF defect of H2AX�/� p53�/�MEFs, expression

of a H2AX mutant in which the two phosphoacceptor Ser

residues were changed to Ala (S136/139A) did not. Interest-

ingly, reintroducing into H2AX�/� p53�/� MEFs H2AX mu-

tants in which the very C terminus was altered resulted in cell
123, 1213–1226, December 29, 2005 ª2005 Elsevier Inc. 1219
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lines with seemingly normal H2AX phosphorylation and

gH2AX IRIF formation but with severe defects in MDC1 accu-

mulation. Thus, changing the C-terminal Tyr to Ala (Y142A)

led to a complete defect in MDC1 IRIF formation, while ex-

tension of the H2AX C-terminal tail by two Ala residues (+AA)

significantly reduced the size and intensity of MDC1 IRIF

and increased pan-nuclear MDC1 staining (Figure 4D). To-

gether, these data show that mutating MDC1 or H2AX in

ways that impair the MDC1-gH2AX interaction leads to de-

fects in MDC1 IRIF formation.

Interaction between MDC1 and gH2AX Is Required

for Efficient Accumulation of 53BP1, NBS1, and

Phosphorylated ATM at Sites of Damaged Chromatin

To establish whether the MDC1-gH2AX interaction recruits

other DDR factors to regions of damaged chromatin, we cre-

ated U2OS cell lines carrying stably integrated, tetracycline-

regulated expression cassettes directing the expression of

wild-type or K1936M mutant MDC1 tandem BRCT deriva-

tives fused to yellow fluorescent protein (YFP). As shown in

Figure 5A, and consistent with previous reports (Shang

et al., 2003; Xu and Stern, 2003), overexpression of the

wild-type MDC1 BRCT region prevented IRIF formation by

MDC1, 53BP1, NBS1, and Ser1981-phosphorylated ATM

(ATM activation involves its autophosphorylation on Ser1981,

and this autophosphorylated species forms IRIF; Bakkenist

and Kastan, 2003). By contrast, when the K1936M mutant

was overexpressed, MDC1, 53BP1, NBS1, and phospho-

S1981 ATM formed IRIF in a manner indistinguishable from

that in cells not expressing the YFP-BRCT construct (i.e., in

noninduced cells; Figure 5A, compare top and bottom pan-

els). Overexpression of the R1933Q mutant also did not affect

MDC1, 53BP1, NBS1, and phospho-S1981 ATM IRIF forma-

tion (data not shown). Thus, the binding of the isolated MDC1

BRCT region to gH2AX prevents IRIF formation by endo-

genous MDC1 and also blocks the accumulation of other

DDR factors at sites of DNA damage.

As a complementary approach to investigate the impor-

tance of the MDC1-gH2AX interaction, we exploited our

finding that H2AX�/� p53�/� MEFs stably expressing the
Cell
H2AX Y142A mutant displayed H2AX phosphorylation and

gH2AX IRIF formation but not MDC1 IRIF formation (Fig-

ure 4D). Consistent with previous reports (Celeste et al.,

2002; Stewart et al., 2003; Ward et al., 2003), we found that

MDC1, 53BP1, and NBS1 did not form detectable IRIF in

H2AX�/� p53�/� MEFs (Figure 5B, top panel), whereas

they formed normally in H2AX�/� p53�/� MEFs comple-

mented with wild-type H2AX (Figure 5B, middle panel). Sim-

ilarly, the Ser1981-autophosphorylated ATM formed foci in

an H2AX-dependent fashion (Figure 5B). Strikingly, while

gH2AX foci were detected by antibodies in H2AX�/� p53�/�

MEFs complemented with the Y142A mutant, no IRIF for

MDC1, 53BP1, or NBS1 were observed in such cells (Fig-

ure 5B, bottom panel). Furthermore, while ATM autophos-

phorylation still occurred in H2AX�/� p53�/� MEFs and in

H2AX�/� p53�/� MEFs complemented with the Y142A mu-

tant of H2AX (data not shown), phosphorylated ATM did not

form foci in such cells; instead, weak pan-nuclear staining of

phospho-Ser1981 ATM was observed (Figure 5B, bottom

panel). Thus, mutation of H2AX to a form that can still be

phosphorylated but no longer binds MDC1 abrogates IRIF

formation by all DDR factors studied.

The above results establish the MDC1-gH2AX interaction

as a critical determinant for IRIF formation. This is perhaps

most simply explained for the MRN complex, which interacts

directly with MDC1 (Goldberg et al., 2003). Furthermore, as

foci formation by phosphorylated ATM requires interactions

between it and the NBS1 C terminus (Falck et al., 2005),

an inability to form MRN IRIF presumably causes defective

phospho-ATM foci in cells disrupted for the MDC1-gH2AX

interaction. For 53BP1, however, the situation is likely to

be more complex as its binding to chromatin at DSB sites

is thought to be directed by histone methylation (Huyen

et al., 2004). On the other hand, efficient 53BP1 accumula-

tion at sites of DSBs also requires gH2AX (Celeste et al.,

2002; Ward et al., 2003) and a functional MDC1-gH2AX in-

teraction (this study), indicating that binding to methylated

histones is not sufficient for 53BP1 IRIF formation. This inter-

pretation is consistent with a recent report identifying MDC1

as a key upstream determinant of the dynamic assembly and
Figure 5. Direct Interaction between MDC1 and gH2AX Is Required for 53BP1, NBS1, and Phospho-ATM IRIF Formation and for

Normal Radioresistance but Not for Activation of the Intra-S Phase Checkpoint

(A) MDC1, 53BP1, NBS1, and phospho-S1981 ATM IRIF analysis 30 min after 3 Gy in inducible U2OS YFP-BRCT-overexpressing cells. Noninduced cells

(top), wild-type YFP-BRCT-expressing cells (middle), and K1936M YFP-BRCT-expressing cells (bottom).

(B) Analysis of MDC1, 53BP1, NBS1, and phospho-S1981 ATM IRIF formation 30 min after 3 Gy in H2AX�/� p53�/�MEFs (top) and H2AX�/� p53�/�MEFs

stably complemented with wild-type (WT) mouse H2AX (clone WT4D; middle) and Y142A mutant H2AX (clone YA2A; bottom).

(C) Left graph: overexpression of the MDC1 BRCT domains radiosensitizes human cells. Expression of wild-type YFP-BRCT fusion protein was induced 8 hr

before irradiation (triangles); mock-induced cells (squares) were used as negative control. Right graph: expression of wild-type mouse H2AX (triangles) res-

cues the radiosensitivity phenotype of H2AX�/� p53�/� MEFs (squares), but expression of Y142A mutated H2AX (inverted triangles) does not. Data are

presented as mean ± standard deviation.

(D) Overexpression of the MDC1 BRCT domains yields a strong defect in random plasmid integration. Expression of wild-type YFP-BRCT fusion protein

(empty bars) and K1936M mutant (filled bars) was induced 8 hr before transfection. Twenty-four hours later, cells were replated at low density in selective

medium, and colonies were counted 10 days later. Data are presented as mean ± standard deviation.

(E) Left graph: overexpression of the MDC1 BRCT domains does not trigger an intra-S phase checkpoint defect. Expression of wild-type YFP-BRCT fusion

protein was induced 8 hr before irradiation (triangles); mock-induced cells (squares) served as control. The rate of DNA synthesis was determined 1 hr after

irradiation. Right graph: transient depletion of endogenous MDC1 by siRNA partially abrogates the intra-S phase checkpoint regardless of whether or not

MDC1 is proficient for gH2AX binding. DNA synthesis was measured after transfection with MDC1-targeting siRNA (empty bars) and luciferase control

siRNA (filled bars). Expression of the YFP-BRCT fusion protein was induced 8 hr before irradiation as indicated. Data are presented as mean ± standard

deviation.
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sustained retention of 53BP1 at DSB sites (Bekker-Jensen

et al., 2005). Although it remains to be established whether

MDC1 influences 53BP1 accumulation through regulation

of gH2AX maintenance (Stewart et al., 2003) or by modulat-

ing chromatin in a way that permits efficient 53BP1 accumu-

lation, the latter model is attractive because it may explain

why low MDC1 expression is sufficient for seemingly normal

53BP1 accumulation at early time points after damage in-

duction (Figure S4; Goldberg et al., 2003; Mochan et al.,

2003; Peng and Chen, 2003) while deletion of H2AX or ab-

rogation of the MDC1-gH2AX interaction prevents 53BP1

accumulation.

The MDC1-gH2AX Interaction Is Needed for Normal

Radioresistance but Not for Activation of the

Intra-S Phase Checkpoint

To explore the physiological role (or roles) of the MDC1-

gH2AX interaction, we used the systems developed above

in which the interaction was abrogated by overexpression

of the MDC1 BRCT region or by H2AX mutations. Signifi-

cantly, colony-survival analyses after IR treatment revealed

that overexpression of the MCD1 BRCT domains rendered

human U2OS cells radiosensitive (Figure 5C, left graph),

whereas overexpression of the K1936M mutant did not (data

not shown; we chose the K1936M and not the R1933Q mu-

tant as a negative control because it is structurally neutral,

while Arg1933 plays an important structural role in BRCT

tandem domains through interactions with the C-terminal

helix a30). Furthermore, while transfection with a vector

expressing wild-type H2AX effectively rescued the radiosen-

sitivity of H2AX�/� p53�/�MEFs (Figure 5C, right graph), ex-

pression of the H2AX Y142A mutant yielded an intermediate

phenotype: much less resistant than cells expressing wild-

type H2AX, but somewhat more resistant than noncomple-

mented H2AX�/� p53�/� MEFs. These results demonstrate

that, while additional MDC1-independent functions for

gH2AX cannot be excluded, a functional MDC1-gH2AX in-

teraction is crucial for normal radioresistance in both p53-

positive human U2OS cells and p53-deficient mouse cells.

As decreased radioresistance can indicate a defect in DSB

repair, we tested whether disruption of the MDC1-gH2AX

interaction interfered with DSB rejoining. While we did not

detect a significant DSB repair defect in YFP-BRCT-

overexpressing cells when we analyzed them by pulsed-

field gel electrophoresis (data not shown), YFP-BRCT-

overexpressing cells—but not cells overexpressing the

K1936M mutant—had a dramatic defect in random plasmid

integration (Figure 5D; YFP-BRCT overexpression did not

reduce cell survival or plating efficiency in the absence of ex-

ogenous DNA damage, data not shown). These findings are

consistent with a recent report showing that depletion of

MDC1 by siRNA reduced random-plasmid-integration fre-

quency in human cells (Lou et al., 2004) and indicate that,

while not essential for NHEJ, the MDC1-gH2AX interaction

is required for a subset of DNA end-joining events.

When damaged by IR during S phase, mammalian cells

transiently reduce DNA synthesis in a manner partially de-

pendent on MDC1 but independent of H2AX (Celeste
1222 Cell 123, 1213–1226, December 29, 2005 ª2005 Elsevier Inc
et al., 2002; Goldberg et al., 2003; Lou et al., 2003; Stewart

et al., 2003). This suggests that MDC1 influences the intra-S

phase checkpoint through a mechanism that does not de-

pend on its interaction with gH2AX. Indeed, cells overex-

pressing the YFP-BRCT fusion construct of MDC1 displayed

even more efficient reduction of DNA synthesis after irradia-

tion than noninduced control cells (Figure 5E, left graph).

Furthermore, when the inducible U2OS cells were depleted

of endogenous MDC1 by siRNA transfection, they displayed

a partial defect in IR-induced reduction of DNA synthesis

regardless of whether or not they overexpressed the YFP-

BRCT construct (Figure 5E, right graph). These results con-

firm that regulation of the intra-S phase checkpoint by MDC1

is mechanistically distinct from its gH2AX binding function. In

this context, it is interesting to note that overexpression of the

MDC1 FHA domain triggers a pronounced intra-S phase

checkpoint defect (Goldberg et al., 2003). The FHA domain

of MDC1 does not bind to gH2AX (Figure 1C), but it interacts

with the MRN complex (Goldberg et al., 2003). Thus, it is

possible that MDC1 is composed of at least two functionally

distinct regions, each carrying a phosphodependent pro-

tein interaction module: the N-terminal region that contains

the FHA domain may control crosstalk between MDC1

and the MRN complex to mediate checkpoint activation,

whereas the C-terminal BRCT region is required for sus-

tained interactions with gH2AX to form IRIF that facilitate ef-

ficient DSB repair.

MDC1 Controls H2AX Phosphorylation by

Two Synergistic Mechanisms

Although it has been proposed that MDC1 is involved in the

regulation of H2AX phosphorylation (Stewart et al., 2003), it

is not known whether MDC1 controls initial H2AX phosphor-

ylation, gH2AX maintenance, or both. To address this issue,

we created a U2OS cell line containing a stably integrated

MDC1-targeting small hairpin RNA (shRNA) expression cas-

sette that silenced MDC1 expression with high efficiency

(see Figure S4A); we then examined these and control cells

for H2AX phosphorylation in response to IR (Figure 6A). Con-

sistent with earlier findings (Rogakou et al., 1998), in control

cells expressing a LacZ-targeting shRNA, H2AX phosphory-

lation levels reached a maximum�10 min after IR treatment,

started to decline between 1 and 2 hr, and reached back-

ground levels 8 to 12 hr postirradiation. Notably, in MDC1-

depleted cells, the initial H2AX phosphorylation was similar

to that in control cells, but it then declined much more rapidly

than in control cells and had already reached background

levels between 4 and 8 hr after damage induction. Thus,

downregulation of MDC1 expression to low levels does not

prevent gH2AX formation but instead impacts on gH2AX

maintenance.

One explanation for the above observation is that MDC1

may protect gH2AX from premature dephosphorylation by

physically preventing access to the phospho-Ser139 site

by phosphatases. Consistent with this idea, a purified GST

fusion containing the MDC1 tandem BRCT domain pre-

vented l-phosphatase from dephosphorylating a gH2AX

phosphopeptide in vitro, whereas the K1936M mutant
.



Figure 6. MDC1 Controls gH2AX Maintenance by Two Synergistic Mechanisms

(A) H2AX phosphorylation analysis of MDC1-depleted U2OS cells. Time-course analysis of H2AX phosphorylation by immunoblotting after 10 Gy of IR (up-

per); time-course analysis of gH2AX IRIF by immunofluorescence after 3 Gy of IR (lower).

(B) In vitro phosphatase protection assay. H2AX phosphopeptide was preincubated with GST and GST-BRCT fusion protein as indicated for 10 min at room

temperature, followed by addition of l-phosphatase and incubation at 30ºC for 30 min. SDS gel loading buffer was added, and the reaction was stopped by

heating to 95ºC. Increasing amounts of reaction products were spotted on nitrocellulose, followed by phosphopeptide detection with a specific phospho-

S139 H2AX antibody.

(C) MDC1-depleted cells were mixed with control cells and irradiated with 6 Gy of IR. One hour after treatment, cells were fixed and immunostained as

indicated.

(D) H2AX phosphorylation time-course analysis in U2OS cells pretreated with 10 Gy of IR and in the presence or absence of ATM and DNA-PKcs inhibitors.

Arrowheads indicate the time point of addition of inhibitor and mock-inhibitor solution, respectively (15 min after irradiation).
protein did not (Figure 6B). Also supporting a role for MDC1

in regulating gH2AX dephosphorylation, we found that

U2OS cells expressing the MDC1 tandem BRCT domain-

YFP fusion displayed higher levels of H2AX phosphorylation

than control cells (Figure S5B). Furthermore, pan-nuclear

background gH2AX staining was generally observed in

YFP-BRCT-expressing cells, and the intensity of this staining

correlated with the extent of YFP-BRCT overexpression (Fig-

ure S5C). Although the mechanism of gH2AX removal in

mammalian cells is not yet understood and the phosphatase

responsible for dephosphorylation of Ser139 has yet to be

identified, these findings suggest that one mechanism by

which MDC1 regulates gH2AX maintenance involves its

control of gH2AX dephosphorylation.

It has recently been demonstrated that MDC1 undergoes

a dynamic exchange between the chromatin flanking the

sites of DSBs and the neighboring nucleoplasm, with the

mean residence time at the damage sites of only 6.7 s (Lukas
Cell
et al., 2004). Such a rapid exchange is likely to provoke re-

peated phosphorylation/dephosphorylation cycles of H2AX

in damaged-chromatin regions. Thus, another way that

MDC1 might influence gH2AX maintenance is by controlling

ATM activity (Mochan et al., 2003). However, when we ana-

lyzed cells 1 hr after IR treatment, MDC1 depletion had no

discernible effect on ATM Ser1981 phosphorylation or the

phosphorylation state of several known ATM target proteins

(CHK2, NBS1, SMC1, and p53), indicating that MDC1 de-

pletion does not impair ATM activity per se (Figure S5A). Nev-

ertheless, and consistent with data obtained in cells overex-

pressing the MDC1 BRCT region, MDC1 depletion led to

consistent defects in IRIF formation by phospho-Ser1981

ATM (Figure 6C; this shows a mixed population of cells

containing either a LacZ shRNA or an MDC1 shRNA, and

ATM phospho-Ser1981 foci exist in the former but not the

latter). These findings raised the possibility that MDC1 might

influence H2AX phosphorylation by retaining active ATM
123, 1213–1226, December 29, 2005 ª2005 Elsevier Inc. 1223



(and perhaps also DNA-PK) in damaged-chromatin regions.

Since MDC1 is vital for the accumulation of active ATM on

damaged chromatin, it is conceivable that the local concen-

tration of active ATM at sites of damage mediated by MDC1

may shift the equilibrium of H2AX phosphorylation/dephos-

phorylation toward phosphorylation. For such a model to ex-

plain the premature loss of H2AX phosphorylation upon loss

of the MDC1-gH2AX interaction, we reasoned that continual

ATM and DNA-PK activity would be needed for maintaining

normal H2AX phosphorylation. To test this, we treated cells

with IR, incubated them for 10 min to allow H2AX phosphor-

ylation, and then treated or mock treated them with small-

molecule inhibitors of ATM and DNA-PKcs. While H2AX

phosphorylation was maintained for several hours in the

mock-treated cells, it was rapidly lost in the inhibitor-treated

cells (Figure 6D; similar results were obtained with other

PIKK targets such as CHK2 and SMC1; J. Falck, personal

communication). This reveals that continued PIKK activity

is required for normal gH2AX maintenance and suggests

that MDC1-mediated PIKK accumulation promotes normal

gH2AX maintenance. In addition, comparison of H2AX

phosphorylation levels in wild-type and Y142A-comple-

mented H2AX�/� p53�/� MEFs that expressed comparable

amounts of total H2AX revealed significantly lower levels of

H2AX phosphorylation in Y142A-complemented cells (Fig-

ure S5E). Based on these results, we suggest that MDC1

contributes to normal H2AX phosphorylation after IR both

by protecting gH2AX from phosphatases and by promoting

H2AX phosphorylation through its mediation of the retention

of active ATM, and possibly also DNA-PK, in damaged-chro-

matin regions. It has so far not been possible to distinguish

between the relative contributions of these mechanisms be-

cause disruption of the MDC1-gH2AX interaction or deple-

tion of endogenous MDC1 interferes with both processes.

Conclusions

We have presented biochemical, biological, and structural

evidence indicating that MDC1 is the predominant gH2AX

recognition module in higher eukaryotes. Firstly, we demon-

strate that the BRCT tandem domain of MDC1 interacts

tightly and specifically with a peptide representing the

gH2AX C terminus and that binding is absolutely dependent

on phosphorylation of Ser139, the ATM target site. Second,

the X-ray structure of the MDC1-gH2AX complex reveals

that the BRCT-domain binding cleft is exquisitely tailored to

recognize the gH2AX motif and shows how the unusual—

and possibly unique—proximity of the Ser139Gln140 PIKK

phosphorylation site to the H2AX C terminus is detected.

Finally, we show that the major function of this interaction

is to promote accumulation and prolonged interaction of

DDR factors in damaged-chromatin regions, a process that

appears to be essential for efficient and accurate DSB repair

but not for checkpoint activation. Together, our data demon-

strate clear in vivo relevance of the direct interaction between

MDC1 and gH2AX and have important mechanistic, biolog-

ical, and evolutionary implications for our understanding of

DNA-damage-initiated events in the context of chromatin.
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EXPERIMENTAL PROCEDURES

Plasmids

MDC1 FHA-GST and MDC1 BRCT-GST were as described (Goldberg

et al., 2003). Full-length wild-type and DBRCT GFP-MDC1 constructs

were from P.-L. Chen (Shang et al., 2003). pSUPER-MDC1 and LacZ

shRNA constructs have been described (Lukas et al., 2004). Full-length

MDC1 and BRCT-only T1898V, R1933Q, and K1936M mutants were

generated by the QuikChange Site-Directed Mutagenesis Kit (Strata-

gene). The YFP-BRCT construct comprised MDC1 residues 1883–

2089 and a nuclear localization signal. To generate an inducible expres-

sion cassette, two tetracycline-repressor binding elements were inserted

between promoter and coding sequences. The genomic fragment com-

prising the mouse H2AX coding and endogenous promoter sequences

was a gift from A. Nussenzweig (Celeste et al., 2003b).

Extract Preparation, Protein Expression, and Purification

Whole-cell extracts were prepared in SDS sample buffer or buffer A (50

mM Tris-HCl [pH 7.5], 200 mM NaCl, 0.5% NP-40, 1 mM dithiothreitol,

1 mM AEBSF). HeLa and 293T nuclear cell extracts were purchased

from Computer Cell Culture Center (HeLa) or prepared according to

Dignam et al. (1983). For H2AX peptide pull-downs, MDC1 BRCT do-

mains were expressed as GST fusions in E. coli and purified on glutathi-

one Sepharose (Amersham Pharmacia Biotech). For ITC and crystalliza-

tion, proteins were synthesized in E. coli BL21 (Novagen) using the

pGEX-4T1 vector (Amersham Pharmacia Biotech) by overnight shaking

in LB at 18ºC and were purified by glutathione Sepharose affinity and

S75 (Amersham Pharmacia Biotech) gel filtration chromatography follow-

ing removal of glutathione S-transferase fusion with thrombin. MDC1

BRCT N-terminal limits were determined by Edman sequencing and elec-

trospray mass spectrometry. Selenomethionine (SeMet) incorporated

MDC1 BRCT was expressed in E. coli B834(DE3) cells (Novagen) and pu-

rified as for native protein.

Peptide Binding

Synthetic peptides were from Dr. W. Mawby (University of Bristol). For

pull-downs, biotinylated phosphopeptide (hH2AX 123–142) and its un-

phosphorylated derivative were coupled to streptavidin-coated Dyna-

beads M-280 (Dynal), incubated with HeLa or 293T nuclear extracts,

and incubated with purified GST-BRCT fractions. Beads were washed

extensively with Tris buffer saline (pH 7.5) containing 1% (v/v) Tween 20

and bound proteins subjected to SDS-PAGE and immunoblotting. Quan-

tification of BRCT-phosphopeptide interaction was by ITC (Wiseman

et al., 1989) with a MicroCal Omega VP-ITC calorimeter (MicroCal Inc.,

Northampton, MA). Proteins were dialyzed against ITC buffer (50 mM

HEPES, 300 mM NaCl, 0.5 mM b-mercaptoethanol). Experiments were

done at 20ºC and involved 30 successive 10 ml injections of 300–800

mM peptide solution into a sample cell containing 30–80 mM protein solu-

tion. Heats of dilution were subtracted and binding isotherms were plot-

ted and analyzed with MicroCal Origin version 7.0, assuming a single-site

binding model.

Peptide Library Binding

Peptide library binding was done essentially as described (Yaffe and

Cantley, 2000). For motif determination, a phosphoserine-oriented de-

generate library of sequence KKKYAXXXXpSXXX (X denotes all amino

acids except Cys) was synthesized. Screening was done with saturating

amounts of GST-MDC1 BRCT (1–1.5 mg). Bound peptides were se-

quenced by automated Edman degradation on a Procise protein micro-

sequencer. Selectivity values for each residue were determined by com-

paring the relative abundance (mole percentage) of each amino acid at

a sequencing cycle in the recovered peptides to that of each amino

acid in the original library mixture at the same position (Yaffe and Cantley,

2000).

Crystallization and Structure Determination

Native and selenomethionine MDC1 BRCT (residues 1883–2089) were

crystallized with a 1:2 stoichiometric excess of a doubly phosphorylated
.



H2AX peptide (KKA-pT136-QA-pS139-QEY) by hanging-drop vapor dif-

fusion at 18ºC. Crystals grew from 1 ml protein-phosphopeptide complex

(0.66 mM) and 1 ml reservoir solution (35%–37% PEG 4K, 0.4 M NaCl, and

0.1 M Tris-HCl [pH 8.5]) in space group P212121 (a = 67.4 Å, b = 75.6 Å,

c = 114.9 Å), with two molecules in the asymmetric unit. Crystals were de-

hydrated over a 50% w/v PEG 4K solution, equilibrated for 12 hr, and flash

cooled directly from the mother liquor. Data from a single-wavelength

anomalous dispersion experiment at the selenium edge were collected

at the SRS Daresbury (Station 14.2) and processed using DENZO and

SCALEPACK (Otwinowski and Minor, 1997). Four selenium-atom posi-

tions were located and refined using SOLVE, giving a figure of merit

of 0.3 (Terwilliger and Berendzen, 1999). Phases were improved with

RESOLVE (Terwilliger and Berendzen, 1999), resulting in a readily inter-

pretable electron density map that was further improved by noncrystallo-

graphic symmetry averaging in DM (Cowtan and Main, 1996). Model

building was carried out using O (Jones et al., 1991), and the structure

was refined at 2.4 Å using REFMAC5 (Murshudov et al., 1997). Data-

collection, phasing, and refinement statistics are summarized in Table

S1 of the Supplementat Data. All structure figures were prepared with

Pymol (http://pymol.sourceforge.net/).

Cell Culture

Transfection of plasmids and siRNAs was with FuGene6 (Roche) or cal-

cium phosphate and Oligofectamine (Invitrogen), respectively. Luciferase

(CGUACGCGGAAUACUUCGAdTdT) and MDC1-targeting (GUCUCC

CAGAAGACAGUGUdTdT) siRNA duplexes were from Dharmacon. Inhib-

itors of ATM (KU55933) (Hickson et al., 2004) and DNA-PKcs (NU7026)

(Veuger et al., 2004) were used at 10 mM (gift from G. Smith). Comple-

mentation of H2AX�/� p53�/� MEFs was as described (Celeste et al.,

2003b). Stable downregulation of MDC1 was as described (Lukas

et al., 2004). Inducible YFP-BRCT-expressing cells were generated by

transfection of a U2OS cell line expressing the tetracycline repressor (In-

vitrogen) with inducible YFP-BRCT expression plasmid encoding wild-

type MDC1 BRCT domains or K1936M mutant followed by selection

with neomycin (G418). Irradiation was done in a Faxitron X-ray cabinet

at 3.15 Gy/min. Clonogenic survival and RDS assays were as described

(Falck et al., 2005; Goldberg et al., 2003). Random plasmid integration

was done by transfection of linearized pBabe-puro with LacZ expression

plasmid. Twenty-four hours later, cells were replated at low density in pur-

omycine-containing medium. and colonies were counted 10 days after

transfection. A fraction of the transfected cells were stained with X-Gal

to normalize for transfection efficiency.

Antibodies and Immunofluorescence

Commercial antibodies used in this study were from Abcam (Chk2 and

tubulin), Novus Biologicals (ATM and 53PB1), Upstate (gH2AX and

H2A), Rockland Immunochemicals (pS1981-ATM), Bethyl Laboratories

(H2AX, pS966-SMC1, and SMC1), Cell Signaling Technology (pS1981-

ATM, pT68-Chk2, pS15-p53, pS343-Nbs1, and p53), Oncogene (Nbs1

and DNA-PKcs), BD Biosciences (YFP), Serotec (Ku70), and Santa

Cruz Biotechnology (BRCA1). Monoclonal anti-GFP antibody was from

Cancer Research UK. Rabbit and sheep antisera to MDC1, RAD50,

NBS1, and MRE11 and rabbit antiserum for mouse MDC1 have been de-

scribed (Goldberg et al., 2003; Lee et al., 2005). Purified sheep antibodies

to human PTIP were from J. Rouse (Jowsey et al., 2004), and rabbit an-

tiserum to mouse NBS1 was from A. Nussenzweig (Celeste et al., 2003b).

For immunofluorescence staining, cells were grown on glass coverslips

and fixed in ice-cold methanol or methanol/acetone.

Supplemental Data

Supplemental Data include Supplemental References, one table, and five

figures and can be found with this article online at http://www.cell.com/

cgi/content/full/123/7/1213/DC1/.
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