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a b s t r a c t

Adescription of complete normal varietieswith lower-dimensional
torus action has been given by Altmann et al. (2008), generalizing
the theory of toric varieties. Considering the case where the
acting torus T has codimension one, we describe T -invariant Weil
and Cartier divisors and provide formulae for calculating global
sections, intersection numbers, and Euler characteristics. As an
application, we use divisors on these so-called T -varieties to define
new evaluation codes called T -codes. We find estimates on their
minimum distance using intersection theory. This generalizes the
theory of toric codes and combines it with AG codes on curves.
As the simplest application of our general techniques we look at
codes on ruled surfaces coming fromdecomposable vector bundles.
Already this construction gives codes that are better than the
related product code. Further examples show that we can improve
these codes by constructing more sophisticated T -varieties. These
results suggest looking further for good codes on T -varieties.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

An important class of linear codes is the class of algebraic geometry Codes, introduced by Goppa
(1981). These codes arise by evaluating global sections of a line bundle on a curve over Fq at a number
of Fq-rational points; good estimates on the dimension and minimum distance of such codes can be
obtained by using the theorem of Riemann and Roch. Such codes have been generalized to higher-
dimensional varieties. It is however often difficult to obtain non-trivial estimates on the parameters of
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such codes. One class of varieties where non-trivial estimates have beenmade is that of toric varieties,
which one can describe combinatorially.
Toric varieties have been generalized in Altmann and Hausen (2006) and Altmann et al. (2008) to

so-called T -varieties, which are normal varieties X admitting an effectivem-dimensional torus action.
Form = dim X we are in the case of toric varieties, but in generalm is supposed to be smaller than the
dimension of X . T -varieties can then be described by a variety Y of dimension dim X − m along with
combinatorial data called a divisorial fan. If the acting torus has codimension one, Y is then a curve.
The aim of this paper is to analyze certain evaluation codes on such varieties; we shall call these codes
T -codes.
In short, a T -code over Fq is constructed from:

• a curve Y over Fq;
• a so-called divisorial polytope (cf. Definition 15), essentially a concave function h∗ : �h → DivQ Y
where �h is a polytope with vertices in some lattice M ∼= Zm and h∗ satisfies some additional
conditions;
• and a set P = {P1, . . . , Pl} of Fq-rational points on Y .

Assuming that the support of h∗(u) is disjoint from P for each u ∈ �h ∩M , we can define the T -code
C(Y , h∗,P ) as the sum of a number of product codes:

C(Y , h∗,P ) :=
∑

u∈�h∩M

Cu ⊗ C(Y , h∗(u),P )

where Cu is the [(q − 1)m, 1, (q − 1)m] code generated by (tu)t∈(F∗q )m and C(Y , h∗(u),P ) is the AG
code corresponding to the curve Y , divisor h∗(u), and point set P . By interpreting C(Y , h∗,P ) as the
image under a linear map of the Riemann–Roch space of a divisor on a T -variety, we are able to give
non-trivial estimates for the dimension k and minimum distance d of this code.
We begin in Section 2 by recalling the basic theory of T -varieties. We then proceed to describe

divisors and intersection theory on T -varieties in Section 3. In particular, we describe all T -invariant
Cartier andWeil divisors combinatorially, calculate the global sections of a T -invariant Cartier divisor,
and determine exactly when a T -Cartier divisor is (semi-)ample. Furthermore, we provide formulae
for calculating intersection numbers and for the Euler characteristic of a line bundle. The theory of this
section is analogous to that of divisors on toric varieties and is essential for estimating the parameters
of the evaluation codes we construct.
In Section 4, we define T -codes and show how to estimate the dimension and minimum distance,

providing upper and lower bounds for both parameters. We give special attention to the case of two-
dimensional T -varieties, where we provide a better lower bound for the minimum distance.
Finally,weprovide a number of examples in Section 5.We first consider T -codes coming from those

ruled surfaces corresponding to a rank-two decomposable vector bundle. In particular, we show that
some of these codes have better parameters than those estimated for the product of a Reed–Solomon
code and a one-point Goppa code. In a second example, we show how one can use the Hasse–Weil
bound to improve the lower bound on the minimum distance. This example also shows that there are
better T -codes than those coming from ruled surfaces. In a final example, we describe a T -code over
F7 whose parameters are as good as any known linear code.

2. The theory of T -varieties

First we recall some facts and notations from convex geometry. Here, N always is a lattice and
M := Hom(N,Z) its dual. The associated Q-vector spaces N ⊗ Q andM ⊗ Q are denoted by NQ and
MQ respectively. Let σ ⊂ NQ be a pointed convex polyhedral cone. A polyhedron ∆ which can be
written as a Minkowski sum∆ = π + σ of σ and a compact polyhedron π is said to have σ as its tail
cone.
With respect to Minkowski addition the polyhedra with tail cone σ form a semigroup which we

denote by Pol+σ (N). Note that σ ∈ Pol
+

σ (N) is the neutral element of this semigroup and that ∅ is by
definition also an element of Pol+σ (N).
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A polyhedral divisor with tail cone σ on a normal variety Y is a formal finite sum

D =
∑
D

∆D ⊗ D,

where D runs over all prime divisors on Y and∆D ∈ Pol+σ . Here, finite means that only finitely many
coefficients differ from the tail cone.
We may evaluate a polyhedral divisor for every element u ∈ σ∨ ∩M via

D(u) :=
∑
D

min
v∈∆D
〈u, v〉D

in order to obtain an ordinary divisor on LocD . Here, LocD := Y \
(⋃

∆D=∅
D
)
denotes the locus

ofD .

Definition 1. A polyhedral divisorD is called Cartier if every evaluationD(u), u ∈ σ∨∩M , is Cartier.

To a Cartier polyhedral divisor we associate an M-graded k-algebra sheaf and consequently an
affine scheme over LocD admitting a TM-action:

X̃ := X̃(D) := SpecLocD
⊕

u∈σ∨∩M

O(D(u)).

From Altmann and Hausen (2006), we know that this construction gives a normal variety of
dimension dimN + dim Y admitting a torus action of TN with LocD as its good quotient.
Moreover, for every affine normal variety X there exists a polyhedral divisor D such that X =

SpecΓ (X̃(D),OX̃(D)). X and X̃ coincide if LocD is affine. In this case LocD equals the categorical
quotient of X̃ = X .

Definition 2. LetD =
∑
D∆D ⊗ D,D

′
=
∑
D∆
′

D ⊗ D be two polyhedral divisors on Y .

(1) We writeD ′ ⊂ D if∆′D ⊂ ∆D holds for every prime divisor D.
(2) We define the intersection of polyhedral divisors

D ∩D ′ :=
∑
D

(∆′D ∩∆D)⊗ D.

(3) We define the degree of a polyhedral divisor

degD :=
∑
D

∆D.

(4) For a (not necessarily closed) point y ∈ Y we define the fibre polyhedron∆y := Dy :=
∑
y∈D∆D.

(5) We callD ′ a face ofD and writeD ′ ≺ D ifD ′y is a face ofDy for every y ∈ Y .

Assume thatD ′ ⊂ D . This implies that⊕
u∈σ∨∩M

O(D ′(u))←↩
⊕

u∈σ∨∩M

O(D(u)))

and we get a dominant morphism X̃(D ′)→ X̃(D).

Proposition 3 (Altmann et al. (2008), Proposition 3.4, Remark 3.5). This morphism defines an open em-
bedding if and only ifD ′ ≺ D holds.

Nowwe define the global analogue of a polyhedral divisor. The step from the affine to the complete
case is reflected by the replacement of the polyhedra by complete polyhedral subdivisions. For every
polyhedron in such a subdivision we get a corresponding tail cone. We will refer to the set of all tail
cones as the tail fan of the subdivision.
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(a) ΞQ1 . (b) ΞQ2 .

Fig. 1. The fansy divisor of a surface.

(a) Ξ0 . (b) Ξ∞ . (c) Ξ1 .

Fig. 2. The fansy divisor of a threefold.

Definition 4. Consider a smooth projective curve Y . A fansy divisor is a formal finite sum

Ξ =
∑
P∈Y

ΞP ⊗ Z

such that:

(1) ΞP are polyhedral subdivisions covering NQ and sharing a common tail fan;
(2) Finite means here that for all but finitely many points,ΞP equals the tail fan.

Consider a finite set of polyhedral divisorsS, such thatD � D ′∩D ≺ D ′ for every pairD,D ′ ∈ S.
Assume furthermore that their polyhedral coefficientsDP form the subdivisionsΞP of a fansy divisor.
From such a set we may construct a scheme X̃(Ξ) by gluing X(D)s via

X̃(D)← X̃(D ∩D ′)→ X̃(D ′).

Note that we had to check the cocycle condition; this is done in Altmann et al. (2008, Theorem 5.3).
From Theorem 7.5 ibid. we know that we get a complete variety this way.
This variety is uniquely determined by the underlying fansy divisor. Different sets S correspond to

different open coverings. Therefore, we may denote the resulting variety by X̃(Ξ).
Theorem 5.6 in Altmann et al. (2008) tell us that for every normal T -variety X with dim X =

dim T + 1 we may find a fansy divisorΞ and a proper birational map X̃(Ξ)→ X . If X has categorical
quotient of the expected dimension this morphism turns out to be the identity.

Remark 5. For a fansy divisor Ξ and an open covering {Ui}i∈I of Y we can find a set S as above, such
that for everyD ∈ S there is a i ∈ I such that LocD = Ui.

Example 6. Let Y be a smooth projective curve and Q1,Q2 ∈ Y two points. We consider the fansy
divisor Ξ given by the coefficients in Fig. 1. X̃(Ξ) is a complete surface with one-dimensional torus
action.

Example 7. We consider the fansy divisor on P1 given by the coefficients in Fig. 2. X̃(Ξ) is a complete
(singular) threefold with two-dimensional torus action.

3. Divisors and intersection theory on T -varieties

From now on we shall only consider torus actions of codimension one; we will study them via
fansy divisors.
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3.1. Cartier divisors

LetΣ ⊂ NQ be a complete polyhedral subdivision of N consisting of tailed polyhedra. We consider
continuous functions h : |Σ | → Q which are affine on every polyhedron in Σ . Let ∆ ∈ Σ

be a polyhedron with tail cone δ. Then h induces a linear function h∆0 on δ = tail∆ by defining
h∆0 (v) := h(P + v)− h(P) for some P ∈ ∆. We call h

∆
0 the linear part of h|∆.

Definition 8. An (integral) support function on a polyhedral subdivision Σ is a piecewise affine
function as above with integer slope and integer translation. To be precise: for v ∈ |Σ | and k ∈ N
such that kv is a lattice point we have kh(v) ∈ Z. The group of support functions onΣ is denoted by
SFΣ .

Let Ξ be a fansy divisor on Y . We consider SF(Ξ), the group of formal sums
∑
P∈Y hPP with the

following conditions.

(1) hP ∈ SFΞP a support function of the P-slice ofΞ .
(2) all hP have the same linear part h0.
(3) hP differs from h0 for only finitely many points P ∈ Y .
We refer to this fact by calling this sum finite and we omit those summands which equal h0.

Definition 9. A support function h ∈ SF(Ξ) is called principal if h(v) = 〈u, v〉+D, with u ∈ M and D
is a principal divisor on Y . By h(v) = 〈u, v〉+Dwemean that hP(v) = 〈u, v〉+aP , whereD =

∑
P aPP .

If h =
∑
hPP ∈ SF(Ξ) we consider a covering {Yi} of Y such that P is a principal divisor on the Yi

for every P ∈ Y with hP 6= h0, and such that every Yi contains at most one of these points.
We may find a set S as above which is compatible with this covering and induces Ξ . Now we

choose a D ∈ S with LocD = Yi and hP 6= h0. hP is an affine function on every polyhedron in ΞP
so we get −hP |DP (v) = 〈v, u〉 + a for some u ∈ M and a ∈ Z. Assume that div(f ) = aP on Yi; then
f · χu ∈ K(X̃(D))T defines a T -invariant principal divisor HD on X̃(D). These principal divisors fit
together to a Cartier divisor Dh on X̃(Ξ). Here K(X̃(D))T :=

⊕
u∈M K(Y ) ·χ

u
⊃ Γ (X̃(D)) denotes the

ring of invariant rational functions on X̃(D). In this way the group of integral support functions onΞ
corresponds to that of invariant Cartier divisors on X̃(Ξ).

3.2. Weil divisors

In general there are two types of T -invariant prime divisors, namely

(1) those which consist of orbit closures of dimension dim T ; and
(2) those which consist of orbit closures of dimension dim T − 1.

Proposition 10. If D is a polyhedral divisor on a curve with tail cone σ , there are one-to-one
correspondences

(1) between prime divisors of type 1 and pairs (P, v) with P a point on Y and v a vertex of∆P ; and
(2) between prime divisors of type 2 and rays ρ of σ with degD ∩ ρ = ∅.

Proof. Consider the quotient map π : X̃→ LocD . In Altmann and Hausen (2006) the orbit structure
of the fibres ofπ is described. Thus, we know that faces F ≺ Dy correspond to T -invariant subvarieties
of codimension dim(F) in πy := π−1(y). The correspondences follow by using this for closed points
and the generic point, respectively. �

Remark 11. Wemay also describe the ideals of prime divisors in terms of polyhedral divisors:

(1) For prime divisors of type 1 corresponding to a vertex (P, v), the ideal is given by

IP,v =
⊕
u∈σ∨

Γ (Y ,O(D(u))) ∩ {f | ordP(f ) > 〈v, u〉}.
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(2) For prime divisors of type 2, the corresponding ideal is generated by all multidegrees which are
not orthogonal to ρ:

Iρ =
⊕

u∈σ∨\ρ⊥
Γ (Y ,O(D(u))).

Proposition 12. Let h =
∑
P hP correspond to the Cartier divisor Dh on X̃(D). The corresponding Weil

divisor is given by

−

∑
ρ

h0(nρ)ρ −
∑
(P,v)

µ(v)hP(v)(P, v),

where µ(v) is the smallest integer k ≥ 1 such that k · v is a lattice point. This lattice point is a multiple of
the primitive lattice vector nv: µ(v)v = ε(v)nv .

Proof. This is a local statement, so we will pass to a sufficiently small invariant open affine set which
meets a particular prime divisor. If we translate this to our combinatorial language and we consider a
prime divisor corresponding to (P, v) or ρ then we have to choose a polyhedral divisorD ′ ≺ D ∈ S
such that v is also a vertex ofD ′P or ρ is a ray in tailD

′, respectively.
So we restrict ourselves to the following two (affine) cases:

(1) D is a polyhedral divisor with tail cone σ = 0 and a single point ∆P = {v} ⊂ N as the only
nontrivial coefficient. Moreover, Y is affine and factorial. In particular, P is a prime divisor with
(local) parameter tP .

(2) D is the trivial polyhedral divisor with one-dimensional tail cone ρ over an affine locus Y .

In the first case we may choose Z-basis e1, . . . , em of N with e1 = nv . Consider the dual basis
e∗1, . . . , e

∗
m. By definition ε(v) andµ(v) are coprime sowewill find a, b ∈ Z such that aµ(v)+bε(v) =

1. In this situation y := taPχ
be∗1 is irreducible in

Γ (OX ) = Γ (OY )[y, t
±ε(v)
P χ∓µ(v)e

∗
1 , χ±e

∗
2 , . . . , χ±e

∗
m ]

and defines the prime divisor (P, v). We consider an element tαP χ
u with u =

∑
i λie

∗

i . The y-order of
tαP χ

u is

ε(v)λ1 + µ(v)α = µ(v)(〈u, v〉 + α),

because tαP χ
u
= yε(v)λ1+µ(v)α(t−ε(v)P χµ(v)e

∗
1 )λ1a+bα , and (t−ε(v)P χµ(v)e

∗
1 ) is a unit.

In the second case we choose a Z-basis e1, . . . , em of N with e1 = nρ . We once again consider the
dual basis e∗1, . . . , e

∗
m. In this situation

Γ (OX ) = Γ (OY )[χ
e∗1 , χ±e

∗
2 , . . . , χ±e

∗
m ].

Now (χ e
∗
1 ) defines the prime divisor ρ on X . For a principal divisor f · χu, the χ e

∗
1 -order equals the

e∗1-component of u; i.e., 〈u, nρ〉. �

Example 13. For our threefold example we consider Dh where h0, h∞, h1 are given by the tropical
polynomials

h0 = 0�x(−1,0)⊕0�x(−1,1)⊕0�x(0,1)⊕0�x(1,0)⊕1�x(1,−1)⊕1�x(0,−1)

h∞ = (−2)�x(−1,0)⊕(−2)�x(−1,1)⊕(−1)�x(0,1)⊕(−1)�x(1,0)⊕(−2)�x(1,−1)⊕(−2)�x(0,−1)

h1 = 1�x(−1,0)⊕1�x(−1,1)⊕0�x(0,1)⊕0�x(1,0)⊕0�x(1,−1)⊕0�x(0,−1)

wherewe are using the tropical semi-ringwith operations⊕ = min,� = +. These support functions
are pictured in Fig. 3. The Weil divisor corresponding to Dh is

∑
ρ Dρ + 2D(∞,0) + 2D(∞,(−1,−1)). This

is the anti-canonical divisor of X := X̃(Ξ) (Petersen and Süß, 2008).
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(a) h0 . (b) h∞ .

(c) h1 .

Fig. 3. Support functions for a T -threefold.

3.3. Global sections

For a support function h on X we may consider theM-graded vector space of global sections of Dh

L(Dh) =
⊕
u∈M

L(Dh)u := Γ (X,O(Dh)).

The weight set of L(Dh) is defined as the set {u ∈ M | L(D)u 6= 0}. For a Cartier divisor given by
h ∈ T-CaDiv(Ξ)we will bound its weight set by a polyhedron as well as describe the graded module
structure of L(D).
Consider a support function h =

∑
P hPP with linear part h0. We define its associated polytope

�h := �h0 := {u ∈ MQ | 〈u, v〉 ≥ h0(v) ∀v∈N}

and associate a dual function h∗ : �h → DivQ Y via

h∗(u) :=
∑
P

h∗P(u)P :=
∑
P

minvert(u− hP)P,

where minvert(u− hP) denotes the minimal value of u− hP on the vertices ofΞP .

Remark 14. Let h be a concave support function. Every affine piece of hP corresponds to a pair
(u,−au) ⊂ M×Z. h∗P is defined to be the coarsest concave piecewise affine function with h

∗

P(u) = au.
We can reformulate this in terms of the tropical semi-ring with operation ⊕ = min,� = +.

We might think of the hP as given by tropical polynomials
⊕

w∈I(−aw)�x
w; then �h = conv(I) and

h∗P(w) = aw , i.e., Γ h∗P is the reflected lower Newton boundary of the tropical polynomial for hP .

Definition 15. A divisorial polytope h∗ is a pair consisting of an ordinary polytope �h ⊂ MQ and a
concave piecewise affine function h∗ : �h → DivQ Y such that

(1) deg h∗(u) ≥ 0 for all vertices u of �h, and
(2) some multiple of h∗(u) is principal in the case of deg h∗(u) = 0 for a vertex u.
(3) �h is a lattice polytope as is conv(Γ h∗P ) for each P ∈ Y .
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(a) h∗0 . (b) h∗
∞
. (c) h∗1 .

Fig. 4. h∗ for a T -threefold.

(a) Ξ ′0 . (b) Ξ ′
∞
. (c) Ξ ′1 .

Fig. 5. A refined polyhedral divisor.

Let �g ,�h ∈ MQ be polytopes. For any concave piecewise affine functions g∗ : �g → DivQ Y and
h∗ : �h → DivQ Y we define their sum g∗+h∗ to be the piecewise affine concave function on�g +�h
given by

(g∗P + h
∗

P)(u) = max{h
∗

P(w)+ g
∗

P (w
′) | u = w + w′}.

Remark 16. For g, h ∈ SF(Ξ), one easily checks that
�g + �h ⊂ �g+h

and that

g∗P (u)+ h
∗

P(u) ≤ (g + h)
∗

P(u)

for all P ∈ Y and all u ∈ �g + �h. Furthermore, if hP and gP are convex, they correspond to tropical
polynomials f , f ′. It follows then that (g + h)P corresponds to f � f ′. Its reflected lower Newton
boundary is exactly the graph of (g + h)∗P ; thus the equality

(g + h)∗P = g
∗

P + h
∗

P

holds.

To a divisorial polytope h∗ we might associate a fansy divisor Ξ and support function h on Ξ
such that h∗ corresponds to h in the way given above. Indeed, to every h∗P we can associate a tropical
polynomial f :=

⊕
(u,au)(−au)�x

u, where (u, au) runs over the vertices of Γ (h∗P )
. This polynomial

induces via evaluation a piecewise affine function and a polyhedral subdivisionΞP of N .

Remark 17. If we remove condition 3 from the definition of a divisorial polytope (Definition 15), the
association in the above paragraph gives us a Q-Cartier divisor.

For every fansy divisor there exists a smooth refinement, i.e. a fansy divisorΞ ′ such that everyΞ ′P
is a refinement ofΞP and X̃(Ξ ′) is smooth (Süß, 2008). Every support function h onΞ is obviously also
a support function onΞ ′. Thus, for a given divisorial polytope h∗ wemight always consider a smooth
fansy divisorΞ and a support function h on it such that the associated dual function equals h∗.

Example 18. Wenow revisit our threefold example. Fig. 4 shows a sketch of h∗.We showa refinement
of the fansy divisor in Fig. 5 which gives a smooth threefold.

Proposition 19. Let h ∈ SF(Ξ) be a Cartier divisor with linear part h0. Then
(1) the weight set of L(Dh) is a subset of �h; and
(2) for u ∈ �h we have

L(Dh)u = Γ (Y ,O(h∗(u))).
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Proof. By the definition of O(Dh)we have

Γ (X,O(Dh))T =

{
χuf | div(χuf )−

∑
ρ

h0(nρ)ρ −
∑
(P,v)

µ(v)hP(v)(P, v) ≥ 0

}
.

But div(χuf ) =
∑

ρ〈u, nρ〉ρ +
∑

(P,v) µ(v)(〈u, v〉 + ordP(f ))(P, v), so for χ
uf ∈ L(h) we get the

following bounds:

(1) 〈u, nρ〉 ≥ h0(nρ) ∀ρ
(2) ordP(f )+ 〈u, v〉 ≥ hP(v) ∀(P,v).

The first implies that u ∈ �h ∩M , and the second that ordP(f )+ (u− hP)(v) ≥ 0 ∀ (P, v). �

For a coneσ ∈ Ξ (n)
0 ofmaximal dimension in the tail fan and a P ∈ Y weget exactly one polyhedron

∆σP ∈ ΞP having tail σ . For a given concave support function h =
∑
hPP , we have

hP |∆σP = 〈·, u
h(σ )〉 + ahP(σ ).

The constant part gives rise to a divisor on Y :

h|σ (0) :=
∑
P

ahP(σ )P.

Proposition 20. A T-Cartier divisor h =
∑
hPP ∈ T-CaDiv(Ξ) is (semi-)ample if and only if all hP

are strictly concave (concave) and −h|σ (0) is (semi-)ample for all tail cones σ , i.e., deg−h|σ (0) =
−
∑
P a
h
P(σ ) > 0 (or a multiple of−h|σ (0) is principal).

Proof. We first prove that semi-ampleness follows from the above criteria. Because h is (strictly)
concave the same is true for h0. This implies that the uh(σ ) are exactly the vertices of �h and
h∗(uh(σ )) = h|σ (0).
The semi-ampleness for h∗(u), u ∈ �h ∩ M follows from the semi-ampleness at the vertices.

Indeed if D,D′ are semi-ample divisors on Y this is also true for D+ λ(D′ − D)with 0 ≤ λ ≤ 1.
Every vertex (u, au) of Γ h∗P corresponds to an affine piece of hP of the form 〈u, ·〉− au. If we let f be

such that div(f ) = auP on LocD for someD ∈ S, we then have Dh|X̃(D) = div(f
−1χ−u) (see 3.1). A

point (u, au) ∈ M×Z is a vertex of h∗ exactly if (ku, kau) is a vertex of (k ·h)∗. Hence, after passing to a
suitablemultiple of hwemay assume, that h∗(u) is base-point freewith f being a global sectionwhich
generates O(h∗(u)) on LocD . Thus fχu is a global section of O(Dh)which generates O(Dh)|X̃(D).
To show the other direction, i.e. that semi-ampleness implies the above criteria, assume that hP is

not concave. Then this is true also for everymultiple of `·hP andhence there is an affine piece 〈u, ·〉−au
of `hP such that au > (`hP)∗(u). This means there is no global section fχu such that div(f ) = auP . But
this contradicts the base-point freeness of D`h and hence the semi-ampleness of Dh.
To get the statement for ampleness note that a support function h on a polyhedral subdivision

is strictly concave if and only if for every support function h′ there is a k � 0 such that h′ + kh is
concave. �

Corollary 21. X̃(Ξ) is projective if and only if all ΞP are regular subdivisions, i.e. admit a strictly convex
support function.

Remark 22. We see from Proposition 20 that for h ∈ SF(Ξ), if the T -invariant divisor Dh is semi-
ample, the corresponding dual function h∗ is in fact a divisorial polytope. Conversely, if h∗ is a divisorial
polytope, the associated divisor on the associated T -variety is semi-ample.

3.4. Intersection numbers

Definition 23. For a divisorial polytope h∗ we define its volume to be

vol h∗ :=
∑
P

∫
�h

h∗P volMR .
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For divisorial polytopes h∗1, . . . , h
∗

k we define theirmixed volume by

V (h∗1, . . . , h
∗

k) :=

k∑
i=1

(−1)i−1
∑

1≤j1≤···ji≤k

vol(h∗j1 + · · · + h
∗

ji).

Proposition 24. Assume that on X Kodaira’s vanishing Theorem holds.
(1) If Dh is semi-ample, for the self-intersection number we get

(Dh)(m+1) = (m+ 1)! vol h∗.
(2) Let h1, . . . , hm+1 define semi-ample divisors Di on X(Ξ). Then

(D1 · · ·Dm+1) = (m+ 1)!V (h∗1, . . . , h
∗

m+1).

Proof. If we apply (1) to every sum of divisors from D1, . . . ,Dm+1 we get (2) by the multi-linearity
and symmetry of intersection numbers.
To prove (1) we first recall that

(Dh)m+1 = lim
ν→∞

(m+ 1)!
νm+1

χ(X,O(νDh)),

but for projective X := X(Ξ) and nef divisors the ranks of higher cohomology groups are
asymptotically irrelevant Demailly (2001, Theorem 6.7) so we get

(Dh)m+1 = lim
ν→∞

(m+ 1)!
νm+1

h0(X,O(νDh)).

Note that (νh)∗(u) = ν · h∗( 1
ν
u). Now we can bound h0 by∑

u∈ν�h∩M

(
degbνh∗

( 1
ν
u
)
c − g(Y )+ 1

)
≤ h0(O(νDh)) ≤

∑
u∈ν�h∩M

degbνh∗
( 1
ν
u
)
c + 1. (1)

On the one hand we have

lim
ν→∞

(m+ 1)!
νm+1

∑
u∈ν�h∩M

degbνh∗
( 1
ν
u
)
c = lim

ν→∞

(m+ 1)!
νm

∑
u∈�h∩

1
νM

1
ν
degbνh∗(u)c

= (m+ 1)!
∫

�h

h∗ volMR .

On the other hand, for any constant c , we have

lim
ν→∞

1
νm+1

∑
u∈ν�h∩M

c = c · lim
ν→∞

#(ν · �h ∩M)
νm+1

= 0.

Thus, if we pass to the limit in (1), the term in the middle has to converge to vol h∗. �

Remark 25. The theorem allows us to compute intersection numbers in characteristic 0 as well as
on T -surfaces in positive characteristic because Kodaira’s vanishing theorem holds in these cases. We
believe that the theorem holds as well for positive characteristic in higher dimensions; work is being
done to show that the vanishing theorem holds there.
Corollary 26. Let h ∈ SF(Ξ) and let C be any one-cycle rationally equivalent to the intersection of Cartier
divisors, each of which can be expressed as an integer linear combination of semi-ample Cartier divisors.
Then Dh · C is equal to Dh+P−Q · C for all points P,Q ∈ Y .
Proof. We have

Dh+P−Q · C = (Dh − D−P + D−Q ) · C = Dh · C − D−P · C + D−Q · C
so it is sufficient to show that D−P · C = D−Q · C . Now, D−P and D−Q are semi-ample, so we can apply
Proposition 24. Using the fact that vol((−P)∗ + h̃∗) = vol((−Q )∗ + h̃∗) for all h̃ ∈ SF(Ξ) gives the
desired equality. �

Example 27. We know by Proposition 20 that Dh in our threefold is ample. We have vol h∗ = 21.
Hence, X is Fano of degree 21.
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3.5. Genus of curves on surfaces

Let X = X̃(Ξ) be a two-dimensional T -variety and let h ∈ SF(Ξ) be a support function on Ξ .
For any curve C ∈ |Dh|, we show how to calculate the arithmetic genus g(C). As a corollary, we can
calculate the Euler characteristic χ(X,O(Dh)) if X is smooth.

Definition 28. For any h ∈ SF(Ξ), let

int h∗P :=
∑

u∈�◦h∩M

#{a ∈ Z≥0 | a < |h∗P(u)|} ·
h∗P(u)
|h∗P(u)|

for each point P ∈ Y , where �◦h is the interior of �h. Furthermore, let

int h∗ :=
∑
P∈Y

int h∗P .

Definition 29. For any h ∈ SF(Ξ), let

#h∗P :=
∑

u∈�h∩M

bh∗P(u)c

for any point P ∈ Y and let

#h∗ :=
∑

u∈�h∩M

degbh∗(u)c =
∑
Y∈P

#h∗P .

Remark 30. Note that int h∗P is the number of ‘‘interior’’ lattice points between the graph of h
∗

P and 0
counted with their signs, where lattice points in height 0 are counted as long as they are not on the
boundary of �h. Similarly, if #h∗P(h) ≥ 0 for all u ∈ �h, #h∗P is the sum of the number of lattice points
between the graph of #h∗P and 0, where we count no lattice points in height 0 but all lattice points
lying on the graph of h∗P .

We will use the following lemma.

Lemma 31. With notation as above, 2 · vol h∗P = int h
∗

P + #h
∗

P for all P ∈ Y . It follows in particular that
2 · vol h∗ = int h∗ + #h∗.

Proof. Fix some P ∈ Y . Suppose now that h∗P(u) ≥ 0 for all u ∈ �h and set

∆ = conv
{{
(u, h∗P(u))

}
∪ {(u, 0)}

}
,

where u ∈ �h. This is a convex polytope in M ′Q, where M
′
= M × Z. Pick’s theorem tells us that

2 · vol∆ + 2 = #(∆ ∩ M ′) + #(∆◦ ∩ M ′). Now vol∆ = vol h∗P , #(∆ ∩ M) = #h
∗

P + #(�h ∩ M),
and #(∆◦ ∩ M) = int h∗P − #(�h ∩ M) + 2, so the desired equality follows. For general h

∗

P , choose j
such that h̃∗P(u) := h

∗

P(u)+ j ≥ 0 for all u ∈ �h. Then 2 · vol h̃∗P = int h̃
∗

P + #̃h
∗

P and for j
∗

P(u) := j we
have 2 · vol j∗P = int j

∗

P +#j
∗

P . Since vol, int, and # are additive at least for integer-valued functions, the
desired equality follows for h∗P = h̃

∗

P − j
∗

P . �

We are now able to prove the following proposition:

Proposition 32. Let h ∈ SF(Ξ) be any support function such that Dh is semi-ample. Then for C ∈ |Dh|,
the arithmetic genus of C is given by

g(C) = int h∗ + 1+ vol�h · (g(Y )− 1),

where g(Y ) is the genus of Y .

Proof. Without loss of generality, we can take the curve C to equal Dh. Indeed, the arithmetic genus
is invariant under rational equivalence and since |Dh| is not empty, it must contain some T -invariant
effective divisor. We compare the genus of C with that of a comparable curve C0 on X0 := Y × P1 and
then compute the genus of C0 directly. To begin with, note that we can findmonoidal transformations
πi : Xi → Xi−1 1 ≤ i ≤ k such that
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(1) Xi is a T -variety;
(2) πi is T -equivariant; and
(3) there is a birational T -equivariant morphism ϕ : Xk → X .

This is done as follows. Let Σ be the fan {Q≥0,Q≤0, {0}} and let Ξ 0P := Σ for all points P ∈ Y . Then
X0 = X̃(Ξ 0). Each morphism πi corresponds to an additional subdivision in the fan Ξ i−1 at exactly
one point. Thus, we keep on refining until we get a Ξ k which is a smooth common refinement of Ξ
andΞ 0; this gives us our morphism ϕ. Finally, we let π : Xk → X0 be the composition of the πi.
We now pull back C to Ck := ϕ∗(C). Thus we now have Ck = Dh, where h is now considered as a

support function onΞ k. Furthermore, this does not change the arithmetic genus; that is, g(C) = g(Ck).
Define now inductively Ci−1 = πi∗(Ci) for 1 ≤ i ≤ k. One easily checks that C0 = Dh̃, where
h̃ ∈ SF(Ξ 0) is the support function given by the divisorial polytope h̃∗P := maxu∈�h h

∗

P(h) with
�h̃ := �h. Note that since C is semi-ample, each Ci is semi-ample as well. We will now calculate
the difference between g(Ck) and g(C0).
We first consider a special case; namely, suppose that h∗P is trivial everywhere except for at two

points Q1 6= Q2. If Y = P1, all the varieties Xi and X are toric. In this case, the divisor Dh can be
understood in toric terms as the polytope

∆h := convΓh∗Q1
∪ Γ−h∗Q2

and Dh̃ corresponds to∆h̃, which is defined in a similar manner. Then

g(Ck)− g(C0) = I(∆h)− I(∆h̃),

where I(∆) is the number of interior lattice points of ∆; see for example Little and Schenck (2006),
prop. 5.1. But we have I(∆h) = int h∗Q1 + int h

∗

Q2
−#(�◦h∩M) and a similar equation for h̃, which leads

to

g(Ck)− g(C0) = int h∗ − int h̃∗. (2)

Now, Eq. (2) actually holds in general, not just in the toric case. To see this, note that for each
1 ≤ i ≤ k, Ci = π∗i (Ci−1)+ ri · Ei, where Ei is the exceptional divisor of πi. Then similar to Hartshorne
(1977), V.3.7 we have g(Ci) = g(Ci−1)− 1

2 ri(ri + 1). Thus,

g(Ck)− g(C0) =
k∑
i=1

−
1
2
ri(ri + 1).

However, for each 1 ≤ i ≤ k, the integer ri can be determined combinatorially by comparing the
polyhedral subdivisions Ξ iP and Ξ

i−1
P for the single point P ∈ Y where these fansy divisors differ.

Thus, the integers ri can be calculated exactly as if we were in the toric case, so we get
k∑
i=1

−
1
2
ri(ri + 1) = int h∗ − int h̃∗.

Eq. (2) follows.
We now calculate g(C0). From the adjunction formula, we have

g(C0) =
D2
h̃
+ Dh̃ · K0
2

+ 1

for K0 a canonical divisor on X0; see Hartshorne (1977, V.1.5). The theorem of Riemann–Roch for
surfaces (Hartshorne, 1977, V.1.6) gives us

χ(X0,O(Dh̃)) =
D2
h̃
− Dh̃ · K0
2

+ χ(X0,OX0).

Thus,

g(C0) = D2h̃ + 1+ χ(X0,OX0)− χ(X0,O(Dh̃)).
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Now, χ(X0,OX0) = 1− g(Y ) (see Hartshorne (1977), V.2.5). Likewise, if p : X0 → Y is the projection,
we have

χ
(
X0,O(Dh̃)

)
= χ

(
Y , p∗O(Dh̃)

)
=

∑
u∈�h∩M

χ(Y ,O(̃h∗(u)))

= #̃h+ (1− g) · (vol�h + 1),

where the last equation follows from the Riemann–Roch theorem for curves. We also have D2
h̃
=

2 · vol h̃. Making these substitutions results in

g(C0) = 2 · vol h̃+ 1+ vol�h · (g(Y )− 1)− #̃h

= int h̃+ 1+ vol�h · (g(Y )− 1),

the second equality coming from Lemma 31. Combining this with Eq. (2) completes the proof. �

Corollary 33. For any semi-ample T-invariant Cartier divisor Dh on a smooth T-variety X, we have

χ(X,O(Dh)) = #h∗ − (g(Y )− 1) · #(�h ∩M) =
∑

u∈�h∩M

χ(Y ,O(h∗(u))).

Proof. Using the adjunction formula and the Riemann–Roch theorem for surfaces as in the above
theorem gives us the formula

χ (X,O(Dh)) = D2h + 1+ χ(X,OX )− g(C)

for some C ∈ |Dh|. We can use the above proposition to calculate g(C). Combining this with the facts
that D2h = 2 · vol h and χ(X,OX ) = 1 − g(Y ) along with Lemma 31 completes the proof of the first
equality. The second equality follows directly from the theorem of Riemann–Roch for curves. �

At the end of this section we revisit our surface example and use it to illustrate the concepts we
have introduced.

Example 34. We look at the Cartier divisor Dh on our surface example where hQ1 and hQ2 are given by
the tropical polynomials 0⊕(−2)�x4 and 0⊕(−2)�x2⊕(−1)�x3⊕1�x4, respectively. One easily
sees that �h = [0, 4], and that h∗Q1 and h

∗

Q1
respectively correspond to the tropical polynomials x1/2

and x⊕4�x−1⊕7�x−2. In other words, h∗Q1(u) = u/2 and

h∗Q2(u) =

{u if u ≤ 2
4− u if 2 ≤ u ≤ 3
7− 2u if u ≥ 3.

In Fig. 6 we sketch h and the corresponding divisorial polytope h∗.
We can use Proposition 12 to compute the correspondingWeil divisor: 4DQ≤0+4D(Q2,2)+7D(Q2,1).

Dh is semi-ample, so by Proposition 24 we get (Dh)2 = 15. Finally, from Proposition 32 we know that
a section of Dh has genus 5+ 4 · g(Y ).
We may also start with h∗ and take the dual h to construct a fansy divisor as described above. We

recover Ξ this way. X := X̃(Ξ) is not smooth, but a refinement of the polyhedral subdivisions (see
Fig. 7) gives a smooth surface X ′ (this is will not be proved here; see Süß (2008)). Using Corollary 33,
we can calculate that χ(X ′,O(Dh)) = 12− 5 · g(Y ).

4. T -codes and their parameters

4.1. Construction

Let Y be a curve over Fq and let h∗ be a divisorial polytope. Let P = {P1, . . . , Pl} be some subset
of the Fq-rational points of Y such that for i = 1, . . . , l, h∗Pi is affine and h

∗

Pi
(u) ∈ Z for u ∈ �h ∩ M .
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(a) hQ1 . (b) hQ2 .

(c) h∗Q1 . (d) h∗Q2 .

Fig. 6. h and h∗ for a T -surface.

(a) Ξ ′Q1 . (b) Ξ ′Q2 .

Fig. 7. A refined fansy divisor.

Let Ξ be the fansy divisor associated to h∗ and let Ξ ′ be some minimal refinement such that X :=
X̃(Ξ ′) is smooth. Note that for each point Pi ∈ P ,Ξ ′Pi = v(Pi)+Σ , for a unique lattice point v(Pi) and

tail fanΣ . Setm = dimM . For each point Pi, let P1i , . . . , P
(q−1)m
i be the (q− 1)m Fq-rational points on

X of the open T -orbit contracting to Pi.
The support function h associated to h∗ corresponds to a semi-ample T -invariantFq-rational Cartier

divisor Dh on X . We denote the corresponding line bundle byO(Dh) and let L(Dh) = Γ (X,O(Dh)). For
each point P ji , fix some isomorphism O(Dh)P ji

∼= Fq. Consider the Fq-linear map

ev : L(Dh)→ Fl(q−1)
m

q

f 7→
(
fP11 , fP21 , . . . , fP(q−1)

m
l

)
,

where fP ji
is the image of f in Fq following the identification with O(Dh)P ji

. In other words, the above

map evaluates the rational function f at the l(q − 1)m points P ji 1 ≤ i ≤ l, 1 ≤ j ≤ (q − 1)m. The
image of ev is a linear subspace of Fl(q−1)

m

q and thus a linear code of length n = l(q− 1)m; we denote
it by C(Y , h∗,P ). If P is maximal, we simply denote it by C(Y , h∗). Note that although C(Y , h∗,P )
indeed depends on the way we identify O(Dh)P ji

with Fq, its length n, dimension k, and its minimum
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distance d do not. Thus, we will always assume that some such isomorphisms are given, but will not
concern ourselves further with them.

Remark 35. If h∗Pi = 0 for i = 1, . . . , l, thenC(Y , h∗,P ) is equivalent as code to the image of themap

ev :
⊕
u∈�h∩M

Γ
(
O(h∗(u))

)
χu → Fl(q−1)

m

q

gχu 7→
(
g(P1)χu(Q1), g(P1)χu(Q2), . . . , g(Pl)χu(Q(q−1)m)

)
where Q1, . . . ,Q(q−1)m are the Fq-rational points of the m-dimensional torus. Thus, in this case the
isomorphisms O(Dh)P ji

∼= Fq are not only irrelevant but also unnecessary. Now let Cu be the [(q −
1)m, 1, (q− 1)m] code generated by (tu)t∈(F∗q )m and let C(Y , h

∗(u),P ) be the AG code corresponding
to the curve Y , divisor h∗(u), and point set P . Then as mentioned in the introduction, we can also
define C(Y , h∗,P ) simply as

C(Y , h∗,P ) =
∑

u∈�h∩M

Cu ⊗ C(Y , h∗(u),P ).

4.2. Estimate on dimension

Assume that the map ev is injective. This is always the case if the bound given below for the
minimum distance is larger than zero. We then have

k = dimFq L(Dh).

Using Proposition 19, we thus get

k =
∑

u∈�h∩M

dimΓ (Y ,O(h∗(u))).

We can approximate k using only the combinatorics of h∗. Let

γ (u) =

{degbh∗(u)c + 1− g(Y ) if degbh∗(u)c + 1− g(Y ) > 0
1 if degbh∗(u)c + 1− g(Y ) ≤ 0 and h∗(u) ≥ 0
0 if otherwise.

Proposition 36. If the evaluation map ev is injective, then

#h∗ + #(�h ∩M)(1− g) ≤
∑

u∈�h∩M

γ (u) ≤ k ≤ #h∗ + #(�h ∩M). (3)

Furthermore,

k = #h∗ + #(�h ∩M)(1− g)) (4)

if deg h∗(u) > 2g(Y )− 2 for all u ∈ �h ∩M.

Proof. The leftmost inequality in (3) follows from the definition of γ (u). We now consider the second
inequality in (3). Fix some degree u ∈ �h ∩ M . Then we always have dimΓ (Y ,O(h∗(u))) ≥ 0, and
if h∗(u) is effective, then dimΓ (Y ,O(h∗(u))) ≥ 1. Using the theorem of Riemann and Roch (see for
exampleHartshorne (1977)),we also have dimΓ (Y ,O(h∗(u))) ≥ deg h∗(u)+1−g , and the inequality
follows. If deg h∗(u) > 2g(Y ) − 2, then equality holds, so (4) follows. Finally, the right inequality in
(3) follows from dimΓ (Y ,O(h∗(u))) ≤ deg h∗(u)+ 1. �

4.3. General lower bound on minimum distance

One strategy to produce an estimate for d is to use techniques of intersection theory, as first
presented in Hansen (2001). These techniques have been applied to toric varieties; see for example
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Hansen (2002) and Ruano (2007). We first consider the general case and then specialize to surfaces.2
Let e∗1, . . . , e

∗
m be a basis forM . For P ∈ P and η1, . . . , ηm−1 ∈ F∗q , define l(q− 1)

m−1 curves

CP,η1,...,ηm−1 := (P, v(P)) ∩ V
(
{χ e

∗
i − ηi}

m−1
i=1

)
.

Each point P ji lies on exactly one of these curves. Furthermore, each curve CP,η1,...,ηm−1 is rationally
equivalent to

CP := (P, v(P)) ∩ V
(
{χ e

∗
i }
m−1
i=1

)
= D0−P · (D−e∗1 )≥0 · . . . · (D−e∗m−1)≥0

where the second equality follows from Proposition 12, e∗i is considered as an element of SF(Ξ), and
(D−e∗i )≥0 is the effective part of D−e∗i .
Fix some section s ∈ L(Dh); this corresponds to an effective divisor (s)0 = Dh + (s). By Z(s)

we denote the number of points P ji such that sP ji
= 0. Equivalently, Z(s) is the number of points P ji

contained in the support of (s)0. Thus, one has the following lower bound for the minimum distance:

d ≥ l(q− 1)m − max
s∈L(Dh)

Z(s).

Let (s)0 vanish on exactly λ of the curves {CP,η1,...,ηm−1}. Following (Hansen, 2001) and setting
C = CP for some P ∈ P we then have

Z(s) ≤ λ(q− 1)+ (l− λ)Dh · C (5)

since (s)0 ∼ Dh and it follows fromCorollary 26 thatDh ·C = Dh ·CPi = Dh ·CPi,η1,...,ηm−1 for all 1 ≤ i ≤ l.
Assuming that Kodaira’s vanishing theorem holds on X , we can use Proposition 24 to calculate Dh · C .
Wenowboundλ in amethod similar to Ruano (2007). For the divisorial polytope h∗ : �h → DivQ Y

let pr(�h) be the projection of �h toM/Ze∗m and define pr(h
∗) : pr(�h)→ DivQ(Y ) by

pr(h∗)P(u) = max
(u,um)∈�h∩M

h∗P((u, um)).

One easily checks that pr(h∗) is a divisorial polytope. Assume that �h ⊂ ũ+ {u ∈ M|0 ≤ ui ≤ q− 2}
for some ũ = (̃u1, . . . , ũm) ∈ M . This also then holds for pr(�h). We can write

s = χ ũme
∗
m ·

(
s0 + s1χ e

∗
m + sq−2χ (q−2)e

∗
m
)

where si ∈ K(Y )(χu1 , . . . , χum−1). In fact, one easily checks that si ∈ L(Dpr(h)), where Dpr(h) is the
T -invariant Cartier divisor on the m-dimensional T -variety Xpr(h∗) over Y both determined by pr(h∗).
If we restrict s·χ −̃ume

∗
m to some curve CP,η1,...,ηm−1 we get a polynomial s = s0+s1χ

e∗m+sq−2χ (q−2)e
∗
m ∈

Fq[χ em ] of degree less than or equal to q−2. If CP,η1,...,ηm−1 is a curvewhere s vanishes, then s has q−1
zeros, so s ≡ 0 and si = 0 for 0 ≤ i ≤ q − 2. Thus the section si ∈ L(Dpr(h)) vanishes on the point of
Xpr(h∗) corresponding to the tuple (P, η1, . . . , ηm−1). It follows that

λ ≤ max
t∈L(Dpr(h))

Z(t).

Thus, we can recursively bound λ until dim(X) = 2.

4.4. Lower bound on minimum distance for dim(X) = 2

We can provide a much better bound for Z(s) when X is a surface. Consider a global section s of
O(Dh) as before such that (s)0 vanishes on exactly λ of the curves {CPi}, say CQ1 , . . . , CQλ where the Qi

2 A more recent strategy to estimate d for toric surface codes involves bounding the number of irreducible components of
a section and then applying the Hasse–Weil bound, see for example Little and Schenck (2006) and Soprunov and Soprunova
(2008). The first author is currently working on applying this strategy to T -codes, (Ilten, in preparation).
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are distinct points inP . Thus, s ∈ L(Dh̃), where h̃ = h+
∑λ
i=1 Qi. Since h̃ and

∑λ
i=1(−Qi) are concave,

it follows that h∗ = h̃∗ + (
∑λ
i=1(−Qi))

∗. In particular, we have that

deg h̃∗(u) = deg h∗(u)− λ.

Thus, s can only have support in the weights u ∈ �(h,λ), where

�(h,λ) =
{
u ∈ �h ∩M| degbh∗(u)c ≥ λ

}
.

It follows immediately that

λ ≤ max
u∈�h∩M

degbh∗(u)c := λ0.

Having found a good bound for λ, we now try to improve on the upper bound for Z(s) in equation
Eq. (5). By choosing a generator we can identify the lattice N with Z. Then σ− := Q≤0 and σ+ := Q≥0
are the two rays in Σ . Each of these rays corresponds to a T -invariant divisor. Let µ− and µ+
respectively be the coefficients of the prime divisors σ− and σ+ in (s)0. Wewant to find a lower bound
for the sum µ− + µ+. This is easy if s has support only in a single weight u, say s = f · χu. In this
case, (s) is T -invariant corresponding to the support function −u − div(f ) and thus µ− + µ+ =
−h0(−1)− h0(1) using Proposition 12.
Let umin and umax be respectively the smallest and the largest weights in which s has non-trivial

support and let ν = umax − umin. Note that we can bound ν by

ν ≤ ν(λ) := max�(h,λ) −min�(h,λ).

Let S be some set of polyhedral divisors corresponding to some open covering of X and consider
some polyhedral divisor D ∈ S. Now, the divisor σ− or σ+ is contained in X̃(D) if and only if D
has respectively σ− or σ+ as tail cone. If the tail cone ofD is σ+, we can write

s = χumin f −1 · (s0 + s1χ + · · · + sνχ ν)

with f , s0, . . . , sν ∈ O(LocD) and so (s) is the sum of some effective divisor and the T -invariant
principal divisor (f −1 ·χumin). Thus, using Proposition 12, we haveµ+ ≥ −h0(1)+ umin. On the other
hand, if the tail cone ofD is σ−, we can write

s = χumax f −1 · (s0χ−ν + s1χ−ν+1 + · · · + sν)

with f , s0, . . . , sν ∈ O(LocD). Thus, using Proposition 12 again, we have µ− ≥ −h0(−1) − umax.
Combining these two inequalities gives us

µ− + µ+ ≥ vol�h − ν ≥ vol�h − ν(λ),

where we use the easily checked fact that−h0(−1)− h0(1) = vol�h.
Now, each curve CP intersects with σ+ in one point; similarly, CP and σ− intersect in some other

point. Neither of these points is one of the points P ji at which we are evaluating our section s. This
means that for each of the l−λ curveswherewe calculate the number of zeros of (s)0 using intersection
numbers, we have counted at leastµ−+µ+ toomany points. Furthermore, we can use Proposition 24
to calculate that Dh · C = vol�h. Thus, we can improve Eq. (5) to

Z(s) ≤ λ(q− 1)+ (l− λ)ν(λ).

Summing up the results obtained here leads to the following.

Proposition 37. Let C(Y , h∗,P ) be a code on a two-dimensional T -variety. Then the minimum distance
of this code is bounded from below by

d ≥ min
0≤λ≤λ0

[(l− λ)(q− 1− ν(λ))] .

Remark 38. In the literature concerning toric surface codes, the estimate for the minimum distance
often contains a term involving the self-intersection number of one of the curves CP . In our case,
this term does not help since C2P = 0, which can be easily seen using Proposition 24. However, the
correction we make using µ+ and µ− has a similar effect.
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4.5. Upper bound on minimum distance

A simple upper bound on theminimum distance of a toric code is given in Ruano (2007). We adapt
this to the case of T -varieties. This then gives us a way of testing if the lower bound on minimum
distance attained above is sharp.

Proposition 39. Let f ∈ K(Y ) be such that f ·χu ∈ L(Dh) for all u ∈ B∩M, where B is lattice isomorphic
to a lattice hyper-rectangle with side lengths r1, . . . , rm, ri ≤ q− 1. Furthermore, suppose that f vanishes
at r0 of the points Pi ∈ P . Then

d ≤ (l− r0) ·

(q− 1)m + m∑
j=1

(−1)j
∑
i1<···<ij

ri1 · · · rij(q− 1)
m−j

 . (6)

In particular, for m = 1 we have d ≤ l(q− 1)− r1l− r0(q− 1)+ r0r1.

Proof. Choose a basis e∗1, . . . , e
∗
m of the lattice M such that B = ũ +

∏m
i=1[0, ri]. Let F∗q =

{η1, . . . , ηq−1}. Now consider the rational function

f ′ := f · χ ũ ·
m∏
i=1

ri∏
j=1

(χ e
∗
i − ηj).

One easily checks that f ′ ∈ L(Dh). On the other hand, using inclusion–exclusion one sees that for each
point Pi ∈ Y , f ′ vanishes on

m∑
j=1

(−1)j+1
∑
i1<···<ij

ri1 · · · rij(q− 1)
m−j

rational points of the open T -orbit contracting to Pi. The function f ′ vanishes entirely on r0 of these
orbits, each of which has (q − 1)m relevant points. Using inclusion–exclusion again and subtracting
the total number of points on which f ′ vanishes from the length n = l(q − 1)m yields the desired
result. �

As a consequence of the above proposition we get the following corollary.

Corollary 40. Let B ⊂ �h be lattice isomorphic to a lattice hyper-rectangle with side lengths r1, . . . , rm,
ri ≤ q − 1. Furthermore, for each Qj ∈ Y (Fq) let cj ∈ Z be such that h∗Qj(u) ≥ cj for all u ∈ �h ∩ M. If∑
cj ≥ g(Y ), inequality (6) then holds for r0 :=

(∑
cj
)
− g(Y ).

Proof. Using the above proposition, we just need to find f ∈ K(Y ) such that f · χu ∈ L(Dh) for
all u ∈ B ∩ M and such that f vanishes at r0 of the points Pi ∈ P . Now, for any r0 points
P1, . . . , Pr0 ∈ Y (Fq), the divisor D :=

∑
cjQj on Y has a global section f which vanishes on all r0

points. Indeed, by the Riemann–Roch theorem,

dim L

(
D−

r0∑
i=1

Pi

)
=

(∑
cj
)
− r0 + 1− g(Y ) = 1.

Now, since h∗Qj(u) ≥ cj for all u ∈ �h ∩ M , L(D) ⊂ L(h∗(u)) for all u ∈ B ∩ M and we have found f as
desired. �

Remark 41. In the case of a toric code, the above corollary gives exactly the upper bound of Ruano
(2007).

5. Examples

5.1. Ruled surfaces from decomposable vector bundles

Codes on ruled surfaces, or equivalently P1-bundles over a curve Y , were first considered in Hansen
(2001), where formulae for n and k and a lower bound for d are given; global sections of some line
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(a) hQ0 . (b) h∗Q0 .

Fig. 8. h and h∗ for a simple ruled surface.

bundle on X are evaluated at all Fq-rational points. This was then applied in Lomont (2003) to surfaces
of the form X = Proj(OY ⊕OY (−e)). Assuming that the lower bound attained for d there is sharp, the
resulting codes are never better than a product code coming from a Reed–Solomon code and a Goppa
code. However, by restricting the points at which we evaluate to a smaller set, better codes can be
found. Indeed, consider the case Y = P1, e > 0, where the resulting surface is the Hirzebruch surface
He, a toric variety. Codes obtained by evaluation on the points of the torus were considered in Hansen
(2002), with parameters considerably better than those of product codes. We wish to generalize this
to bundles over curves of higher genus.
Consider the rank-two locally free sheaf

E = OY ⊕ O

 ∑
Qi∈Fq(Y )

αiQi


for αi ∈ Z and set X = Proj(E). Any ruled surface coming from a decomposable vector bundle is
isomorphic to such a X . Furthermore, X can easily be described as a T -variety. Let Σ ⊂ Q be the fan
consisting of the conesQ≤0,Q≥0, and {0}, and letΞ be the fansy divisor withΞQi = αi+Σ . Then one
can easily confirm that X = X̃(Ξ). We set α =

∑
αi.

Consider now any semi-ample T -invariant Cartier divisor Dh on X . Then h0 is of the form

h0(v) =
{
umax · v if v ≤ 0
umin · v if v ≥ 0

for some umin, umax ∈ Zwith a := umax−umin ≥ 0. It follows that�h = [umin, umax]. Furthermore, for
each Qi ∈ Fq(Y ), hQi is of the form hQi(v) = h0(v− αi)− bi for some bi ∈ Z. Thus h∗Qi(u) = αi · u+ bi.
It follows that deg h∗(u) = α · u+ b.
As an example, by setting umin = 0, umax = 3, α0 = 1, b0 = 2, and all other possible parameters to

0, we get the ruled surface with h and h∗ as pictured in Fig. 8.
We now consider the code C(Y , h∗,P ) for any set P of Fq-rational points on Y ; note that h∗P is

affine and integer-valued on lattice points for any point P ∈ P as required. Set l = #P . For the sake
of simplicity we shall assume that umin = 0, α > 0 and αi, bi ≥ 0. This ensures that h is in fact
semi-ample, i.e. that h∗ is a divisorial polytope. One easily confirms that λ0 = b+ a · α and that

ν(λ) =

{
a if λ ≤ b
ba− λ−b

α
c if λ ≥ b.

Using Proposition 37 we then have that

d ≥ min {(l− b− a · α)(q− 1)), (l− b)(q− 1− a)} .
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We can then use Corollary 40 to bound d from above. Indeed, for t ∈ Z, 0 ≤ t ≤ a we have that
h∗Qj(u) ≥ bj + αjt for all t ≤ u ≤ a. Using the particular cases t = 0 and t = a results in the bound

d ≤ min {(l− b− a · α + g(Y ))(q− 1)), (l− b+ g(Y ))(q− 1− a)} .

Thus, we have upper and lower bounds for d differing by at most g(Y ) · (q− 1).
We now use Proposition 36 to find a lower bound for k. We always have

k ≥ (a+ 1)(b+ 1+ α · a/2− g(Y ))

where equality holds if b > g(Y ) − 2. Suppose now that b ≤ g(Y ); set c = d(g(Y )− b)/αe. Now
h∗(u) is effective for every u ∈ �h ∩M , so we can improve the bound on k to

k ≥ (a+ 1− c)
(
b+ 1+

α

2
(c + a)− g(Y )

)
+ c. (7)

Note that equality holds if g(Y ) ≤ 1.

Remark 42. In the case Y = P1 and αi, bi = 0 for all points Qi with the exception of some point Q0, X
is the Hirzebruch surfaceHα . If we setP = F∗q , we recover the results of Hansen (2002). Note that the
curves we use to cover the points of the torus are perpendicular to those used by Hansen. In our case,
these curves have self-intersection zero, but the adjustment we make with µ− and µ+ compensates
for this.

We now compare these codes to product codes coming from a length q−1 Reed–Solomon code and
a Goppa code. A Reed–Solomon code has parameters [q− 1, k1, d1]with d1 = q− k1 and k1 ≤ q− 1.
Assume τ ∈ N with τ > g(Y ) − 1. Then the Goppa code on Y gotten by evaluating a divisor D of
degree τ at l rational points has parameters [l, k2, d2] with k2 ≥ τ − g(Y ) + 1 and d2 ≥ l − τ ; see
for example Pless et al. (1998, Vol. I, Chapter 10). The resulting product code Cprod has parameters
[l(q− 1), k1k2, d1d2]. For the product code we thus have the estimates

kprod ≥ kest := k1(τ − g(Y )+ 1),
dprod ≥ dest := (q− k1)(l− τ).

We can then show the following.

Proposition 43. Fix some curve Y and assume that l ≥ q + g(Y ) − 1. Using notation as above, we can
find h∗ andP as above such that the estimated parameters forC(Y , h∗,P ) are better than those forCprod.
Specifically, we show that

kest ≤ (a+ 1)(b+ 1+ α · a/2− g(Y )), (8)
dest < min {(l− b− a · α)(q− 1)), (l− b)(q− 1− a)} . (9)

Proof. First, suppose that τ ≥ (k1 − 1). We then set a = k1 − 1 and choose some α ∈ N such that
α(k1 − 1) ≤ 2τ and α(k1 − 1) is divisible by two. Choose bi ≥ 0 such that b = τ − α(k1 − 1)/2.
Choose any set P consisting of l points. Equality in (8) follows immediately, and a quick calculation
shows that (9) holds as well.
Suppose instead that τ < (k1 − 1). Set k̃1 = τ − (g(Y ) − 1) and τ̃ = k1 + (g(Y ) − 1). Consider

then the product code C̃prod obtained as a product of the k̃1-dimensional Reed–Solomon code and the
Goppa code corresponding to the divisor τ̃Q0. Then one easily confirms that the estimated minimum
distance and dimension for C̃prod are greater than or equal to those of Cprod and that τ̃ ≥ (̃k1 − 1).
Thus, we reduce to the first case above. �

5.2. A code on an elliptic curve

The following example illustrates techniques that can be used to refine our estimate for minimum
distance. It also demonstrates that there are T -codes with better parameters than the those estimated
in the previous example. Before we begin, we first note the following lemma.
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Lemma 44. Let Dh be a T-invariant divisor on X̃(Ξ), and let s be a section such that (s)0 is not irreducible.
Then we can find functions h1, h2 ∈ SF(Ξ) and s1 ∈ L(Dh1), s1 ∈ L(Dh1) such that

(1) Dh = Dh1 + Dh2 ;
(2) (s) = (s1)+ (s2); and
(3) Dhi is not rationally equivalent to 0 for i = 1, 2.

Proof. Since (s)0 is not irreducible, we can write it as the sum of two nontrivial effective divisors
(s)0 = C1+C2. Since the Picard group is generated by T -invariant divisors, we can find h′1, h

′

2 ∈ SF(Ξ)
such that Ci = Dh′i + (s

′

i) for some s
′

i ∈ L(Dh′i ), i = 1, 2. We thus have

Dh + (s) = Dh′1 + (s
′

1)+ Dh′2 + (s
′

2).

Now set s1 := s′1, h1 := h
′

1, and s2 := s/s1, and let h2 be the support function corresponding to the
T -invariant divisor Dh′2 + (s

′

2) − (s2). These support functions and sections clearly fulfill the desired
conditions. �

We now return to the divisor on the T -surface considered in Example 34. For Y either P1 or elliptic,
we have already noted thatDh is semi-ample; this is the same as saying that h∗ is a divisorial polytope.
Now, if Y = P1 and Q1 = 0, Q2 = ∞, the T -variety associated to h∗ is in fact toric, and h∗ corresponds
to the polytope in Z2 given by conv{(0, 0), (2,−2), (3,−1), (4, 1), (4, 2)}. LetP = Y \ {Q1,Q2}; the
example of C(P1, h∗,P ) is considered in Soprunov and Soprunova (2008), where it is shown using
the Hasse–Weil bound that d ≥ (q− 1)2 − 3(q− 1)− 2

√
2+ 1 for all q ≥ 19. We now calculate the

parameters d and k for C(Y , h∗,P ) in the case that Y is an elliptic curve.
In calculating k, note that deg h∗(u) > 0 for u > 0. Thus, in these degrees we have that

dim L(Dh)u = deg h∗(u). On the other hand, h∗(0) = 0, which is effective, so dim L(Dh)0 = 1. Adding
everything up, we get that k = 8.
Proposition 39 gives us an easy upper bound for d. If we set f := 1, we have that f · χu ∈ L(Dh) for

u ∈ 0, 1, 2, 3. Indeed, h∗(u) is effective in these degrees. Thus, it follows that d ≤ l(q− 1)− 3l.
We now bound d from below. One easily checks that λ0 = 3. Likewise, one can easily calculate

that ν(0) = 4, ν(1) = 3, ν(2) = 1, and ν(3) = 0. Now consider some section s such that λ = 1.
We claim that we actually must have that ν ≤ 2. The section s cannot have support in weight 0 since
deg h∗(0)− 1 = −1. Furthermore, s cannot have support in weight 1. Indeed, Γ (Y ,O(Q2 − P)) = 0
for any point P 6= Q2, since Y 6= P1. It follows that for any section s with λ 6= 0 or with λ = 0 and
ν < 4 we have Z(s) ≤ λ(q− 1)+ l(3− λ); if we assume that l ≥ q− 1, it follows that Z(s) ≤ 3l.
Now consider some section s such that λ = 0 and ν = 4; we will show that under certain

assumptions we also have Z(s) ≤ 3l. First, suppose that (s)0 is irreducible. Then using the Hasse–Weil
bound for singular curves as stated in Aubry and Perret (1996), we see that the number #(s)0(Fq) of
Fq-rational points on (s)0 is bounded above by

#(s)0(Fq) ≤ q+ 1+ 2g
√
q

where g := g((s)0) is the arithmetic genus of (s)0. Note that this only depends on the divisor Dh and
not on s. Now, if we require that

q ≥

(
g +

√
g2 + 8
2

)2
,

it follows that

Z(s) ≤ q+ 1+ 2g
√
q ≤ (q− 1)3.

In our case, it follows from Proposition 32 that g = 9 so the required bound on q is q ≥ 89.
Suppose on the other hand that (s)0 is not irreducible. Let h1, h2 ∈ SF(Ξ) be support functions and

si ∈ L(Di) i = 1, 2 sections as in Lemma 44, ordered such that vol�h1 ≤ vol�h2 . It easily follows that
ν(s) = ν(s1)+ ν(s2) and by Remark 16 we have h∗ ≥ h∗1 + h

∗

2 . Now if s1 only has support in a single
degree, (s1)0 is T -invariant. Thus we have Z(s1) = 0 and Z(s) = Z(s2). Indeed, since λ = 0, (s1)0
cannot contain one of the curves CP covering the points of evaluation, and all other T -invariant prime
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divisors do not contain any points of evaluation. Now note that h∗2 ≤ h
∗
+ (f ) for some f ∈ K(Y ).

Thus, g ((s2)0) ≤ g ((s)0) and if (s2)0 is irreducible, the above argument with the Hasse–Weil bound
gives the desired bound. If not, we replace h and s by h2 and s2 and repeat the process until we have
an irreducible section and thus the desired bound, or have sections s′1 and s

′

2 both with support in
multiple weights.
We have now reduced to the situation where h′ ∈ SF(Ξ) with s′ ∈ L(Dh′), h′

∗
≤ h∗ + (f ), for this

s′ we have ν = 4, and h′ and s′ admit a decomposition into h′1, h
′

2 and s
′

1, s
′

2 such as in Lemma 44 such
that both sections have support in multiple weights. We show that this is impossible. We first note
that since ν = 4, s′i must have support in the largest and smallest weights of �h′i , which we call u

max
i

and umini , respectively. Furthermore, by adjusting with T -invariant principal divisors we can assume
that (f ) = 0, umini = 0, and h

′

i
∗
(0) = 0. We then have (h′ i)∗Q1(u

max
i ) < 2 for i = 1, 2. Indeed, we must

have

(h′1)∗Q1(u1)+ (h
′
2)
∗

Q1(u2) < 2

for u1 ∈ �h′1
and u2 ∈ �h′2

\ {umax2 }. The claim follows for i = 1 by setting u2 = 0; for i = 2 we just
switch the indices. Now, for at least one i ∈ 1, 2 we must also have (h′i)∗Q2(u

max
i ) < 0. Indeed, this

follows from

(h′1)∗Q2(u
max
1 )+ (h′2)∗Q2(u

max
2 ) ≤ −1.

For this i,

L(Dh′i )umaxi = Γ
(
Y ,O(h′i

∗
(umaxi ))

)
⊂ Γ (Y ,O(Q1 − Q2))) = 0.

This is however impossible, since we had already concluded that s′i has support in weight u
max
i .

We have thus shown that a section s ∈ L(Dh) with λ = 0 is either irreducible, in which case we
can bound the number of rational points on it using the Hasse–Weil bound, or it can be decomposed
into T -invariant components and some remaining section, which either is irreducible or which has
support in weights differing by at most 3. Thus, if we require that q ≥ 89 and l ≥ q − 1, we see that
for any section s ∈ L(Dh), Z(s) ≤ 3l. Since our upper bound already states that d ≤ l(q− 1)− 3l, we
find that in fact

d = l(q− 1)− 3l.

This marks an improvement over the estimates for any of the T -codes considered in the previous
example. Indeed, to get the desired estimatedminimum distance wewould have to require b = 0 and
a ≤ 3. Using Eq. (7), one easily checks that the dimension of the resulting code is smaller than 8.

5.3. A computational example

We are able to provide a T -code over F7 with parameters [66, 19, 30], which is as good as the best
known code (see Grassl (2007)). We set Y = V (zy2 + 6x3 + 4z3) ⊂ P2F7 and consider the divisorial
polytope given in Fig. 9. Fixing two Fq-ration points Q1 and Q2 we can compute a generator matrix of
C = C(Y , h∗) using Macaulay 2 (Grayson and Stillman, 2008) and the toriccodes package (Ilten,
2008). We can then compute the minimal distance using Magma (Bosma et al., 1997).
It is easy to see that the length and dimension of C are always respectively 66 and 19. However, the

minimum distance can be either 29 or 30, depending on the choice of Q1 and Q2. For example, setting
Q1 = (1 : 2 : 1), Q2 = (1 : 5 : 1) results in a minimum distance of 30, whereas Q1 = (1 : 2 : 1),
Q2 = (0 : 1 : 1) results in aminimum distance of 29. In fact, the automorphism group of Y divides the
set of all pairs of rational points on Y into two equally large subsets; using pairs in one subset results
in aminimum distance of 30, whereas pairs from the other subset result in a minimum distance of 29.
We can also use Proposition 39 to easily show that d ≤ 30. Indeed, it is not difficult to find a section

f ∈ Γ (Y ,O(3Q1 + 3Q2)) vanishing at 6 distinct points of Y (Fq) \ {Q1,Q2}. Thus, f ∈ L(Dh)3 and we
get d ≤ 66 − 6 · 6 = 30. On the other hand, Proposition 37 guarantees only a minimum distance
of 11, which is a rather bad estimate. However, consider instead the divisorial polytope h̃∗ acquired
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(a) h∗Q1 . (b) h∗Q2 .

Fig. 9. A divisorial polytope defining a [66, 19, 30]7 code.

by restricting h∗ to the weight polytope [0, 3], and the corresponding code C̃ = C(Y , h̃∗). In this
case, L(Dh)3 = L(Dh̃)3, so we once again have d(C̃) ≤ 30 by Proposition 39. Proposition 37 now also
guarantees a minimum distance of 30. Thus, we have found a subcode C̃ ⊂ C which has minimum
distance 30. The computer calculation mentioned above means that this code can be expanded to C
without lowering the minimum distance.
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