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a b s t r a c t

This article analyzes whether some existing tests for the p × p covariance matrix Σ of
the N independent identically distributed observation vectors work under non-normality.
We focus on three hypotheses testing problems: (1) testing for sphericity, that is, the
covariance matrix Σ is proportional to an identity matrix Ip; (2) the covariance matrix Σ

is an identity matrix Ip; and (3) the covariance matrix is a diagonal matrix. It is shown that
the tests proposed by Srivastava (2005) for the above three problems are robust under the
non-normality assumption made in this article irrespective of whether N ≤ p or N ≥ p,
but (N, p) → ∞, and N/pmay go to zero or infinity. Results are asymptotic and it may be
noted that they may not hold for finite (N, p).

© 2011 Published by Elsevier Inc.

1. Introduction

Quantitative measurements of thousands of genes’ expressions are obtained through DNA microarrays. Since these
observations on the genes are on the same subject, they are not independently distributed. Thus, if there are measurements
on p genes, it has a p × p covariance matrix Σ . The number of subjects on which these measurements are obtained, say N ,
are often very few, that is N ≪ p. The analysis of such data sets requires new developments of multivariate theory, many of
which have recently been obtained in the literature. The analysis is, however, simplified considerably if the p×p covariance
matrix Σ satisfies either of the following three hypotheses:

H1 : Σ = λIp, λ > 0,
H2 : Σ = Ip,
H3 : Σ = D = diag(d1, . . . , dp),

where D is a p × p diagonal matrix with diagonal elements d1, . . . , dp. For example, if either the hypothesis H1 or H2 holds,
thenmost of the univariate results can be used to analyze the data. If the hypothesisH3 holds, then a standardized version of
the univariate test statistics can be used. Inmicroarray data analysis of genes, it is invariably assumed, implicitly or explicitly,
that the genes are independently distributed to carry out the analysis; that is, the analysis is carried out under the hypothesis
H3. The frequently applied false discovery rate (FDR) of the Benjamini and Hochberg [1] procedure can be controlled at the
specified level only if the hypothesis H3 is true, or if the covariance matrix Σ is of the intraclass correlation structure with
positive correlation provided that the data are normally distributed; but so far no satisfactory test is available for testing
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the intraclass correlation structure when N ≤ p. Since N ≪ p, it is not known how to ascertain the multivariate normality
of the data. Thus, it would be desirable to have tests for which the significance levels can be controlled with or without the
assumption of normality of the data; that is, to have robust tests.

When p is finite and N is large, it may not be important or necessary to obtain robust tests as the level of significance can
bemaintained at the specified level by using the bootstrapmethods of Beran and Srivastava [2], Nagao and Srivastava [12] for
the covariance matrix. For this reason, most studies considered selecting a test that has better power among the available
tests. For example, Chan and Srivastava [4], and Nagao and Srivastava [12] compared the power of the LRT with that of
LBIT defined in Section 4 for testing sphericity. Further details and references concerning the tests H1–H3 are given in
Sections 4–6. It may be noted that when N/p → constant, the testing problems H1 and H2 have been considered by Ledoit
and Wolf [8] and the problem H3 by Schott [14]. Robustness of these tests has yet to be considered.

For N ≤ p and both N and p going to infinity, bootstrap theory is not yet available. Thus, it is desirable to obtain robust
tests for this situation. Our objective in this paper is to show that the tests proposed by Srivastava [16] are robust for the
model described below.

It is assumed that the p-dimensional observation vectors x1, . . . , xN on N subjects are independently identically
distributed (i.i.d.) with mean vector µ and covariance matrix Σ = CC ′, where C is a p × p non-singular matrix, that is
Σ is a positive definite (p.d.) matrix. Moreover, we shall assume that the N i.i.d. observation vectors xi of dimension p can
be written as

xi = µ + Czi, (1.1)
E(zi) = 0, Cov(zi) = Ip, i = 1, . . . ,N.

For testing the hypothesis H3 of diagonality of the covariance matrix Σ , we shall, however, assume that under H3, C =

diag(d1/21 , . . . , d1/2p ) = D1/2.
Instead of normality of zi = (zi1, . . . , zip), i = 1, . . . ,N , we shall assume that not only that zi are i.i.d., but that zij are i.i.d.

for all i and jwith

E(zrij) = γr , r = 3, . . . , 8, with γ4 = γ . (1.2)
Under normality, γ3 = γ5 = γ7 = 0, γ = 3, γ6 = 15, and γ8 = 105. Unbiased estimators of µ and Σ are respectively given
by

x̄ = N−1
N−
i=1

xi and S =
1
n

N−
i=1

(xi − x̄)(xi − x̄)′, n = N − 1. (1.3)

When N ≤ p, the sample covariance matrix S is singular and no likelihood ratio test (LRT) is available for any of the three
hypotheses. Thus, we consider the following tests proposed by Srivastava [16] for the hypotheses H1,H2,H3. Let

δ̂1 = trS/p, δ̂2 = cn[trS2 − n−1(trS)2]/p, (1.4)

δ̂20 = cn
p−

i=1

s2ii/p, and δ̂40 =

p−
i=1

s4ii/p, S = (sij), (1.5)

where

cn =
n2

(n − 1)(n + 2)
. (1.6)

Then for testing the hypothesis H1, known in the literature as the ‘Sphericity’ hypothesis, we consider the test statistic given
by

T1 =
δ̂2

δ̂2
1

− 1; (1.7)

for the hypothesis H2, the test statistic is given by

T2 = δ̂2 − 2δ̂1 + 1; (1.8)
and for the hypothesis H3, the test statistic is given by

T3 =


δ̂2/δ̂20


− 1

1 −
1
p


δ̂40/δ̂

2
20

1/2 . (1.9)

Let

δi =
1
p
trΣ i, i = 1, . . . , 4, δ20 =

1
p

p−
i=1

σ 2
ii , δ40 =

1
p

p−
i=1

σ 4
ii . (1.10)

We make the following assumption for the consistency of the statistics T1, T2, and T3.
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Assumption A. As p → ∞, δ2 → δo
2, p

−1δ4 → 0, and γ = 3 + O(p−ϵ), ϵ > 0.

Under Assumption A, it is shown that δ̂1 and δ̂2 are consistent estimators of δ1 and δ2 as (N, p) → ∞.
Next, we state the approximative distributions of the test statistics T1, T2, and T3 under the null hypotheses when (N, p)

is large. Moreover, we suppose that all presented matrix manipulations are valid when p (n) goes to ∞. The theorems will
be proved in the subsequent sections. Let Φ(·) denote the cdf of a standard normal random variable, N(0, 1), and P0 denote
the distribution under the null hypotheses H1,H2,H3, respectively, for the three test statistics.

Theorem 1.1. Under the model (1.1)–(1.2) and Assumption A, for large (N, p),

P0((n/2)T1 ≤ t1) ≈ Φ(t1),

where Φ(·) denotes the cdf of a standard normal random variable, N(0, 1), and P0 denotes the distribution under the hypothesis
H1.

Theorem 1.2. Under the model (1.1)–(1.2) and Assumption A, for large (N, p),

P0((n/2)T2 ≤ t2) ≈ Φ(t2),

where P0 denotes the distribution under the hypothesis H2.

Theorem 1.3. Under the model (1.1)–(1.2) and Assumption A, for large (N, p),

P0((n/2)T3 ≤ t3) ≈ Φ(t3),

where P0 denotes the distribution under the hypothesis H3.

The approximative distributions for T1 − T3 which are presented in Theorems 1.1–1.3 are the same as those obtained
under normality assumption in [16]. Thus, the tests based on T1, T2 or T3 are robust tests.

To obtain the distribution of the test statistic T1 and T2, we need to obtain the joint distribution of δ̂1 and δ̂2 under the
model (1.1)–(1.2). To prove robustness, we need only obtain the joint distribution of δ̂1 and δ̂2 under the null hypotheses H1
and H2. Since the statistic T1 is invariant under the scalar transformation xi → cxi, c ≠ 0, we shall assume without loss of
generality that λ = 1. Thus, the results of the following theorem are applicable to both the statistics T1 and T2.

Theorem 1.4. Let (1.1), (1.2), and Σ = Ip hold. Then, the joint distribution of δ̂1 and δ̂2 displayed in (1.4), for (N, p) large, is
approximatively given by

(np)1/2Ω−1/2


δ̂1 − 1
δ̂2 − 1


≈ N2


0
0


, I2


,

where

Ω =


γ − 1 2(γ − 1)

2(γ − 1) 4(γ − 1) + 4
p
n


= Ω1/2Ω1/2, (1.11)

and I2 is the identity matrix of size 2 × 2.

Note that

(np)−1Ω =


γ − 1
np

2(γ − 1)
np

2(γ − 1)
np

4(γ − 1)
np

+
4
n2

 ,

is the asymptotic covariance matrix of (δ1,δ2) which exists for all values of n and p without any condition on n and p, i.e.
it goes to zero as (n, p) → ∞, proving the consistency ofδ1 andδ2. It may also be noted that all the above three tests are
robust when γ = 3 + O(p−ϵ), ϵ > 0.

The organization of the paper is as follows. In Section 2, we give some preliminary results needed to prove Theorem 1.4,
which is proven in Section 3. The proofs of Theorems 1.1–1.3 are given in Sections 4–6, respectively. In particular, in Section 6
some of the notion and ideas of Section 2 will be repeated but now it is focused on T3 instead of T1 and T2.

2. Some preliminary results

In this section, we present some preliminary results.We first comment on the constant cn = n2/(n−1)(n+2)multiplied
to the random variable 1/p(trS2 − n−1(trS)2) in (1.4) and to 1/p

∑
i s

2
ii in (1.5). Under normality assumption, we get from

[16, p. 261]
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E
[
1
p
(trS2 − n−1(trS)2) − δ2

]
=

(n − 1)(n + 2)
n2

δ2 − δ2 = (n−1
− 2n−2)δ2.

Thus,

nE
[
1
p
(trS2 − n−1(trS)2) − δ2

]
= δ2 + O(n−1)

which goes to δ2, a constant, as (N, p) becomes large. That is, the bias does not go to zero and asymptotic normality cannot
hold. On the other hand,

nE
[
cn
p

(trS2 − n−1(trS)2) − δ2

]
= 0,

i.e., the bias is zero, and asymptotic normality has been shown in [16].
Now, we consider the model given in (1.1) and (1.2) under Σ = I . Let

G = IN −
1
N
11′,

where 1 = (1, . . . , 1)′ is an N-vector of ones. Then, since Σ = Ip under H1, we may write S as

S =
1
n
ZGZ ′, Z ′

= (w1, . . . ,wp) : N × p,

where wi are i.i.d. NN(0, IN), i = 1, . . . , p. Note that for G = (gij), gii = n/N,G = G2, trG = N − 1 = n. Thus, using
Theorem 2.1(a) given in the next section, we get

E
[
1
p
trS2 −

1
np

(trS)2
]

=
1

pn2
E
[
tr(ZGZ ′ZGZ ′) −

1
n
(trGZ ′Z)2

]
=

1
pn2

E


(1 − 1/n)

p−
i=1

(w′

iGwi)
2
+

p−
i≠j

(w′

iGwjw′

jGwi − n−1w′

iGwiw′

jGwj)



=
1

pn2


(n − 1)p

n


(γ − 3)

N−
i=1

g2
ii + 2trG2

+ (trG)2


+

p−
i≠j

(trG − n−1(trG)2)



=
n − 1
n3

((γ − 3)Nn2/N2
+ 2n + n2)

=
n − 1
n3


(γ − 3)n2

N
+ n(n + 2)


=

n − 1
n2


(γ − 3)n

N
+ (n + 2)


.

Hence, under Assumption A,

E[δ2] =
cn
p
E[(trS2 − n−1(trS)2)] = 1 +

(γ − 3)n
N(n + 2)

= 1 + O(N−1p−ϵ), ϵ > 0.

Thus, the bias goes to zero at the rate of O(N−1p−ϵ). We may note that for showing its consistency, the factor cn, or whether
we use S with divisor n or N do not make any difference. Similarly, for obtaining the variances ofδ1 andδ2. It is, however,
notationally more convenient to consider

S∗
=

1
N

N−
i=1

(xi − µ)(xi − µ)′ (2.1)

as an estimator of Σ and work with the estimators

δ⋆
1 =

1
p
trS⋆, (2.2)

and

δ⋆
2 =

cN
p

(trS⋆2
− N−1(trS⋆)2), (2.3)

where

cN =
N2

n(N + 2)
,
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in place ofδ1 andδ2. It may be noted that

cn − cN = O(n−2),

and hence, we may use cn in place of cN .
Then, from Theorem 2.9 given later at the end of this section, δ̂1 and δ̂2, given in (1.4), can be approximated in probability

by (2.2) and (2.3), respectively. Moreover, in order to prove the consistency of δ̂∗

1 and δ̂∗

2 , we need some results on quadratic
forms, stated in the following subsection.

2.1. Moments of quadratic forms

Theorem 2.1. Let u = (u1, . . . , up)
′ where ui are i.i.d. with mean 0, variance 1, fourth moment γ , sixth moment γ6 and eighth

moment γ8. Then for any A = (aij) and B = (bij) symmetric matrices of size p × p,
(a)

E[u′Au]
2

= (γ − 3)
p−

i=1

a2ii + 2tr A2
+ (tr A)2,

(b)

Var[u′Au] = (γ − 3)
p−

i=1

a2ii + 2tr A2,

(c)

E[(u′Au)(u′Bu)] = (γ − 3)
p−

i=1

aiibii + 2tr(AB) + (tr A)(tr B),

(d)

Cov[(u′Au), (u′Bu)] = (γ − 3)
p−

i=1

aiibii + 2tr(AB),

(e)

Var[(u′u)2] = p(γ8 − γ 2) + 4p(p − 1)(γ6 − γ ) + 4(p − 1)(p − 2)(p − 3)(γ − 1),
(f)

E[u′u]
3

= pγ6 + 3p(p − 1)γ + p(p − 1)(p − 2).

Theorem 2.2. Let ui and vj be independently and identically distributed with mean 0, variance 1 and fourth moment γ , i, j =

1, . . . , p. Then for u = (u1, . . . , up)
′, and v = (v1, . . . , vp)

′, and any p × p symmetric matrix B = (bij),

Var[u′Bv]2 = (γ − 3)2
p−

i=1

p−
j=1

b4ij + 6(γ − 3)
p−

i=1


p−

j=1

b2ij

2

+ 6tr B4
+ 2(tr B2)2.

2.2. Consistency of δ̂∗

1

For the sake of convenience of presentation, we shall not distinguish between δi and δo
i = limp→∞ δi, i = 1, . . . , 4. From

(1.1), S∗
= N−1∑N

i=1 Cziz
′

iC
′. Let B = C ′C = (bij). Then

E[δ̂∗

1 ] =
N
Np

E[z′

iBzi] =
tr B
p

= δ1

Var[δ̂∗

1 ] =
N

N2p2
Var[z′

iBzi] =
1
Np


(γ − 3)

p−
i=1

b2ii
p

+ 2
tr B2

p


.

Thus, under Assumption A, Var[δ̂∗

1 ] = O((Np)−1), and δ̂∗

1 is a consistent estimator of δ1. Furthermore,

E[(δ̂∗

1)
2
] = δ2

1 + Var[δ̂∗

1 ] = δ2
1 + O((Np)−1). (2.4)

Now

S = n−1CZGZ ′C ′
= n−1(1 − 1/N)CZZ ′C ′

−
1
nN

N−
i≠j

Cziz′

jC
′.
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Hence,

δ1 =δ⋆
1 −

1
npN

N−
i≠j

z′

iBzj,

E[δ1] = E[δ⋆
1], Var(δ1) = O((Np)−1),

and

E[δ̂2
1] = δ2

1 + O((Np)−1), (2.5)

and the next theorem has been established.

Theorem 2.3.

E[(δ̂∗

1)
2
] = δ2

1 + O((Np)−1) = E[δ̂2
1].

2.3. Variance of δ̂∗

2 under the hypotheses H1 and H2

The proposed statistic T1 is invariant under the scalar transformations xi → cxi, c ≠ 0. Thus, we may assume without
any loss of generality that Σ = I under the hypothesis H1, the same as for the hypothesis H2. Hence, all the results in this
subsection are obtained under the assumption that Σ = Ip. When Σ = Ip, the observation matrix can be expressed in two
ways:

Z = (zij) = (z1, . . . , zN) = (w1, . . . ,wp)
′
= (wij). (2.6)

Under H1 and H2 all the elements zij or wij are i.i.d.with mean 0 and variance 1. Thus,

E[wi] = 0, Cov[wi] = IN ,

since wi is an N-dimensional random vector. We shall now express δ̂∗

2 in terms of wi as B = I under H1 and H2. Thus under
H1 or H2,

S∗
=

1
N
ZZ ′

=
1
N

(w1, . . . ,wp)
′(w1, . . . ,wp). (2.7)

To evaluate the variance of δ̂∗

2 , we rewrite δ̂∗

2 in terms of the random vectorswi, i = 1, . . . , p. That is,

δ̂∗

2 = q1 + q2, (2.8)

where

q1 =
ncN
N3p

p−
i=1

v2
ii, vii = w′

iwi, (2.9)

q2 =
2cN
N2p

p−
i<j


v2
ij −

1
N

viivjj


, vij = w′

iwj. (2.10)

Letw be a random vector having the same distribution aswi, and v = w′w. Then, from Theorem 2.1(a), (b)

E[q1] =
ncN
N3p

E[v2
] =

ncN
N2

(N + 2 + γ − 3) = 1 +
γ − 3
N + 2

= 1 + O(N−1p−ϵ), (2.11)

Var[q1] =
n2c2N
p2N6

p−
i=1

Var[v2
ii] =

1
N2(N + 2)2p

Var[vii]

= N−2(N + 2)−2p−1(N(γ8 − γ 2) + 4Nn(γ6 − γ ) + 4n(N − 2)(N − 3)(γ − 1)). (2.12)

Theorem 2.4. Let q1 be given in (2.9). Then, under the hypothesis H1(H2), and Assumption A

E[q1] = 1 + O(N−1p−ϵ), ϵ > 0,

and

Var[q1] = 4(γ − 1)(Np)−1(1 + O(N−1p−1)).
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Let

uij = v2
ij −

1
N

viivjj = (w′

iwjw′

jwi) −
1
N

(w′

iwi)(w′

jwj). (2.13)

Then (2.10) equals

q2 =
2cN
N2p

p−
i<j

uij, (2.14)

and E[q2] = 0. Hence, under the Assumption A,

E[δ⋆
2] = E[q1] + E[q2] = 1 +

γ − 3
N + 2

= 1 + O(N−1p−ϵ), ϵ > 0.

To calculate the variance of q2, we first evaluate

Cov[uij, uik] = E

((w′

jwi)
2
− N−1(w′

iwi)(w′

jwj))((w′

kwi)
2
− N−1(w′

iwi)(w′

kwk))

, i ≠ j ≠ k.

Since,

E[(w′

iwjw′

jwi)(w′

iwkw′

kwi)] = E[(w′

iwi)
2
],

−
1
N
E[(w′

iwjw′

jwi)(w′

iwi)(w′

kwk)] = −E[(w′

iwi)
2
],

−
1
N
E[(w′

iwi)(w′

jwj)(w′

iwkw′

kwi)] = −E[(w′

iwi)
2
],

1
N2

E[(w′

iwi)(w′

jwj)(w′

iwi)(w′

kwk)] = E[(w′

iwi)
2
],

it follows that

Cov[uij, uik] = 0, i ≠ j ≠ k. (2.15)

Hence,

Var[q2] =
4c2N
N4p2

p−
i<j

Var[uij] =
2p(p − 1)c2N

N4p2
Var[uij].

Thus, we need to evaluate Var[uij] = E[u2
ij], since E[uij] = 0. Let Aj = (aik(j)) = wjw′

j, wj = (wj1, . . . , wjN)′. Then, for
i ≠ j,

u2
ij = v4

ij −
2
N

v2
ijviivjj +

1
N2

v2
iiv

2
jj, and v4

ij = (w′

iwjw′

jwi)
2

= (w′

iAjwi)
2.

Hence, for i ≠ j

E[v4
ij] = E[E(w′

iAjwi)|Aj]
2

= 3N2
+ N(γ 2

− 3).

Next, we evaluate

E[v2
ijviivjj] = E[w′

iAjwiw′

iwitrAj] = N(N + γ − 1)2.

Finally,

E[v2
iiv

2
jj] = E[w′

iwi]
2E[w′

jwj]
2

= N2(N + γ − 1)2.

Hence,

Var[uij] = (N − 1)((γ − 1)2 + 2N),

and we get the following theorem.

Theorem 2.5. Let w1, . . . ,wp be i.i.d. with mean 0 and covariance IN , and fourth moment γ . Then, the mean and variance of q2
in (2.14) is given by

E[q2] = 0,

Var[q2] =
4

N4p2
p(p − 1)c2N

2
(N − 1)((γ − 1)2 + 2N) ≈

4
N2


1 +

(γ − 1)2

2N


.

Wemay also prove
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Theorem 2.6. Let q1 and q2 be given by (2.9) and (2.14), respectively. Then, Cov[q1, q2] = 0.

Theorem 2.7. Let δ̂∗

1 and q2 be given by (2.2) and (2.14), respectively. Then, Cov[δ̂∗

1 , q2] = 0.

Using the results obtained above, we get the following theorem.

Theorem 2.8. The variance of δ⋆
2 is given by

Var[δ⋆
2] = Var[q1] + Var[q2].

Theorem 2.9. As (N, p) → ∞;

(a)
1
p
(tr(S⋆)2 − trS2) = op(N−2),

(b)δ2 −δ⋆
2 = Op(N−2).

Since S = S⋆
−

1
nN

∑N
j≠k xjx

′

k,

1
p
(tr(S⋆)2 − trS2) =

2
nNp

N−
j≠k

x′

kS
⋆xj −

1
n2N2p

tr


N−
j≠k

xjx′

k

2

.

Note that x′

jS
⋆xk is a linear combination of the terms S⋆

lm where as (N, p) → ∞, S⋆
lm → σlm in probability. Thus, the first term

on the right-hand side is equal to 2
nNp

∑N
j≠k x

′

jΣxk in probability, with variance given by 8
n2N2p2

trΣ4. Since 1
p2
trΣ4

→ 0, it is
of order op(N−2). The second term is of even lower order. Thus (a) is proved. The proof of (b) follows from Theorem 2.3.

3. Proof of Theorem 1.4

To establish the joint asymptotic normality of k statistics

t(n)i,p =

p−
j=1

x(n)
ij , i = 1, . . . , k

we consider an arbitrary linear combination

t(n)p = c1t
(n)
1,p + · · · + ckt

(n)
k,p =

p−
j=1

k−
i=1

cix
(n)
ij ≡

p−
j=1

y(n)
j

where without any loss of generality c21 + · · · + c2k = 1, and y(n)
j =

∑k
i=1 cix

(n)
ij . Here, x(n)

ij is a sequence of random
variables which may depend on n. From the definition of multivariate normality, see [19], the joint normality for all
c1, . . . , ck will follow if the normality of t(n)p is established. Let F (n)

l be the σ -algebra generated by the random variables
(x(n)

1j , . . . , x(n)
kj ), j = 1, . . . , l, l = 1, . . . , p. Then F0 ⊂ F (n)

1 ⊂ · · · ⊂ F (n)
p ⊂ F , where (Λ, F , P ) is the probability space and

F0 = {∅, Λ}; ∅ being the null set, and Λ the whole set.

Theorem 3.1. Let x(n)
ij be a sequence of random variables, and y(n)

j =
∑k

i=1 cix
(n)
ij , j = 1, . . . , p. If

(i) E[y(n)
j |F (n)

j−1] = 0,
(ii) lim(N,p)→∞ E[(y(n)

j )2] < ∞,

(iii)
∑p

j=0 E[(y(n)
j )2|F (n)

j−1]
p

−→ σ 2
0 , as (n, p) → ∞,

(iv) L ≡
∑p

j=0 E[(y(n)
j )2I(|y(n)

j | > ϵ)|F (n)
j−1]

p
−→ 0, as (n, p) → ∞,

then t(n)p =
∑p

j=1 y
(n)
j

d
→ N(0, σ 2

0 ), as (n, p) → ∞.

The proof of this theorem follows from Theorem 4 of Shiryayev [15, p. 511], since the first two conditions imply that
{x(n)

j , F (n)
j } forms a sequence of integrable martingale differences. The condition (iv) is known as Lindeberg’s condition. To

verify this condition, we note that from Markov’s and Cauchy–Schwarz inequalities

P[L > δ] ≤

p−
j=0

E[(y(n)
j )4]/δϵ2.
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Thus,

E[(y(n)
j )4] ≤ k3

k−
i=1

c4i E[(x(n)
ij )4] ≤ k3

k−
i=1

E[(x(n)
ij )4].

Hence, if
p−

j=1

E[(x(n)
ij )4] → 0,

for all i = 1, . . . , k, the Lindeberg condition is satisfied.
Because of the invariance of the statistic T1 under a scalar transformation, we shall assume as before that Σ = I and

thus B = I in both the hypotheses H1 and H2. We first consider the joint distribution of δ̂∗

1 and q1 defined in (2.2) and (2.9)
respectively, under Σ = Ip. Let ξi = (ξ1i, ξ2i)

′ where ξ1i = N−
1
2 (w′

iwi − N), ξ2i = N−
3
2 [(w′

iwi)
2
− N2

− N(γ − 1)], i =

1, . . . , p and wi is as in Section 2. Then the vectors ξ1, . . . , ξp are i.i.d. with mean 0 and covariance matrix Ω1 given by

Ω1 =


γ − 1 2(γ − 1)

2(γ − 1) 4(γ − 1)


.

Hence,from themultivariate central limit theorem (1/
√
p)
∑p

i=1 ξi −→ N2(0, Ω1), irrespective ofwhetherN goes to infinity
and then p goes to infinity or p goes to infinity and then N goes to infinity. Since

δ̂∗

1 =
1

p
√
N

p−
i=1

ξ1i + 1, and q1 =
1

p
√
N

p−
i=1

ξ2i + 1 +
γ − 1
N

,

we get the following theorem.

Theorem 3.2. The asymptotic distribution of δ̂∗

1 and q1 is bivariate normal given by
NpΩ−1/2

1


δ̂∗

1 − 1
q1 − 1


d

−→ N2(0, I2)

as (N, p) → ∞ in any manner.

It remains to find the distribution of q2, to obtain the joint distribution of δ̂∗

1 and δ̂∗

2 . Note that from (2.14),

Nq2c2n =

p−
j=2

ηj ≡
2
Np

p−
j=2

j−1−
i=1

uij.

Let Fj be the σ -algebra generated by the random vectorsw1, . . . ,wj. Lettingw0 = 0, and F0 = (∅, Λ) = F−1, where ∅ is
the empty set and Λ is the whole space, we find that F0 ⊂ F1 ⊂ · · · ⊂ Fp ⊂ F . Also,

E[ηj|Fj−1] = 0.

Then

E[η2
j |Fj−1] =

4
N2p2


j−1−
i=1

E(u2
ij|Fj−1) + 2

j−1−
k<l

E(ukjulj|Fj−1)



≡
4

N2p2


j−1−
i=1

biN + 2
j−1−
k<l

cklN


and

E[η2
j ] =

4
N2p2

((j − 1)bN + (j − 1)(j − 2)hn), j ≤ p,

where

bN = E[biN ] = E[u2
ij] = N(N − 1)


2 +

(γ − 1)2

N


,

and

hN = E[cklN ] = E[ukjulj] = Cov[ukj, ulj] = 0, k < l < j,
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giving

E[η2
j ] =

4N(N − 1)
N2p2

(j − 1)

2 +

(γ − 1)2

N


< ∞, j ≤ p.

From the definition, it follows that (ηk, Fk) is a sequence of integrable martingale differences. To prove the asymptotic
normality of Nq2, we apply Theorem 3.1. We note that

E


p−

j=2

E[η2
j |Fj−1]


=

p−
j=2

E[η2
j ] =

2N(N − 1)
N2p2

p(p − 1)

2 +

(γ − 1)2

N


.

Thus

lim
(N,p)→∞

E


p−

j=2

E[η2
j |Fj−1]


= 4,

and in Theorem 3.1(iii) σ 2
0 = 4. We will show that υ2

= Var
∑p

j=2 E[η2
j |Fj−1]


→ 0, as (N, p) → ∞, and find that

υ2
= Var


4

N2p2

p−
j=2


j−1−
i=1

biN + 2
j−1−
k<l

cklN


,

where

biN = E[u2
ij|Fj−1], i < j

= E
[
(w′

jAiwj)
2
−

2
N

(w′

jAiwj)vjjvii +
1
N2

v2
ii(w

′

jwj)
2
|Fj−1

]
,

with Ai = wiw′

i = (arl(i)) : N × N . Using Theorem 2.1, yields

biN = (γ − 3)
N−

r=1

a2rr(i) + 3(w′

iwi)
2
−

2
N


(γ − 3)

N−
l=1

all(i) + 2w′

iwi + Nw′

iwi


(w′

iwi)

+
1
N2

((γ − 3)N + 2N + N2)(w′

iwi)
2

= d(w′

iwi)
2
+ (γ − 3)


N−

k=1

w4
ik


, d =


2 −

γ − 1
N


.

Thus, to show that the variance of 4(N2p2)−1
∑p

j=2
∑j−1

i=1 biN

goes to zero, it will be sufficient to show that the variance of

4d(N2p2)−1∑p
j=2
∑j−1

i=1(w
′

iwi)
2, as well as the variance of 4(γ − 3)(N2p2)−1∑p

j=2
∑j−1

i=1

∑N
k=1 w4

ik


go to zero. Clearly,

Var


4d

N2p2

p−
j=2

j−1−
i=1

w′

iwi


=

16d2

N4p
Var


p−1−
j=1

(p − j)(w′

jwj)



≤
16d2

N4p
((γ − 3)N + N2) → 0 as (N, p) → ∞.

Similarly, in order to show that v2
→ 0, we need to show that

Var


8

N2p2

p−
j=2

j−1−
k<l

cklN


=

82

N4p4
Var


p−1−

1≤k<l

(p − l − 1)cklN


→ 0.

For this, we calculate cklN which after some manipulations can be shown to equal

cklN = E[ukjulj|Fj−1] = (γ − 3)
N−

r=1

w2
rr(k)w

2
rr(l) + 2


v2
kl −

γ − 1
N

vkkvll


, k < l < j.

Thus,

64
N4p4

Var


p−1−

1≤k<l

(p − l − 1)cklN


≤

64
N4p2

Var


p−1−

1≤k<l

cklN



=
64

N4p2
Var


p−1−

1≤k<l


(γ − 3)

N−
r=1

w2
rr(k)w

2
rr(l) + 2


v2
kl −

γ − 1
N

vkkvll


.
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Weneed to show that the variance of each of the terms goes to zero. Clearly, the first term is of the orderO(N−3). Similarly,
from the results of Section 2, the second term is of the order O(N−2) and the third term is of the order O(N−3). Hence, we
have shown that condition (iii) is satisfied.

Next, we show that
p−

k=0

E[η4
k ] → 0 as (N, p) → ∞.

For this, we note that ηj = 2(Np)−1∑j−1
i=1 uij, and hence,

c−4
n N4p4

p−
j=0

E[η4
j ] = 16E

p−
j=2


j−1−
i=1

u4
ij + 6

j−1−
k<l

u2
kju

2
lj



= 16E


p−

j=2

j−1−
i=1

E[u4
ij|Fj−1] + 6

j−1−
k<l

E[u2
kju

2
lj|Fj−1]


.

Now

u4
ij =


(w′

jAiwj)
2
−

2
N

(w′

jAiwj)vjjvii +
1
N2

v2
ii(w

′

jwj)
2
2

= (w′

jAiwj)
4
+

4
N2

(w′

jAiwj)
2v2

jjv
2
ii +

1
N4

v4
ii(w

′

jwj)
4
−

4
N

(w′

jAiwj)
3vjjvii

+
2
N2

(w′

jAiwj)
2(w′

jwj)
2v2

ii −
4
N3

(w′

jAiwj)(w′

jwj)
2v3

iivjj.

It can be shown that the leading term in u4
ij is (w′

jAiwj)
4, and

E[(w′

jAiwj)
4
] ≤ E[(w′

jwj)
4(w′

iwi)
4
] ≤ E[v4

iiv
4
jj] = O(N4).

Hence, E[u4
ij] = O(N4).

Let

gi = E[u4
ij|Fj−1], i < j,

and

hkl = E[u2
kju

2
lj|Fj−1], k < l.

Then,
p−

j=2

E[η4
j ] =

c4n16
N4p4


p−1−
j=1

(p − j)E[gj] + 6
p−1−

1≤k<l

(p − l − 1)hkl



≤
c4n16
N4p3


p−1−
j=1

E[gj] + 6
p−1−

1≤k<l

E[hkl]


= O(p−2) + O(p−1),

from Theorem 2.1. Thus, the Lindeberg condition is also satisfied. Hence, as (N, p) → ∞,

Nq2 → N(0, 4),

or equivalently, q2 is approximately normally distributed as normal with mean 0 and variance 4/N2.
We shall now apply Theorem 3.1 again to obtain the joint normality of δ̂∗

1 , q1, and q2. In the notation of Theorem 3.1, let

t(n)1,p =

p−
i=1


ξ1i
√
p


, t(n)2,p =

p−
i=1


ξ2i
√
p


, t(n)3,p =

p−
i=1

ηi.

It is easy to check that
p−

i=1

E


ξ1i
√
p

4


and
p−

i=1

E


ξ2i
√
p

4


go to zero as (N, p) → ∞ while we have already shown that
∑p

i=1 E[η4
i ] → 0 as (N, p) → ∞. Similarly, the convergence

can be satisfied. Hence, we have
(Np)−1Ω1 0

0 4/N2

−1/2
δ̂∗

1 − 1
q1 − 1
q2

 ∼ N3(0, I3).
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Hence
NpΩ−1/2


δ̂∗

1 − 1
δ̂∗

2 − 1


∼ N2(0, I2),

where Ω is defined in (1.11). This proves Theorem 1.4. The corresponding results forδ1 andδ2 are obtained by replacing N
by n.

4. Robustness of the sphericity test: proof of Theorem 1.1

In this section, we first discuss various tests available for testing the hypothesis of ‘sphericity’ H1. When N > p, the
likelihood ratio test (LRT) is based on the ratio of the arithmetic mean to the geometric mean of the eigenvalues of the
sample covariance matrix S. The power of the LRT is a monotonically increasing function of the ratio of the eigenvalues of
Σ , see [3]. Another test, known in the literature as the locally best invariant test (LBIT)was originally proposed byNagao [10]
but it was John [6] and Sugiura [20] who showed that it is the LBIT. It is based on the statistic

U =


trS2

pδ̂2
1


− 1.

It may be noted that


trS2
p


is a consistent estimator of


trΣ2

p


, if
 p
N


→ 0. Thus, when p

N → c ≠ 0, Ledoit and Wolf [8]

considered the statistic U −
p
N and using the asymptotic result of Jonsson [7] gave its (N, p) asymptotic null-distribution

under the Assumption A and the assumption that p
N → c as (N, p) → ∞. The (N, p) asymptotic non-null distribution of

U − p/n can be obtained from Corollary 2.1 of Srivastava [16].
Itmay be noted that the statisticU exists irrespective ofwhetherN ≤ p orN > p. Next, we define ameasure of sphericity.

From Cauchy–Schwarz inequality, we have for a p × p positive definite matrix Σ ,

δ2

δ2
1

=
(tr(Σ2)/p)
(trΣ/p)2

≥ 1. (4.16)

The equality holds if and only if (iff) all the eigenvalues ofΣ are equal to some unknown constant, say λ. That is, iffΣ = λIp.
Thus, as in [16], a measure of sphericity may be defined by

ms =

[
(tr(Σ2)/p)
(trΣ/p)2

− 1
]

; (4.17)

the larger the value of ms, the larger the deviation from the sphericity as ms = 0 under sphericity. The statistic T1 defined
in Section 1 is a consistent estimator ofms. It may be noted that the statistic T1 is invariant under the scalar transformation
xi → axi, a ≠ 0. Thus, without any loss of generality, we may assume that λ = 1 in obtaining the distribution of T1.

We use Theorem 1.4 to obtain the distribution of T1 under the hypothesis H1 as (N, p) → ∞. Under H1, δ̂1 and δ̂2 are
consistent estimators of δ1 and δ2, respectively. Now

∂T1
∂δ̂1

= −2
δ̂2

δ̂3
1

,
∂T1
∂δ̂2

=
1

δ̂2
1

.

Thus (np)−1(−2, 1)Ω(−2, 1)′ = 4n−2.

Hence, under H1, n−1T1
d

−→ N(0, 4) as (N, p) → ∞, proving Theorem 1.1, as well as showing that the test statistic T1
for testing sphericity is robust.

5. A robust test for testing that Σ is an identity matrix: Proof of Theorem 1.2

Despite the monotonicity property of the power function of the LRT for this problem established by Nagao [9] and Das
and Gupta [5], it cannot be considered since N ≤ p. Thus, we consider a test based on a consistent estimator of the distance
function that measures the departure of the hypothesis from the alternative, namely,

mI =
1
p
tr(Σ − I)2 = δ2 − 2δ1 + 1.

Thus, Rao [13], and independently Nagao [11] proposed a test statistic

RN =
1
p
trS2 − 2δ̂1 + 1,
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for testing the hypothesis that Σ = Ip. Ledoit and Wolf [8] modified it to

LW = RN −
p
n
δ̂2
1,

and obtained its null distribution as normal, under the condition that

lim
(N,p)→∞

p
N

= c > 0.

Using consistent estimators of δ1 and δ2, Srivastava [16] proposed a test based on the statistic

T2 = δ̂2 − 2δ̂1 + 1,

and obtained its null as well as non-null distribution as (N, p) → ∞. In this article, we show that T2 is a robust test under
the non-normality model (1.1)–(1.2). To obtain the distribution T2, we use Theorem 1.4. Since

∂T2
∂δ̂1

= −2,
∂T2
∂δ̂2

= 1,

we have

(np)−1(−2, 1)′Ω(−2, 1)′ = 4n−2.

Thus as (N, p) → ∞, N−1T2
d

−→ N(0, 4), and hence proving Theorem 1.2 and the robustness of the test statistic T2 as it
does not depend on γ , γ3, γ5 −γ8, it is the same distribution as given by Srivastava [16] under the assumption of normality.

6. Robustness of the diagonality test T3: proof of Theorem 1.3

When the observations are normally distributed, the LRT is based on the determinant of the sample correlation matrix:

R = (rij), rii = 1, rij =
sij

(siisjj)1/2
,

provided that N > p. When N ≤ p, the determinant of R does not exist. By defining the distance function as the sum of

squared correlationsρ2
ij =

σ 2
ij

σiiσjj
,
∑

i<j ρ
2
ij , which is zero iffρij = 0, Srivastava [16,17] proposed a test based on the normalized

version of its consistent estimator. Schott [14] also gave its distribution under the condition that p
N → c. However, since the

convergence to normality is slow, Srivastava [16,17] proposed a test based on Fisher’s transformation, and obtained its (N, p)
asymptotic distribution. Srivastava [16] defined another distance function to measure the departure from the hypothesis
H3. It is given by

md =
trΣ2

p∑
i=1

σ 2
ii

− 1, Σ = (σij),

which is zero if and only if ρij = 0. Under normality, a test based on its consistent estimator is given by the test statistic
T3 defined in Section 1. The (N, p) asymptotic distribution is given in [16] and its power compared in [17] with the test
based on Fisher’s transformation and shown to be at least as good as based on the Fisher’s transformation. In this section,
we show that this test T3 defined in Section 1 is robust under themodel (1.1)–(1.2). As in Section 2, we can for the asymptotic
distribution purposes, consider δ̂∗

2 based on S∗ instead of S, and N in place of N − 1 and may show that

δ̂∗

2 ≈ δ̂∗

20 + 2cN
p−
i<j


s∗ij

2
−

1
N
s∗iis

∗

jj


,

where δ̂∗

20 = p−1cN
∑p

i=1 s
∗

ii
2.

Under the hypothesis H3, Σ = Dwith C = D1/2. Hence, ifwi are i.i.d.with mean 0, covariance In, with fourth moment γ
and the existence of eight moments, we can write

s∗ij = didjw′

iwj for all i, j = 1, . . . , p.

Let

q∗

3 =
2
p

p−
i<j


s∗ij

2
−

1
N
s∗iis

∗

jj


≡

2
N2p

p−
i<j

didjuij,

with E[uij] = 0, and Cov[uij, uik] = 0, i ≠ j ≠ k. Hence, following as in Theorem 2.4,

Var(q∗

3) =
4

N4p2

p−
i<j

d2i d
2
j Var[uij] =

4
N2

(δ2
20 − p−1δ40) + O(N−3).
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We now show that δ̂∗

20 and δ̂∗

40 are consistent estimators of δ20 = p−1∑p
i=1 σ 2

ii and δ40 = p−1∑p
i=1 σ 4

ii , respectively

under the hypothesis H3 when C = D1/2
= diag


d

1
2
1 , . . . , d

1
2
p


; see Eq. (1.4) for the definition of their estimators. In terms

of the i.i.d. random vectorwi,

δ̂20 =
cN
pN2

p−
i=1

d2i (w
′

iwi)
2,

and its variance is given by

Var(δ̂20) =
1

pN4
Var(w′

iwi)
2


p−

i=1

d4i
p


= O(N−1p−1)

from Assumption A and Theorem 2.1(e). Since E(δ̂20) = δ20[1 + O(N−1)], δ̂20 is a consistent estimator of δ20. Similarly, it
can be shown that δ̂40 is a consistent estimator of δ40. Let

η∗

k =
2
Np

dk
k−1−
i=1

diuik.

Then following the steps of Section 3, it can be shown that {η∗

k , Fk} is a sequence of integrable martingale difference
satisfying the convergence condition and Lindeberg’s condition, i.e. Theorem 3.1(iii), (iv). Thus, Theorem 1.3 follows and
thus the test statistic T3 is shown to be robust.

Tests based on correlations and Fisher’s z-transformation are given by Schott [14] and Srivastava [16,17]. While their
robustness may be studied later, numerical comparison given in [17,18] show that the test T3 performs better than the test
based on correlation, specially for small n.
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