The NT-26 cytochrome \(c_{552} \) and its role in arsenite oxidation

Joanne M. Santinia,⁎, Ulrike Kapplerb, Seamus A. Warda, Michael J. Honeychurchb, Rachel N. vanden Hovenc,1, Paul V. Bernhardtb

a Department of Biology, UCL, Gower Street London WC1E 6BT, UK
b School of Molecular and Microbial Sciences, Centre for Metals in Biology, The University of Queensland, 4072 Queensland, Australia
c Department of Microbiology, La Trobe University, 3086 Victoria, Australia

Received 30 November 2006; received in revised form 9 January 2007; accepted 16 January 2007
Available online 23 January 2007

Abstract
Arsenite oxidation by the facultative chemolithoautotroph NT-26 involves a periplasmic arsenite oxidase. This enzyme is the first component of an electron transport chain which leads to reduction of oxygen to water and the generation of ATP. Involved in this pathway is a periplasmic c-type cytochrome that can act as an electron acceptor to the arsenite oxidase. We identified the gene that encodes this protein downstream of the arsenite oxidase genes (aroBA). This protein, a cytochrome \(c_{552} \), is similar to a number of c-type cytochromes from the \(\alpha \)-Proteobacteria and mitochondria. It was therefore not surprising that horse heart cytochrome \(c \) could also serve, \textit{in vitro}, as an alternative electron acceptor for the arsenite oxidase. Purification and characterisation of the \(c_{552} \) revealed the presence of a single heme per protein and that the heme redox potential is similar to that of mitochondrial c-type cytochromes. Expression studies revealed that synthesis of the cytochrome \(c \) gene was not dependent on arsenite as was found to be the case for expression of aroBA.

Keywords: Arsenite oxidation; Metabolism; Cytochrome; Redox potential

1. Introduction
The soluble forms of arsenic that can be used by microbes for growth are the trivalent arsenite (H\(_3\)AsO\(_3\)) and pentavalent arsenate (HAsO\(_4^{2-}\)/H\(_2\)AsO\(_4^-\)) [1]. Arsenite (As\(^{III}\)) can be used as an electron donor for respiratory processes with either oxygen or nitrate as electron acceptors, and arsenate (As\(^{V}\)) can serve as a terminal electron acceptor with a variety of electron donors [1]. Both arsenite and arsenate are toxic to most forms of life; arsenate inhibits ATP synthesis and arsenite inactivates proteins by binding to sulphydryl groups.

The arsenite-oxidising bacteria that have been isolated to date are phylogenetically distant with mesophilic representatives in the \(\alpha\)-, \(\beta\)- and \(\gamma\)-Proteobacteria and thermophilic representatives in the \textit{Thermus}/\textit{Deinococcus} lineage [1]. They can either gain energy from arsenite oxidation [2–5] or have been proposed to oxidise the arsenite for detoxification [6–12]. Chemolithoautotrophic arsenite oxidation where oxygen is used as the terminal electron acceptor, arsenite as the electron donor and carbon dioxide as the sole carbon source has only been described for organisms isolated from gold mines [2,4,5].

NT-26, a member of the \(\alpha\)-Proteobacteria, was isolated from the Granites gold mine, Northern Territory, Australia [4]. It grows both chemolithoautotrophically and heterotrophically with arsenite as the electron donor. The arsenite oxidase (Aro) from this organism has been purified and partially characterised [13]. Direct catalytic (arsenite oxidation) electrochemistry of Aro has been achieved [14]. The NT-26 Aro is very similar to the arsenite oxidases of \textit{Alcaligenes faecalis} and NT-14 (both heterotrophic members of the \(\beta\)-Proteobacteria) and consists of two heterologous subunits; the larger one containing the molybdenum (Mo)-catalytic site and a [3Fe–4S] cluster (AroA) and a smaller subunit (AroB) containing a Rieske-type [2Fe–2S] cluster [13,15,16].
All known arsenic oxidases belong to the DMSO reductase family of molybdoenzymes which consists of a diverse group of enzymes that catalyse a variety of oxygen-atom transfer reactions [17,18]. Characterisation of the A. faecalis arsenite oxidase shows that the large subunit contains a Mo site, consisting of a Mo atom coordinated by two pterin-dithiolene [molybdopterin guanosine dinucleotide (MGD)] ligands [19]. However, unlike what is seen in other members of the DMSO reductase family, in the A. faecalis arsenite oxidase the Mo atom is not coordinated to the protein by an amino acid ligand [20].

NT-26 can oxidise arsenite both chemolithoautotrophically and heterotrophically. Heterotrophic arsenite oxidation is thought to involve arsenite oxidase and a periplasmic electron acceptor. This acceptor has been shown in in vitro experiments to be a c_{551}-type cytochrome in NT-14 [16] or a c-type cytochrome and azurin in A. faecalis [15]. Nothing is known of the electron transport chain involved in chemolithoautotrophic arsenite oxidation.

Here we report for the first time the purification and characterisation of a periplasmic c-type cytochrome from NT-26 which can act as an electron acceptor to the NT-26 Aro. The role of this protein in arsenite oxidation is examined by characterising a mutant and examining its expression profile.

2. Materials and methods

2.1. Chemicals

Eastman AQ 29D polymer (28% w/v) was a gift from Eastman Chemical Company (Tennessee, USA). All other reagents (electrolytes, buffers, etc.) were of analytical purity. MilliQ water was used for all experiments.

2.2. Growth of NT-26

NT-26 was grown aerobically with shaking at 28 °C either chemolithoautotrophically in minimal salts medium (MSM) with 5 mM arsenite as the electron donor or heterotrophically with 0.04% yeast extract with and without 5 mM arsenite (final pH of medium is 8) [4]. For growth experiments, cultures were grown for 24 h and inoculated (5%) into the experimental medium (200 mL). Samples were taken periodically, and either total cell numbers or optical density were determined [4]. Portions of the samples were also taken for arsenic analyses [4]. For DNA isolations NT-26 was grown as previously described [13].

2.3. Cloning and sequencing of the cytC gene

A NT-26 HindIII genomic library which was used for detecting the cytochrome c gene was also used for identifying the cytC gene. Sequencing was performed at the Australian Genome Research Facility (Brisbane, Queensland, Australia) with an ABI Prism 210 capillary DNA sequencer and genetic analyser. Database searches were performed by using BlastP [21] at the NCBI web site. The cytC gene sequence has been deposited in GenBank under accession number AY345225.

2.4. Expression of the cytC gene

Reverse transcriptase (RT)-PCR was used to assess transcription of the cytC, ar0A, ar0D, cytochrome c and moeA1 genes [22]. For this purpose, the entire gene was amplified by PCR and cloned into the suicide plasmid pJP5603 [22] at the HindIII sites (sites are underlined) resulting in a 289 nt fragment which was cloned into the suicide plasmid pUC57 (optimum buffer and pH of the NT-26 Aro; 4), homogenized and passed three times through a French Press (Thermo Electron) at 14,000 psi. Cell debris was removed by centrifugation at 30,000×g for 30 min at 4 °C. The supernatant was loaded onto a SP Sepharose Fast Flow cation exchange column (1.6 × 8 cm) (GE Healthcare). The column was washed with 70 mM NaCl containing MES buffer, treatment performed according to the manufacturer’s instructions. The primers used to detect expression of ar0A, ar0B, cytC and moeA1, respectively (Note: the start and/or stop codons of each gene are italicised) were Ar0B 5'-GCCCTGACATTTGACAGTGGTCAAAACATGGTCG-3' (binds to nucleotides 376—401); Ar0A 5'-GCCCTGACATTTGACAGTGGTCAAAACATGGTCG-3' (binds to nucleotides 916—937) and AroA 5'-GCCCTGACATTTGACAGTGGTCAAAACATGGTCG-3' (binds to nucleotides 3453—3434); CytCF (binds to nucleotides 3542—3564) 5'-GCCGAATTCATCGGGAAACTTGTTGCCG-3' and CytCR (binds to nucleotides 3925—3949) 5'-GCCGAATTCATCGGGAAACTTGTTGCCG-3'. The primers used for amplification of the cytC gene were CytCF (binds to nucleotides 3542—3564) and CytCR (binds to nucleotides 3925—3901) described above. Ar0BF and Ar0AR were used to test for cotranscription of the ar0A and ar0D genes, Ar0AF and CytCR for cotranscription of the ar0A and cytC genes, and CytCF and MoeAIR for cotranscription of the cytC and moeA1 genes. The RT-PCR experiments were performed using the Access RT-PCR system (Promega) according to the manufacturer’s instructions.

2.5. Mutagenesis of the cytC gene

Mutagenesis of the cytC gene was carried out by targeted gene disruption as described previously for ar0A [13]. Briefly, the entire gene was amplified by PCR using the two primers CytCF and CytCR described above. The PCR product (384 bp) was digested with EcoRI and Smal (cuts at the 3'end of the gene) resulting in a 289 nt fragment which was cloned into the suicide plasmid pIP5603 [22] at the EcoRI and Smal sites, respectively. One mutant was chosen for further study and insertion of the plasmid into the NT-26 Aro was confirmed by Southern hybridisation.

The mutant was tested for its ability to oxidise arsenite chemolithoautotrophically and heterotrophically. Growth experiments were performed with two replicates on at least two separate occasions. For testing the specific activity of the Aro, the mutant was grown in 2 L of batch culture in MSM containing 5 mM arsenite and 0.04% yeast extract. Total cell extracts were prepared as described previously [4].

2.6. Heterologous expression and purification of the cytochrome c

The cytC gene without the leader sequence was amplified by PCR and cloned downstream and in frame with the pelB leader sequence and upstream of the His- tag sequence of pET-22b+ (Novagen) in the Ncol and Xhol sites (sites are underlined). The PCR primers were: Forward 5'–GCCCATGGAATGAGCACAGGCCGAA1AAAGGCCGCTTG-3' and Reverse 5'–GCCCTGACATTTGACAGTGGTCAAAACATGGTCG-3'. For expression BL21 DE3 (pLysS) (Promega) (pEC86, cytC-pET22b+) liquid cultures were grown at 30 °C in LB broth supplemented with Ap (100 μg/mL) and Cm (60 μg/mL) and a 1:10,000 dilution of a trace element solution [23]. An overnight culture (30 mL) was used to inoculate 900 mL LB (in 1 L flask) and the culture was incubated for 4 h at 30°C and 180 rpm. Plasmid pEC86 containing the E. coli cytochrome c maturation genes (ctx) was generously provided by Prof. L. Thöny-Meyer [24]. For induction of protein expression 20 μM IPTG (final concentration) was added and the cultures were then incubated overnight. All cell pellets were bright pink and about 0.9 g (wet weight) of cells were obtained/L medium.

Cells were chilled on ice, harvested by centrifugation and the pellet suspended in 20 mL morpholine ethanesulfonate (MES) (pH 5.5) buffer (optimum buffer and pH of the NT-26 Aro; 4), homogenized and passed three times through a French Press (Thermo Electron) at 14,000 psi. Cell debris was removed by centrifugation at 30,000×g for 30 min at 4 °C. The supernatant was loaded onto a SP Sepharose Fast Flow cation exchange column (1.6 × 8 cm) (GE Healthcare). The column was washed with 70 mM NaCl containing MES buffer,
and the cytochrome was eluted using a 0.07–0.45 M NaCl gradient [7 column volumes (CV)] in 50 mM MES (pH 5.5). Fractions containing the cytochrome were pooled and the buffer replaced with 50 mM potassium phosphate/0.5 M NaCl (pH 7.4). The protein was loaded onto a 5 mL His-Trap column (GE Healthcare) and eluted using a 0–50 M imidazole gradient over three CV. Fractions containing the cytochrome were pooled and contained protein with a purity of > 96%. If further purification was desired, samples were concentrated using ultrafiltration (Amicon Ultra, MWCO 10 kDa) and then loaded onto a Superdex 75 (16/60) gel filtration column (GE Health Care) previously equilibrated with 20 mM Tris–HCl/150 mM NaCl (pH 7.8). Fractions containing the protein were pooled and the NaCl removed by dialysis against 20 mM Tris–HCl (pH 7.8) at 4 °C overnight.

2.7. Purification of the arsenite oxidase

The NT-26 arsenite oxidase was prepared as previously described [13] and stored at −70 °C as separate 10 μL aliquots at a concentration of 23 μM.

2.8. Spectroscopic and analytical techniques

Arsenite oxidase activity was determined by measuring the reduction of the artificial electron acceptor 2,4-dichlorophenolindophenol (DCPIP) (0.3 mM) at an absorbance of 600 nm (ε of DCPIP at 600 nm is 23 mM⁻¹ cm⁻¹) in 50 mM MES (pH 5.5).

The oxidised and reduced states of the purified ε₅₅₂, horse heart cytochrome c (Sigma Aldrich) and Pseudomonas aeruginosa azurin (Sigma) were recorded with a UV absorbance wavelength spectrum (nm) using a Cary 100 UV-Visible double beam spectrophotometer (Varian). The proteins were first oxidised with potassium hexacyanoferrate(III) (ferrocyanide) (Sigma). Residual ferro- and ferricyanide was removed using a PD-10 desalting column (GE Health Care) with a UV absorbance wavelength spectrum (nm) using a Cary 100 UV-Visible spectrophotometer. The oxidised absorption spectra of the ε₅₅₂ and horse heart cytochrome c were recorded in 50 mM MES (pH 5.5) with 8 μM and 8.5 μM protein, respectively and 2.5 mM arsenite. Reduction of the cytochrome was initiated by the addition of the NT-26 Aro (0.01 M and 0.02 M protein, respectively and 2.5 mM arsenite). The oxidised absorption spectrum of the azurin was recorded in 50 mM MES (pH 5.5) at various concentrations (1.2 μM, 4.6 μM, 9.2 μM, 16.2 μM and 32 μM). Reduction of the azurin was accomplished by the addition of NT-26 Aro (0.01 M and 0.02 M) and 2.5 M arsenite.

Tryptic digests were carried out in 20 mM ammonium bicarbonate, pH 7.9 for 20 h at 37 °C with a porcine trypsin (sequencing grade, Promega) to protein ratio of 1:20 according to the manufacturer’s instructions. Samples were analysed using an Applied Biosystems Voyager DE STR 4316 MALDI-TOF mass spectrometer (Voyager™ 5.1 software with data explorer). Sinapic acid (Sigma Aldrich) was used as matrix. Fractions containing whole protein and peptides, respectively. Matrices were mixed with samples in a 1:1 ratio.

Heme content was determined in alkaline pyridine solution [25]. Denaturing and nondenaturing PAGE was performed according to Laemmli [26]. Gels were stained using Coomassie Brilliant Blue or heme-dependent peroxidase activity was detected [27]. N-terminal sequencing was performed as described previously [28].

Protein concentrations were determined using the 2D Quant Kit (Ge Healthcare Biosciences) or the Bradford reagent [29].

2.9. Cyclic voltammetry

All measurements were made with a Bioanalytical Systems BAS100B/W electrochemical workstation. The working electrode was a glassy carbon disk (see below), a Pt wire counter electrode and a Ag/AgCl (3 M NaCl) reference electrode were used. Eastman AQ 29D polymer (28% w/v) was diluted 1 : 20 v/v and 10 μL of this solution was dropped onto an inverted glassy carbon electrode (previously polished with 6 μm and 1 μm alumina powder) and allowed to dry at room temperature to a film. The electrochemical solution contained 50 mM MES/50 mM KCl (pH 5.5). The NT-26 ε₅₅₂ solution (ca. 70 μM) was diluted 4 : 15 v/v with buffer to give a volume of ca. 0.5 mL. The polymer coated glassy carbon electrode was inserted into the protein solution and allowed to stand for approximately 1 h prior to measurement to allow the protein to accumulate in the polymer coating. Voltammograms were recorded in the presence of dihydrogen but at a potential sufficiently high that oxygen reduction was not a problem.

2.10. Redox potentiometry

Redox potentiometry was performed on 1.3 mL of a 4 μM cytochrome ε₅₅₂ solution in 50 mM MES buffer, pH 5.5 in the presence of the mediators Fe (NOTA), Fe(EDTA)⁻ and [Co((Me₃N)₂sar)]⁵⁺ (50 μM each) as described previously [30]. The titration was performed at 25 °C within a small volume 1 cm pathlength spectrophotometer cell equipped with a trough to accommodate a small magnetic stirring flea which was driven by a Varimag electronic stirrer. The titrates were Na₂S₂O₇ (reduction) and K₂S₂O₇ (oxidation) both added as ca. 5 mM solutions in small aliquots (0.5–2 μL) to avoid large jumps in solution potential. The potential was measured with a combination Pt-Ag/AgCl electrode attached to a Hanna Instruments 8417 Meter. The electrode was calibrated with quinhydrone (Eₐₙₗ₋ₙ₈ 86 mV vs. Ag/AgCl) prior to use. After equilibration (ca. 10–15 min) the solution potential was measured in situ and the UV–vis spectrum was measured with an AnalytikJena Specord 210 instrument. The heme redox potential was obtained by fitting the change in absorbance at 550 nm as a function of potential to the Nernst equation as described previously [30].

3. Results

3.1. Cloning and sequence analyses of the cytC gene

An open reading frame (ORF) was identified in the arsenite oxidase gene cluster downstream of aroB and aroA (i.e. 88 nucleotides downstream of aroA stop codon) and was designated cytC (Fig. 1), as it was found to be similar to various c-type cytochromes (see below). Downstream of the cytC gene (384 bp) is an ORF, designated moeA1, whose putative protein is similar to the Mo cofactor biosynthesis protein MoeA. All four genes appear to be transcribed in the same direction. The only putative promoter (consensus sequence is TGGCACX₇TTGCW) [31] was identified upstream of aroB (Fig. 1). All four genes contain putative ribosome binding sites upstream of their respective start codons. No transcription terminator sequences were identified.

The cytC gene encodes a putative protein (ε₅₅₂) with a protein mass of 13,507 Da (pI 8.81) before processing. The sequence contains a single CX₃CH heme binding motif at the N-terminus.
suggested that a single heme is incorporated into the apoprotein. It contains a putative Sec-(general secretory pathway) dependent leader sequence as expected [32]. Cytochromes are exported across the cytoplasmic membrane in an unfolded state using the Sec pathway. In general, once exported, they are folded following incorporation of the heme cofactor. Using the SignalP program [33] the c552 has a predicted signal peptide cleavage site between residues 20 and 21 (MA↓ES), and the predicted molecular mass of the processed protein is 11,402 Da. It does not contain any other hydrophobic regions indicative of transmembrane domains and therefore is assumed to be periplasmic.

The c552 protein shared significant sequence similarities to a number of c-type cytochromes from the α-Proteobacteria and mitochondria. The highest sequence identities of the c552 were with a putative c-type cytochrome (96% identity) from the arsenite-oxidising bacterium, A. tumefaciens [34] (Acc. no. ABB51926.1), a putative c-type cytochrome in Aurantimonas sp. SI85-9A1 (73% identity) (Acc. no. ZP–01227689.1) and a number of diheme SoxD proteins (in the range of 60–70% identity) and to a lesser extent mitochondrial c-type cytochromes.

3.2. Expression of the cytC gene

To determine whether the genes in the arsenite oxidase gene cluster (aroB, aroA, cytC and moeA1) are in the one operon RT-PCR experiments were performed (Fig. 2). Total RNA was isolated from NT-26 grown under three different conditions [i.e. MSM containing 1) arsenite, 2) arsenite and 0.04% yeast extract and 3) 0.04% yeast extract] until late log phase. Transcripts of the cytC gene were detected when NT-26 was grown under all three growth conditions (lanes 2–4). This was also found to be the case for moeA1 (data not shown). Confirmation that the cytC gene and moeA1 are part of the same transcriptional unit was also obtained (lane 5). Transcripts of both aroA and aroB were detected only when NT-26 was grown in the presence of arsenite (data not shown). Confirmation that aroA and aroB are transcribed together was also obtained (lane 6). Interestingly, confirmation that aroA and the cytC gene are transcribed together was obtained only when NT-26 was grown in the presence of arsenite (lane 7). These results suggest that apart from the putative promoter upstream of aroB, there may be an additional promoter upstream of the cytC gene that allows expression of the cytC and moeA1 genes when NT-26 is grown in the absence of arsenite.

No PCR products were obtained when the RT step was omitted and only the Tfl DNA polymerase was used, confirming that no DNA contamination was present in the samples (data not shown).

3.3. The effect of a mutation in the cytC gene on arsenite oxidation and arsenite oxidase activity

The cytC gene was mutated by targeted gene disruption and the effects of this mutation on arsenite oxidation and arsenite oxidase activity were observed. NT-26 contains only a single copy of the cytC gene per genome as determined by Southern hybridisation (data not shown). When grown both chemolithoautotrophically and heterotrophically with arsenite as the electron donor the NT-26 mutant continued to oxidise arsenite. A reproducible effect was observed on both growth (generation times for wild type and mutant were 4.2±0.1 h and 4.5±0.05 h, respectively) and the rate of arsenite oxidation when grown in a MSM containing 5 mM arsenite and 0.04% yeast extract (Fig. 3). The arsenite oxidation rate in the mutant is significantly slower in the first 22 h of growth and after 22 h 1.2 mM arsenite still remains in the culture medium compared to 0.06 mM for the wild type (Fig. 3). The same was observed when both the wild type and mutant were grown chemolithoautotrophically in a MSM containing 5 mM arsenite and CO2−HCO3 as the sole carbon source (data not shown). When grown in the absence of arsenite in a MSM containing 0.04% yeast extract alone no effect on growth of the cytC mutant was observed. These results suggest that although cytC does contribute to arsenite oxidation it is not essential.
As expected, there was no difference in arsenite oxidase activity (using DCPIP as the artificial electron acceptor) between the NT-26 wild type and the cytC mutant when grown in the MSM containing 5 mM arsenite and 0.04% yeast extract (for periplasmic extracts 0.067 and 0.064 μmol of arsenite oxidised min\(^{-1}\) mg of protein\(^{-1}\), respectively).

3.4. Purification and characterisation of recombinant c\(_{552}\)

The c\(_{552}\) was successfully heterologously expressed in E. coli and purified. The identity of the purified recombinant c\(_{552}\) was confirmed by mass spectrometry and N-terminal sequencing (Fig. 4). The N-terminus of the recombinant protein was ‘MDESNA’, as expected, and with the exception of the N-terminus all expected tryptic peptides with masses > 500 Da could be identified using MALDI-ToF (Fig. 4). The recombinant protein contained 0.98 ± 0.05 heme groups/molecule as determined by alkaline hemochrome spectra, which is consistent with the presence of a single CX\(_2\)CH motif in the gene sequence. Recombinant c\(_{552}\) existed in both a monomeric and a dimeric form as judged by native PAGE and size exclusion chromatography. The apparent molecular masses of these two protein forms were 15.5 and 28 kDa using a calibrated size exclusion column. The apparent molecular mass of the monomeric c\(_{552}\) was also determined using native PAGE and was found to be 14.8 kDa. The molecular mass of monomeric recombinant c\(_{552}\) was also determined using MALDI-Tof and found to be 13327 ± 7 Da, which is in very good agreement with the theoretical value of 13329 Da for the recombinant protein including one heme group (616.5 Da). CD spectra of both the monomeric and dimeric forms of recombinant c\(_{552}\) indicated that the proteins were fully folded, and that the formation of the dimer led to small changes in protein conformation (data not shown).

The absorption spectrum of the ferric oxidised c\(_{552}\) showed maxima at 410 nm in the Soret region and a diffuse \(\alpha\) band at 531 nm (Fig. 5A). Ferric c\(_{552}\) was reduced to its ferrous form in the presence of NT-26 Aro and arsenite as illustrated in Fig. 6A (\(\alpha\)-552 nm, \(\beta\)-523 nm and Soret-417 nm). The addition of either Aro or arsenite alone did not reduce the cytochrome (data not shown).

Ferricyanide-oxidised horse heart cytochrome c could also accept electrons from the NT-26 Aro (Fig. 5B). The ferric heme spectrum showed a broad \(\alpha\) band at 531 nm and Soret maximum at 409 nm. The cytochrome was reduced upon addition of the NT-26 Aro and arsenite (\(\alpha\)-550 nm, \(\beta\)-520 nm and Soret-415 nm). The addition of NT-26 or arsenite alone did not result in reduction of the cytochrome (data not shown).

![Characterisation of recombinant c\(_{552}\) by SDS-PAGE and mass spectrometry](image)

Fig. 4. Characterisation of recombinant c\(_{552}\) by SDS-PAGE and mass spectrometry Top panel: 12.5% SDS-polyacrylamide gel of recombinant c\(_{552}\). Lanes were stained for heme-dependent peroxidase activity and protein as indicated. Bottom panel: mass fingerprint of c\(_{552}\) following tryptic digestion. All fragments with masses > 500 Da could be identified with the exception of the N-terminus (see below).

<table>
<thead>
<tr>
<th>Theoretical fragment mass (m/z)</th>
<th>Amino acid numbering and sequence of fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>617.28</td>
<td>aa 7–12, GAWFK</td>
</tr>
<tr>
<td>737.52</td>
<td>aa 83–89, MAFAGLK</td>
</tr>
<tr>
<td>1124.84</td>
<td>aa 28–38, VGPENGLIGR</td>
</tr>
<tr>
<td>1461.04</td>
<td>aa 90–102, KPEDVADVIAYFK</td>
</tr>
<tr>
<td>1485.98</td>
<td>aa 40–53, VAGVPEGFNYSPAFK</td>
</tr>
<tr>
<td>1617.01</td>
<td>aa 105–117, TFSTPLEHHHHH</td>
</tr>
<tr>
<td>1904.04</td>
<td>aa 14–27, CAACAVGVDGAANK+ 616.5 Da (heme group)</td>
</tr>
<tr>
<td>2387.55</td>
<td>aa 92–104, AEEGWWDEVHYTELANPK</td>
</tr>
</tbody>
</table>
Unlike in the case of \textit{A. faecalis}, azurin (or pseudoazurin) was not detected in the periplasm of NT-26 using UV/vis spectroscopy when it was grown with arsenite (data not shown). Moreover, \textit{Pseudomonas aerugionosa} azurin which could serve as an electron acceptor to the \textit{A. faecalis} arsenite oxidase (15) was not reduced in the presence of the NT-26 Aro and arsenite; a maximum in the absorbance spectrum at 628 nm indicative of fully oxidised azurin was observed despite varying the azurin concentration (data not shown).

3.5. Determination of the c\textsubscript{552} redox potential

Two approaches were taken to determine the FeIII/II redox potential of the c\textsubscript{552}. Redox potentiometry (an equilibrium method) was employed and the change in absorbance at 550 nm (characteristic of the ferrous cytochrome) as a function of potential is shown in Fig. 6. No hysteresis was apparent as is evident from superposition of the oxidative (squares) and reductive (circles) titrations. A midpoint potential of +251 ± 5 mV vs. NHE was determined at pH 6.5. This potential is similar to other c-type cytochromes such as that from horse heart [35–37] and consistent with the ability of both cytochromes to accept electrons from the Aro.

The heme redox potential was also pursued using direct electrochemistry with the technique of cyclic voltammetry. There are many different ways of conducting direct electrochemistry with proteins but most require specially modified electrodes to avoid denaturing with electrode surface fouling and to facilitate fast electron transfer. The method used here was adapted from previous work on horse heart cytochrome \textit{c} where a glassy carbon electrode was coated with a permeable layer of Eastman AQ-29D polymer [38]. The polymer is a polyester sulfonic acid and at the pH investigated here contains sulfonate groups capable of attracting proteins with high isoelectric points, as is the case here.

Clear reductive and oxidative currents were observed (Fig. 7) and the average of the peak potentials gave the formal potential under these conditions (+217 mV vs. NHE) at pH 6.5. This potential is slightly lower than that determined potentiometrically. One possible reason for this difference is an electrostatic influence of the negatively charged polymer which may lower the apparent redox potential, but it should be noted that the difference between the potentials determined potentiometrically and voltammetrically is rather small.
The voltammetric peak currents increase linearly with the square root of the sweep rate which is characteristic behaviour for a diffusion controlled process [39]. On the basis of previous work with the same working electrode it seems that the c₅₅₂ is capable of diffusing through the polymer film albeit slowly. Higher sweep rates (>10 mV s⁻¹) gave more distorted voltammetric profiles. It is notable that the protein had to be equilibrated with the polymer-coated working electrode for at least 1 h. During this period it is apparent that the protein permeates the polymer and it is this partially entrapped protein that is electroactive. Similar observations have been made before with the same electrode preparation [38].

4. Discussion

This study is the first to describe the involvement of a c-type cytochrome in chemolithoautotrophic arsenite oxidation. A c-type cytochrome gene was identified in the NT-26 arsenite oxidase gene cluster of the arsenite-oxidising strain of A. tumefaciens. It is also related to various α proteobacterial c-type cytochromes, the heme 2 domains of SoxD proteins and mitochondrial cytochrome c. The c₅₅₂ is phylogenetically distant from (sharing only 20.5% sequence identity) AoxD, a putative c-type cytochrome in the arsenite oxidase gene cluster of the arsenite-oxidising strain of A. tumefaciens. It is also related to various α proteobacterial c-type cytochromes, the heme 2 domains of SoxD proteins and mitochondrial cytochrome c. The c₅₅₂ is physogenetically distant from (sharing only 20.5% sequence identity) AoxD, a putative c-type cytochrome in the arsenite oxidase gene cluster of the arsenite-oxidising strain of A. tumefaciens [see [34]] it is regulated differently. In A. tumefaciens the aroB, aroA, c-type cytochrome and moeA genes are transcribed as a single unit in the presence and absence of arsenite (note: in the absence of arsenite no transcript was detected until late log phase) [34]. The expression studies above showed that in NT-26 aroB and aroA were transcribed only in the presence of arsenite; and no Aro activity was detected in its absence [4]. Expression of the NT-26 cytC gene, however, was not dependent on induction by arsenite. Therefore, it appears that there are two promoters in the NT-26 arsenite oxidase gene cluster: one upstream of aroB and another upstream of the cytC gene. Examination of the cytC mutant shows that this gene contributes to, but is not essential for, arsenite oxidation by NT-26. There must therefore be another protein (e.g. another c-type cytochrome) that can act as an alternative electron acceptor to the Aro in NT-26. This protein is unlikely to be an azurin (or even pseudoazurin) as none was detected in the periplasm when NT-26 was grown with or without arsenite and NT-26 Aro with arsenite did not reduce P. aeruginosa azurin.

The Mo⁺/Mo⁻ redox potential of A. faecalis arsenite oxidase is reported [42] to be 292 mV vs. NHE (pH 5.9) while the [3Fe–4S] cluster and Rieske center potentials are ca. 260 mV and 130 mV, respectively. It is known [15] that the A. faecalis arsenite oxidase (in the presence of arsenite) can reduce P. aeruginosa azurin (Eₘ 307 mV) [43] but not horse heart cytochrome c (Eₘ 248 mV) [37]. Here we have found the exact opposite with the NT-26 Aro, where the stronger oxidant azurin cannot be reduced by the Aro but horse heart cytochrome c can. Therefore, the marked differences in reactivity between the A. faecalis arsenite oxidase and the NT-26 Aro and various possible electron acceptors are clearly unrelated to redox potentials, but instead may be indicative of matched or mismatched non-covalent intermolecular forces between the various enzyme–electron partner combinations.

Here we have described for the first time the in vivo and in vitro involvement of a c-type cytochrome in arsenite oxidation by NT-26. This protein contributes to, but is not essential to, arsenite oxidation and azurin is not essential for its synthesis. NT-26 must therefore contain at least one other protein that can serve as an electron acceptor to the Aro. We are presently trying to identify this protein(s) using a combination of molecular genetic and genomic approaches. Elucidation of the arsenite oxidation electron transport chain will allow us to determine how organisms like NT-26 gain energy from arsenite oxidation and whether any of these components share similarities to other metabolic proteins.

Acknowledgements

JMS acknowledges support from UCL and La Trobe University. UK acknowledges The University of Queensland for grants and a fellowship. PVB acknowledges support from the Australian Research Council (DP0343405). We would also like to thank Alastair McEwan (The University of Queensland) for use of his resources and Wolfgang Nitschke (CNRS, Marseille) for helpful discussions.

References
