
ELSEVIER Theoretical Computer Science 163 (1996) 1-54 

Theoretical 
Computer Science 

Tutorial 

Basic notions of universal algebra for language theory 
and graph grammars* 

Bruno Courcelle* 

Universiti Bordeaux I, Laboratoire d’hformatique (associh au CNRS), 351, Cows de la LibCration, 
33405 TALENCE Cedex, France 

Received January 1995 
Communicated by M. Nivat 

Abstract 

This paper reviews the basic properties of the equational and recognizable subsets of general 

algebras; these sets can be seen as generalizations of the context-free and regular languages, 
respectively. This approach, based on Universal Algebra, facilitates the development of the 
theory of formal languages so as to include the description of sets of finite trees, finite graphs, 
finite hypergraphs, tuples of words, partially commutative words (also called traces) and other 
similar finite objects. 
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0. Introduction 

The context-free and the regular languages are the two main classes of formal 
languages. We review how their basic concepts can be used for the description of sets 
of finite objects like trees, graphs, hypergraphs, tuples of words, traces (equivalence 
classes of words with respect to partial commutation). 

Context-free languages are usually defined by grammars, in terms of certain iterated 
rewritings; they can also be described as the components of the least solutions 
of certain systems of recursive set equations in languages. Grammars defining 
trees, graphs, hypergraphs have been introduced. But in each case one faces the 
problem of deciding which grammars are context-free and which are not; one has 
to decide among the variants in definitions which are the really important ones. 
One has also many basic facts to reprove in each case like the decidability of the 
emptiness problem. By the theorem of Ginsburg and Rice [30], the context-free 
languages can be characterized as the components of the least solutions of systems 
of equations naturally associated with context-free grammars. These systems are 
mutually recursive definitions of sets of words using set union and extension to 
sets of the concatenation of words. Similar systems of equations (i.e. of recursive 
definitions) can be used for sets of finite objects like trees or graphs, provided 
operations on them generalizing concatenation are defined. As soon as they 
are formulated in terms of systems of equations, many results concerning context- 
free grammars can be proved at the Universal Algebra level, and their applicability 
to context-free grammars of trees or graphs is immediate. We shall develop this 
view point and survey the main properties of systems of equations that hold in 
general. The sets defined by these systems will be called the equational sets. They will 
be our “general context-free” sets. We shall give examples dealing with trees and 
graphs. 

The regular languages can be defined in several equivalent ways: by finite automata 
(deterministic or not), by rational expressions, by finite congruences. Kleene’s theorem 
states the equivalence of these definitions. When we call these languages “rational” we 
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refer to their descriptions by rational expressions. Following Mezei and Wright [38] 

we call them “recognizable” in order to refer to their characterization by finite 

congruences. (Many authors use the term “recognizable” in the context of some 

notion of automaton; see the discussion in [12]). The notion of a rational set makes 

sense in arbitrary monoids (a rational set is defined by a rational expression). So does 

that of a recognizable set (defined in terms of finite congruences). However, Kleene’s 

Theorem does not hold in all monoids. In general, we must distinguish the recogniz- 

able sets from the rational ones. Furthermore, the notion of a rational set is particular 

to monoids (see Section 5 for a discussion) whereas the notion of a recognizable one is 

more general because finite congruences are meaningful in arbitrary algebras. Hence, 

we shall take the recognizable sets (introduced by Mezei and Wright in their funda- 

mental paper [38]) as our generalization of regular languages. (We use “regular” as 

a neutral term designating a class of languages without reference to any specific 

definition technique.) Let us conclude by discussing automata briefly. The notion of 

a finite automaton extends nicely to trees representing terms but not to graphs (some 

definitions have been proposed, but they work only for special types of graphs). 

Furthermore, it has no meaning for abstract algebraic objects. So one cannot use it at 

a general level. 

We shall review the general properties of recognizable sets and their relationships 

with equational ones. The result stating that the intersection of an equational set and 

a recognizable one is equational is fundamental and especially useful in constructions 

concerning context-free graph grammars. We shall also give a general form of Parikh’s 

Theorem, with applications to equational sets of graphs, i.e., to context-free sets of 

graphs. 

This paper assumes a basic knowledge of Formal Language Theory; however, most 

proofs will be given in detail: it will be clear that they are no more difficult at an 

abstract level than in concrete cases. Its aim is to collect results that are easily 

applicable to the equational (generalized context-free) or recognizable (generalized 

regular) sets of finite objects like trees or graphs. Outside of the scope of this paper are 

the descriptions of infinite objects (for which some form of topology is needed) and 

those of finite and infinite ones by logical formulas. 

Very few references are given in the main text. Section 7 reviews and comments the 

relevant references, discusses applications and extensions of the surveyed results. 

1. Basic notation 

We shall use := for “equal definition”, i.e., for introducing a new notation, or 

a definition. The notation :o will be used similarly for defining logical conditions. 

We first review some general mathematical notation. The set of non-negative 

integers is denoted by N, the set of positive ones is denoted by N + and the set 

{k~NIi<kdj}isdenotedby[i,j]. 

The cardinality of a set A is denoted by card(A). 
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Iffmaps B1 x ... x Bk into A and if gi maps C into Bi for every i, then we denote by 

fo(g1,..., gk) the mapping h : C + A such that h(x) = f(g i (x), . . . , gk(x)) for every x in C. 
The powerset of a set A is denoted by @(A). The set extension of a mapping 

f: B1 x -‘. x Bk --t A into a mapping @(BJ x ... x p (B,) -+ 63 (A) is denoted by 6”f when 
we need to distinguish it fromf; and simply byf(as usual) otherwise; (it is defined by 

“f(C,,..., Gc):= {f(L..,&)I4 E Cr,...,&E G}). 
The set of sequences of elements of a set A is denoted by seq(A) and the generic 

sequence is denoted by (al,. . . , a,). The empty sequence is denoted by (). The concat- 
enation of two sequences is denoted by . . The length of a sequence p is denoted by 1 p 1. 

When A is an alphabet, i.e., when its elements are letters, then a sequence (al, a2,. . . , a,) 

can be written unambiguously u1u2.. . a,, the empty sequence is denoted by E, the set 
seq(A) is denoted by A* and its elements are called words. 

A set is explicitely given if it is finite and given as a list of elements. A set A is 
efectively given if it is defined by an efictive coding, i.e., by a triple ( I/ A 11, ya, x,_,) 
consisting of a subset II A 11 of N, a bijection y,.,: II A II -+ A and a total recursive function 
XA : N -+ (0, l}, such that 11 A II = X; 1 (1) (which is the characteristic function of 11 A II). 
Computations on elements of A can be done by computable functions on the 
numbers in I/ A /I that code them. The mapping yA performs the “decoding”. In many 
cases, like for an example when A = B* for some explicitly given alphabet B, we 
need no encoding, because computability on words is a well-defined concept. We 
introduce the notion of an effective coding in order to obtain a very general notion of 
computability. 

An effective coding of an explicitly given set is easy to construct. Conversely, let 
A be effectively given. Can one compute the cardinality of A by an algorithm taking 
as input a finitary definition of X,., . 7 The answer is no, because one cannot decide 
the finiteness of f-‘(l) for a total recursive mapping f: Similarly, one cannot 
decide the emptiness of A. Even if one knows that A is finite, one cannot compute its 
cardinality. However, if one knows in addition the exact number of elements, one can 
compute the finite set 11 AI/. When we say: “let A be a finite set”, we mean that A is 
explicitly given. 

An alternative way of specifying effectively a set A is by an effective presentation, i.e., 
by a ‘6tUpk ( II A /I, ?A, XA, VA), where II A 11 and XA are as in an effective coding, yA is 
a surjective mapping II A I/ -+ A and VA is a total recursive binary mapping on N such 
that qA(x, y) = 1 if and only if x and y belong to ((A/( and yA(x) = yA(y). Hence, an 
element of A can be represented by an integer in several ways, and, by using I]A, one 
can decide whether two integers represent the same element of A. 

From an effeCtiVe preSentatiOn ( 11 A 11, ?A, XA, )1A) Of a Set A, one can COnStrUCt an 
effective coding ( 11 AlI ‘, ya, ~2) of it as follows: one lets I/ A /I’ be the set of elements 
x of II A I/ such that for no y strictly smaller than x we have qA(x, y) = 1; we let ya 
be the restriction of yA to II All’; we let ~2 be the characteristic function of /I A 11’. 
Conversely, one gets easily an effective presentation from an effective coding. Hence, 
an effectively given set can be defined by an effective presentation as well as by an 
effective coding. 
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As an illustration, we consider effectively given quotient sets. Let A be defined by an 
effective coding ( )( A (1, yA, xA). An equivalence relation N on A is effectively given if for 
some total recursive binary mapping h on integers, we have h(x, y) = 1 if and only if 
x and y belong to jl A 11 and yA(x) N yA(y). If this is the case, then the quotient set A/- 

is effectively given with effective presentation ( I/ A 11, ~2, xA, qA), where qA = h, and 
yL(x) is, for every x in 11 A 11, the equivalence class of yA(x). Hence, the set A/- is also 
effectively given. 

A mapping f: A, x ... x A,, + B is computable if Al,. . . , A,,, B are effectively given 
and 

.f(a ~,...,a,) = YB( Ilfll (y,:(a,),...,y,.‘(a,))) 

for all a, E A, ,..., a, E A,,, where II f /j is a (known) total recursive mapping: 

II AI II x ... x ll A, I( + 11 B /I, and the mappings yA,, . . . , yAn, yB refer to effective codings 
of Al,..., A,, B, respectively. These notions of effectivity will be illustrated on 
graphs. 

Example 1.1 (Graphs). Unless otherwise mentioned, graphs will be finite and undirec- 
ted; they may have loops and multiple edges. In most of our results, we shall consider 
that any two isomorphic graphs are equal. However, in some constructions, for 
instance in the definition given below of the disjoint union of graphs, we shall need to 
work with “concrete” graphs. Furthermore, we want our sets of graphs to be effec- 
tively given. 

Formally, we define a concrete graph as a pair (I’, E), where V is a finite set of 
integers (the set of vertices; we use integers for having a convenient “machine” 
representation) and E is a finite multiset of edges where an edge is a set of one or two 
elements of I/. Hence, concrete graphs form an effectively given set (we omit the formal 
definition of an effective representation or coding). 

A graph is the isomorphism class of a concrete graph. Since the isomorphism of two 
finite concrete graphs is decidable, the set of graphs is also effectively given. 

We now define the disjoint union GI IH of two graphs G and H as the isomor- 
phism class of the concrete graph K defined as the union of two vertex disjoint 
(whence also edge disjoint) concrete graphs belonging, respectively, to the isomor- 
phism classes G and H. It is quite obvious that this operation is well-defined and 
computable. 

2. Many-sorted magmas 

As in many other works, we shall use the term magma borrowed from Bourbaki [7] 
for what is usually called an abstract algebra or an algebra. The words “algebra” and 
“algebraic” are used in many different contexts with different meanings. We prefer to 
avoid them completely and use fresh words. Many-sorted notions are studied in detail 
by Ehrig and Mahr [26], Wirsing [46] and Wechler [45]. We mainly review the 
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notation. We shall use injnite sets of sorts and infinite signatures, which is not usual. 

For this reason, we need to pay a certain attention to effectivity questions. 

2.1. Definitions 

Let 4 be a set called the set of sorts. An d-signature is a set F given with two 

mappings cx : F + seq(ci), called the arity mapping, and CJ: F -+ CJ, called the sort 

mapping. The length of a(f) is called the rank of f, and is denoted by p(S). The 

type of f in F is the pair (cc(f), o(f)) that we shall rather write s1 x sz x ... x s, + s 

where a(f) = (sr,... , s,) and o(f) = s. If CJ has only one sort, we say that F is a 

ranked alphabet; in this case, the arity of a symbol is completely defined by its 

rank. 

An F-magma (i.e., an F-algebra in the sense of [26,45,46]) is an object 

M = ((MS),.. (fM)fGr), where for each s in 4, M, is a nonempty set, called the domain 

of sort s of M, and for each f~ F, the object fM is a total mapping: M,,/, -+ M,Cfj. 

These mappings are called the operations of M. (For a nonempty sequence of sorts 

P = (s1 , . .,, s,), we let M, := MS1 x MS2 x ... x M,). We assume that M, C-I M,. = 8 for 

s # s’. We let M also denote (J (M, (s E “I), and for d E M, we let a(d) denote the sort of 

d, i.e., the unique s such that d E M,. 
We say that M is efictively given if CI, F, and U {M, 1 s E CI} are effectively give, and if 

the mappings CI, o and the mapping associating fM(dI, . . . . dk) with (f; (d,, . . . . dk)) in 

F x seq(M) such that k = p(f) and di E MSi for all i = 1, . . . . k, are computable. We 

shall say that M is explicitly given if the sets 6, F, and M, are so and if the mappings IX, 

CJ andf,,‘s are given by tables. 

If M and M’ are two F-magmas, a homomorphism h : M + M’ is a mapping h that 

maps M, into M6 for each sort s, and commutes with the operations of F in 

a well-known way. We shall call it an F-homomorphism if it is useful to specify the 

signature F. 

Let F’ c F be a subsignature of F. An F’-magma M’ is a sub-F’-magma of M (we 

shall denote this by M’ c M) if MI c M, for each s and eachf,, (for fin F’) is the 

restriction offM to the domains of M’. 
A congruence on M (we shall say an F-congruence when it will be useful to specify 

the relevant signature) is an equivalence relation z on U {M, 1 s E ti} such that: 

(1) any two equivalent elements have the same sort and 

(2) for every f in F and d, ,..., dL, d; ,..., d; of appropriate sort, we have 

fM(d I,...,&) =&(d;,..., d;) if di z di for every i = l,..., k. 

The quotient F-magma is defined as M/z := ((MS/z)),,,, (fM/x)fEr), where 

(&l= )(CdJ,...,CdJ) = Cfi&,..., dk)]. (We denote by [d] the equivalence class of 

an element d of M.) If M and z are effectively given, then M/z is effectively given. 

(See Section 1.) 

We denote by T(F) the initiu2 F-magma, and by T(F), its domain of sort s. The set 

T(F)s can be identified with the set of well-formed ground terms over F which are of 

sort s. (The sort of a term is that of its first symbol in prefix notation). T(F) is 
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effectively given if d and F are effectively given and if the mappings CI and CJ are 

computable. 

If M is an F-magma, we denote by h, the unique homomorphism: T(F) + M. If 

t E T(F),, then the image oft under h, is an element of M,, also denoted by tM. One 

can consider t as a term denoting tM, and tM as the value oft in M. We say that a subset 

of M is generated by F if each of its elements is the value of some term in T(F). 

If M is effectively given, then hM is computable. If, furthermore, M is generated by F, 

then a computable mapping k,: M + T(F) that produces, for every element of 

M a term denoting it, can be defined by the following algorithm: given d in M, one 

enumerates T(F) in an effective way and for every term t in T(F) one computes tM. 

The term k,(d) is the first one such that tM = d. 

An a-sorted set of variables is a pair (X, a) consisting of a set X, and a sort mapping 

CT: X + 4. It will be more simply denoted by X, unless the sort mapping must be 

specified. We shall denote by T(F, X) the set of well-formed terms written with F u X 

and by T(F, X), the subset of those of sort s. Hence, T(F, X) = T(F u X) and 

T(F, X), = T(F u X),. However, the notations T(F, X) and T(F, X), are useful be- 

cause they specify the variables among the nullary symbols of F u X. The sequence of 

variables of a term t E T(F, X) is defined as follows: 

var(t) = (x) ift=xEX 

var(t) = () if t =f~ F (and p(f) = 0), 

var(t) = var(t,).var(t,). . . . .var(t,) if t =f(tl,..., tk). 

A term t is linear if each variable has at most one occurrence in var(t). 

Let x be a finite sequence of pairwise distinct variables from X. We shall denote by 

T(F, x)~ the set of terms in T(F, X),, having all their variables in the sequence x. 

If t E T(F, x)~, we denote by tM,X the mapping: M,(,, + M, associated with t in the 

obvious way, by letting a symbol f from F denote fM, (where a(x) denotes the 

sequence of sorts of the elements of the sequence x). We call tM, x a derived operation of 

M. If 1 is known from the context, we write tM instead of tM,X. This is the case in 

particular if t is defined as a member of T(F, {x1,. . . , x~})~: the sequence x is implicitly 

(x 12.. . > Xk). 
We now reviewjrst-order substitution. If 8 is a sort preserving mapping from X to 

T(F, X), we let O* denote the mapping that associates with a term t in T(F, X) the 

result of the simultaneous substitution in t of Q(x) for every x in X. It is the unique 

F-homomorphism of T(F, X) into T(F, X) extending 19. Such an F-homomorphism is 

called a j&-order substitution. If t E T(F, X), if x1,. . . , xk are pairwise distinct vari- 

ables in X, if tl,..., tk E T(F, X) and o(ti) = a(xi) for i = 1, . . . . k, then we shall denote 

by Gtllxl,..., tk/xk] the term O*(t) where @(xi) = ti and B(y) = y for every y in 

X different of the xI)s. We shall also use the notation t [tl, . . . . tk] if the sequence 

x1,. . . , xk is clear from the context. 

For s, r E 6, we denote by ctxt(F),,, the set of elements of T(F, {u})~ having one 

and only one occurrence of u, where u is a variable of sort s. If c E ctxt(F),,, 

and t E T(F, X), then c[t] := c[t/u] is an element t’ of T(F, X),. We say that c is 
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a context oft in t’. The specific variable u is somewhat irrelevant, and the notations 
c[t] and ctxt(F),, avoid mentioning it explicitly. 

Every term t can be written in a unique way as lin(t) [xi], . . ., Xi,] where 
var(t) = (xi,, . . . , xi,) and lin(t) is a linear term in T(F, {yI,..., y,}) such that 
var(lin(t)) = (y, , . . . , yJ. For example, if t =f(a, g(x, x), g(y, z)), where x, y, z are the 
variables of t, then t = lin(t)[x, x, y, z], where lin(t) =f(a, g(y,, y2), g(y3, y4)). The 
specific variables used in &n(t) are actually irrelevant: we could also take 

Iin =f@, s(z,, z2), g(zj,z4)). The claimed unicity of lin(t) holds up to renaming of 
the variables. 

Here is the semantical meaning of first-order substitution. If t E T(F, & where 

x=(x1 ,..., xk), if tl ,..., tk E T(F, x’) and o(ti) = (T(xJ for i = l,..., k, then, for every 
F-magma M, we have 

In particular, if c E ctxt(F),,,, then cM iS a mapping M, -+ M, and C[t],+, = CM 0 tM. 

When writing terms, we shall use the prefix notation with parentheses and commas, 
but we shall frequently omit the parentheses surrounding the unique argument of 
a unary function symbol. Hence we shall use the simplified notationfsfh(x,fx) for 
f(g(f(h(x,f(x))))). For a binary associative operation, we shall use infix notation and 
omit parenthesis. 

Example 2.1 (Monoids of words and traces). Let A be a finite alphabet, say 
A = (al,..., a,}. Let FA = A u ( . , E} be the ranked alphabet where p(Ui) = 0 for all i, 
P(E) = 0, p( .) = 2. We denote by VVA the F,-magma (A*, . , E, al, . . . . a,), where A* is 
the set of words over A, . is the concatenation, E is the empty word, a,, . . . , a, denote 
themselves as words. It is a monoid (with a binary associative operation having a unit) 
augmented with constants. 

We now let R be a set of pairs of the form (aiaj, UjUj) for i, j with 1 < i < j < n. We 
let = be the least congruence on A* containing R (also denoted by $ if one considers 

R as Thue system). We denote by VW*,, the F,-magma (A*/ =, . = , [E], [al], . . . , [a,] ) 

where [x] denotes the equivalence class of x with respect to E . It is called a monoid 
of truces. 

Example 2.2 (The unury magma of words). We let A be as above and 
FL = {E, a,,..., a,} be the ranked alphabet such that P(E) = 0 and P(ai) = 1 for 
i = l,..., n. We denote by UJJA the FL-magma (A*, E, aI,. . ., a,), where E is the empty 
word and Gi is the mapping: A* + A* such that ai = u . ai for every u E A* and 
i=l , . .., n. Hence, UA is another algebraic structure on the set of words. The 
operation Ci is a derived operation of VVA. We shall say (see Section 2.2) that UJJA is 
derived from WA. However, the concatenation is not a derived operation of UJA . The 
structure VVA is some sense strictly richer than UJA. 
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Example 2.3 (Trees). A tree T is a finite connected undirected graph without multiple 
edges and cycles. The set of trees is denoted by T. A rooted tree is a pair R = (T, r) 
consisting of a tree T and a distinguished node I called the root. The set of rooted trees 
is denoted by [w. Any two isomorphic trees (or rooted trees) are considered as equal. 
(See for more details the definitions of graphs and concrete graphs in Example 1.1.) 
The sets [w and 7T are effectively given. 

We now define a few operations on trees and rooted trees. The types of these 
operations will be given in terms of two sorts, t and r, namely, the sort t of trees and 
the sort r of rooted trees. 

The first operation is the root-gluing ) ) : r x r + r. For S and T in [w, we let S 11 T be 
the rooted tree obtained by fusing the roots of S and T (or rather, of two disjoint 
isomorphic concrete copies of S and T). The second operation is the extension 
ext : r + r. For Tin IR, we let ext( T) be the rooted tree obtained from T by the addition 
of a new node that becomes the root of ext(T), linked by a new edge to the root of T. 

We denote by 1 the rooted tree reduced to a single node (the root). Finally, we let 
fg : r + t be the mapping that “forgets” the root of a rooted tree R. Formally, 
fg(R) = T, where R = (T, r) E [w. 

Hence, we have an {r, t}-sorted signature F:= { 11, ext, 1, fg} and a many-sorted 
F-magma T[W[E[E having [w as domain of sort r, U as domain of sort t, and the 
operations defined above. Hence T[WiE(E = (Iw, U, 11, ext, 1, fg). 

Example 2.4 (Graphs with sources). Let k E N. A k-graph is a pair consisting of 
a graph and a sequence of k pairwise distinct distinguished vertices called its sources. 

A O-graph has no source and is nothing but a graph. We let 6& denote the set of k- 
graphs. (We do not repeat the formal distinction between a k-graph and a concrete 
k-graph; the details are easy to provide, see Example 1.1.) We define some operations 
on k-graphs for k E N. We shall obtain thus a many-sorted magma G with infinitely 
many domains Gk, for k E N. 

We first define the parallel composition G 1 Ik H of a k-graph G and a k-graph H. This 
operation produces a k-graph K defined as the isomorphism class of a concrete 
k-graph K’ that is constructed as follows: one takes the union of two disjoint concrete 
k-graphs G’ and H’, respectively, isomorphic to G and to H, one fuses the ith source of 
G’ with the ith source of H’ for every i E [l, k] and one takes the sources of H (after 
fusion with sources of G) as the sources of K’. We shall frequently omit the subscript 
k in I Ik. 

Note that ) Ik is associative and commutative and that ) lo is just the disjoint union of 
graphs without sources (see Example 1.1). Note also that the set of rooted trees [w is 
a subset of G 1 and that the root-gluing operation on trees I I is the restriction of I I 1 to IF!. 

We let fgk : Gk + Gk _ 1 be the source-forgetting operation such that 

Clearly % E Go and the operation fg is the restriction of fgI to [w. We shall 
frequently omit the subscript k in fp,. We let also ik : Gk + Gk + 1 be the following 
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mapping: ik(G, sl, s2 ,..., sk) = (G u {u}, s1 ,..., Sk, v) where v is added to G as a new 

isolated vertex. For every k 2 2, for every nonidentity permutation rz of [l, k], we let 

perm,: Gk -+ Gk be such that 

Finally, we shall use the following nullary symbols: 1 denoting an isolated vertex 

that is a source, e denoting a loop on a single vertex that is the unique source, 

e denoting an edge with two ends that are the sources. (Hence 1, / are of sort 1 and e is 

of sort 2.) We let 

u {perm,) k 2 2, rc is a permutation of [l, k]} u (1, e, e}. 

We obtain thus an F-magma of graphs G with infinitely many sorts. It is not hard 

to see that F generates G. Let us also note that the mapping ext : R + R can be 

expressed as follows: 

ext(G) = fg2(perm,(il(G) I I 41, 

where rr exchanges 1 and 2. The series-composition of graphs of type 2 is the mapping 

.: Gz x C$z -+ C$z defined as follows: 

G.H = fg~(permdb(G)) I I perq(bW))), 

where c( exchanges 2 and 3 and /I exchanges 1 and 3. Thus G . H is constructed from 

the union of disjoint concrete copies of G and H by the fusion of the second source of 

G with the first one of H. The first source of G . H is the first source of G, and its second 

source is the second source of H. Series composition is a quite natural notion of 

concatenation of graphs. 

Finally, we observe that the F-magma G is effectively given: this follows from 

obvious extensions of the remarks made in Example 1.1. 

2.2. Derived signatures 

Let F be an d-signature. A derived signature of F is a pair (G, 6) consisting of an 

ti’-signature G and a mapping 6 satisfying the following conditions: 

(1) 4’ c 4, 

(2) 6 associates with every symbol g in G of type of s1 x s2 x ... x s, -+ s a term 6(g) 

in T(F, & for some x such that a(x) = (si ,..., s,). 

We shall frequently let G stand for (G, 6) and let ~5~ denote the mapping 6. We shall 

say that G is linearly derived of F if each term 6,(g) is linear, i.e., has at most one 

occurrence of each variable. 
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A G-magma P is a derived G-magma of an F-magma M if G is a derived signature of 

F and the following conditions hold: 

(1) P, = M, for every s in a’, 

(2) gP = 6G(g)M for every g in G. 

Furthermore, we shall say that P is linearly derived ofM if G is linearly derived of F. 

The notion of second-order substitution that we now define makes it possible to 

translate every derived operation of a derived magma P of M into a derived operation 

of M itself. Let (G, 6) be a derived signature of F. We let 4 be the mapping from 

T(G, X) into T(F, X) defined as follows: 

C?(X) = x for x in X, 

4(dt1,... 2 tk)) = 6kd @(tl),*.., 4@k)l. 

Proposition 2.5. Let P be a G-derived magma of M and 6 = 6,. For every term t in 

T(G, X), we have tp = (&(t))M. 

The proof is easy by induction on the structure of t. 

2.3. Equational properties and term rewriting systems 

This topic is treated in detail by Wechler [45], Klop [34], and Dershowitz and 

Jouannaud [25]. We only review the basic definitions and facts. Let F be an 

a-signature. A term rewriting system over F is a set R of pairs of terms (possibly with 

variables) of the same sort. Hence, 

R G U {TV, Xl, x ‘W, Xl, I s E d}, where X is an d-sorted set of variables. 

A pair (t, t’) is called a (rewriting) rule and is denoted by t + t’. We say that R is ground 
if X = 0. The one-step rewriting relation on T(F, Y) associated with R is defined as 

follows (where Y is any set of variables): w 2 w’ if and only if w, w’ E T(F, Y) and 

w = c[t[ul/X1,...,Uk/Xkll 

w’ = c[t’[ul/X,,...,Uk/Xk]] 

for some c E ctxt(F),,,, some rule t+ t’ in R with t, t’ET(F, {xl,...,xk})S and some 

terms q,..., uk E T(F, Y) of respective sorts 0(x1), . . . , o(&). 

These conditions imply that w and w’ are both of sort r. 

The n-fold composition of ; is denoted by a , its transitive closure by i , its 

reflexive and transitive closure by +. Its symmetric closure is denoted by y+(it is the 

one step rewriting relation associated with R u R- ‘); the definitions of A, c, and A 
R R R 

follow immediately. 
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Lemma 2.6. If tiz t,! for every i = 0, l,..., k then 
R 

tO[tI/xl ,..., tk/xk]5 
R 

tbCt;lxI,...,t;/Xkl. 

Since $ = :, where S = R u R-‘, the statement of Lemma 2.6 also holds with $ 

instead of 2 . The relation $ is the least equivalence relation on T(F, Y) that contains 

R, is an F-congruence and a congruence for first-order substitution. (An equivalence 
relation N on the set T(F, Y) is a congruenceforfirst-order substitution if for every t, 
t’, u 1 ,..., uk E T(F, Y), x1, . . . . xk E Y, it holds that t - t’ implies that t[uI/xI ,..., uk/xk] 

N t’CulIX1,...,Uk/Xkl.) 
For every rewriting system R, we let E(R) denote the set of equalities associated with 

R, namely E(R):= {t = t’l t + t’ E R}. We say that an equality t = t’ is valid in M if 
tM,X = t,&, (where x is such that t and t’ belong both to T(F, x)), i.e., if t and t’ define 
the same derived operation of M (or the same value if t and t’ have no variable). A set 
of equalities E is valid in M if each equality of this set is valid; we shall also say that 
M is a mode2 of E. Every set of equalities between terms of the same sort is of the form 
E(R) for some rewriting system R: to obtain R it suffices to make each equality t = t’ 

into a rule, either t + t’ or t’ + t. 

Proposition 2.7. Let R be a rewriting system over F. Let M be a model of E(R). If t2 t’ 
then the equality t = t’ is valid in M. 

Proof. It follows from Eq. (2.1) and the definitions that t = t’ is valid in M whenever 
t; t’. The general case follows by transitivity. q 

The equational theory of E(R) is the set of equalities that are valid in every model of 
E(R). The following Completeness Theorem [6] is a kind of converse of Proposition 
2.7. 

Theorem 2.8. An equality t = t’ belongs to the equational theory of E(R) if and only if 

t*2;t’. 
R 

The word problem for R, namely the problem of deciding whether t c t’ is undecid- 

able in general, even for certain fixed finite systems R. However, it is decidable for 
certain others. The investigation of the border between decidable cases and undecid- 
able ones is one of the main aims of the theory of term rewriting systems. We refer the 
reader to [25,34,45] on this theory. 

Let us say a few words on the use of rewriting systems for characterizing the 
properties of an F-magma of interest, say M. We shall assume that M is generated by 
F which means that every element is denoted by a term. 

Question 2.9. Can one characterize in terms of rewriting systems on T(F) the equality 
in M? 
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If we know a rewriting system R over F such that E(R) is valid in M, then we obtain 

that any two $-equivalent terms denote the same element of M. Let us denote 

by M(R) the quotient F-magma T(F)/ $. The homomorphism hM factors through 

M(R) in a unique way as h 0 h,(,,, where h is an F-homomorphism: M(R) + M. Since 
hM is surjective (because F generates M), so is h. A desirable situation is when h is 
injective, because then, M is isomorphic to M(R) by h, and any two terms in T(F) are 

$-equivalent if and only if they denote the same element of M. 

Question 2.10. Can one characterize in terms of rewriting systems the equality of two 

derived operations of M? 

If M is a model of E(R), then any two $-equivalent terms in T(F, X) define the 

same derived operations in M. However, even if M is isomorphic to M(R), it is not 

always the case that two terms are $-equivalent if they denote the same derived 

operation of M. 
The inductive theory of E(R) is the set of equalities t = t’ that are valid in M(R). It is 

in general larger than the equational theory of E(R) and can be strictly larger as 
shown by the following example. 

Example 2.11. We consider the (0, s, +)-magma (N, 0, s, +) also denoted by N, 
where s is the successor function. Let R consist of the two rewriting rules x + 0 + x, 
and x + s(y) + s(x + y). Then N is isomorphic to M(R). However, the equality 

x + y = y + x is valid in M(R) but its two handsides are not $-equivalent. The 

inductive theory of E(R) is strictly larger than its equational theory. 

Example 2.12. We consider here the monoid of words WA of Example 2.1. Let 
R consist of the rules x . (y . z) + (x . y) . z, x . E + x and E . x -+ x. The corresponding 
equalities are valid and furthermore, VW* is isomorphic to M(R). The inductive theory 
of E(R) is in this case equal to its equational theory. 

In the case of the unary FL-magma of words UJA considered in Example 2.2, we have 
an isomorphism of UA onto M(O), i.e., onto T(FL). 

Example 2.13. We now consider the magma TN% of rooted and unrooted trees 
introduced in Example 2.3. Let d denote the following set of equalities: 

VI) XIIY = YllX, 

(82) (XllY)llZ = Xll(Y II43 

(8,) x I I 1 = x, 

(84) fg(x I I ext(y)) = fg(ext(x) I I YL 
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where x, y, z are variables of sort r, intended to denote rooted trees. It is clear from the 
definitions that these properties are valid in TIUEIE. Letting R be a rewriting system 
such that E(R) = b, we have an isomorphism of M(R) and UNEIE (see [lS] for the 
proof). The inductive theory of d is in this case equal to its equational theory. 

3. Polynomial systems and equational sets 

Polynomial systems have been introduced (under the simpler name of “systems”) by 
Mezei and Wright [38]. The qualification of “polynomial” refers to the use of set 
union, denoted by + , and distinguishes these systems from the more general “regu- 
lar” systems. See Courcelle [lo] for a thorough study of the systems of both kinds. 
Polynomial systems have least solutions, called the equational sets that can be seen as 
generalized context-free sets. 

3.1. Dejinitions 

Let F be an G-signature. We enlarge it into F+ by adding, for every sort s in 4, a new 
symbol +s of type: s x s + s, and a new constant 52, of sort s. With an F-magma M we 

associate its power-set magma which is an F+-magma: 

P(M):= <(a(K)),.., U-~(M))SEF+ >, 

where 

R - 0, S@(M) - 

4 +sp(M) A, := A, LJ A2 (for Ai, A, s M,) 

and 

forA, c MS1 ,..., &E M,,,WheretX(f)=(Sr ,..., Sk). 

A polynomial system over F is a sequence of equations S = (ui = pl, . . . . u, = p,), 

where U = {ur,..., u,} is an d-sorted set of variables called the set of unknowns of S. 
Equivalently, one can define S as a set of equations, and equip U with some linear 
ordering. In both cases, the set of unknowns is linearly ordered. Each right-hand side 
of an equation pi is a polynomiaZ, i.e., a term of the form s2, or tl +s t2 +s... +s t,, 

where the terms tj are monomials of sort s = G(LQ). A monomial is a term in T(F u U). 
The subscript s is usually omitted in +s and in Sz,. 

A mapping S@(M) of @(M,(,,J x ... x P(M,,,,J into itself is associated with S and 

M as follows: for A1 G M,c,lj ,..., A, E MGcunj, we let 

Sp(M)ch,..., 48) = (P1&I(M)(A1,...,%),...,P”&,(M)(A1,...,~,)). 
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A solution of S in p(M) is an n-tuple (A,, . . ., A,,) such that Ai c M,C,ij for each 
i=l ,-..> n and (AI,..., 4 = SpJ(M+fl,. . . , A), i.e., 

Ai = Pifo(M)tAl >. . . > ,4”) foreveryi=l,..., n. (3.1) 

A solution of S is also called a fixed-point of S,(,,. By the well-known Kleene’s 
fixed-point lemma, (see [35]), every such system S has a least solution in p(M) 
denoted by (L((S, M), ul), . . . . L((S, M), u,)). (“Least” is understood with respect to set 
inclusion.) This n-tuple can be concretely described as follows: 

L((s~ M)~ ui) = U {Aj I j 2 O}, 

where A; = 8 for all i = 1,. . . , n, and (A{+ ‘, . . . , Ai+ ‘) = S,(,,(A:‘, . . . ,A$. The compo- 
nents of the least solution in @(M) of a polynomial system are the M-equational sets. 
We denote by Equat(M) the family of M-equational sets. 

A quasi-solution of S in p(M) is an-tuple (A,, . . . , A,J such that 

Ai 2 Pip(M)tAl,..*, A,) for every i = l,..., n. (3.2) 

(Note that the equalities in (3.1) are replaced in (3.2) by inclusions.) The least solution 
of S in p(M) is also its least quasi-solution. 

Example 3.1. We consider again the monoid of words nia/, introduced in Example 2.1. 
Equat(VV,J is the set of context-free languages over A by the theorem of Ginsburg and 
Rice [30] that characterizes these languages as the components of the least solutions 
of systems of recursive equations written with the nullary symbols E, al,. . . , a,, 

the concatenation and, of course, set union (denoted here by + ). Take, for an 
example, the context-free grammar G = {u + uuuv, u + uvb, v --) uvb, v + ub} with 
nonterminal symbols u and v and terminal symbols a and b. The corresponding 
system of equations is 

S=(u=u.(u.(u.v))+u.(v.b), v=u.(v.b)+u.b). 

The set Equat(UJ, where UJA is the unary magma of words introduced in Example 
2.2 is the set of components of least solutions of systems of left-linear equations hence 
is the set of regular languages. The system corresponding to the left-linear grammar 
H = {u + uu, u + vb, v + vb, v + a, v + E) is thus: 

s = (u = C(u) + b(v), u = b(v) + ii(&) + E). 

We shall give below a general result (Proposition 3.17) that establishes (and 
extends) the validity of this correspondence between grammars and polynomial 
systems. 
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Example 3.2. The set of trees of odd degree (i.e., such that the degree of every node is 
odd) is defined as L((S, TRDE), u), where S is the system: 

: 

u = fg(w), 

s U = WI/W + vllwllw, 

w = ext(v) + ext(1). 

The sorts of u, v and w are t, r and r. (See Example 2.3 for the definition of TRlE[E). 
We claim that L((S, URGE), u) is the set L of (finite) trees of odd degree, and we shall 
indicate how this claim can be proved. We let L’ denote the set of rooted trees different 
from 1, all nodes of which except the root have odd degree. We let L” be the set of 
rooted trees such that all nodes have odd degree and the root has degree one. 

Fact. The triple (L, L’, L”) is a quasi-solution of the system S. 

This means that we have 

L 2 fg(L”), 

L’z L”lIL”u L’IlL”lIL”, 

L” 2 ext(L’) u ext(l), 

which is actually easy to verify from the definitions of L, L’ and L”. Since the least 
solution of a system is also its least quasi-solution, it follows that 

L((S, TRE[E), u) G L, 

L((S, UUWE), u) G L’, 

L((S, UR[ElE), w) c L”. 

In order to prove the opposite inclusions, one can prove by induction on the size of 
an element t in U u R that 

if t e L then t E L((S, UREE), u), 

if t E L’ then t E L((S, URRE), v), 

if t e L” then t E L((S, URlEE),w), 

which is also not difficult. This establishes that L((S, ULWE), u) is equal to L, i.e., is the 
set of trees of odd degree. 

Example 3.3. Series-parallel graphs with two sources. 

The equation 

u = uJJ2u + uou + e, Wl) 
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where 1 I2 is the parallel-composition and l is the series-composition of graphs of type 
2 (see the definitions in Example 2.4). An equivalent writing of this equation is 

~4 = ~112~ + fgdpem(i2(4)I 13wqdi2@4)) + e, (SW 

where a and /? are appropriate permutations (see Example 2.4). However, solving 
(SP2) necessitates to handle six graph operations of two sorts. The equation (SPl) is 
built with only two operations and one sort; it can be solved in @((G2, ( 12, 0, e)) 
whereas (SP2) uses a more complicated magma. That (SPl) and (SP2) are indeed 
equivalent will be seen in Section 3.4. 

3.2. Unicity of solutions 

We shall consider some sufficient conditions insuring that a polynomial system has 
a unique solution in some given p(M). Let S = (Ui = pi ; 1 Q i < n) be a polynomial 
system. Let m E T(F, U) be a monomial of some of the polynomials pi. Let us write it 
m = lin(m)[ui,,..., Ui,] (see Section 2) and let f be the mapping Iin( : Mk + M. We 
let d-t,d’ifd=f(d,,...,d,)forsome dI,...,dkEM and d’=difor some 1 did k. 
We let d +sd’ if and only if d -+,,d’ for some monomial m occurring in some 
right-hand side of S. We shall say that M is well-founded with respect to S if there is no 
infinite sequence: dI -+s d2 + d3 js ... -+s dk -F~... 

Proposition 3.4. Let M be well-founded with respect to a polynomial system S with 

unknowns u1 ,..., u,. Then (L((S, M), zli) ,..., L((S, M), u,)) is the unique solution ofS in 

ka (M). 

Proof. Let (A,, . . . , 4 = &((S, W, 4,. . . > L((S, M), u,)) be the least solution of S and 
let (B,, . . . . B,) be an arbitrary solution. We have Ai c Bi for every i = l,... , n. Let us 
assume that U ((Bi - Ai)ll < i < n> is nonempty and let d belong to Bi - Ai for some 
i. Since (B1,..., B,) is a solution we have d E Iin( (d, , . . . , dk) for some monomial 
m on the right-hand side of the equation Ui = pi. Let (Ui,, . . . , Ui,) be the sequence of 
unknowns of m; we have dj E Bij for every j = 1,. . . , k. If dj E Ai, for every j, then d E Ai 

contradicting its choice as a member of Bi - Ai. Hence dj E Bij - Ai, for some j and 
d -+d,. We can repeat the argument with dj instead of d and we get an infinite 
sequence d +s dj +s.. ’ contrary to the assumption that M is well-founded. Hence 

(A 1 ,..., A,)=(B, ,..., B,). 0 

As applications, one gets the classical results saying that the system S associated 
with a strict context-free grammar (i.e., a grammar such that every right-hand side of 
a rule is either the empty word or contains a terminal symbol) has a unique solution, 
and that the system S associated with a proper context-free grammar (i.e., a grammar 
such that the right-hand side of a rule is neither the empty word nor a single 
nonterminal symbol) has a unique solution in languages without the empty word. 
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In both cases, one observes that if w +s w’ then w’ is shorter than w so that +s is 
well-founded. 

As another application, let us go back to Example 3.2. The system S has a unique 
solution in sets of trees which are not reduced to a single node. One can prove easily 
that the triple (L, L’, L”) is a solution of S, hence is the unique solution of S and is thus 
equal to: 

(L((S, TREQ, 4, U(S, TREE), r), U(S, TREQ w)). 

This gives a slightly simpler proof than the one sketched in Example 3.2. 

3.3. Finite images of equational sets 

We first consider some cases where polynomial systems can be solved explicitly. 

Proposition 3.5. If F, ti and M are explicitly given, then for every polynomial system 
S and for every unknown ui of S one can compute theJnite set L((S, M), ui). 

Proof. That F, 4 and M are explicitly given implies that they are all finite. The 
sequence Sg (&Or.. . ,8) is increasing for component-wise inclusion of tuples of sets, 
i e AI G Ai+ ’ for every i and every j where (A{, . . ., A,$ = SicMj(@, . . ., 8). Since M is .., I 
finite, this sequence cannot be strictly increasing at all steps, hence we have 

S ;;,cs, . . . . @) = &,(4X . ..> 0) 

for somej, and then, 

S :&(8 ,..., 0) = S$$,,(!ZJ ,..., 0) = &,,(8 >..., 8) 

for every k 2 j (by induction on k). It follows that SiCM) (8,. . . ,8) is the least solution of 
S in M. Since M is explicitly given, one can compute the tuples (of finite sets) 

Sj,,,,(&..., @forj=O, l,... and stop as soon as two successive tuples are equal. This 
algorithm terminates since M is finite, and gives the least solution of S in M. The 
desired set L((S, M), ui) is thus the ith component of the obtained least solution. 0 

Easy modifications of the above proof yield the following improvement which 
concerns infinite magmas. 

Proposition 3.6. Let F, CJ, M be efictively given. If the components of the least solution 
of a polynomial system are all finite, then they can be effectively computed. 

The following result is due to Mezei and Wright [38]. 

Proposition 3.7. Zf h : M + M’ is an F-homomorphism, ifs is a polynomial system over 
F, then L((S, M’), u) = h(L((S, M), u)) for every unknown u. 
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Proof (Sketch). The homomorphism h : M + M’ extends into an F + -homomorphism 
ph: @a(M)+ @(M’) defined by @h(A):= {h( a a E A) for A G M,, s E ci. It is easy to )I 
verify that for every j E N: 

s; (M’) (09 . . . 2 0) = “h&.J,@ )...) $?I)), 

where @h(A, ,..., &) = (@h(A,) ,..., @h(A,)) for every A, ,..., A. E M. (The proof is by 
induction on j, using the fact that @h is an F +-homomorphism.) The result follows 
immediately. 0 

Propositions (3.5)-(3.7) can be used jointly as follows to compute certain finite 
images of equational sets. Assume that M is an F-magma and h is a mapping : M + P, 

where P is a finite, explicitely given set (initially without operations on it). We may 
want to compute the finite set ‘h(L) G P for a set L E Equat(M). It suffices to define 
on P a structure of F-magma making h: M + P into an F-homomorphism. If 

L = L((S, M), u), then @h(L) = L((S, P), u) by Proposition 3.7, and L((S, P), u) is 
computable by Proposition 3.5. The case of an infinite but effectively given set P can 
be dealt with similarily by means of Proposition 3.6 for systems S having a least 
solution (L, , . . . , LJ such that each set ‘h(Li) is finite. 

An algorithm that decides whether L((S, M), u) is empty can be obtained by taking 
for P the set (5 ( s E d}, where s is an object of sort s. There is thus a unique (trivial) 
structure of F-magma on P and the mapping h: M + P that maps onto 3 every 
element of M of sort s is a homomorphism. It follows that L((S, M), u) # 0 if and only 
if h(L((S, M), u)) = (o(u)). Th e sets @h(L((S, M), u)) can thus be computed and give 
the desired information. (It follows from these facts, and also from Corollary 3.8 that 
whether L((S, M), u) is empty or not depends only on S. It is essential here that the 
operations be assumed total.) 

Here is another consequence of Proposition 3.7. (We recall that hM denotes the 
unique homomorphism T(F) + M). 

Corollary 3.8. For every polynomial system S and for every unknown u of S we have 

L((S, M), 4 = b&((S, T(F)), 4). 

This means that an equational set, defined as a component of the least solution of 
polynomial system S, is the image of the corresponding component of the least 
solution of S in the F-magma of terms T(F), under the canonical homomorphism. 

3.4. Linearly derived operations in powerset magmas 

Let M be an F-magma and f be a function in F. The mapping fpCMj is defined as the 
set extension pfM of the mapping fM. The following lemma shows that the linearly 
derived operations of g(M) can be characterized similarly as the set extensions of the 
corresponding ones of M. 
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Lemma 3.9. For every linear term w in T(F, X), for every F-magma M, we have 
W g(M) = @W&f. 

Proof. Let x =(x1,..., xk) = var(w). We shall prove that for every k-tuple of sets 

(A 1, . . . . F&J such that Ai c M,,+ we have 

w~~M~(&...& = {ww&,...,~AI& E&...AxAk). (3.3) 

This is clear from the definition off,(,,,) if w = f(xr , . . . , xk). The proof is by induction 
on the structure of w in the general case. The base cases, where w is either the variable 
x1 or a constant (in this case k = 0) are obviously true. We only consider the case 
where w = g(wr , w2) (the case where g has rank other than 2 is essentially the same). 
We let x’ =(x1,..., xP) = var(w,) and x” = (x,+ r,..., x,J = var(w,). 

We let A denote (AI,..., A,J. If any set Ai is empty, then both hands of (3.3) are 
empty. Otherwise, we have 

W~~M~(~) = g@(M) (wl,,M,.,@)~ wzglA&A)) 

= {gM(el,eJlel = wlM,,(ar,...,ak),eZ = w~~,Jbr,...,M 

al,blEAl,...,ak,bkEAk}. 

(The last equality follows from the induction hypothesis.) We have thus: 

We = {gici(wlM,X.(a,,...,ad, w2M,X..(bP+1)...)bk))I 

al EA1,...,apEAp, b,+,EAp+l....,bkE&j 

= {g~M(wl~,,(dl,...,dk),wZ,,,(dl,...,dk))ldl ~AI,...,&~A~) 

= {w~(dl,...,dk)ldlEAl,...,dkEAk) 

as was to be proved. 0 

Proposition 3.10. Let G be a signature that is linearly derived of a signature F. Let P be 
the G-derived magma of an F-magma M. For every term t E T(F, X), we have 

t,(P) = B(t)f.W~~ where 6 denotes ~5~. 

We recall that we denote by s(t) the result of the replacement in term t of every 
symbol of G by its “definition” S(g) (see Section 2.2). 

Proof. Let (x1,. . . , x,) = var(t). Let Lx,..., L, c M with Li E M,(,i). We shall prove 
that 

l,(P) (&Y..., L”) = 8(&M) (Lr,..., J%l) (3.4) 

by induction on the structure of t. If t =f~ F, then 4(t) has no variable and equality 
(3.4) holds because its both hands are equal to { fP} = {8(&}. If t = Xi then equality 
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(3.4) holds because its both hands are equal to Li. If t =f(tr , . . . , tk), then we have 
(letting t denote (L,, . . . , L,)): 

tfJ&) =f~(P,(tlp(P)(t),..., tkp&)) 

= {fP(dl,..., dk)ldi E tip(p)(Z), i = l,.*., k} 

= {W)M(dl,..., d/J/d, E tip(P)(E), i = l,..., k) 

= (d(f)M(dl,...rd/Jldi E g(ti)p(M)(e), i = l,***, k} 

(by the induction hypothesis), 

= K/)&M) (s(~l)gVo(~)Y*~~ &)ga&)) 

(because S(f) is linear and by Lemma 3.9). 

= b(&M@) 

(since s(t) = s(t) [s(ti),..., b(tk)]. 0 

Corollary 3.11. Zf P is a linearly derived magma of a magma M, then 

Equat(P) c Equat(M). 

Proof. Let (G, 6) be a signature that is linearly derived of a signature F. Let P be the 
G-derived magma of an F-magma M. Let L be a P-equational set defined as 
a component of the least solution of a polynomial system S over G. Let S’ be the 
polynomial system obtained from S by replacing every monomial t of S by s(t). It 
follows from Proposition 3.10 that the mappings Sk,,, and S,(,, are equal. Hence, 
they have the same least fixed point. The set L is one of its components, hence, is 
M-equational. •i 

Example 3.12. We consider the system of equations S = (U = a. (u . (u . v)) + a. (v . b), 

v = a. (v. b) + a. b) associated with the context-free grammar of Example 3.1. We 
define a linearly derived signature G of three symbols p,q,s as follows: 
6(p) = a.(xl .(x2 .x3)), 6(q) = a.(xl . b), 6(s) = a.b. The system S interpreted in 
@(WA) is “the same” as the system S’ = (u = p(u, U, u) + q(u), u = q(v) + s) inter- 
preted in the G-derived magma of YYV,+ 

It is important to assume in Corollary 3.11 that G is linearly derived of F, as shown 
by the following counterexample. 

Example 3.13. Let S be the equation (u = sq(u) + a). Let M = WA (see Example 2.1). 
Let 6(sq) be the nonlinear term x 1 . x1. Let S’ be the equation obtained by replacing in 
S the monomial sq(u) by the monomial u . u. 
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We obtain the equation S’ = (u = u .U + a). Let P be the (sq,a}-magma 
(A*, sq, a), where sq(u) = uu for every u E A*. Then L((S’, nial,), U) = {a”ln 2 l}, 
and L((S, P), u) = (u2”‘~m B O}. These two sets are different, hence the proof of 
Corollary 3.11 does not work. This shows also that Equat(P) is not included 
in Equat(M) since Equat(M) is the set of context-free languages over A and the 
language L((S, P), u) is P-equational but not context-free. Hence Corollary 3.11 does 
not apply to M and P. Proposition 3.10 does not apply here because we have, for every 
language L: 

which differs from: 

(Xl .X1),(&) = {UVIU, 0 EL). 

3.5. Regular term grammars 

We give here a characterization of the M-equational sets in terms of ground term 
rewriting systems. Let S = (ul = pl, . . . . U, = pn) be a polynomial system; let 

u = {ul,..., u,}. We denote by R(S) the ground rewriting system over F u U consist- 
ing of the rules of the form Ui + t, where i E { 1,. . . , r~} and t is one of the monomials 
forming the polynomial pi. It is important to note that the symbols in U are constant 
(nullary) symbols and not variables; thus R(S) is ground. Hence, in the application of 
a rule, the symbols in U will not be substituted by arbitrary terms as it would be the 
case if they would be treated as variables. We have SR(S~ s’ if and only if s = c[ui], 

s’ = c[t] for some context c in ctxt(F u U) and some rule tli -+ t in R(S). We let 

L(S,ui):= {tET(F)IUi&f}. 

We shall say that (F, U, R(S)) is a regular term grammar. 

Proposition 3.14. For every polynomial system S over F and every unknown Ui of S, we 

have: L(S, Ui) = L((S, T(F)), Ui). 

This means that the tuple of sets of terms L(S, Ui)i=l,..,,n generated by the regular 
term grammar (F, U, R(S)) is also the least solution in @(T(F)) of the polynomial 
system S. Its proof will use some lemmas. 

Lemma 3.15. Let w, w’ ET(F u U), where w =f(w, ,..., w,), f~ F and 

We,..., wk E T(F u U). Let n E N. The following conditions are equivalent: 

(1) W&W) 
R(s) 

(2) w’=f(w~,,..,w~),forsomew~,...,w~~T(Fu U)suchthatwi&w!foreuchi, 

where n 1,..., nk are integers such that n = n1 + n2 + ..- + nk. 
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Proof. The implication (2) =E. (1) is clear. The proof of the implication (1) j (2) is by 

induction on n. The cases n = 0 and 1 are easy. In the case n > 1, we let 

w*w”--%w’ 
R(S) R(S) 

with n = m + p, m, p < n. The induction hypothesis gives 

w” =f(wY,..., w;), 

Wi~Wi’ 
R(S) 

for every i = l,..., k, 

m = ml + ... + mk. 

Considering now the derivation w” R(S) aw’, we get also by the induction hypothesis: 

w’ =f(wi,..., w/g, 

w;‘A!L+wf 
R(s) 

for every i = l,...,k, 

P = Pl + ‘.’ + Pk, 

and we get the desired result with ni = mi + pi. 0 

Let w E T(F u U). We can write w = lin(w) [Ui,, . . . . Ui,], where lin(w) is linear over 

F (see Section 2). With this notation we have the following consequence of Lemma 

3.15. 

Lemma 3.16. Let WA 
where 

R(S) W’ and var(w) = (Ui ,,..., Ui,). We have W’ = tin(w) [W; ,..., WA], 

Ui. ,a WJ for every j = 1,. .., m, and n = nl + n2 + ... + n,. 

Proof. By induction on the structure of w and by using the implication (1) + (2) of 

Lemma 3.15. q 

Proof of Proposition 3.14. We first verify that the n-tuple t := (L(S, Ui))i= l,,..,n satisfies 

L 2 SB(T(F)) (0. (3.5) 

From the definition of S BV(Fjl, proving (3.5) amounts to proving 

L(S, ‘A) 2 tfa(T(F)) (Ii) (3.6) 
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for every i = 1 , . . . , n and every monomial t that is a summand of the polynomial pi, 
hence to proving that 

t’ E L(S, Uj), (3.7) 

where t’ is obtained by the substitution in t of a term in L(S, Uj) for each occurrence of 
Uj, j = l,..., n. But this is clearly true since Ui + t is a rule of R(S) and by the definition 
of the sets L(S, uj). It follows that 

L = S&T(F)) (8,. . . ,8) (3.8) 

for all j by induction on j (the case j = 0 is clear and (3.8) implies that 

S$&,, (8, . . . ,0) E SBcT,Fjj(~) E if by (3.5) and the monotonicity of SPCTCF)) for set 

inclusion)_ Hence, L contains the least solution of S in @(T(F)), and we have 

L(S, 4 2 L((S, T(F)), 4 (3.9) 

for all i = 1, . . . , a. In order to prove the opposite inclusion, we let, for m E N: 

L”(S, Ui) := {t E T(F) 1 via t, m’ G m). 

We shall prove that, for every solution fi = (M, ,..., M,) of S in @(T(F)), and in 
particular for the least one, we have 

L”(S,ui) G Mis (3.10) 

The proof is done by induction on m (simultaneously for all i = 1,. . . , n). The case 

m = 0 is clear because L’(S, Ui) = 0. For the general case we let w E L”(S, Ui) and we 

let ui a t% w be the corresponding rewriting sequence. Note that t is a summand 

of pi. There are two cases. 
Case 1: t = Uj. Then we have Mj G Mi (since &i is a solution of S) and 

WE L”-‘(S, Uj). Th en, w E Mj by induction hypothesis, hence w E ML. 

Case 2: t =f(t1,..., t&. We can write t = lin(t) [ui,, . . . , uiJ and we get from Lemma 

3.16 that w = lin(t) [wl ,..., wd] where Ui,*Wj for every .i = l,..., 6, and 

m - 1 = m, + m2 + ... + m,. Hence wj E AMj for every j (we can use the induction 

hypothesis since mj < m), and w E lin(t)p(T(F))(Mil,. . . , Mie) = tpcTcFjl (Ml,. . . , M,). 
Since 6f is a solution of S, we have tticTcFI) (Ml,. . . , M,) c Mi hence finally, we have 
w E Mi as desired. 

Hence we have established (3.10) for every m. It follows that 

L(S, UJ = U {L”(S, UJ Irn 2 Oj E Mi. (3.11) 

Taking in (3.11) Mi = L((S, T(F)), ui) and by (3.9), we get that the equality holds in 

(3.9) as desired. 0 
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By combining Corollary 3.8 and Proposition 3.14, we get the following character- 
ization: 

Proposition 3.17. For every polynomial system S over F and every unknown u of S, for 
every F-magma M: 

UP, Ml, 4 = hdU(S> T(F)), 4) 

= { tM 1 t E L(S, u)}. 

The sets tl and F may be infinite in all definitions and results concerning equational 
sets except in Proposition 3.5. However, a polynomial system is a finite object, written 
with finitely many function symbols (forming a subset F’ of F). The set of sorts 
appearing in the types of the symbols in F’ or as sorts of the unknowns of S is a finite 
subset 6’ of 6. We let M’ be the many-sorted F’-magma with set of sorts 6’ with 
domains M, for s E 0’ and functions fM for f E F’. We shall say that M’ is the restriction 
of M to the finite subsignature F’ of F. 

Corollary 3.18. Every M-equational set isjnitely generated. Every M-equational set is 
M’-equational for some restriction M’ of M to a jnite subsignature of F. 

Proof. From Proposition 3.17 we have 

L((S,M),u)={t,/t~L(S,u)} 

= { tM’ 1 t E L(S, u)} 

= L((S, M’), 4, 

where M’ is the restriction of M to the finite subsignature of F consisting of the 
symbols occurring in S. In particular, L((S, M), u) is generated by this subsigna- 
ture. 0 

This corollary shows that the possible infiniteness of the signature does not affect 
very much the theory of equational sets. The situation will be different in the next 
section for recognizable sets. 

3.6. Uniform systems 

The notion of a uniform polynomial system is the natural generalization of that of 
a context-free grammar in Chomsky normal form. A system is uniform if every 
monomial has exactly one occurrence of a function symbol (it can be a constant), i.e., is 
of the form f (ui,, . . . , uix)(finthecasek=p(f)=O)whereU={ul,...,u,}isthesetof 
unknowns. 
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Proposition 3.19. Let S be a polynomial system with set of unknowns U. One can 

construct a uniform polynomial system S’ with set of unknowns U’ 2 U such that for 

every M and u E U: L((S’, M), u) = L((S, M), u). 

Proof. Let S be polynomial system that is not uniform. The monomials that are not of 
the appropriate form can be of two types: 

(a) either they have no occurrence of a function symbol, i.e., are equal to some 
unknown u, 

(b) or they have more than one occurrence of a function symbol, i.e., are of the form 

f(t 1, . . . . tk) where at least one of tl, . . . . tk is not in U. 

We first transform S in an equivalent system S” with same set of unknowns that has 
no rule of the form (a). If S has already no rule of the form (a), we let of course S” = S. 
Otherwise we let 

A = {(U,d)E ux U(u+d, u’ zu}, 

and we describe S” in terms of the associated regular term grammar R(S”). This 
grammar is obtained from R(S) as follows: 

(1) one deletes all rules with a right-hand side in U, 
(2) for every rule u + m, where m is not in U, for every u’ such that (u’, u) E A, one 

adds the rule u’+ m. 

It is not hard to prove that the rewriting relations R(S,,) -% and -% are the same. It R(S) 
follows then from Proposition 3.17 that L((S”, M), u) = L((S, M), u) for every M and 
every u E U. 

It remains to eliminate the rules of R(S”) that are of the form (b). We let B be the set 
of terms t E T(F u U) - U that are proper subterms of right-hand sides of rules of 
R(S”). For every such term t, we let f be a new unknown and we let 
U’=Uu{f~t~B}.Weletalsot-tf(w,,..., w,J be a new rule (that we shall call the 

rule defining C), where t = f (tl,..., tk), Wi = ti if ti E U, Wi = pi if ti $ U (SO that ti E B). 

We now let S’ be the polynomial system with set of unknowns U’ such that R(S’) 

consists of the following rules: 

(1) the rules defining the unknowns I for t E B, 

(2) the rules of R(S”), the right-hand side of which has exactly one occurrence of 
a symbol in F, 

(3) the rules u + f (WI,. . . , w,J for every rule u + f (tI,. . . , tk) of R(S”) where at least 
one of tl,..., k t is not in U and Wi = ti if ti E U and wi = ti otherwise. 

Again it is easy to establish that L(S’, u) = L(S”, u) for every u E U and it follows 
that L((S, M), u) = L((S’, M), u) for every F-magma M and u E U. 0 

By using this construction for a context-free grammar, one obtains a grammar in 
Chomsky Normal Form. 



B. Courcelle 1 Theoretical Computer Science I63 (1996) 1-54 27 

3.7. Derivation trees 

A polynomial system S with set of unknowns U = (ul,. .., u.> is strongly uniform if 
every monomial in S is of the formf(ni,, . . . , ui,) for someSE F and if each symbolfin 
F occurs in at most one monomial of S. In this case, the set F’ c F of symbols of 
F having one occurrence in S is in bijection with the set of rules R(S). The set 
u {L(S, u) 1 u E U} G T(F’) is called the set of derivation trees of S. More precisely, we 
let Der(S, u):= L(S, za) and we call it the set of derivation trees of S relative to u. 

Let us now consider an arbitrary polynomial system. Let P be a new alphabet in 
bijection with R(S). Let p in P correspond to a rule of the form Ui + t, where 
t E T(F, U). Note that t is a monomial of S. Let (Ujl,. . . , ujl) = var(t) be the sequence of 
unknowns of t; then we define the type of p as ~(Uj,) x ... x U(UjG) + O(Ui). 

We let S’ be the polynomial system obtained from S be replacing in every equation 
Ui = “’ + t + ... the monomial t by p(Ujl,..., Uj,) (where, as above p corresponds to 
theruleui-+ tofR(S)and(uj,,..., Uj,) = var(t)). Then S’ is a strongly uniform system. 
We define the set of derivation trees of S as that of S’; more precisely, we let 
Der(S, u) := Der(S’, u). If S is already strongly uniform, then we take P := F’ (the set of 
symbols of F having an occurrence in S) and then S’ = S. 

Our next aim is to relate the semantics of S’ to that of S. Let S and S’ be as above. 
We make P into a derived signature of F by defining 6&):= Iin( where p corres- 
ponds to a rule Ui + t of R(S). We let M’ be the derived P-magma of M. The following 
proposition is a consequence of Proposition 3.10 and its Corollary 3.11. 

Proposition 3.20. For every unknown u of& we have L((S, M), u) = L((S’, M’), u). 

This proposition gives a semantic meaning to derivation trees: a derivation tree is 
not only a syntactic representation of the way an object is generated but also a term 
over a derived signature, the value of which is the considered object. 

Example 3.21. We consider again the context-free grammar of Example 3.1, 
G = {u + auuv, u + avb, u -+ sub, v + ab}. The corresponding system of equations is 

S=(u=a.(u.(u.v))+a.(u.b), u=a.(u.b)+a.b). 

Let us name the four rules p, q, r, s. We obtain the system: 

S’ = (u = p(u, u, v) + q(v), v = r(v) + s). 

Note that the monomial a. (u. b) occurs in two equations of S, and is replaced by 
q(v) in the first equation and by r(v) in the second. The derived operations associated 
with p, q, r, s are defined by the terms 6(p) = a. (x1. (x2 .x3)), 6(q) = a. (x1. b), 
6(r) = a. (x1 . b), and 6(s) = a. b. The derivation tree corresponding to the derivation 
sequence generating the word aaabbaabbaabb is thus p(q(s), q(s), r(s)). 
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Example 3.22 (Derivation trees of series-parallel graphs with two sources). As in 
Example 2.3, we define series-parallel graphs by the equation 

solved in @((Gz, 112, l , e)). The set of derivation trees is defined by the same 
equation. An example of derivation tree is (e l e) 11 ( 2 e l e l (e 1 I2 e)) (written as a term). 
The corresponding series-parallel graph is shown in Fig. 1. 

3.8. Closure properties of Equat(M) 

Proposition 3.23. For every F-magma M, the family Equat(M) contains the empty sets 
and the singletons defined by terms in T(F). It is closed under union of sets of the same 
sort, and under the operations of F. 

Proof. The first two assertions are clear. Let L, L’ E Equat(M), L, L’ 5 M, for some s. 
Case 1: If L and L’ are defined by the same system S, say L = L((S, M), ui), 

L’ = L((S, M), uj) then we have L u L’ = L((S,, M), u), where u is a new unknown 
and Si = S u {U = ui + uj}. 

Case 2: L and L’ are defined by different systems. We have L = L((S, M), ui) and 
L’ = L((S’, M), uj); we first rename if necessary the unknowns of S’ in such a way that 
S and S’ have disjoint sets of unknowns and one has L u L’ = L((S,, M), u), where 
u is a new unknown and S2 = S u S’ u {u = ui + uj}. The correctness of these 
constructions is easily proved by Proposition 3.17. 

Letf E F have type s x s’ + s”. Let L and L’ be M-equational such that L E M, and 
L’ E M,.. We want to prove that fPcMJ (L, L’):= (f,(d,d’)ld E L, d’E L’) is M- 
equational. We have two cases as above and we use the same notation. 

Case 1: We have 

_&CM) (L, L’) = L((S3, W 4, 



B. Courcelle 1 Theoreiical Computer Science I63 (1996) l-54 29 

where 

S3 = S U (U =f(Ui, Uj)}. 

Case 2: We have 

f@(M) (L, L’) = U(S& M), u), 

where 

S4 = S u S’ u {U =f(l&, u;:)}. 

Again the correctness of these constructions can be established by using Proposi- 
tion 3.17. The closure of Equat(M) under operations of F of rank other than 2 can be 
proved similarly. 0 

Proposition 3.7 establishes that if h is an F-homomorphism: M + M’ and if 
L E Equat(M), then h(L) E Equat(M’). (This is a closure property of the family 

U@quat(M) I M is an F-magma}.) 
These results generalize the “easy” closure properties of the family of context-free 

languages, under union, concatenation and homomorphism. The closure under in- 
verse homomorphism is a particular property of equational sets of words, actually 
more complicated to prove. It does not hold in general, as shown by the following 
example. 

Example 3.24 (Nonclosure under inverse homomorphisms of equational sets). We let 
M = (Z, 0, s, m), where s(n) = n + 1 and m(n) = n - 1 for all n in Z. The singleton 
L = (0) is equational but the set of terms h,‘(L) E T( (0, s, m}) is not. (If it would be 
equational, it would be also recognizable by Proposition 5.3; hence, it would be 
defined by a finite tree-automaton (see Section 4.3) ; from such an automaton, one 
would obtain a finite automaton defining the set of words in {s, m}* with an equal 
number of occurrences of s and m; this impossible because this language is not 
regular.) 

4. Recognizable sets 

The notion of a recognizable set is due to Mezei and Wright [38]; it generalizes the 
notion of a regular language like the notion of an equational set generalizes that of 
a context-free one. It was originally defined for one-sort magmas, and we adapt it to 
many-sorted ones, possibly with infinitely many sorts. 

4.1. Dejinitions 

Let F be an d-signature. An F-magma A is locallyjinite if each domain A,, s E 6, is 
finite. 
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Let M be an F-magma and t E CJ. A subset B of M, is M-recognizable if there exists 
a locally finite F-magma A, a homomorphism h : M + A, and a (finite) subset C of A, 
such that B = h-‘(C) . The pair (h, A) is called a semi-automaton, and the triple 
(h, A, C) is called an automaton. Intuitively, C is the set of “accepting states” of 
a deterministic automaton, the set of states of which is U{& ) s E d>. (The relationships 
with the classical notion of a finite automaton will be discussed in Section 4.3.) We 
shall denote by Ret(M), the family of M-recognizable subsets of M,. 

We say that B as above is effectively M-recognizable if M is effectively given, if 
B is recognized by an automaton (h, A, C), where A is effectively given (and defined 
by an effective coding ( 11 A I/, ya, xA), h and the mapping associating with every 
sort s the finite set of integers ya ‘(A,) are computable and C = yA(C’) for some 
explicitly given subset C’ of 11 A 11. In this case, one can decide whether an element m of 
M, belongs to B: it suffices to compute h(m) (where m is given by a number coding it) 
and to test whether h(m) belongs to C, which is possible by the computability 
assumptions. 

A language included in A* is regular if and only if it is WA-recognizable if and only 
if it is U,-recognizable. The recognizable sets of terms, i.e, the T(F)-recognizable sets, 
where F is a finite signature, can be characterized by finite tree-automata (see Section 
4.3)). The classical identification of terms with finite ordered ranked trees explains the 
now classical although improper qualification of “tree’‘-automaton. 

Recognizable sets can also be characterized in terms of congruences (reviewed in 
Section 2). A congruence - on an F-magma M isfinite if it has finitely many classes: 
this is possible only if M has finitely many sorts. It is locallyjnite if it has finitely many 
classes of each sort. A subset L of M, is saturatedfor - (or --saturated) if, for every 
d, d’ E M,, if d belongs to L and d - d’, then d’ also belongs to L. We prove below 
(Proposition 4.1) that a subset L of M, is M-recognizable if and only if it is saturated 
for a locally finite congruence on M. This generalizes a well-known characterization of 
regular languages. The notion of syntactic congruence can also be generalized to 
arbitrary subsets of M (all elements of which have the same sort) and yields another 
characterization of the M-recognizable sets. Let L G M,. We associate with L a con- 
gruence -L on M called the syntactic congruence of L and defined as follows. For d, 
d’ E M: d wLd’ if and only if a(d) = o(d’) and for every integer n, for every linear term 
t in T(F, {x1,. . . , x,}), such that 0(x1) = a(d), for every d2 ,..., d, in MO{,.), . . . . M,(,nj: 

tM(d,d2 ,..., d,)EL o tM(d’,dz ,..., d,)EL. 

In the special case where F generates M, the elements dZ, . . . , d, are defined by terms, 
hence, they can be “merged with t”. In other words: 
d- Ld’ if and only if o(d) = o(d’) and for every t ~ctxt(F),(~),~ we have 

tM(d) E L o tM(d’) E L. 

By a predicate on a set E, we mean a total mapping: E + {true, false}. If M is 
a many-sorted F-magma with set of sorts 4, a family of predicates on M is an indexed 
set {fi 1 p E P}, such that each p in P has an arity a(p) in d (which means that fi is a unary 
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function: M a(pj + (true, false}). Such a family will also be denoted by P. For p E P, we 

let L, = (d E ME(r)) p(d) = true). 

The family P is locally jnite if, for each s E a, the set {p E P 1 a(p) = s} is finite. We 
say that P is f-inductive where f is an operation in F, if for every p E P of arity 
s = a(f), there exist ml,. . . , m, in N, (where n is the rank off), an (ml + ... + m,)-place 
Boolean expression B, and a sequence of(mi + ..a + m,) elements of P, (P~,~,..., pl,,,,, 

P2,1,...,P2,rnZ,...,Pl,l,..., pn,,,,), such that, if the type off is s1 x s2”. x s, + s we have: 
(1) OZ(pi, j) = Si for all j = 1, . . . . F?ri, 
(2) for all dI E M, ,,..., d, EM,: 

B(fM(d,,..., d,)) = B~,,,(d,),...,~,,,,(d,), Pz,m,(d2),...,Pn,m,(dn)l. 

The sequence (B, P~,~~...,Pz,~,...,P~,~“) is called a decomposition of p relative off: 

The existence of such a decomposition means that the truth value of p for any object of 
the form fM(dI,...,d,) can be computed from the truth values of finitely many 
predicates of P for the objects dI, . . . , d,; this computation can be done by a Boolean 
expression that depends only on p and& We say that P is F-inductive if it isf-inductive 
for every f in F. 

Proposition 4.1. Let M be an F-magma. For every s E 6, for every subset L of M,, the 
following conditions are equivalent: 

(i) L is M-recognizable, 
(ii) L is saturated for a locally jnite congruence on M, 

(iii) the syntactic congruence of L is locally finite, 

(iv) L = L, for some predicate p belonging to a locally finite F-inductive family of 
predicates on M. 

Proof. (i) =+ (iv): Let h-‘(C) c M, for some automaton (h, A, C). The domains of 
A are pairwise disjoint (see Section 2). We let P = l,j (A, 1 t E o} u {p}. Each element 
a of A, has arity t (considered as a member of P), and p has arity s. For d E M, and 
a E A,, we let: 

(2(d) = true if h(d) = a, 

= false otherwise. 

For d E M,, we let 

p(d) = true if h(d) E C, 

= false otherwise. 

It is clear that P is locally finite. It is not hard to prove that it is F-inductive, and, 
clearly, L = L,. 

(iv) =- (ii): Let P be a locally finite F-inductive family of predicates. The relation 
such that d - d' . .-a(d) = o(d’) and p(d) = @(d’) for every p E P of arity o(d), is an 
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equivalence relation on M. It has finitely many classes of each sort since P is locally 
finite. (Let t be a sort, for each d of sort t, let n(d) be the set of predicates p of arity 
t such that B(d) holds; then d - d’ if and only if n(d) = n(d’); since 7~ takes at most 24 
values, where q is the number of predicates of arity t, the equivalence N has at most 24 
classes of sort t.) It is a congruence since P is F-inductive (the verification is 
straightforward), and, for every p in P, the set L, is --saturated. 

(ii) a(i) and (iii): If L is saturated for a locally finite congruence - on M, then one 
takes a(L, - ) := (h, M/-, h(L)) as an automaton defining L, where h is the canonical 
surjective homomorphism: M + Ml- . We have also - s -L. Hence -L is locally 
finite since - is. 

(iii) *(ii) Holds trivially. Cl 

If L E Ret(M), then a(L, mL) is called the minimal automaton of L. If M = UjA and 
L E Rec(UJ,), then a(L, -3 is the usual minimal (deterministic) automaton of L. 

Remark. Going back to the general case, let L c M, be such that for every f 
in F of rank at least 1, there is no dl, . . . . d, such that fM(dI, . . . . d,) belongs to 
L. Intuitively speaking, this means that the operations in F are not powerful 
enough to “break” the elements of L. The set L is M-recognizable: it is not hard to 
verify that d -Ld’ if and only if d and d’ are of the same sort and belong both, either to 
L or to its complement. Hence, there are at most two classes of each sort and L is 
recognizable. 

A family of predicates P on an F-magma M is @xtively locally finite if the 
following conditions hold: 

(1) M and P are effectively given, the mapping c1 (defining the arities of the elements 
of P) is computable, and the partial function: P x M + (true, false} associating h(d) 

with p E P and d E MaCpj is computable; 
(2) P is locally finite and the mapping CI -I is computable (where cl-l(t) is the finite 

set (p E P 1 a(p) = t} for every sort t). 

It is ejjkctively F-inductive if condition (1) holds together with: 
(3) there exists an algorithm producing a decomposition of p relative tof, for every 

finFandpinP. 

Proposition 4.2. Let M be an effectively given F-magma. An M-recognizable subset L of 
M, is eflectively M-recognizable if and only if L = L, for some predicate p of arity 

s belonging to an eflectively locally finite and efectively F-inductive family of predicates 
on M. 

Proof. “Only if”. By (i) =s. (iv) of the proof of Proposition 4.1. 
“If”: Let P be an effectively locally finite and effectively F-inductive family of 

predicates on M. For every t E ci, we let P, be the finite set of predicates of arity t; we let 
0, be the set of all functions: P, + {true, false}, and we let tv (where tv stands for “truth 
value”) be the mapping M, + 0, such that, for every m E Ml, tv(m) is the mapping 
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pt-+$(m) for p E P,. From the hypothesis that P is effectively F-inductive, one can 
determine for every fe F, a mapping fs such that 

tvG&%,..., %)) = fs(tv(%), *. ., tvh)) 

for all (ml,..., mk)~M,(r,. Hence 0 = ((O,),.., (fo)SEF) is an effectively given 
F-magma and tv is a computable homomorphism M + 0. Hence (tv, 0) is a semi- 
automaton, since 0 is locally finite. We have L, = tv-I(@‘), where 0’ = 
{0 E 0 1 B(p) = true}. Hence L, is effectively M-recognizable. 0 

Example 4.3. Let L be the set of rooted trees with a number of nodes that is at least 
7 and is not a multiple of 3. Let p be the corresponding predicate on Iw (we use the 
notation and definitions of Example 2.3). Let us consider the following predicates: for 
i = 0, 1 we let qi(t) hold if and only if the number of nodes oft is of the form 3k + i for 
some k; for i = l,..., 6, we let ri(t) hold if and only if the number of nodes oft is equal 
to i. It is easy to check that P = {qO, ql, rI ,..., r6} is inductive with respect to the 
operations ext and 11 on rooted trees; this verification uses in particular the following 
facts which hold for all rooted trees t and t’: 

41(tl It’) = (q1(t) A 41(t’)) 

” (40(t) A-‘qo(t’) A-‘ql(t’))” {lqo(t) Alql(t) A 40(f)), 

qo(ext(t)) = 1 qo(t) A 1q1(t), 

41 (ext(t)) = 40(t), 

r&l It’) = @l(t) A rdt’)) v @2(t) A r3(t')) v @3(t) A r2(t’)) v @4(t) A rl (t’)). 

Since p is equivalent to iqo A i rl A ir2 A ... A lr6, we get the automaton 
witnessing that L is recognizable by taking in the construction of the preceding proof: 
O’= (8~@/~(m)=falseifm~{qo,rl,...,r6}}. 

Proposition 4.4. Let M be an F-magma generated by F and u be a sort. A subset L of M, 
is M-recognizable if and only if h,‘(L) is T(F)-recognizable. 

Proof. “Only if”: Let L = h-‘(C) for some homomorphism h: M + A, where A is 
locally finite, then h,‘(L) = (h 0 hM)- ‘(C), and, since h 0 hM is a homomorphism: 
T(F) -+ A, the set hi’(L) is T(F)-recognizable. 

“Zf”: Let L c M, be such that T = h,‘(L) is T(F)-recognizable. Ifs is a sort and 
m, m’ E M, then m -L m’ if and only if for all c E ctxt(F),,,: 

CM(m) E L 0 cM(m’) EL. 

But, for every t E T(F)s and c as above: 

cM(tM) E L o c[t] E h,‘(L) = T. 
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Hence for any two terms t and t’ of sort s: 

tM -L tt if and only if t -T t’. 

This proves that -L and -T have the same number of classes of each sort, Hence 
L is recognizable since Tis assumed to be so, and furthermore T(F)/-, is isomorphic 
to M/wL. 0 

This proposition shows that, in order to decide whether an element m of M belongs 
to L, it suffices to take any term t in T(F) denoting m and to decide whether it belongs 
to the recognizable set h,‘(L) (for instance by running an automaton on this term). 
The key point is that the answer is the same for any term t denoting m. This should be 
contrasted with the characterization of equational sets given in Proposition 3.17 (see 
also Corollary 5.4), which says that, if L is equational, then it is of the form h,(K) for 
some recognizable set of terms K: in this case, in order to verify that m belongs to L, 

one must find a term t denoting m and belonging to K. This verification cannot be 
made from an arbitrary term in h,‘(m). 

Proposition 4.5. 7le emptiness of an efectively given M-recognizable set is not decid- 

able in general. It is decidable under the additional conditions that the signature F is 

jinite, explicitly given and generates M. 

Proof. We first establish the decidability result. Let M be effectively given and 
generated by a finite explicitly given signature F. If L E Ret(M),, then h,‘(L) is an 
effectively given recognizable subset of T(F). Its emptiness can be decided by the 
algorithm of Section 3.3 that decides the emptiness of an equational set since every 
recognizable set of terms over a finite signature is equational (see Proposition 5.3). 

We now consider the undecidability. We give two examples showing that none of 
the two hypotheses can be omitted. 

We first consider the infinite one-sort signature F consisting of a constant a, and of 
unary functions fn for all n E N. Let g be a total recursive mapping N + (0, 11. Let 
A be the finite F-magma associated with g as follows: 

A = (0, I>, aA = 0, f.A(l) = 1, L(O) = s(n). 

Let B = h,‘({l}) c T(F). It is effectively T(F)-recognizable. It is clear that B # 8 if 
and only if g(n) = 1 for some n E N, and this not decidable. In this example the infinite 
signature F generates T(F). 

Here is a second similar example where the signature F’ is finite but does not 
generate the relevant magma M. We let F’ be the signature reduced to the constant a. 
Let M = (N, aM) with aM = 0. Let A and g be as above. The mapping h such that 
h(0) = 0, h(i) = g(i) if i Z 1, is a homomorphism: M + A. Hence hK’( (1)) is an 
effectively given M-recognizable set. It is nonempty if g(i) = 1 for some i > 1. And this 
is not decidable. 0 
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4.2. Closure properties of Ret(M) 

In the following propositions M and M’ are arbitrary F-magmas, and s is one of 

their sorts. 

Proposition 4.6. The family of sets Ret(M), contains 0, M,, and is closed under union, 

intersection, and diflerence. 

Proof (Sketch). If Li is recognized by (hi, Ai, Cl), i = 1,2 then L1 and Lz are both 

recognized by the semi-automaton (h, x h2, AI x A,), with respective sets of “final 

states” C1 x A2 and AI x C1. The closure under union, intersection, and difference 

follows immediately. The other assertions are easy to verify. Cl 

Proposition 4.7. Zf h is an F-homomorphism: M + M’, and L is M’-recognizable, then 
h- ’ (L) is M-recognizable. 

Proof. Follows from Proposition 4.1. 0 

Proposition 4.8. Zf f is a mapping: M, + M, defined by f (d) = tM(d, d2,. . . , dk), where 
t belongs to T(F, {x1 ,..., xk})“, 0(x1) = s and d2 ,..., dk are elements of M of respective 
sorts 0(x2), . . . , Q(X& if L is an M-recognizable subset of M,, then f-‘(L) is M- 

recognizable. 

Proof. Consequence of Proposition 4.1 because, if a congruence saturates L then it 

saturates f _ 1 (L). 0 

If F and F’ are two signatures over a same set of sorts ci and F’ G F, if M is an 

F-magma, then the notation M’ E M means that M’ is a sub-F’-magma of M. 

Proposition 4.9. (1) Let F’ E F and M’ E M. For every s E 4, if L E Ret(M), then 
L n MI E Rec(M’),. 

(2) If P is a derived magma of M, then for every s E ti we have Ret(M), c Ret(P),. 

We omit the proof which is a straightforward verification from the definitions. The 

inclusions are strict in general, and Mi is not necessarily in Ret(M),. Note also that, if 

ML = M, in (l), then Ret(M), G Rec(M’),. 

Example 4.10. We consider the magma of finite graphs with sources G, defined in 

Example 2.4. It has infinitely many domains, Gi for i = 0, l,... . We have also 

introduced series-composition . as a derived operation on GZ, the set of graphs with 

two sources. We have thus a derived magma .SP = (SP, ., 1 IZ, e), where SP is the set 

of series-parallel graphs with two sources defined in Example 3.3, since this set 

contains e and is stable under the two operations . and 1 I*. 
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Fig. 2. 

It follows then from Proposition 4.9 that if a subset of SP is G- recognizable, 
then it is %c’-recognizable. It does not follow from Proposition 4.9 that Rec(SP) is 
included in Ret(G). In particular, it is not immediate that SP is in Ree(G). These two 
facts are true however, but the proof given in Courcelle [16] uses other tools than the 
ones we are discussing. It is not true that a subset of GZ is G-recognizable if it is 

<G,, 9, 1 /,)-recognizable. One can construct a set of graphs L that is (GZ, ., 1 12)- 

recognizable but not G-recognizable. We let L be the set of graphs shown in Fig. 2, 
having their two “tails” of the same length. It is (GZ, l , I I,)-recognizable because its 
elements cannot be obtained from smaller ones by the operations l , I I2 (see the remark 
made after Proposition 4.1). It is not G-recognizable because otherwise it would be 
definable in monadic second-order logic, and so would be the language {a%” 1 n > 0}, 
which is not the case. The reader will find in [ 161 the necessary machinery to complete 
the proof. 

4.3. Concrete automata 

The purpose of this subsection is to relate the algebraic notion of an automaton 
used above to define recognizability with the familiar notions of automata on words 
and on finite trees (i.e., terms). We shall also introduce a new notion of automaton for 
dealing with unordered unranked rooted trees. We aim at presenting here a concrete 
view of the notion of a recognizable set, comparable to the one of an equational set 
presented in Section 3.5 by means of regular term grammars. 

In a certain sense, the notion of a (finite) tree-automaton could suffice since a set is 
recognizable if and only if the set of terms denoting its members is recognizable, 
and since recognizable sets of terms are defined by tree-automata. One could 
thus claim that tree-automata capture completely the notion of recognizability. 
There is even a canonical tree-automaton, namely the unique minimal deterministic 
tree-automaton for this set of terms. However, this is not fully satisfactory. Intuitively, 
an automaton is, or should be, a formalization of a recognition algorithm, working 
on the object itself (a word, a tree, either ordered or unordered, a graph, a 
pair of words to take a few typical examples) and not on a term denoting the 
considered object. Letting automata work on terms assumes that the “parsing” has 
been done beforehand, which is not necessarily easy, in particular in the case of 
graphs. Hence, doing this would hide an important issue. We shall mainly discuss 
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examples concerning words and trees. Clearly, there cannot exist any notion of 
automaton on abstract algebraic objects, but even in the case of series-parallel graphs 
(Example 3.3), we do not know any notion of automaton that is equivalent to 
recognizability. 

4.3.1. Finite automata on words 
Let us consider the unary magma UJA = (A*, E, Cl, . . . . a,) of Example 2.2, where 

A = (a,,..., a,}, and ai = uai for every u E A*. An automaton relative to UA is 
a triple (h, Q, Q”““) where Q = (Q, so, alas ,..., ’ ana) 1s a OJ,-magma, h is a homomor- 
phism: lLJJA --) Q, Q is finite and Q”“” c Q. 

One can construct from these objects a (usual) deterministic Jinite automaton 

93 = (A, Q, 6, Ed, Q”““) with set of states, Q, set of accepting states Q”“, initial 
state so and transition function 6: A x Q + Q defined by 6(ai, 4) = aio(q). It is 
not hard to verify that h- ‘(QaCC) is the language accepted by W. Hence every 
language in the family Rec(UJ,J is regular. Conversely, every regular language 
L G A* is accepted by a finite deterministic automaton W = (A, Q, 6, qO, Q”““) 
having a total transition function 6: A x Q + Q. One can make it into a triple 
(h, CD, Q”““) by letting: 

Q:= (Q, EQ, alQ,..., a,& 

ai,(q 6(ai, q) for all q E Q and i = l,..., n, 

&J:= qo 

and h is the mapping: A* + Q defined by 

W:= qo, 

h(uaJ := @ai, h(u)). 

Then (h, Q, Q”“) is an automaton in the sense of Section 4.1 and hK1(Qacc) = L. It 
follows that a language L E A* is regular if and only if it is UA-recognizable. 

In Section 4.1 we have defined the syntactic congruence mL of a subset L of an 
F-magma M. In the case of M = UJA and L E A* we get the following definition of 
“LL: 

u wL v if and only if for every integer m, for every bl, . . . , b, E A we have 

&(b;(...(b,(u))...))ELoG&(...(b,(v))...))EL. 

Hence, from the definition of the mappings 6, for a E A, we get 

u wL v if and only if for every w E A*: 

UWEL 0 VWEL. 
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Hence Proposition 4.1 gives the well-known fact that a language is regular if and only 
if the OJA-congruence -L is finite [27]. This congruence is called the least right 
semi-congruence because the term “congruences” is reserved for congruences with 
respect to BVA, and the term “syntactic congruence” is reserved to the congruence 
-L relative to wa (and not to U,). 

Since UA is a derived magma of VVA, we get that Rec(VVJ c Rec(U,) by Proposi- 
tion 4.9. The converse actually holds because, if - is a U,-congruence saturating 
L E A* then the equivalence relation z on A* defined by u z v if and only if 
wu - WV for every w E A* is a WA-congruence saturating L, and if - has k equiva- 
lence classes then z has at most kk classes. It follows that Rec(VVJ is equal to 
Rec( U,). 

4.3.2. Finite tree-automata 

Tree-automata recognize sets of terms. “Tree” refers to the representation of terms 
by finite ordered rooted trees. (This terminology is misleading because many trees do 
not correspond to terms.) 

The construction of a deterministic finite automaton from an “algebraic” automa- 
ton (h, Q, Q”“) on UA extends to T(F). Here, F is a finite signature, with possibly 
several sorts. Let (h, Q, Q”““) be an (“algebraic”) automaton relative to T(F). This 
means that a is an F-magma ((Qs)sEd, (fo)fE F), that h is a homomorphism: 
T(F) + Q (actually the unique one, denoted by h,) and that Q”“” c Q. for some u. Let 
L = h-l(Q”‘“) E T(F), be defined by this automaton. One can build the finite tree- 
automaton g = (F, Q, 6, Q”““), where 6 is the mapping such that S(f, ql, . . . . qk) = q if 
and only if f~ F, p(f) = k,q, ,..., qk E Q, and q =fQ(ql ,..., qk). If p(f) = 0 then 
S(f) =fo E Q. Given t E T(F),, this tree-automaton can be used as follows to decide 
whether t E L. A run of 93 on t is mapping r: N -+ Q, where N is the set of nodes of 
t such that: 

(1) if v E N is a leaf with label f then r(v) = S(f) (we have p(f) = 0); 
(2) if v E N has k successors vr, . . . . uk and label f (with p(f) = k), then 

r(u) = @f; r(ur), . . . , r(vk)). 

It is clear that since 6 is a function, there is one and only one run of W on t. This run 
can be constructed by means of a bottom-up traversal oft and such an automaton is 
usually called bottom-up (or sometimes frontier-to-root) deterministic. We let L(g) be 
the set of terms t such that r(t) E Q”““, where r is the unique run of W on t. 

Fact. Zf v is the root oft then r(v) = h(t). 

The proof is easy by induction on the structure of t. It follows that L(g) = 

h-‘(Q”“‘) = L. Conversely, for every finite tree-automaton g = (F, Q, 6, Q”““), where 
6 is a mapping associating a state with every tuple (L ql,..., qk) such that f E F, 

p(f) = k, ql,..., qk E Q, one constructs an automaton (h, Q, Q”““) such that 
L = h-‘(Q”““). It follows that Rec(T(F)) is the class of sets of terms defined by finite 
bottom-up deterministic tree-automata. 
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4.3.3. Finite automaton on rooted unordered trees 

We now present a class of automata defining the recognizable sets of rooted 
unordered trees. The background structure is (R, 11, ext, l), introduced in Example 
2.3 that we shall more simply denote by R. We need a few preliminary notions. 

If Q is a finite set, we denote by M(Q) the set of finite multisets of elements of Q; we 
denote by 0 the empty multiset and by 0 the union of multisets. Letting 

Q = {q1>...,qn), we have an isomorphism j: (d(Q), 8, @) -+ (BY’, @,O) where 

j(M) = (xl,. . . , x,) if and only if xi is the number of occurrences of qi in M. (Since we 
use + to denote set union in polynomial systems, we take the symbol Q to denote 
addition of integers and of vectors of integers; we denote by 0 the vector (0,. . . , O).) The 
recognizable subsets of &Y(Q) can thus be identified, via j, with those of N”. A subset of 
N is ultimately periodic if it is of the form A u {p @ 1q 1 p E B, L E N }, where q E N and 
A and B are finite subsets of N. 

Lemma 4.11. A subset of N” is recognizable ifand only ifit is ajnite union of products 

of the form K1 x ... x K, where each Ki is ultimately periodic. 

Proof. We use two results of [27]: Proposition 12.2 of Chap. III states that a subset of 
a product monoid M1 x ... x M, is recognizable if and only if it is a finite union of 
products K1 x ... x K, where each Ki is a recognizable subset of Mi. Proposition 1.1 of 
Chap. V states that a set of nonnegative integers is recognizable if and only if it is 
ultimately periodic. The result follows from these two facts. 0 

An R-automaton is a tuple %J = (Q, 6, Q”‘“), where Q is the finite set of states, 

Q”‘” c Q is the set of accepting states and 6 is the transition relation, a mapping 
associating a set 6(q) E Rec(A(Q)) with each q, such that A(Q) is the union of all the 
sets S(q). We say that 94 is deterministic if 

(1) the sets 6(q), for q E Q form a partition of A(Q) and: 
(2) for all q, q’ E Q: 6(q) @ 6(q’):= (x 0 x’ 1 x E S(q), x’ E 6(q’)} is a subset of 6(q”) 

for some q” E Q. 

A run of 9’ on T is a mapping r of N into Q (where N is the set of nodes of T) such 
that if r(x) = q, if x1,. . . , x, are the successors of x, then the multiset {r(xl), . . . . r(x,J} 

belongs to 6(q). (This condition also applies when x is a leaf: in this case, m = 0 and 

{+4,..., r(x,)} is the empty multiset.) We call r(x) the root-state of the run r where 
x is the root of the tree. Then L(W) is defined as the set of trees T such that there is 
a run of $9 on T, the root-state of which is accepting. On each tree Tin R there is at 
least one run (one can construct one by traversing T from the leaves to the root). If 
W is deterministic there is a unique run on each tree. 

Proposition 4.12. For every subset L of R the following conditions are equivalent: 

(1) L E Ret(R), 

(2) L = L(A?) for some deterministic R-automaton a’, 

(3) L = L(g) for some R-automaton SY. 
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Proof. (1) * (2): Let L E Ret(R). Then L = h- ‘(QacC), where h is a homomorphism: 

R + Q = <Q, I IQ, exb, lQ), Q is finite and Q”“” c Q. We can assume that h is 
surjective (otherwise one replaces Q by the submagma h(R)). Hence, 1 IQ is associative, 
commutative and has unit 1,: the verification is easy by using the corresponding 
properties of I IIw and lR and the fact that h is a surjective homomorphism. We shall use 
the infix notation without parentheses for 1 IQ. 

We now build an R-automaton. We let g = (Q, 6, Q”“) with 6(q):= 8- ‘(4) for 
every q E Q, where 8 is the mapping: &Z(Q) + Q defined as follows: O(q) := 1, and for 
every nonempty multiset M = {qi,,..., qi,}: 

e(M) = extdqi,) I IQ e&dqi,) I IQ..*I IQ e&dqi,) 

(this is well-defined since I IQ is associative and commutative). Each set 6(q) is A(Q)- 
recognizable: this follows from the observation that 6 is a homomorphism: 

(-4Qh 0,8> -+ (Q, I lo, W and f rom the finiteness of Q. Hence the sets B-‘(q) are 

recognizable and pairwise disjoint. They form a partition of d(Q). It is now easy to 
check (by induction on the size of T) that for every T E R, h(T) is the root-state of the 
unique run of 9 on T. Hence L = L(B) as desired. 

In order to prove that g is deterministic, we verify that 6(q) 0 6(q’) G 6(qj \a;pq’). 

WeletMbelongto6(q)andM’to6(q’).Then8(MOM’)=8(M)II,B(M’)=qII,q’. 
Hence hence M @ M’ E S(q ) laq’) as desired. 

(2) * (3) is clear. 
(3) * (1) Let L = L(%J) for some R-automaton $8 = (Q, 6, Q”““). 

There exists (by the proof of Proposition 4.6), a homomorphism k: A(Q)+ (P, @ p, lp) 

with P finite, and P, 5 P for every q in Q such that 6(q) = k- ‘(P,); so we have a single 
semi-automaton (k, (P, Op, lp)) defining simultaneously all the sets S(q). 

For every T E R we let Sub(T) denote the set of concrete subtrees of T issued from 
the successors of the roots. We have Sub(l) = 8 and Sub(ext(T)) = {T} for every 
T E R. For every run I of&Y on T we let r(Sub(T)) denote the multiset of root-states of 
this run on the trees in Sub(T). We let h(T) = (k(r(Sub(T)))lr is a run of g on T). 

Hence h maps R into p(P). We claim that h is a homomorphism of R into 

P = C@(P), OIp, e%, {Ip} >, where 

ext,(A):= (k((q))lA n P, is not empty). 

We now verify this claim. If T = 1 then Sub(T) = 8 and h(T) = (k(0)) = {lp}. Let 
T = T’ 11 T”; let p E h(T); then p = k(M), where M = r(Sub(T)) for some run r of 9J on 
T. We have Sub(T) = Sub(T’) u Sub(T”) and M = r(Sub(T’)) 0 r(Sub(T”)). Hence 

k(M) = k(r(Sub(T’))) @Ip k(r(Sub(T”))) and belongs to h(T’) Op h(T”). Hence, we 

have h(T’ II T”) E h(T’) Oph(T”). The proof of the other inclusion is similar. Let now 
T = ext(T’). We need to prove that h(T) = ext,(h(T’)). Let p E h(T); then p = k({q}), 

where q = r(u), u is the root of T’ and r is some run of a on T. We let M be the multiset 
r’(Sub(T’)). Then M belongs to 6(q) hence k(M) belongs to P,. But k(M) belongs to 
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h(T). Hence h(T) n P, is nonempty, and p belongs to exp&(T’)) as was to be 
proved. The proof of the opposite inclusion is similar. 

Finally, we let ACC be the set of subsets of P that have a nonempty intersection 
with the union of the sets P, for 4 in Q”‘“. We claim that L(W) = h-‘(ACC), which will 
complete the proof that L(g) is R-recognizable. Let T be a tree in L(g), and r be a run 
of 99 on T with root-state 4 in Q”‘“. Let M = r(Sub(T)). Then M E 6(q) hence 

k(M) E P,. By k(M) E h(T). Hence h(T) E ACC. The proof in the other direction is 
similar. 0 

Proposition 4.13. Let L E Ret(R). The R-automaton associated with the minimal au- 

tomaton of L is the unique deterministic R-automaton dejining L having a minimum 

number of states. 

Proof. In the construction of (1) + (2) in the proof of Proposition 4.12, one can use 
the minimal automaton of L, i.e., the quotient Q = [W/wL, where -L is the syntactical 
congruence of L (see Section 4.1). One obtains a deterministic R-automaton with set of 
states in bijection with [W/mL. Conversely, for every deterministic R-automaton 
9 = (Q, 6, Q”““) such that L(W) = L, the equivalence relation on [w defined by 

TN T’ if and only if q(T) = q(T’), 

where q(T) is the root-state of the unique run of 99 on T, is a congruence that saturates 
L. Let us check this point. Let q(T) = q(T’) = q. Then q(ext(T)) = q(ext(T’)) because 
{q) belongs to a unique set 6(q’) and q(ext(T)) = q’ = q(ext(T’)). Let now 

q(Ti) = q(G’) = 41 and q(G) = q(T;) = q2. Let 4 = q(Ti I I G) and 4’ = qG‘T I I T;). 
From the condition that 6(q,) @ B(q2) E 6(q”) for a unique q” (since the automaton is 
deterministic), we get q = q” = q’. We have thus a bijection between deterministic 
R-automata and finite congruences saturating L. Since wL is the unique one with 
a minimal number of classes, we get the desired unicity result. 0 

5. Relationships between equational sets and recognizable sets 

The main theorem of this section is Theorem 5.1. It generalizes the result that the 
intersection of a context-free language and a regular one is context-free. It is funda- 
mental for the study of context-free graph grammars. 

Theorem 5.1. Let M be an F-magma and s be a sort. If K E Ret(M), and L E Equat(M), 

then L n K E Equat(M),. 

Proof. By Proposition 3.19 we can assume that L = u {L((S, M), u)lu E U’}, where 
S is a uniform polynomial system over F with set of unknown U, and U’ E U. (We 
recall from Proposition 3.6 that a polynomial system is uniform if its equations are of 
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the form u = t1 + t2 + ... + tk, where each ti is of the formf(w,, w2 ,..., w,) for some 
fe F, some unknowns wl, . . . . w, E U.) 

Let F’ c F be the finite set of symbols occurring in S, and let 6’ E 0 be the finite set 
of sorts of these symbols together with those of the unknowns of S. Hence F’ is an 
J-signature. Let h : M -+ A be an F’-homomorphism (with A locally finite), such that 
K = h-‘(C) for some C c A,. For every u E U, we let L, := L((S, M), u). We let W be 
the new set of unknowns { [u, u]} 1 u E U, a E A,,,}. It is finite. We shall define a system 
S’, with set of unknowns W, such that L((S’, M), [u, a]) = L, n h-‘(a) for every 
[U, a] E w. 

Let u E U and a E A,,,,. Let us assume that the defining equation of u in S is 
of the form u = tl + .-. + tk. Consider one of the monomials, say ti. Let us assume 
that it is of the form f(wr ,..., w,) for some unknowns w1 ,..., w,. For every 
al E A,,,l, ,..., a, E A,,,,,“) such that &(a1 ,..., a,) = a, we form the monomial 

f(Cw1, d,..., [w,, a,]), and we let fi denote the sum of these monomials. If no such 
n-tuple (al,. . . , a,) exists, then fi is defined as Sz. The defining equation of [u, a] in S’ is 
taken as 

It is clear from this construction that the W-indexed family of sets 

(L” l-l h- l (a)k,,1 E w is a solution of S’ in p(M). Hence L, n h- ‘(a) 2 L,,., where 

(L”,.)[U,.l E w denotes the least solution of S’ in p(M). 

In order to establish the opposite inclusion, we define from L,,, the sets 
L: = U{L,,.~UE A,,,,} for u E U. Then (L:),., is a solution of S in M (this is easy to 
verify). Hence L, E L: for all u. For all a E A,,,,, we have 

L, n h-‘(u) E L: n h-‘(u) = (lJ{L,,Jb E A}) n h-‘(u). 

The latter set is equal to L,,, n h-‘(u) since Lu,b c L, n h-l(b) and, 
h-‘(b) n h-‘(b’) = 8 for all b, b’ # b. Hence L, n h-‘(u) G L,,,. By the first part of 
the proof, we have an equality, and (L, n h-l(u))r,,,lE w is the least solution of S’ in 
g(M). Finally, we have 

LnK=(lJ{L,luEU’})nh-‘(C) 

= U {L((S’, M), [u, a]) 1 u E U’, a E C}. 

Hence L n K E Equat(M),. 0 

The above construction is effective if K is effectively given, and L is defined by 
a given system. Hence, since the emptiness of an equational set (defined by a system of 
equations) is decidable, we have the following corollary that can be contrasted with 
the undecidability result of Proposition 4.5. 

Corollary 5.2. If K is an efectively given M-recognizable set, and $ L is an M- 

equational set, one can test whether L n K = fi, or whether L c K. 
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The following two results are also due to Mezei and Wright [38]. 

Proposition 5.3. If F is finite then Rec(T(F)) = Equat(T(F)). 

Proof (Sketch). Every recognizable subset K of T(F) is equational: it is not hard to 
transform a finite tree-automaton defining K into a regular term grammar; hence K is 
equational. 

Let us consider conversely an equational subset L of T(F) given by a uniform 
polynomial system S; let us convert S into a regular term grammar; it is not hard to 
transform this grammar into a finite tree-automaton defining L. This automaton is 
not frontier-to-root deterministic in general. It can be transformed into an equivalent 
deterministic one; hence, L is recognizable. We refer the reader to [29] for details. 0 

Corollary 5.4. A subset L of M, is M-equational if and only if L = hM(T) for some 
recognizable subset T of T(F’),, where F’ is a jnite subset of F. 

Proof. The “if” direction follows from Propositions 3.7 and 5.3. The “only if’ direc- 
tion follows from Proposition 5.3 and Corollary 3.8. 0 

In the following corollary, Ret(M) G Equat(M) means: Ret(M), E Equat(M), for 
all s in d. 

Corollary 5.5. Let M be an F-magma generated by F. Then Ret(M) c Equat(M) ifand 

only iffor every s E ci, there exists a jinite subset F’ of F such that h,(T(F’)J = M, 

Proof. “If”: Let L E Ret(M), let F’ be a finite subsignature of F such that 
h,(T(F’),) = M,. Then T = h,‘(L) n T(F’)s E R~c(T(F’))~ (since h,‘(L) E 
Rec(T(F’)),). Hence L = h,(T) and is M-equational by Corollary (5.4). 

“Only if”: Let Ret(M) E Equat(M). Then M, E Equat(M) and M, = h,(T’) for 
some T’ E Rec(T(F’))S with F’ finite, F’ c F. Hence M, = h,(T(F’)),. 0 

We conclude this section with a few remarks on the difficulties of generalizing the 
notion of a rational subset of a monoid to arbitrary magmas. Let 
F=(*,e,a, ,..., ak ,... }, where. is binary and e, al,. .., a&,, . . . are nullary. Let M be an 
F-magma that is a monoid for Q with unit element eM. For every L E M, one lets 

L*={eM}vLvL2u~~~uL”v~~~, (5.1) 

where L”:= L*L* ...a L (with n times L), so that L* is the least solution of the 
equation 

X= {eM} u LOX (5.2) 

or equivalently of the equations X = {eM} u X l L and X = (eM} u L u X l X. 
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The mapping L H L* is called the star operation. One defines Rat(M), the class of 
rational subsets of M as the least family of subsets of M that contains the singletons 
defined by e, a,, . . . , ak, , . . and that is closed under union, l and star. These sets are the 
values of the rational expressions which are defined inductively as follows: 

(1) e, al ,..., uk ,... are rational expressions denoting {eM}, (a,,}, . . . , (a,_,}, . . . re- 
spectively, 

(2) if El, E2 are rational expressions denoting, respectively, L1 and L2 G M, then 
(E,)*(E,), (E,) + (Ez) and (E,)* are rational expressions denoting, respectively, 
L1aLZ, L1 v L2 and Lf. 

Proposition 5.6. For every monoid M, we have the inclusion: 

Rat(M) E Equat(M). 

Proof. If L = L((S, M), u) then L* = L((S’, M), u’), where S’ = S u {u’ = e + u.u’} 
and u’ is an unknown that has no occurrence in S. This can be easily verified from 
Corollary 3.8. The result follows then from Proposition 3.23 by means of an induction 
on the structure of a rational expression denoting a set that we want to prove to be in 
Equat(M). 0 

If M = WV.., and A has at least 2 elements then Rat(M) is equal to Ret(M), i.e., is the 
family of regular languages, and is properly included in Equat(M). 

A natural question is the following: what could be the notion of a rational subset of 
an arbitrary F-magma? There is actually no unique natural generalization of the star 
operation. For any polynomial p(x, y) in two variables, one can define a mapping 
p(M)+ p(M), denoted by LXpY.p(X, Y) such that for every subset L of M, 

p Y.p(L, Y) is the least solution of the equation Y = p(L, Y). A system of notations for 
least solutions of polynomial systems does exist and is called the ~-calculus [39]. 
However, it is too powerful for the purpose of obtaining an extension of Kleene’s 
Theorem by means of “generalized rational” expressions defining the recognizable 
sets. It is too powerful because its terms, written with set union, set extensions of the 
base operations and minimization (the above construction p Y. t) define the whole class 
Equat(M). Furthermore, the full p-calculus contains also terms written with intersec- 
tion and maximization operators (defining greatest fixed points) which define sets that 
are not even equational. We refer the reader to [39] for more details about this 
language. 

6. Inductively computable functions and Parikb’s theorem 

Inductively computable functions constitute an extension of recognizability. They 
“fit well” with equational sets, as shown by Theorems 6.3 and 6.7 that are somewhat 
similar to Theorem 5.1. As a corollary, we obtain a generalized form of Parikh’s 
Theorem on the commutative images of context-free languages. This generalization is 
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useful for graph grammars. Inductively computable functions are fundamental for 
certain constructions of linear graph algorithms. 

Let F be an d-signature and M be an F-magma. Let N be a set and let d be a family 
of mappings called evaluations where each e E d maps M, + N for some s E 0. We call 
s the arity of e. We say that d is F-inductive if for every e E 8’ andfE F there exists 
a partial function ge,f : N” + N and k sequences (e:, . . . , e,‘,), . . . , (e”,, . . . , ei,), where 

k = ~(f ), m=ni+ ... + nk, each function e! has arity N(f)j (where a(f)j is the jth 
element of the sequence g(f)) and we have, for every di, . . . . dk E M such that 
G(di) = a(f); for all i = l,..., k: 

e(h(dl,..., dk)) = &,,&~(~I)~..., e?!,(h), e:(d2)y . . . . $i(dk)y-.., e@k)). (6.1) 

This means that the value of e atfM(dl,. . . , d,+) can be computed, by means of some 
fixed function ge,f, from the values at d 1,. . . , dk of m mappings of d (the mappings 
d are not necessarily pairwise distinct and some of them may be equal to e). We shall 
call the tuple 

(ge,,,(e:,...,e,l,),(et,...,e,2,),...,(e:,...,e~~)), (6.2) 

the decomposition of e relative to f M. In Section 4.1, we have introduced inductive 
family of predicates: they are just the special case of inductive families of evaluations 
where N = {true, false}. If 6 is F-inductive, if d E M is given as tM for some t E T(F) 

(i.e., this means that d has been “parsed” in terms of the operations of M), then one can 
evaluate e(d) by the following algorithm using two traversals oft. (We assume that B is 
finite.) We denote by t/u the subtree of t issued of u; it is also a term. 

Algorithm 6.1. 

Input: a term t given as a tree, an evaluation e. in 8; 
Output: the value eo(tM). 
Method 

First traversal (Root-to-frontier): One associates with every node u of the tree t a set of 
evaluations b(u), that will have to be “computed at u”, i.e., for the argument (t/t&. 

For the root r, we let 8’(r):= {eo}. 
For a node u such that b(u) is already known and that has successors ul , . . . , uk, 

then, for every e in b(u), iffis the operation labelling u, and 

(g,(e:,...,e,‘,),(e:,...,e~~),...,(e:,...,ek,,)), (6.3) 

is the decomposition of e relative to fM, we add to each set b(ui), i = 1, . . . . k, the 
evaluations ei,. . . , et,. 

Second traversal (Frontier-to-root): Starting from the leaves, one computes at each 
node u the value e((t/&) of the functions e E b(u). We use the formula: 

e((rl&) := g(e:((tlulM ,...,e,‘,((tlul),),...,e:((tluk),),...,ek,,((tluk),)) 

based on the decomposition of e relative to_& (see (6.3)). One obtains at the root the 
desired value eo(tM). 
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This technique is useful for certain algorithms, taking as input “structured graphs” 
i.e., graphs expressed as values of algebraic expressions written with appropriate 
graph operations, typically those introduced in Example 2.4. 

We shall now investigate the structure of sets of the form e(L) := {e(d) 1 d E L} G N, 

where e is a mapping belonging to an F-inductive family 8 and L is M-equational. We 
shall need the following assumptions: 

(Hl) d has finitely many mappings of each arity s E 6, 
(H2) N is an H-magma for some signature H with set of sorts CI’, (tl’ is not 

necessarily equal to 6), 
(H3) the functions ge,f are derived operations of N; each of them is defined by 

a term &. 

Theorem 6.2. Zf conditions (Hl)-(H3) hold, if in Equalities (6.1) we have 
n, < l,..., nk < 1 and if the terms t,g,f are all linear, then e(L) E Equat(N)for every 

L E Equat(M) and every e in 8. 

Proof. Let L = L((S, M), q), where S is a uniform polynomial system with unknowns 

Ul,***, u, . We shall assume that M and N have only one sort: this simplifies the 
notation and is not a loss of generality. 

For every e E 8’ and i E [l, n], we let [e, UJ be a new unknown. We shall build 
a polynomial system S’ with these new unknowns such that the component of its least 
solution corresponding to [e, UJ is the set e(L((S, M), Ui)). For every equation 

Ui = ‘.. +f(Ui,,...,Uil) + ‘.. 

of S, every e E 8, we create the equation of S’: 

[e, Ui] = **a + t,,/([er, Utl]y***y [ek, Ui,]) + ..., 

where (g, (e’) , . . . , (e”)) is the decomposition of e relative tofM and L,,~ is a linear term 
over H defining in N the function g. 

We let (A{,..., A’,) be the jth iterate (where j > 0) approximating the least solution 
of S in p(M) (see the proof of Proposition 3.5). Similarly, we denote by A’,, i for e E 6 
and i E [l, n] the component corresponding to [e, Ui] of the jth iterate of SbCN). 

Claim. For every j E N, every i E [l, n], every e E 8, we haue e(Aj) = A’,,i. 

Proof. By induction on j. The case j = 0 is clear: both sets are empty. Let us establish 
the case j + 1 assuming the case j. Let a E e(Ai+ ‘). We have a = e(_&(dl, . . . , dk)) 
for some d,EA~,,...,dkEA-i, where the equation defining Ui is 

Ui = .** +f(Ui, ,..., Ut,) + ... . Hence a = t,,f,(e’(dl), . . . . ek(dk)) where t,,S, e’, . . . . ek are 
as above; we have 

e’(dl) E e’(Ai,) = Adl,i, >...a e”(dk) E ek(A$ = A$, ik 
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using the induction hypothesis, hence a E A$’ by the definition of S’. Hence we have 
proved 

e(A;+‘) E A;;‘. 

The proof of the other inclusion is similar. If a’ = t,,f,(a;,..., a;) with 

a;EAJ,l,i, ,..., a;EAJek,i,, thenwehavea;=ei(di) ,..., a;=ek(d,),dIEAi, ,..., d,EA{,, 

we can take d =fJdI,..., dk) E Ai+’ and a’ = e(d) E e(A{+‘). q 

As an application, we obtain a generalization of Parikh’s theorem. We let 4 E N + ; 
we let N be the commutative monoid (Nq, 0, @ , 1, ,..., l,), where 0 = (0, . . . . 0), 
li = (0, O,..., l,..., 0) (and 1 is at position i), and @ is the vector addition: 

(al,az,...,a,)O(bl,...,b,) = (a1 Obl,..., a4 @ bJ. We assume that for every s E 5 
there is in 15’ a unique evaluation e,: M, + N, and that the functions ge,f of the 
decompositions are of the form 

where b E W. Since b can be written as a finite sum of constants 0, 11, . . . . 1, the 
operation ge,/ is linearly derived. It follows that Equalities (6.1) have the form: 

e(f&-&,..., dk)) = ei(di) 0 ... 0 e&M 0 b, (6.4) 

where ei is the evaluation in d of arity o(di). We shall say that d is a Parikhfamily of 
evaluations on M. 

We recall a few definitions. A set A E Nq is linear if it is of the form 
A={IlalO...O~,a,Ob/~l ,..., &EN} for some aI ,..., a,, bEfV and where for 
AEN, aEW, ia=O if A=0 and Aa=a@a@ .a+ 0 a with 1 times a if ,? 2 1. 
A subset of Nq is semi-linear if it is a finite union of linear sets. Since a linear set as 
above can be written A = a*a* 1 2 . . . a,*b it follows that every linear set, hence, every 
semi-linear set is rational. Conversely, by using the laws: 

(A + B)* = A*B*, 

(A*B)* = E + A*B*B, 

which hold for arbitrary subsets A and B of a commutative monoid, one can 
transform a rational expression defining A E Rat(Nq) into a sum of terms of the form 

* * a,a, . . . a,*b for al,... , a,,, b E RJq. Hence, every rational subset of Nq is semi-linear. 

Corollary 6.3. If L E Equat(M) and e belongs to a Parikh family of evaluations, then 
e(L) E Equat( W) and is semi-linear. 

Proof. That e(L) E Equat(Nq) follows from Proposition 6.2. Pilling has proved in [41] 
that every equational set of a commutative monoid is rational, hence, we get that 
e(L) E Rat(Nq), hence is semi-linear. 0 
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Example 6.4. We let A = {a, b, c}. We consider a context-free language L E A*. For 
every u E A*, we let e(u) = (I u Ia, 1 u lb, 1 u I,) E N3 where I u Ix is the number of occurren- 
ces of x in u. Then {e} is a Parikh family of evaluations since 

e(u*u’) = e(u) @ e(u’) 

(in (6.4) we have k = 2 and b = 0 wherefis the concatenation of words). The system of 
equations associated by the proof of Theorem 6.2 and Corollary 6.3 to the system of 
Example 3.1 is then 

Example 6.5. We consider the magma of series-parallel graphs (Sp, l , ( 12, e) of 
Examples 2.4, 3.3, 4.10. We consider the evaluation # : SP + IV’ such that 

#(G) = (number of edges of G, number of nonsource vertices of G). 

Then 

#(G 112 G’) = #(G) 0 #(G’), 

#(G*G') = #(G) 0 #(G’) 0 1,. 
Hence from the equation 

u = ullu + u.u.u + e, (6.5) 

which defines a subset L of Sp, we get the following equation that defines #(L) G N’: 

u=u@u+u@u@c401,@1,+1,. 

Example 6.6. One cannot omit the linearity assumptions of Theorem 6.2. Here is 
a counterexample. Let S be the equation over some {f, h}-magma M: 

u =f(u) + h 

and e be an evaluation: A4 + N such that, for every u E M: 

e(h) = 1, 

e(f(u)) = e(u) @ e(u) = 2e(u). 

(We recall that @ denotes the addition of integers and + denotes set union.) The 
corresponding equation that defines e(L((S, M), u)) is 

u=2.u+1,, 

with solution (2” I n 2 0} which is not a semi-linear set of integers. 
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We now present another extension of Parikh’s theorem which has applications in 
graph grammars. We let M be an F-magma, we let N be a G-magma, we let d be 
a finite family of mappings: p(M) + p(N) satisfying the following conditions, for all 
f~ F, for all subsets Ai, . . . . Ai )... of M of appropriate sort: 

(Pl) e(A, u AZ u ...) = e(Al) u e(AJ u --. 

(P2) e(f,cM,(Al,...,A,))= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

where t i ,..., t,arelineartermsinT(G,{x, ,..., xk})andei,j, 1 < i<m, 1 <j< kare 
elements of 8. 

Theorem 6.7. ZfS satisfies conditions (Pl) and (P2), ife is an evaluation ofJ,for every 
L E Equat(M) we have e(L) E Equat(N). 

Proof. Essentially the same as the proof of Theorem 6.2 0 

Example 6.8. As in Example 6.5 we use series-parallel graphs, but directed ones: this 
means that the basic graph e is a single edge directed from the first source to the 
second one. Directed series-parallel graphs are thus acyclic. We shall denote their set 
by SP’. 

For every graph G in Sp’, we let n(G) be the set of lengths of directed paths in G that 
link the first source to the second one. Hence rc maps Sip’ into @(IV). For L E W”, we 
let ZI(L) = lJ{rc(G)I G E L}. This mapping satisfies Condition (Pl) because it is 
a homomorphism for union and Condition (P2) because 

4G II G’) = n(G) u 4G’) = tlp(rq(4G)) u tzB(N) (4G’)), 

x(G*G’) = x(G) 0 n(G’), 

= {n 0 n’l n E n(G), n’ E r(G’)} 

= &pqb(G), n(G))), 

where tl = x1, t2 = x2 and t3 = x1 0 x2. For Eq. (6.5) of Example 6.5 we obtain 

u=u+u@u@u+l,. 

Its least solution is the set of odd numbers { 1,3, 5,7, . . . }. 

7. Guide to the literature 

We review in Table 1 the main facts concerning the equational, recognizable and 
rational sets (when they are defined) of some basic types of finite objects. 

The sets of pairs of words defined by finite deterministic two-tape automata are 
properly inbetween Equat(OJ, x UJ,) and Rec(LJ, x RJB); see [12]. 

We now review the various sections of the paper, we comment on the results, list 
some applications and indicate what we consider to be the main references. 
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Table 1 
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Structure Main results 

N = (N, @ , 0,l) = !A’{,,) (One-letter words) 

LNA (Monoid of words on A) 

WA,, (Monoid of partially commutative words, 

also called traces) 

N” = (W, Q, 0, 1, ,..., 1.) = the finite multisets 

of elements of {al,. . . , a.} = the free 

commutative monoid generated by {al,. . . , a.} 

OJJA (Words with right concatenation by letters) 

UJJA x OJB (Pairs of words with right 

concatenation by letters) 

T(F) (Terms over F; UJA is a special case of T(F)) 

R = (R, 11, ext, 1) (Rooted unordered trees) 

6 (Undirected finite graphs with sources) 

(6 is many sorted with infinitely many sorts 

and operations) 

Equat(N) = Rat(N) = Ret(N) = the ultimately 

periodic subsets of N = the regular languages on {a} 

Equat(VVJ = the context-free languages; 

Rat(FNJ = Rec(wA) = the regular languages on A 

Rat(!N”,,J = Rec(VVA,J = the sets defined by the 

cellular asynchronous automata of Zielonka [9,47]. 

There is no unique minimal such automaton defining 

a recognizable set of traces [8]. 

Equat(N”) = Rat(N”) by [41]; Rec(N”) is the set of 

finite unions of products of sets of Ret(N) (Section 

4.3.3). 

Equat(UA) = Rec(UJ = the regular languages on A. 

The minimal deterministic automaton corresponds to 

the syntactical congruence w.r.t. LJA, i.e., to the least 

right semi-congruence. 

Equat(U, x U,) = the sets of pairs of words 

(u, u) E A* x B* defined by finite (nondet.) two-tape 

automata [lo]; it contains properly the class 

Rec(UJ, x U,) = the finite union of Cartesian 

products of regular languages. 

Equat(T(F)) = Rec(T(F)) = the regular sets of 

terms = the sets of terms defined by finite tree- 

automata. The minimal deterministic automaton 

corresponds to the syntactic congruence w.r.t. T(F). 

Equat(R) 3 Ret(R) by [12]. The recognizable sets of 

rooted trees are defined by certain finite automata 

(Proposition 4.12). There exists a unique minimal 

deterministic R-automaton recognizing any member 

of Ret(R) (Proposition 4.13). 

Equat(G) = the sets generated by context-free 

hyperedge replacement grammars; the set of all finite 

graphs is not equational. Ret(G) = the recognizable 

sets of finite graphs; it is incomparable with Equat(G); 

it is uncountable and cannot be described by finite 

automata. 

7.1. Remarks on Section 2 

There are two families of operations on graphs and hypergraphs. The operations 

presented in Example 2.4 yield the hyperedge replacement sets of graphs and hyper- 
graphs as the corresponding equational sets. See Habel [33] on hyperedge replace- 

ment grammars; see Arnborg et al. Cl], Bauderon and Courcelle [S], Courcelle [13, 

191 for variants in the definitions that yield the same equational sets. Other operations 

on graphs and hypergraphs, yielding the vertex replacement sets of graphs and 
hypergraphs are considered in Courcelle et al. [22] and [ll, 17,211. 
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The identity of the equational and the inductive theory of a set of equational 
axioms, is called the o-completeness. See Lazrek et al. [36] or Tajine [44] for tools to 
establish o-completeness. 

7.2. Remarks on Section 3 

A thorough study of polynomial systems can be found in Courcelle [lo]. This 
paper reviews transformations of polynomial systems and distinguishes the trans- 
formations which preserve the set of solutions from those which preserve only the 
least solutions. 

Proposition 3.7 due to Mezei and Wright [38] is a simple but fundamental result, as 
pointed out by Engelfriet and Schmidt [28]. It is also the basis of initial algebra 
semantics [31] and of algebraic semantics [32] where it applies to recursive definitions 
of various types and to program schemes. It can be seen as the fundamental result of 
strictness analysis: see in particular Damm [24, Theorem 7.81 which develops the 
ideas of [28]. The noncircularity test for attribute grammars is based on Propositions 
3.5 and 3.7 (See [lo, Section 16.81). 

Overlooking the linearity requirement in results (3.9)-(3.11) has been the source of 
false statements. See Engelfriet and Schmidt [28] and Arnold and Dauchet [3] for 
discussions and correct versions. 

There are two ways of defining derivation trees for context-free grammars. The 
“concrete one” where nodes of the derivation tree are labelled by terminal and 
nonterminal symbols is appropriate for establishing pumping lemmas and for syntax 
analysis. It has not been used here because it does not extend to arbitrary systems of 
equations. The “algebraic notion” of derivation tree presented here is applicable to 
arbitrary systems; it is useful for semantic purposes, and in particular for the transla- 
tion step in compilation because the corresponding trees are smaller than the “con- 
crete ones”. 

Proposition 3.17 gives the theorem of Ginsburg and Rice [30] saying that the 
context-free languages generated by the nonterminals of a grammar form the least 
solution of the corresponding system of equations. This result is similar to many 
others relating a “fixed-point semantics” with an “operational one”: the characteriza- 
tion of equational sets in terms of regular term grammars is the “operational seman- 
tics” of our systems of equations. We refer the reader to Guessarian [32] or Courcelle 
[14] for examples of such results in semantics. 

We used but did not reprove Kleene’s fixed-point lemma: this “folklore” result is 
well-known enough. See Lassesz et al. [35]. 

The set of all finite graphs is not equational. The reason is that all finite graphs 
cannot be generated by a finite subsignature of G. (See [S, 13,191). This shows 
a major difference with the case of words. 

Not much is known about systems of equations using intersection and difference of 
sets. We can only cite Leiss [37]. 



52 B. Courcelle / Theoretical Computer Science 163 (1996) 1-54 

7.3. Remarks on Section 4 

Automata are particular to certain structures like words and trees. On the contrary, 
the purely algebraic notion of recognizability works in any magma. (This view point is 
developed in [12]). 

Proposition 4.1 is more or less a “folklore” theorem: the case of monoids is stated 
without proof in Eilenberg [27, Proposition 12.1, Chap. III]). The general statement 
can be found in Steinby [43, Proposition 3.11. Monoids that satisfy Kleene’s Theorem 
are studied in [40,42]. 

Proposition 4.5 has an important illustration with graphs. It is proved in Courcelle 
[15] that the set of finite graphs satisfying a property expressed in monadic second- 
order logic is effectively recognizable. This gives in particular an effective way of 
defining recognizable sets of graphs, by logical formulas. However the emptiness of 
such a set is undecidable: one cannot decide whether there exists a finite graph 
satisfying a given formula. By Corollary 5.2 one can decide whether there exists 
a graph in a given equational set that satisfies a given monadic second-order formula. 
(As already observed, the set of all finite graphs is not equational.) In Arnborg et al. 
[l], the notion of recognizability of a set of graphs is used for the construction of 
graph reduction systems, able to verify certain graph properties in linear time. 

The book by Gecseg and Steinby [29] develops in detail the different aspects of 
tree-automata. See also the volume edited by Nivat and Podelski where [4] and [18] 
appear. The correspondence between algebraic and concrete automata is also dis- 
cussed in [12]. Magmas such that the equational sets are recognizable are considered 
in [12]. 

The recognizable sets of rooted unranked unordered trees are those definable by 
formulas of counting monadic second-order logic. See [15] for the proof (and the 
necessary definitions). 

7.4. Remarks on Section 5 

Theorem 5.1 generalizes the fact that the intersection of a context-free language and 
a regular one is context-free. The application of this result to graph grammars (where 
recognizable sets of graphs are defined by formulas of monadic second-order logic) is 
an essential tool. 

7.5. Remarks on Section 6 

The use of Algorithm 6.1 for input graphs given with a derivation tree relative to 
a hyperedge-replacement grammar is developed by Courcelle and Mosbah [23], and 
in a different setting by Arnborg et al. [a]. See these papers for references to many 
previous papers using the same methodology. 

Theorem 6.7 applies to certain evaluations defined in terms of monadic second- 
order formulas and yields another proof of the extension of Parikh’s Theorem 
presented in [21]. 
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