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SUMMARY

To establish highly precise patterns of neural con-
nectivity, developing axons must stop growing at
their appropriate destinations and specifically syn-
apse with target cells. However, themolecular mech-
anisms governing these sequential steps remain
poorly understood. Here, we demonstrate that cad-
herin-7 (Cdh7) plays a dual role in axonal growth
termination and specific synapse formation during
the development of the cerebellar mossy fiber circuit.
Cdh7 is expressed in mossy fiber pontine nucleus
(PN) neurons and their target cerebellar granule neu-
rons during synaptogenesis and selectivelymediates
synapse formation between those neurons. Addi-
tionally, Cdh7 presented by mature granule neurons
diminishes the growth potential of PN axons.
Furthermore, knockdown of Cdh7 in PN neurons
in vivo severely impairs the connectivity of PN axons
in the developing cerebellum. These findings reveal a
mechanism by which a single bifunctional cell-
surface receptor orchestrates precise wiring by
regulating axonal growth potential and synaptic
specificity.

INTRODUCTION

Precise synaptic connections in the nervous system are crucial

for the establishment of functional neural circuits. During neural

development, once the growing axons arrive at their destina-

tions, neurons halt the axonal growth program and select the

appropriate target cells to form specific synapses. Because

axons must be effectively stabilized to develop synapses soon

after they connect to their ultimate target cells, axon-target

connection and axonal growth termination should be closely

orchestrated in a spatiotemporal manner. Although various

mechanisms have been explored in the control of synaptic spec-

ificity, including mutual recognition and elimination (Sanes and

Yamagata, 2009; Shen and Scheiffele, 2010), the molecules

that have been identified as being involved in synaptic specificity

remain limited, especially in mammals. In addition, how neurons

correctly terminate axonal movement in their target regions re-

mains obscure in most circuits. Accordingly, a coupled mecha-
nism establishing specific synaptic connections and terminating

axonal growth during neural development has yet to be

determined.

The cerebellum is an excellent model for studying circuit con-

nectivity because of its well-characterized simple circuits that

consist of a small number of neuronal cell types (Altman and

Bayer, 1997). Climbing and mossy fibers, the two afferent net-

works, convey information to the cerebellum. Climbing fibers,

which emerge from the inferior olivary nucleus (IO) neurons in

the caudal hindbrain, selectively and directly synapse with Pur-

kinje cells in the cerebellar cortex, whereas mossy fibers, which

originate from several distinct neuronal types, such as PN neu-

rons, innervate granule neurons and Golgi cells in the granule

cell layer (GCL) (Figures 1A and 1B). Although previous studies

have revealed the morphological features of climbing andmossy

fibers in the developing cerebellum in great detail (Mason and

Gregory, 1984; Sugihara, 2005), the molecular mechanisms

establishing the precise connections of the cerebellar afferent

fibers remain largely unknown.

Among the mossy fiber circuits, development of the pontocer-

ebellar circuit between pontine nucleus (PN) neurons and

granule neurons has been intensely studied. Growing PN axons

project from the basilar pons to the cerebellum (Figure 1C). After

arriving at the cerebellar cortex around birth, PN axons greatly

decrease their growth and never enter the most apical layer of

the developing cerebellar cortex, the external granule cell layer

(EGL), where immature granule cells proliferate (Ashwell and

Zhang, 1992; Manzini et al., 2006). Thus, PN axons wait below

the EGL for granule cells to differentiate into neurons andmigrate

inward to form the internal granule cell layer (IGL). Differentiated

granule neurons start to migrate into the IGL during the middle of

the first postnatal week and complete their migration by the third

postnatal week (Altman and Bayer, 1997). During this period,

some PN axons transiently contact the Purkinje cells. Based

on their morphological changes in the IGL, PN axons also

continue growing to some degree, presumably to translocate

from the Purkinje cells to granule neurons (Mason and Gregory,

1984; Kalinovsky et al., 2011; White and Sillitoe, 2013). Eventu-

ally, by the third postnatal week, PN axons stop growing and

establish synaptic connections with granule neurons and Golgi

cells in the IGL (i.e., the future GCL).

A heparin-binding factor-dependent ‘‘stop’’ signal from imma-

ture granule cells in the EGL may serve as a potent initial brake

for PN axons that enter the cerebellar cortex (Manzini et al.,

2006). However, the mechanism that terminates the axonal
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Figure 1. Cdh7 Is Selectively Expressed in Mossy Fiber Neurons

(A and B) Schematic representations of the locations of the neuronal nuclei (A) and the circuits (B) of mossy fiber (MF) and climbing fiber (CF) neurons. Black circle,

granule neuron; gray circle, Golgi cell; white circle, Purkinje cell.

(C) Scheme of the development of the pontocerebellar circuit. PN axons arrive at the developing cerebellum around birth, when granule cells (GC) still proliferate in

the EGL. Some PN axons transiently contact Purkinje cells (PC). Shortly thereafter, granule cells differentiate into granule neurons (GN) in the EGL and migrate

toward the IGL. By the third postnatal week, the contacts between PN axons and Purkinje cells are eliminated, all granule neurons settle in the IGL, and the

specific pontocerebellar circuit connections are established. For additional details, refer to Figure S4J.

(D) Sections of P14 hindbrain were immunostained with antibodies against Cdh7 and neuronal markers (Hu and calbindin). The dotted lines indicate themargin of

each neuronal nucleus.

(E) Western blot analysis of Cdh7 in PN in vivo. The signal intensities of Cdh7 are normalized to that of actin, and the normalized value of the E17 sample was set at

1.0. The data represent the mean ± SEM of three mice. *p < 0.01: E17 versus P28 or P49; ns, not significant.

(legend continued on next page)
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growth of PN neurons at the later stage in the IGL, where PN

axons ultimately settle and form synapses with their target cells,

has not been identified. Purkinje cell-derived BMP4 eliminates

erroneous connections between PN axons and Purkinje cells

(Kalinovsky et al., 2011). In addition to this error-correction

mechanism, unidentified positive signal(s) that selectively con-

nect PN axons to granule neurons may be a key mechanism in

establishing the circuit connectivity in the pontocerebellar sys-

tem (Manzini et al., 2006; Kalinovsky et al., 2011).

In the present study, we have identified Cadherin-7 (Cdh7) as

a mediator of synaptic specificity in the pontocerebellar circuit.

We also provide evidence suggesting that Cdh7 is involved in

the growth termination of PN axons in the IGL. These findings

indicate that Cdh7 may spatiotemporally orchestrate the axon-

target connection and the axonal growth termination of mossy

fiber neurons.

RESULTS

Cdh7 Is Expressed in Mossy Fiber Neurons, but Not
in Climbing Fiber Neurons
In Sema6a-deficient mice, many granule neurons are abnormally

located in the molecular layer (ML) because of migration defects

(Kerjan et al., 2005). Nevertheless, mossy fibers synapse with

those ectopic granule neurons, suggesting a cell type-based

target recognition mechanism in mossy fiber neurons. In addi-

tion, even in culture, granule neurons preferentially form synap-

ses with PN axons rather than IO axons, indicating that a cell-

surface-associated mechanism is involved in this specific

connection (Ito and Takeichi, 2009). Although PN and IO neurons

largely share regulatory and molecular machinery during circuit

formation (Sotelo and Chédotal, 2013), the axons of PN and IO

neurons form synapses exclusively and selectively with their

target neurons in the cerebellum at almost the same develop-

mental stage (Mason and Gregory, 1984; Sotelo, 2004). Based

on this evidence, we hypothesized that regulators of synaptic

specificity in PN neurons might be synapse membrane proteins,

especially cell adhesion molecules, that were specifically ex-

pressed in PN neurons, but not in IO neurons, at the synapto-

genic stage. Thus, to identify the molecule(s) responsible for

the synaptic specificity of PN neurons, we first performed a tran-

scriptome analysis based on DNA microarrays using high-purity

tissue samples from the PN and IO, which were collected by

laser microdissection at postnatal day 12 (P12). Among more

than 8,000 genes categorized under the Gene Ontology (GO)

term ‘‘cell adhesion (GO:0007155),’’ we identified cell adhesion

genes that were specifically expressed in PN neurons (Table

S1). We next performed small hairpin RNA (shRNA)-mediated

in vivo knockdown of PN-specific cell adhesion molecules to

examine the connectivity of PN axons in the cerebellum. Based

on preliminary results from this experiment, we hypothesized

that Cdh7, a classic type II cadherin specifically expressed in
(F) A single PN axon terminal in P14 IGL. (Refer to Figure S1G for the low-magn

Section was immunostained with antibodies against Cdh7, SYP and GFP. Note th

(G) Immunostaining for Cdh7, SYP andGFP in PN neurons cocultured with granule

that Cdh7 localizes in a SYP-containing PN axon terminal (arrow). Scale bars rep

See also Figure S1 and Table S1.
PN neurons (Table S1), would be a strong candidate for regu-

lating the synaptic specificity of PN neurons.

To explore the role of Cdh7 in the synaptic specificity of PN

neurons, we first examined the expression of Cdh7 in mossy

fiber and climbing fiber neurons by immunohistochemistry using

a specific antibody against Cdh7 (Figures S1A–S1D). At P14,

Cdh7 was highly expressed in PN neurons (Figure 1D; Fig-

ure S1F). Interestingly, Cdh7 was also expressed in the other

mossy fiber neurons, including those of the lateral reticular nu-

cleus (LRN) and external cuneate nucleus (ECN) (Figures 1A,

1B, and 1D). In contrast, and consistent with the DNAmicroarray

analysis (Table S1), the expression level of Cdh7 in IO neurons

was low compared with that in the mossy fiber neurons (Fig-

ure 1D). Cdh7 was consistently expressed in PN neurons at least

from embryonic day 17 (E17) to P14, suggesting that Cdh7

expression remains high in PN neurons during synaptogenesis

(Figure 1E; Figure S1E). We next examined the localization of

Cdh7 in the axon terminal of PN neurons. To label PN axons

in vivo, green fluorescent protein (GFP) was expressed in PN

neurons by in utero electroporation. At P14, Cdh7 clearly local-

ized in the ‘‘rosette’’ of PN axon terminals in the IGL, a core struc-

ture that forms a large synapse complex with granule neurons

and Golgi cells and contains presynaptic molecules such as syn-

aptophysin (SYP) (Figure 1F; Figure S1G). We also confirmed the

axonal localization of Cdh7 in vitro. As shown in Figure 1G, Cdh7

accumulated in the SYP-containing axon terminal of PN neurons

that were cocultured with granule neurons. Together, these re-

sults indicate that Cdh7 is selectively expressed in mossy fiber

neurons, including PN neurons, and localizes in axon terminals

during the synaptogenic stage.

Cdh7 Is Expressed on the Surface of Granule Neurons
Because Cdh7 exhibits homophilic binding, a feature of classic

type II cadherins (Dufour et al., 1999; Hirano and Takeichi,

2012), we also examined the expression of Cdh7 in the cere-

bellum. Cdh7 mRNA was expressed in the IGL and Purkinje cell

layer (PCL) at P12, aswell as in the cultured granule neurons (Fig-

ures S2A and S2B). We then investigated the expression and

localization of Cdh7 protein in the cerebellum. Consistent with

the mRNA expression, Cdh7 protein was highly expressed in

the IGL and PCL in P14 cerebellum (Figure 2A). In the PCL,

Cdh7 was expressed in Purkinje cells with a restricted localiza-

tion pattern in the cytoplasm but was almost absent from the

plasma membrane (Figure 2B). Detailed observations of the

cellular distribution of Cdh7 in Purkinje cells revealed that Cdh7

was almost completely confined to the perinuclear structures

and was scarcely observed in other cytoplasmic regions (Fig-

ure S2C). In the IGL at P14, Cdh7 was expressed in granule neu-

rons and accumulated in their perinuclear structures in the small

cytoplasm (Figure 2C). To examine the dendritic localization of

Cdh7, we cultured cerebellar neurons. In granule neurons,

Cdh7 was clearly localized in the dendrites and accumulated in
ification image.) GFP was expressed in PN axons by in utero electroporation.

at Cdh7 localizes in the rosette structure of the PN axon terminal (dotted line).

neurons for 12 days. PN neurons were visualized by the transfected GFP. Note

resent 200 mm (D) and 5 mm (F and G).
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B Figure 2. Differential Localization of Cdh7 in

Cerebellar Neurons

(A–C) Sections of P14 cerebellum. (A) Immuno-

histochemistry for Cdh7 and calbindin (a Purkinje

cell marker). (B) 3D digital image of Purkinje cells

immunostained with antibodies against Cdh7 and

calbindin. (C) Granule neurons in the IGL immu-

nostained with antibodies against Cdh7 and Hu.

(D) Immunostaining for Cdh7 andMAP2 (a dendrite

marker) in granule neurons at 9 DIV. The blue box

indicates a dendrite.

(E and F) Immunostaining for Cdh7, calbindin, and

58k Golgi protein (a Golgi apparatus marker) in 21

DIV Purkinje cells. The blue box in (E) indicates a

dendrite. Hoe, Hoechst.

(G) Immunostaining for Cdh7 and 58k Golgi protein

in 6 DIV granule neurons. ‘‘N’’ indicates the posi-

tion of the nucleus.

(H) A summary of Cdh7 expression in the hindbrain

and cerebellum. The small blue circles and white

circles indicate granule neurons and Purkinje cells,

respectively. ‘‘Go’’ indicates a Golgi cell.

Scale bars represent 200 mm (A), 20 mm (B), 20 mm

(C, left), 5 mm (C, right), 10 mm (D), 20 mm (E), 20 mm

(F), and 10 mm (G). See also Figure S2.
the perinuclear structures (Figure 2D). The dendritic localization

of Cdh7 in granule neurons was also observed in vivo (Figures

S2D andS2E). In contrast, Cdh7was detected in neither the den-

drites nor the plasma membranes in cultured Purkinje cells, as

observed in vivo (Figure 2E). The Cdh7-accumulating perinuclear

structures in the granule neurons and Purkinje cells were likely to

be the Golgi apparatuses based on the predominant colocaliza-

tion of Cdh7 andmarker proteins for the Golgi apparatus in those

structures both in vitro and in vivo (Figures 2F and 2G; Fig-

ure S2F). Cdh7 was also expressed in Golgi cells, another target

cell for mossy fiber neurons in the IGL, andwas localized not only

in the Golgi apparatuses but also other cytoplasmic regions (Fig-

ures S2F and S2G). The shRNA-mediated knockdown of Cdh7

confirmed the staining for Cdh7; the immunosignals for Cdh7 in

cultured Purkinje cells and granule neurons disappeared with

the expression of shCdh7 (Figures S2H–S2J). In addition, exog-

enously expressed Cdh7 was distributed similarly, if not identi-

cally, to endogenous Cdh7 in cerebellar neurons, and it was
314 Cell Reports 9, 311–323, October 9, 2014 ª2014 The Authors
localized at the surface of the dendrites

of granule neurons, but not Purkinje cells

(Figures S2K–S2P). The subcellular frac-

tionation analyses revealed that endoge-

nous Cdh7 localized in the membranes

of granule neurons as well as PN neurons

in vitro (Figures S2Q and S2R) and in the

synaptosomeof P14 IGL,where PNaxons

and granule neurons form synapses (Fig-

ures S2S and S2T). We also analyzed the

expression of Cdh7 during cerebellar

development. At P9, in addition to the

PCL and IGL, Cdh7 was expressed in

the outer EGL, whereas Cdh7 expression

was low in the inner EGL and ML, sug-
gesting that Cdh7 in granule cells is transiently downregulated

during terminal differentiation and migration (Figure S2U). At

P23, Cdh7 was expressed in the PCL and IGL, as was also

observed at P14 (data not shown).

In summary, during the synaptogenic stage of mossy fiber

neurons, Cdh7 is expressed in granule neurons and Golgi cells,

which are the target cells for mossy fiber neurons in the IGL,

and localized at the surface of the dendrites of granule neurons

(Figure 2H). Although Cdh7 is also expressed in Purkinje cells,

it is largely confined to the Golgi apparatus, as with cadherin-5

in the pathologic endothelial cells (Groten et al., 2000), and

may not be abundantly localized at the cell surface. These results

support the hypothesis that Cdh7 mediates the specific connec-

tion between PN axons and granule neurons.

Cdh7 Inhibits Axonal Growth in PN Neurons
Because a signal from an ultimate target cell may eventually

terminate the growth of innervating axons, we next examined
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Figure 3. Cdh7 Presented by Surrounding

Cells Inhibits PN Axonal Growth in a

Stage-Dependent Manner

(A) Axonal growth of PN explants. PN explants

from the indicated stages ofmicewere cultured for

3 days on culture plates coated with poly-D-lysine

(PDL) and laminin and immunostained with an

antibody against b-III tubulin.

(B) Quantification of the axon length shown in (A).

The data represent the mean ± SEM. In total, 47–

59 explants were analyzed from three independent

experiments. *p < 0.01, E17 versus P1 or P4, P1

versus P4.

(C) Western blot analysis of presynaptic molecules

in PN neurons in vivo.

(D) Quantification of western blot shown in (C). The

signal intensities of SYP, SNAP25, and Cdh7 were

normalized to that of actin, and the normalized

value for E17was set at 1.0. The data represent the

mean ± SEM of three mice. *p < 0.01; **p < 0.05;

ns, not significant; E17 versus P1 or P4 for each

molecule.

(E) PN axonal growth on Cdh7-expressing COS

cells. E17 and P1 PN explants were cultured on

culture plates coated with PDL and laminin for

1 day. Then, some PN explants were fixed, and

control COS cells or Myc-Cdh7-expressing COS

cells were added to the others, followed by an

additional 2 days culture. The cells were immu-

nostained with an antibody against b-III tubulin.

Red fluorescent protein (RFP) was expressed in

COS cells.

(F and G) Quantification of the axon length of E17

(F) and P1 (G) PN explants shown in (E). [1], 1 DIV;

[2], 3 DIV with control COS cells; [3], 3 DIV with

Myc-Cdh7-COS cells. In total, 45–55 explants per

condition were analyzed from three independent

experiments. The data represent the mean ± SEM.

*p < 0.01, ns: not significant.

Scale bars in (A) and (E) represent 0.5 mm.
whether Cdh7, which is expressed in both PN axons and granule

neurons (Figures 1 and 2), is involved in the termination of axonal

growth in PN neurons in the IGL. Consistent with the timing of the

arrival of PN axons at the cerebellar cortex, the axonal growth

ability of PN neurons was dramatically decreased from E17 to

P4 (Figures 3A and 3B), which is consistent with the previous

finding that the expression levels of genes associated with

axonal growth are downregulated in PN neurons beginning at
Cell Reports 9, 311–323
the first postnatal week (Dı́az et al.,

2002). Conversely, the expression of syn-

aptic molecules, such as SYP and synap-

tosomal-associated protein 25 (SNAP25),

in PN neurons was highly upregulated

from E17 to P4 (Figures 3C and 3D),

whereas Cdh7 was expressed at a con-

stant level during this period. These re-

sults indicate that developing PN neurons

initiate a transition from an ‘‘axonal

growth phase’’ to a ‘‘synaptogenesis

phase’’ during perinatal development.
We first analyzed the effect of Cdh7 presented by surrounding

cells on the axonal growth of PN explants at two different devel-

opmental stages. To mimic normal development, we first

cultured PN neurons alone for 1 day; then, we added control

COS cells or Myc-Cdh7-expressing COS cells. E17 PN neurons,

which were still in the axonal growth phase, continued to show

axonal growth after the addition of COS cells, and Myc-Cdh7-

expressing COS cells did not show a difference in the axonal
, October 9, 2014 ª2014 The Authors 315
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Figure 4. Mature Granule Neurons Diminish

the Axonal Growth Potential of PN Neurons

through Cdh7

(A) Axonal growth of PN neurons in the coculture

with granule cells (GC). Mouse P1 PN explants

were added to rat P5 granule cells, which had

been precultured for the indicated periods, and

were then cocultured for 3 days. Some PN ex-

plants were cultured without granule cells (indi-

cated as ‘‘control’’) or in conditioned medium from

10 DIV granule cells (indicated as ‘‘GC-CM’’) for

3 days. Cells were immunostained with an anti-

body against mouse M6. All cells were cultured on

culture plates coated with PDL alone.

(B) Quantification of the axon length of PN neurons

shown in (A). In total, 42–70 explants per condition

were analyzed from three independent experi-

ments. The data represent the mean ± SEM. *p <

0.01; ns, not significant; control versus 0 DIV,

4 DIV, 10 DIV, or GC-CM.

(C) Axonal growth of PN explants cocultured with

granule neurons expressing shRNA. Rat P5

granule cells were transfected with expression

vectors for shControl or shCdh7 (shCdh7-3),

which also encode GFP, and cultured for 10 days.

Then, mouse P1 PN explants were added to the

10 DIV granule cells and cocultured for 3 days.

Cells were immunostained with an antibody

against mouse M6.

(D) Western blot analysis of Cdh7 in shRNA-ex-

pressing 10 DIV granule cells in (C). The signal

intensities of Cdh7 were normalized to that of

actin, and the normalized value of shControl was

set at 1.0. The data represent the mean ± SEM of

three independent experiments.

(E) Quantification of the axon length of PN neurons

shown in (C). In total, 74 PN explants for the

shControl group and 62 PN explants for the

shCdh7 group were analyzed from three inde-

pendent experiments. The data represent the

mean ± SEM. *p < 0.05.

(F) A time course of axonal growth of PN neurons

coculturedwithgranuleneuronsexpressingshRNA.

Under the same conditions as in (C), PN explants

were cocultured for 1–4 days. The axon length of

PN neurons at each time point (top graph) and

axonal growth per day (bottom graph) are pre-

sented. In total, 58–97 explants per condition were

analyzed from three independent experiments. The

data represent the mean ± SEM. *p < 0.05, **p <

0.01, shControl versus shCdh7 at 3 or 4 DIV.

Scale bars represent 300 mm (A and C). See also

Figure S3.
growth of PN neurons compared with control COS cells (Figures

3E and 3F). In contrast, the axonal growth of P1 PN neurons,

which were presumably transitioning from axonal growth to syn-

aptogenesis, was significantly suppressed by Myc-Cdh7-ex-

pressing COS cells (Figures 3E and 3G). These results indicate

that the axonal growth of PN neurons may be inhibited by

Cdh7 in the surrounding cells, specifically after PN axons have

arrived at the cerebellum.

We next investigated whether mature granule neurons inhibit

PN axonal growth. We cocultured P1 PN explants with granule

cells of different developmental stages. As previously reported
316 Cell Reports 9, 311–323, October 9, 2014 ª2014 The Authors
(Manzini et al., 2006), 0 days in vitro (DIV) granule cells, which

correspond to ‘‘EGL-like’’ immature granule cells, strongly in-

hibited PN axonal growth, whereas 4 DIV granule neurons did

not show this effect (Figures 4A and 4B). In comparison, 10

DIV ‘‘IGL-like’’ mature granule neurons, which expressed much

higher levels of Cdh7 than immature granule cells (Figure S3A)

and possessed much longer and arborized dendrites than 4

DIV granule neurons (Figure S3B), also significantly suppressed

the axonal growth of PN neurons, though this suppression was

less effective than that of 0 DIV granule cells (Figures 4A and

4B). Conditioned medium from 10 DIV granule neurons did not



suppress the axonal growth of PN neurons, suggesting that

secreted molecules may not exert this effect (Figures 4A and

4B). Next, we tested the possibility that Cdh7 mediates the sup-

pression of PN axonal growth by mature granule neurons. P1 PN

explants were coculturedwith shRNA-expressing 10 DIV granule

neurons (Figures 4C and 4D). After 3 days culture, the axon

length of PN neurons cultured with shControl-expressing

granule neurons (269.0 ± 7.1 mm; Figure 4E) was almost identical

to that of PN neurons cultured with nontransfected 10 DIV

granule neurons (257.8 ± 8.1 mm; Figure 4B). Axon length in PN

neurons was significantly increased by coculture with shCdh7-

expressing granule neurons in comparison to coculture with

shControl-expressing granule neurons (Figure 4E), and Cdh7

knockdown largely blocked the suppressive effect of 10 DIV

granule neurons on the axonal growth of PN neurons (346.0 ±

10.4 mm, ‘‘control’’ in Figure 4B versus 332.4 ± 7.2 mm, ‘‘shCdh7’’

in Figure 4E; p > 0.05). These results suggest that mature granule

neurons in the IGL inhibit the axonal growth of PN neurons

through Cdh7. We further analyzed the time course of the growth

rate of PN axons on 10 DIV granule neurons (Figure 4F). During

the first 2 days in coculture with shControl-expressing granule

neurons, the growth rates of PN axons were 99.6 mm per day

for 0–24 hr and 115.6 mm per day for 24–48 hr. Thereafter, the

growth rate dropped greatly to 16.1 mm per day for 72–96 hr,

and this decrease in axonal growth was significantly inhibited

by coculture with shCdh7-expressing granule neurons (Fig-

ure 4F). These results indicate that, through a mechanism that

reduces the axonal growth rate, Cdh7 may be involved in the

program that terminates PN axonal growth in the IGL.

Cdh7 Mediates Specific Connections in the
Pontocerebellar Circuit In Vivo
The expression pattern of Cdh7 in the hindbrain and cerebellum

prompted us to explore whether Cdh7 regulates the connectivity

of mossy fiber axons. We investigated the importance of Cdh7 in

the specific circuit formation of PN neurons in vivo by shRNA-

mediated knockdown with an in utero electroporation method

(Figures S4A–S4D). We found that shCdh7-expressing PN neu-

rons developed normally, forming the PN and projecting axons

to the cerebellum (Figures S4B and S4C). To examine the target

specificity of PN axons in the cerebellum, we analyzed the con-

tact of PN axons with nontarget Purkinje cells, which is tran-

siently observed in some PN axons during development (Mason

and Gregory, 1984). Very detailed light and electron microscopy

analyses previously revealed that the transient contacts between

mossy fibers and Purkinje cells at P7 exhibit ultrastructural char-

acteristics of synapses and that after P7, those synaptic con-

tacts are dramatically decreased and eventually disappear by

P21 (Kalinovsky et al., 2011). To assess the effect of Cdh7

knockdown on the connectivity of PN axons, we first analyzed

PN axons in P14 cerebellum. In the shControl group, the majority

of PN axons terminated in the IGL, and only a few PN axons con-

tacted the Purkinje cells and invaded the ML (Figure 5A). How-

ever, in one of the shCdh7 groups (shCdh7-2), the numbers of

Purkinje cells that received PN axon contacts and PN axons

that invaded the ML were increased 11.7-fold and 3.4-fold,

respectively, compared with the shControl group (Figures 5A–

5C). The coexpression of shCdh7-2-resistant Cdh7, with silent
mutations insensitive to shCdh7-2, largely reversed the defects

caused by shCdh7-2 (Figures 5A–5C; Figure S2H). Furthermore,

the expression of the other shCdh7 (shCdh7-1) also increased

the numbers of PN axon-contacted Purkinje cells and PN axons

in the ML to a degree similar to that observed in the shCdh7-2

group (Figures 5A–5C). To estimate the percentage of Purkinje

cells receiving PN axon contacts, we analyzed mice in which a

large number of PN axons expressed shRNAs in the IGL. Under

these conditions, 76.4% of the Purkinje cells received PN axon

contacts in the shCdh7 group, whereas only 7.1% received PN

axon contacts in the shControl group (Figure S4E). Similar pat-

terns of PN axon contacts with Purkinje cells were observed in

mice in which a small number of PN axons expressed each

shRNA (Figure S4F). We also found that the positions of the

rosette structures of the PN axons in the IGL were significantly

shifted toward the PCL in the shCdh7 group (Figure S4G).

Furthermore, unlike the shControl-expressing PN axons, which

mainly contacted Purkinje cells at the bottom half of the cell

body, shCdh7-expressing PN axons contacted Purkinje cells

at more upper regions, including the dendrites (Figure S4H).

Together, these results indicate that the loss of Cdh7 in PN neu-

rons impairs the connectivity of PN axons in the cerebellum.

We also analyzed the connectivity of PN axons at other devel-

opmental stages. Consistent with previous study (Kalinovsky

et al., 2011), in the shControl group, many more Purkinje cells

received PN axon contacts at P7 compared with P14, and those

contacts had mostly disappeared by P21 (Figures 5D and 5E).

The number of Purkinje cells receiving PN axon contacts was

significantly increased in the shCdh7 group as early as P7,

when granule neurons begin to migrate into the IGL region (Fig-

ures 5D and 5E), suggesting that the contact between PN axons

and Purkinje cells in the shCdh7 group is already augmented

prior to the onset of the elimination of PN axons from Purkinje

cells. Then, along with the dramatically increased number of

granule neurons that migrate into the IGL, the difference be-

tween the shControl and shCdh7 groups in the number of Pur-

kinje cells receiving PN axon contacts was highly expanded at

P14 (Figure 5E). There was still a significant difference in the

number of PN axon-Purkinje cell contacts between the shCon-

trol and shCdh7 groups at P21 (Figures 5D and 5E), even though

Purkinje cells receiving PN axon contacts in the shCdh7 group

was decreased compared with P14. These results suggest that

the augmented contact between PN axons and Purkinje cells

in the shCdh7 group might be attributed to the impairment in

the mechanism selectively connecting PN axons to granule neu-

rons rather than to a defect in the elimination of PN axons.

shControl-expressing PN axon terminals in the IGL at P14

exhibited the characteristic rosette structures containing SYP

(Figure 5F; Figure S4I). However, in the shCdh7 group, we occa-

sionally observed presumptive PN axon terminals showing

structures that were slightly swollen but much smaller than

normal rosettes (Figure 5F). Although we still observed many

rosettes of normal shape and size in shCdh7-expressing PN

axons, the number of SYP-containing rosettes in the IGL that

were wider than 3 mmwas significantly decreased in the shCdh7

group (Figures 5G and 5H), suggesting that the loss of Cdh7 in

PN neurons also partially affects the synapse formation of PN

axons with granule neurons and Golgi cells in vivo.
Cell Reports 9, 311–323, October 9, 2014 ª2014 The Authors 317



A

B D

C

E F G

H

Figure 5. Knockdown of Cdh7 Impairs Con-

nectivity of PN Axons In Vivo

Cerebella ofmice expressing shRNAs and cDNA in

PN neurons by in utero electroporation. Control

shRNA (shControl), shRNAs for Cdh7 (shCdh7-1

and shCdh7-2), and shCdh7-2-resistant Cdh7

(resCdh7) were expressed in PN neurons. The

term ‘‘shCdh7’’ specifically means shCdh7-2. PN

axonswere visualized by the coexpression of GFP.

(A) Sections of P14 cerebellum were immuno-

stained with antibodies against GFP and calbindin.

The dotted boxes indicate the positions of the

high-magnification images shown in the bottom

panels.

(B and C) Quantification of the Purkinje cells that

received PN axon contacts (B) and PN axons that

invaded the ML (C) shown in (A). The numbers of

Purkinje cells and PN axons were normalized to

the occupancy of GFP-positive PN axons in the

IGL, and the normalized value of shControl was set

at 1.0. Data are presented as the mean ± SEM

(arbitrary units [AU]). In total, six to eight mice per

condition were analyzed. *p < 0.01.

(D) Sections of P7 and P21 cerebella of mice ex-

pressing shRNAs in PN neurons. Sections were

immunostained with antibodies against GFP and

calbindin. The boxes indicate the positions of the

high-magnification images shown in the bottom

panels.

(E) Quantification of the Purkinje cells that received

PN axon contacts. The number of Purkinje cells

was normalized as in (B) and (C), and the normal-

ized value for shControl at P14 was set at 1.0. The

data are presented as the mean ± SEM (AU). *p <

0.01. In total, six to eight mice per condition were

analyzed. The scheme indicates the position of

granule cells (blue circles) at each stage.

(F–H) Cerebella of P14 mice expressing shRNAs

in PN neurons. Sections were immunostained

with antibodies against GFP and SYP. (F)

Morphology of PN axon terminals in the IGL. Note

that the abnormal structure of the presumptive

PN axon terminal was observed in the shCdh7

group. (G) Low-magnification images of the IGL

region. The arrowheads indicate the rosette of a

PN axon terminal in the IGL. (H) Quantification of

the SYP-containing rosette greater than 3 mm in

width in the IGL. The number of rosettes was normalized as in (B) and (C), and the value is presented as the mean ± SEM per 100 mm2 GFP-positive PN axon

area in the IGL. Four mice from each group were analyzed. *p < 0.01.

Scale bars represent 50 mm (A and D), 10 mm (F), and 20 mm (G). See also Figure S4.
Cdh7 Mediates Synapse Formation between PN
Neurons and Granule Neurons
To test the possibility that the abnormal connectivity of shCdh7-

expressing PN axons in vivo is due to a defect of specific syn-

apse formation between PN axons and granule neurons, we

next examined the role of Cdh7 in synapse development in co-

cultured PN neurons and granule neurons (Figures 6A–6C).

Closely apposed SYP-positive presynaptic and postsynaptic

density 95 (PSD95)-positive postsynaptic puncta on shRNA-ex-

pressing PN axons indicated mature synapses. As shown in

Figures 6A and 6B, the knockdown of Cdh7 in PN neurons signif-

icantly decreased the number of synapses, suggesting that

Cdh7 promotes synapse development between PN neurons
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and granule neurons. In contrast, when PN neurons were cocul-

tured with nontarget Purkinje cells, the number of SYP-contain-

ing PN axons that contacted Purkinje cells was not altered by the

knockdown of Cdh7 in PN neurons (Figures 6D and 6E), support-

ing the confined cytoplasmic localization of Cdh7 in Purkinje

cells (Figure 2). Together, these results suggest that Cdh7 is

selectively required for synapse development between PN

axons and granule neurons.

Because the total number of SYP puncta in the PN axons co-

cultured with granule neurons was significantly reduced in the

shCdh7 group compared with the shControl group (Figure 6C),

we next examined whether Cdh7 was involved in the induction

of presynaptic differentiation in PN axons. When cocultured
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Figure 6. Cdh7 Mediates Synapse Forma-

tion between PN Neurons and Granule

Neurons

(A) shRNA-expressing PN neurons were cocul-

tured with granule neurons for 12 days. Cells were

immunostained with antibodies against GFP, SYP,

and PSD95. PN axons were visualized by GFP,

which is presented in white pseudocolor. The ar-

rowheads indicate SYP puncta that are closely

apposed with postsynaptic PSD95 puncta. The

arrows indicate PSD95-free SYP puncta. The yel-

low arrow and arrowhead indicate the magnified

puncta (insets).

(B and C) Quantification of SYP puncta shown in

(A). (B) The percentage of SYP puncta closely

apposed with PSD95 puncta among all SYP

puncta in PN axons. The data represent the mean

± SEM. *p < 0.01. (C) The total number of SYP

puncta in PN axons, normalized to the area of the

PN axons. The data represent the mean ± SEM

(AU). *p < 0.05. In total, 52 fields for the shControl

group and 57 fields for the shCdh7 group were

analyzed from three independent experiments.

(D) shRNA-expressing PN neurons were added to

10 DIV Purkinje cells. Neurons were cocultured for

11 days and immunostained with antibodies

against GFP, SYP, and calbindin. PN axons were

visualized by GFP. The arrows indicate the

magnified puncta (insets).

(E) The number of SYP puncta in PN axons in

contact with Purkinje cells, which is normalized

to the area of the PN axons associated with

Purkinje cells shown in (D). In total, 63 fields for the shControl group and 62 fields for the shCdh7 group from four independent experiments were analyzed.

The data represent mean ± SEM ns: not significant. Scale bars represent 5 mm (A) and 10 mm (D).
with COS cells, Myc-Cdh7 presented by COS cells strongly

induced the clustering of the presynaptic component SYP in

PN axons, but not in IO axons, whereas protocadherin-20

(Pcdh20), which is not expressed by PN neurons, had no effect

(Figures 7A and 7C; Figures S5A–S5D). In the coculture of PN

neurons and COS cells expressing Myc-Cdh7, SYP was

clustered in the segments of PN axons that contacted the accu-

mulated puncta of Myc-Cdh7 in COS cells (Figure S5E). Myc-

Cdh7-induced SYP clustering in PN axons was largely inhibited

by the knockdown of Cdh7 in PN neurons (Figures 7B and 7D).

These results indicate that the Cdh7-Cdh7 interaction may

induce presynaptic differentiation specifically in PN neurons.

DISCUSSION

A Transition from Axonal Outgrowth to Synapse
Formation
Axonal outgrowth, pathfinding, and synaptogenesis are tightly

interlinked steps during neural circuit formation. A spatiotempo-

rally coordinated transition from axonal growth to synaptogene-

sis is essential for establishing precise synaptic connectivity in

the nervous system. Previous studies have identified molecules

that are involved in the development of both axons and synap-

ses. The conserved PHR family of E3 ubiquitin ligases regulates

axon guidance, growth, and synapse formation (Po et al., 2010).

The serine/threonine kinase SAD-1 regulates axonal growth

termination and presynaptic differentiation in Caenorhabditis
elegans (Crump et al., 2001). S-laminin, which is a basal lamina

protein of the muscle, mediates selective reconnection of re-

generating motor axons to the original synaptic ‘‘trace’’ on

denervated muscle fibers and inhibits the axonal growth of mo-

tor neurons (Porter et al., 1995). However, a mechanism that

directly orchestrates synaptic connection and axonal growth

termination during neural development has not yet been

elucidated.

Synaptogenesis consists of multiple steps, including nascent

synaptic contacts between axons and dendrites, selection of

bona fide synapses, and maturation of synapses (Waites

et al., 2005; Jontes and Phillips, 2006). Increasing evidence in-

dicates that nascent nonspecific contacts between axons and

dendrites are continuously formed and eliminated during the

early stage of synaptogenesis (Niell et al., 2004; Li et al.,

2011). Thus, at this stage, the axons retain motility and are

not yet stabilized in their target regions. During this period,

target cell-derived signals may prime the innervating axons to

undergo synaptogenesis (Waites et al., 2005). Thereafter,

some contacts are selectively stabilized to form bona fide syn-

apses, and growing axons terminate their growth at this stage. A

specific set of synaptic adhesion molecules that directly medi-

ates axon-target connections may selectively promote strong

adhesion between pre- and postsynaptic membranes of the

appropriate cells, thereby establishing synaptic specificity

(Waites et al., 2005; Jontes and Phillips, 2006). The cadherin su-

perfamily has been the main candidate for regulating synaptic
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Figure 7. Cdh7-Cdh7 Signaling InducesPre-

synaptic Differentiation in PN Axons

(A) PN and IO neurons were cultured for 7 days;

then, control COS cells or Myc-Cdh7/Myc-

Pcdh20-expressing COS cells were added and

cocultured for 1 day. Cells were immunostained

with antibodies against SYP and Tau1 (an axon

marker). RFP was expressed in COS cells to

visualize the entire cell. RFP fluorescence is pre-

sented in blue pseudocolor and indicated as

‘‘COS.’’ A single COS cell is surrounded by a

dotted line. The arrowheads indicate the clusters

of SYP in Tau1-positive axons associated with the

COS cell. The boxes indicate the positions of the

high-magnification images shown in the bottom

panels.

(B) PN neurons were transfected with expression

vectors for shRNAs and cultured for 7 days; then,

control COS cells or Myc-Cdh7-expressing COS

cells were added and cocultured for 1 day. Cells

were immunostained with antibodies against SYP

and GFP. PN axons were visualized by GFP, which

was encoded by the shRNA vector. The entire COS

cell was visualized by RFP and is presented in blue

pseudocolor, as noted in (A). The arrowheads

indicate the clusters of SYP in PN axons associ-

ated with the COS cell. The boxes indicate the

positions of the high-magnification images shown

in the bottom panels.

(C and D) Quantification of the total integrated in-

tensity of SYP associated with a single COS cell

divided by the Tau1-positive (C) or GFP-positive

(D) axon contact area, shown in (A) and (B),

respectively. In total, 30–32 COS cells per condi-

tion from three to four independent experiments

were analyzed. The data represent the mean ±

SEM (AU). *p < 0.01; ns, not significant.

Scale bars represent 20 mm (A and B). See also

Figure S5.
specificity because of its large molecular diversity and circuit-

specific expression patterns (Takeichi, 2007), even though

only a few members have been demonstrated to regulate syn-

aptic specificity, particularly in mammals (Osterhout et al.,

2011; Williams et al., 2011). Cdh7 is expressed at the surface

of PN neurons and granule neurons (Figures 1 and 2; Figures

S1 and S2) and specifically mediates synapse formation be-

tween those neurons (Figure 6); thus, after the granule

neuron-derived synaptogenic priming molecules, such as

Wnt7a and FGF22 (Hall et al., 2000; Umemori et al., 2004),

make PN axons competent to proceed with synaptogenesis

(Waites et al., 2005), the Cdh7-Cdh7 interaction may selectively

stabilize nascent contacts between PN axons and granule neu-

rons to develop bona fide synapses. Cadherin-mediated synap-
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tic contacts can trigger synaptic differen-

tiation through the recruitment of various

synaptic proteins to the contact site,

including presynaptic organizers, scaf-

fold proteins, and signaling molecules

(Hirano and Takeichi, 2012). Therefore,

the Cdh7-mediated selective contacts
between PN axons and granule neurons may strongly promote

synaptic differentiation in those neurons by accumulating syn-

aptic inducers, such as neuroligin (Scheiffele et al., 2000), to

the synaptic contact site. Because Cdh7 per se can induce

the clustering of SYP in PN axons (Figure 7), which is consistent

with the previous finding that classic cadherins induce presyn-

aptic differentiation during the early stage of synaptogenesis

in hippocampal neurons (Togashi et al., 2002), Cdh7 may also

function as an inducer of synaptic differentiation in this circuit.

The present study elucidated another function of Cdh7 during

the development of the pontocerebellar circuit. Because Cdh7

presented by mature granule neurons diminishes the growth po-

tential of PN axons (Figure 4), the Cdh7-Cdh7 interaction be-

tween PN neurons and granule neurons may also function to



suppress the motility of PN axons, presumably to terminate

axonal movement and form bona fide synapses in the IGL.

Several cadherin superfamily members positively or negatively

regulate neurite outgrowth depending on cell type and develop-

mental stage (Fredette et al., 1996; Riehl et al., 1996; Siu et al.,

2007). Given that a mechanical association of N-cadherin and

cytoskeletal proteins via catenins at the intracellular domain crit-

ically regulates neurite outgrowth and growth cone motility (Bard

et al., 2008), the Cdh7-Cdh7 interaction may directly signal to

reduce themotility of PN axons through cytoskeletal remodeling.

Alternatively, Cdh7may indirectly inhibit the axonal growth of PN

neurons by recruiting other axonal growth inhibitors to the syn-

aptic contact site. Further studies are anticipated to disclose

the molecular mechanism of the Cdh7-mediated regulation of

axonal growth potential.

Cdh7 may link the two sequential steps, axonal growth and

synaptogenesis, during the development of the pontocerebellar

circuit through the regulation of axonal growth potential and

axon-target connection. This coupled mechanism, exerted by

a single cell-surface receptor, may allow developing neurons

to promptly and properly transit from axonal growth to synapto-

genesis without unfavorable errors, such as axon overshooting

or underdevelopment of synapses, which would likely cause de-

fects in the circuit function. It will be interesting to examine

whether other molecules that have been previously demon-

strated to mediate synaptic specificity also inhibit axonal growth

in each context.

Mechanism for Establishing Specific Connections in the
Pontocerebellar Circuit
The recent finding that Purkinje cell-derived BMP4 eliminates the

connections between PN axons and Purkinje cells strongly sup-

ports the importance of the error-correction-based mechanism

for the wiring of the pontocerebellar circuit (Kalinovsky et al.,

2011). However, we hypothesize that a target-cell-derived signal

that selectively connects PN neurons and granule neurons is

likely involved in the formation of the pontocerebellar circuit,

based on the following evidence: (1) the vast majority of mossy

fibers still terminate in the IGL, even in BMP4-deficient mice (Ka-

linovsky et al., 2011); (2) mossy fibers synapse with abnormally

stranded granule neurons in the ML in Sema6a-deficient mice

(Kerjan et al., 2005); and (3) granule neurons preferentially con-

nect to PN axons versus IO axons in vitro (Ito and Takeichi,

2009). Therefore, we regard the Cdh7-mediated specific

connection between PN axons and granule neurons as a key

mechanism in establishing the outline of the connectivity of this

circuit (Figure S4J).

Based on the present findings, there are various possible

mechanisms of the Cdh7-mediated regulation of circuit connec-

tivity. Because PN axons start to contact Purkinje cells before

granule neurons migrate into the IGL, granule neurons, which

dramatically increase in number in the IGL at later stages, may

compete with Purkinje cells for contact with PN axons. Support-

ing this idea, the contacts between mossy fibers and Purkinje

cells persist in the agranular cerebellum ofweavermice, in which

granule cells die prior to migration (Sotelo, 1975). In addition, this

competition mechanism may explain the augmented contacts

between shCdh7-expressing PN axons and Purkinje cells in vivo
(Figure 5), because PN axons may lose the potential of the pref-

erential synapse formation with granule neurons in the absence

of Cdh7 (Figure 6). Furthermore, from P7 to P14, the expanded

difference in the number of Purkinje cells that receive PN axon

contacts between the shControl and shCdh7 groups (Figure 5E)

may be due to the explosively increased number of granule neu-

rons in the IGL during this period, which may accelerate the

translocation of PN axons from Purkinje cells to granule neurons

in the shControl group. In addition to this model, the present

finding that mature granule neurons inhibit the outgrowth of PN

axons through Cdh7 (Figure 4) raises another possibility. The

Cdh7-Cdh7 interaction between PN neurons andmature granule

neurons may confine PN axons to the IGL through a mechanism

inhibiting axonal growth, thereby contributing to the specific

circuit connectivity. shCdh7-expressing PN axons may not

completely restricted to the IGL even in the presence of mature

granule neurons because of the loss of the Cdh7-Cdh7 interac-

tion. Similarly, PN axons may not fully stop growing in the IGL

in the absence of mature granule neurons in weaver mice. In

these contexts, PN axons may remain motile even in the middle

or late synaptogenic stages, such as P14, and may largely in-

crease nonspecific contacts to Purkinje cells beyond the reach

of the BMP4-mediated elimination mechanism. Collectively, it

is plausible that themechanisms of the Cdh7-mediated selective

target recognition and axonal growth inhibition may coordinately

establish the connectivity of the pontocerebellar circuit.

Axonal Growth Termination of PN Neurons
Because PN axons initially slow down below the EGL, transiently

contact Purkinje cells at the PCL and ML and subsequently

settle in the IGL to form synapses with granule neurons and

Golgi cells, the termination of axonal growth in PN neurons is

likely to be regulated in a spatiotemporally stepwise manner.

Similar axonal growth termination via transient contact with

nontarget cells is observed in other circuits, including the thala-

mocortical and hippocampal circuits (Ghosh et al., 1990; Del Rı́o

et al., 1997). Thus, in the target region, axonal growth may stop

in a stepwise manner, at least in some cases. In the pontocere-

bellar circuit, the EGL-derived signal(s), including a heparin-

binding factor-dependent signal, would be a strong candidate

for the initial inhibitory signal against growing PN axons that

enter the cerebellar cortex (Manzini et al., 2006). Because the

axonal growth potential of PN neurons is dramatically downre-

gulated at the perinatal stage (Figures 3A and 3B), when PN

axons encounter immature granule cells in the EGL (Ashwell

and Zhang, 1992; Manzini et al., 2006), there is a possibility

that an EGL-derived stop signal primes PN neurons to halt the

axonal growth program, and this may cause the reduced growth

potential of PN axons in the IGL at the later stage and contribute

to the developmental-stage-dependent differential susceptibility

of PN axons to environmental Cdh7 (Figure 3). Because it is

reasonable that a signal from the ultimate target cell completely

terminates the growth of innervating axons, Cdh7 presented by

mature granule neurons may participate in the mechanism ter-

minating PN axonal growth in the IGL. Continued work on the

growth potential of PN axons in the cerebellum would facilitate

the understanding of the entire mechanism of axonal growth

termination.
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EXPERIMENTAL PROCEDURES

Animals

All animal care and experimental procedures were performed in accordance

with institutional guidelines approved by the Experimental Animal Care Com-

mittee of the Keio University School of Medicine (approval number 09091-10).

The day of the vaginal plug confirmation was counted as E0, and the day of

birth was counted as P0.

Western Blot

The mouse tissues and cultured cells were homogenized with lysis buffer (TNE

buffer) containing 10 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 mM EDTA, 1%

Nonidet P-40, and protease inhibitors (Complete, Roche Applied Science)

and centrifuged at 12,000 3 g for 30 min at 4�C to obtain the supernatant.

The lysates were separated by 10% SDS-polyacrylamide gel electrophoresis,

blotted onto Immobilon membrane (Millipore) and incubated with primary

antibodies. After incubation with horseradish peroxidase (HRP)-conjugated

antibodies, the proteins were detected by the chemiluminescence method

(ECL, GE Healthcare; SuperSignal West Dura Extended Duration Substrate,

Thermo Scientific). Signal intensities were measured with an image analyzer

(LAS-4000, GE Healthcare) and quantified with Image Quant TL (GE

Healthcare).

Immunohistochemistry and Immunocytochemistry

Immunostaining was performed as previously described (Kuwako et al.,

2010). Briefly, the tissues were fixed with 4% paraformaldehyde (PFA) in

PBS overnight at 4�C. Then, 60-mm-thick tissue sections were prepared using

a vibratome (VT1200S, Leica). Cultured cells were fixed with 4% PFA-PBS for

20 min at 4�C. The fixed sections and cells were permeabilized with 0.3%

Triton X-100-PBS for 15 min at room temperature (RT), incubated with TNB

blocking buffer (PerkinElmer) for 1 hr at RT and subsequently incubated

with primary antibodies in TNB blocking buffer overnight at 4�C, followed

by incubation with fluorescent-dye-conjugated secondary antibodies for

1.5 hr at RT. Nuclei were counterstained with Hoechst 33258 (10 mg/ml,

Sigma-Aldrich). The images were observed by fluorescence microscopy

(BZ-9000, Keyence) and confocal laser scanning microscopy (LSM700, Carl

Zeiss).

RT-PCR

Total mRNA was extracted from the mouse tissues, cultured neurons, and

specific layers of cerebellar tissue prepared by the laser microdissection

method using TRIzol Reagent (Life Technologies). After reverse transcription,

PCR was conducted using PrimeSTAR Max DNA Polymerase (Takara Bio).

For other procedures, refer to the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental information includes Supplemental Experimental Procedures,

five figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2014.08.063.
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