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Abstract

We present a theory of population based optimization methods using approxima-

tions of search distributions. We prove convergence of the search distribution to the

global optima for the factorized distribution algorithm (FDA) if the search distribution

is a Boltzmann distribution and the size of the population is large enough. Convergence

is defined in a strong sense––the global optima are attractors of a dynamical system

describing mathematically the algorithm. We investigate an adaptive annealing schedule

and show its similarity to truncation selection. The inverse temperature b is changed

inversely proportionally to the standard deviation of the population. We extend FDA

by using a Bayesian hyper-parameter. The hyper-parameter is related to mutation in

evolutionary algorithms. We derive an upper bound on the hyper-parameter to ensure

that FDA still generates the optima with high probability. We discuss the relation of the

FDA approach to methods used in statistical physics to approximate a Boltzmann

distribution and to belief propagation in probabilistic reasoning. In the last part are

sparsely connected. Our empirical results are as good or even better than any other

method used for this problem.
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1. Introduction

In this paper we analyze on evolutionary algorithms from the perspective of

stochastic process. There are at least three views on stochastic processes––the

microscopic view, the mesoscopic view, and the macroscopic view.

In the microscopic view the dynamic behaviour of a population of objects is

simulated. In genetic algorithms, for instance, a set of points are generated.
From this set promising points (points with high fitness) are selected. These

points are used as the ‘‘parents’’ of the next set. Each run is a unique, therefore

a mathematical analysis is almost impossible.

In the mesoscopic view a probability distribution pðx; tÞ is introduced. From

an initial distribution pðx; 0Þ a population (ensemble) is generated. Promising

points are selected. The corresponding distribution of the selected points

psðx; tÞ is estimated and then used to generate new points. Holland [8] tried a

mesoscopic analysis of genetic algorithms with his schema theory. We will show
that using marginal and conditional distributions instead of schemata makes

the analysis easier and tractable.

In the macroscopic view one is interested in macroscopic variables only, like

the average fitness Et½f ðtÞ� ¼
P

pðx; tÞf ðxÞ. In many physical applications

simplified equations describing the evolution of macroscopic variables can be

derived.

In this paper we concentrate on the mesoscopic view. This view has been

developed for the analysis of stochastic processes [32]. Despite the fact that the
microscopic system and the mesoscopic system are strongly related, the deri-

vation of mesoscopic equations from the microscopic system is very difficult.

This is the reason that the microscopic view dominates the field.

We will mainly use the terminology of dynamic stochastic systems. For our

algorithms the approximation of the Boltzmann distribution by the product of

conditional distributions will be of central importance. We will show the re-

lation of this approach to methods used in probabilistic reasoning and prob-

abilistic logic. Such relation has been predicted by von Neumann [34]: ‘‘This
new system of formal logic will move closer to another discipline which has

been little linked in the past with logic. This is thermodynamics, primarily in the

form it was received from Boltzmann, and is that part of theoretical physics

which come nearest in some of its aspects to manipulating and measuring in-

formation. Its techniques are much more analytical than combinatorial.’’

Thus our theory is part of a general theory starting now to unify disciplines

like statistical physics, probabilistic reasoning, and probabilistic logic. This
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paper extends the survey of Larra~nnaga and Lozano [15] with an interdisci-

plinary perspective.
The outline of the paper is as follows. In Sections 2–4 we recapitulate the

foundations of evolutionary algorithms based on search distributions. In

Section 5 an adaptive annealing schedule for Boltzmann section is derived.

In Section 6 the use of Bayesian hyper-parameters is investigated. We discuss in

Section 7 how good our proposed algorithm approximates Boltzmann distri-

butions. In Section 8 we show that our algorithm fulfills an equation derived by

Holland for an almost ‘‘optimal’’ search algorithm. Then we discuss algorithms

from statistical physics which have been used to approximate a Boltzmann
distribution. In the last section we apply our algorithm to an important

combinatorial optimization problem––the bipartitioning of graphs.

2. The simple genetic algorithm and UMDA

The theory presented is valid for discrete, but also for continuous variable.

For simplicity we restrict the discussion to binary variables xi 2 f0; 1g. Let
x ¼ ðx1; . . . ; xnÞ denote a binary vector. We use the following conventions.

Capital letters Xi denote variables, small letters xi assignments.

Definition 1. Let a function f : X! RP 0 be given. We consider the optimi-

zation problem

xopt ¼ arg max f ðxÞ ð1Þ

We will use f ðxÞ as the fitness function for the standard genetic algorithm, also
called the simple genetic algorithm (SGA). The algorithm is described by

Holland [8] and Goldberg [6]. It consists of fitness proportionate selection,

recombination/crossover, mutation. For the stochastic analysis marginal dis-

tributions will be important.

Definition 2. Let pðx; tÞ denote the probability of x in the population at gen-

eration t. Let z denote a sub-vector of x. Then pðz; tÞ ¼
P

x;Zi¼zi pðx; tÞ defines a

marginal distribution. Of special importance are the univariate marginal dis-

tribution, where z consists of a single variable only. This is abbreviated by

piðxi; tÞ. Conditional distributions are defined by the Bayesian rule pðyjzÞ ¼
pðy; zÞ=pðzÞ. y and z are disjunct and their union is a subset of x.

We often write piðxiÞ if just one generation is discussed, and pi denote

piðxi ¼ 1Þ. The average fitness of the population and the variance is given by

Et½f ðxÞ� ¼
X
x

pðx; tÞf ðxÞ ð2Þ
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V ðtÞ ¼
X
x

pðx; tÞðf ðxÞ � �ff ðtÞÞ2 ð3Þ

Proportionate selection changes the probabilities according to

psðx; t þ 1Þ ¼ pðx; tÞ f ðxÞ
Et½f ðxÞ�

ð4Þ

With proportionate selection the average fitness never decreases. This is true

for every rational selection scheme. For the analysis of recombination we in-

troduce a special distribution.

Definition 3. Robbins� proportions are given by the distribution p

pðx; tÞ :¼
Yn
i¼1

piðxi; tÞ ð5Þ

A population in Robbins� proportions is also called to be in linkage equilib-

rium.

Geiringer [5] has shown that all reasonable recombination schemes lead to

the same limit distribution.

Theorem 4 (Geiringer). Recombination does not change the univariate marginal
frequencies, i.e. piðxi; t þ 1Þ ¼ piðxi; tÞ. The limit distribution of any complete
recombination scheme is Robbins’ proportions pðx; 0Þ.

Complete recombination means that for each subset S of f1; . . . ; ng, the

probability of an exchange of genes by recombination is greater than zero.

Convergence to the limit distribution is very fast. Robbins� proportions are

called the mean field assumption [25] in physics.

If recombination is used for a number of times without selection, then the

genotype frequencies converge to linkage equilibrium. This means that all
genetic algorithms are identical if after one selection step recombination is

done without selection a sufficient number of times. This procedure keeps the

population in linkage equilibrium. A simpler method is used in our univariate

marginal distribution algorithm (UMDA). New search points are generated

from the distribution

pðx; t þ 1Þ ¼
Yn
i¼1

ps
i ðxi; tÞ ð6Þ

Algorithm 1. UMDA

1. t( 1. Generate N � 0 individuals X1; . . . ;XN randomly.

2. do f
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3. Select M 6N individuals X̂Xj from Xj according to a selection method.

Compute the sample marginal frequencies ps
i ðxi; tÞ of the selected set.

4. Generate N new points according to the distribution pðx; t þ 1Þ ¼Qn
i¼1 p

s
i ðxi; tÞ.

5. t( t þ 1

6. } until termination criterion fulfilled.

For mathematical clarity we denote the average fitness, seen as a function of

the independent variables pi as W ðp1; . . . ; pnÞ. Then the following theorem is

valid [21].

Theorem 5 (Wright�s equation). For infinite populations and proportionate se-
lection UMDA changes the gene frequencies as follows:

piðt þ 1Þ ¼ piðtÞ þ piðtÞ þ ð1� piðtÞÞ
oW
opi

W ðpðtÞÞ ð7Þ

The relation between f ðxÞ and W ðpÞ is simple. One has just to change xi to pi.
Thus for f ðxÞ ¼

P
i;j aijxixj we obtain W ðpÞ ¼

P
i;j aijpipj. A detailed discussion

about Wright�s equation can be found in [21,23].

Remark. pðx; tÞ describes a dynamical system with 2n variables. The dynamical

system is constrained to the unit simplex because of the constraints 06 pðxÞ6 1

and
P

x pðxÞ ¼ 1. UMDA with proportionate selection is related to a dy-

namical system described by Eq. (7). The system is defined for discrete time

steps. For mathematical clarity we give the dynamical system a different name,

UNIp. The index p indicates that the equations are derived from UMDA with

proportionate selection. The dynamical system has attractors.

Theorem 6. The stable attractors of UNIp are at the corners, i.e. pi 2 f0; 1g
i ¼ 1; . . . ; n. In the interior there are only saddle points where gradW ðpÞ ¼ 0.
The attractors are local maxima of f ðxÞ according to one bit changes. ThusUNIp
solves the continuous optimization problem arg maxfW ðpÞg in S by gradient
ascent [21].

Since the attractors are at the boundary ðpi 2 f0; 1gÞ, UMDA with propor-
tionate selection will end with a population consisting of a single string x only,

where xi ¼ 0 if pi ¼ 0 and xi ¼ 1 if pi ¼ 1. Another important result is that the

average fitness never decreases [19].
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Theorem 7. For UNIp we have W ðpðt þ 1ÞÞPW ðpðtÞ.

Note that the dynamical system UNIp can be used as an optimization

method by itself. One does iterate the difference equation (7) until convergence.

This method is investigated in [23]. Note that the selection method of UNIp is

proportionate selection. The mathematical analysis of UMDA with truncation

selection or tournament selection is much more difficult. These selection

methods can be easily programmed for UMDA, but we have not been able to

derive the difference equations of the corresponding dynamical system. Thus

UMDA is the much more flexible optimization method. The interested reader
is referred to [19,23].

There exist many ‘‘convergence’’ theorems in genetic algorithm theory. But

most of them rely on the stochastic nature of evolutionary algorithms only.

Convergence is derived from the simple fact that all possible configurations are

generated with probability greater than zero. This convergence definition is

uninteresting from a numerical point of view. It does not specify how long it

takes to converge and how convergence can be observed. In contrast, UMDA

is a very robust numerical algorithm. It usually converges to populations where
all individuals are equal. Furthermore, the average fitness increases if the size

of the population is large enough.

3. Schema analysis demystified

In this section we show that the original analysis of genetic algorithms is

based on a mesoscopic view. The theory has been developed by Holland [8]. It

analyzes ‘‘schemata’’ and their evolution in a population.

Definition 8. Let pðx; tÞ denote the probability of x in the population at gen-
eration t. Let xs ¼ ðxs1 ; . . . ; xsiÞ � fx1; . . . ; xng. Thus xs denotes a sub vector of x

defined by the indices s1; . . . ; si. Then the probability of schema HðsÞ and its

fitness f ðHðsÞÞ are defined by

pðHðsÞ; tÞ ¼
X

X jXs¼xs

pðx; tÞ ð8Þ

f ðHðsÞ; tÞ ¼
P

X jXs¼xs pðx; tÞf ðxÞ
pðHðsÞ; tÞ ð9Þ

The summation is done by keeping the values of xs. Thus the probability of a
schema is given by the corresponding marginal distribution pðxsÞ. Let us now

assume that we have an algorithm which generates new points according to the

distribution of selected points. With proportionate selection (Eq. (4)) we have
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pðx; t þ 1Þ ¼ pðx; tÞ f ðxÞ
Et½f ðtÞ�

ð10Þ

This can be seen as the ideal search distribution of SGA. The next theorem

immediately follows from the definitions.

Theorem 9 (Schema Theorem). For proportionate selection the probability of
schema HðsÞ is given by

pðHðsÞ; t þ 1Þ ¼ pðHðs; tÞÞ f ðHðsÞ; tÞ
Et½f ðxÞ�

ð11Þ

Holland [8, Theorem 6.2.3] computed for SGA (a genetic algorithm with

recombination and mutation) an inequality

pðHðsÞ; t þ 1ÞP ð1� dÞpðHðs; tÞÞ f ðHðsÞ; tÞ
Et½f ðxÞ�

ð12Þ

d is a small factor which captures the loss by mutation and crossover. The
inequality only complicates the analysis. An application of the inequality (12) is

not possible without computing Et½f ðxÞ�. This in turn requires the computation

of pðx; tÞ. Goldberg [6] circumvented this problem by assuming

f ðHðsÞ; tÞP ð1þ cÞEt½f ðxÞ� ð13Þ

Then we have f ðHðsÞ; tÞP ð1þ cÞtpðHðsÞ; 0Þ. But this assumption can never be

fulfilled for all t. When approaching an optimum, the fitness of all schemata in

the population will be only 1� � away from the average fitness.

We will not cite all the folklore about the increase of the number of above

average schemata. It turns out that Eq. (10) admits an analytical solution.

Theorem 10 (Convergence). The distribution pðx; tÞ for proportionate selection is
given by

pðx; tÞ ¼ pðx; 0Þf ðxÞtP
y pðy; 0Þf ðyÞ

t ð14Þ

Let M be the set of global optima, then

lim
t!1

pðx; tÞ ¼ 1=jMj x 2M
0 else

�
ð15Þ

Eq. (14) was already used by Goldberg and Deb [7] in a different context. It

enables an exact schema analysis for an ideal genetic algorithm. This is a
conceptual algorithm because it needs an exponential amount of computation.

But for small problems the increase or decrease of any schema can be exactly

computed.
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In the next section we will extend the stochastic theory. The theory will

require conditional distributions. From the analysis we will derive a usable
algorithm.

4. The factorized distribution algorithm (FDA)

The simple product distribution of UMDA cannot capture dependencies

between variables. But if dependencies are necessary to find the global optima,

UMDA and SGAs fail. We need a more complex distribution to reach the

optima. A good candidate for optimization using a search distribution is the

Boltzmann distribution.

Definition 11. For b P 0 define the Boltzmann distribution of a function f ðxÞ as

pbðxÞ :¼
ebf ðxÞP
y e

bf ðyÞ ¼:
ebf ðxÞ

Zf ðbÞ
ð16Þ

where Zf ðbÞ is the partition function. To simplify the notation b and/or f can

be omitted.

The Boltzmann distribution is usually defined as e�gðxÞ=T=Z. The term gðxÞ is
called the energy and T ¼ 1=b the temperature. The Boltzmann distribution

concentrates around the global optima of the function with increasing b. If it
would be possible to sample efficiently from this distribution for arbitrary b,
optimization would be a trivial task.

4.1. Boltzmann selection

Our proposed algorithm incrementally computes the Boltzmann distribution
by using Boltzmann selection.

Definition 12. Given a distribution p and a selection parameter Db, Boltzmann

selection calculates the distribution of the selected points according to

psðxÞ ¼ pðxÞeDbf ðxÞP
y pðyÞeDbf ðyÞ ð17Þ

We can now define the Boltzmann estimated distribution algorithm
(BEDA). BEDA is a conceptional algorithm, because the calculation of the

distribution requires a sum over exponentially many terms. We have proven

the following important convergence theorem for it [24].
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Theorem 13 (Convergence). Let DbðtÞ be an annealing schedule, i.e. for every t
increase the inverse temperature b by DbðtÞ. Then for BEDA the distribution at
time t is given by

pðx; tÞ ¼ ebðtÞf ðxÞ

Zf ðbðtÞÞ
ð18Þ

with the inverse temperature

bðtÞ ¼
Xt

s¼1
DbðsÞ: ð19Þ

Let M be the set of global optima. If bðtÞ ! 1, then

lim
t!1

pðx; tÞ ¼ 1=jMj x 2M
0 else

�
ð20Þ

We next transform BEDA into a practical algorithm. This means the reduce
the number of parameter of the distribution and to compute an adaptive an-

nealing schedule.

Algorithm 2. BEDA

1. t( 0. Generate N points according to the uniform distribution pðx; 0Þ with

bð0Þ ¼ 0.

2. do{

3. With a given DbðtÞ > 0, let

psðx; tÞ ¼ pðx; tÞeDbðtÞf ðxÞP
y pðy; tÞeDbðtÞf ðyÞ :

4. Generate N new points according to the distribution pðx; t þ 1Þ ¼ psðx; tÞ.
5. t( t þ 1.

6. } until (stopping criterion reached)

4.2. Factorization of the distribution

In this section we describe a method for computing a factorization of the

probability, given an additive decomposition of the function.

Definition 14. Let s1; . . . ; sm be index sets, si � f1; . . . ; ng. Let fsi be functions

depending only on the variables xj with j 2 si. Then

f ðxÞ ¼
Xm
i¼1

fiðxSiÞ ð21Þ

is an additive decomposition of the fitness function f .
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We also need the following definitions

Definition 15. Given s1; . . . ; sm, we define for i ¼ 1; . . . ;m the sets di, bi and ci:

di :¼
[i
j¼1

sj; bi :¼ si n di�1; ci :¼ si \ di�1 ð22Þ

We set d0 ¼ ;.

In the theory of decomposable graphs, di are called histories, bi residuals and
ci separators [16]. We now need the conditional probabilities from Definition 2.

In [24] we have proven the following theorem.

Theorem 16 (Factorization Theorem). Let pbðxÞ be a Boltzmann distribution
with

pbðxÞ ¼
ebf ðxÞ

Zf ðbÞ
ð23Þ

and f ðxÞ ¼
Pm

i¼1 fsiðxÞ be an additive decomposition. If

bi 6¼ ; 8 i ¼ 1; . . . ; l; dl ¼ ~XX ; ð24Þ

8iP 29j < i such that ci � sj ð25Þ
then

pbðxÞ ¼
Ym
i¼1

pðxbi jxciÞ ð26Þ

The constraint defined as Eq. (25) is called the running intersection property.
The assumptions of the theorem are formally identical to the general factor-

ization theorem of graphical models [16].

Algorithm 3. FDA

1. Calculate bi and ci from the decomposition of the function.

2. Generate an initial population with N individuals from the uniform distri-

bution.
3. do f
4. Select bNN 6N individuals using Boltzmann selection.

5. Estimate the conditional probabilities pðxbi jxci ; tÞ from the selected points.

6. Generate new points according to pðx; t þ 1Þ ¼
Qm

i¼1 pðxbi jxci ; tÞ.
7. t( t þ 1.

8. } until (stopping criterion reached)
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With the help of the factorization theorem, we can turn the conceptional

algorithm BEDA into FDA. The factorized distribution is identical to the
Boltzmann distribution if the conditions of the factorization theorem are ful-

filled. Therefore the convergence proof of BEDA applies to FDA. FDA can in

principle be used with any selection scheme, but then the convergence proof is

no longer valid. We think that Boltzmann selection is an essential part in using

the FDA. FDA with Boltzmann selection is connected to a dynamical system

which we denote MULTIbðtÞ. It is defined by Eq. (23).

Because FDA uses finite samples of points to estimate the conditional

probabilities, convergence to the optimum will depend on the size of the
samples (the population size). FDA has experimentally proven to be very

successful on a number of functions where standard genetic algorithms fail to

find the global optimum. In [20], the scaling behaviour for various test func-

tions has been studied. The estimation of the probabilities and the generation

of new points can be done in polynomial time.

In Section 5 we derive an adaptive annealing schedule, which connects

Boltzmann selection to truncation selection used by breeders.

5. The adaptive annealing schedule SDS

Boltzmann selection needs a good annealing schedule. If we cool down

(anneal) too fast, the approximation error of the Boltzmann distribution due to

the sampling error can be very large. To consider an extreme case, if the an-

nealing parameter is very large, the second generation should only consist of

the global maxima. But if we anneal too slowly, then it takes a long time to
approach the optima.

5.1. Taylor expansion of the average fitness

In order to determine an adaptive annealing schedule, we will make a Taylor

expansion of the average fitness. The average fitness Eb½f ðxÞ� from Eq. (2) is

now seen as a function of the inverse temperature. We have proven [17]:

Theorem 17. The average fitness Eb½f ðxÞ� using Boltzmann distribution has the
following expansion in b:

E~bb½f ðxÞ� ¼ Eb½f ðxÞ� þ
X
iP 1

ð~bb� bÞi

i!
M c

iþ1ðbÞ ð27Þ

where M c
i are the centered moments

M c
i ðbÞ :¼

X
x

½f ðxÞ � Eb½f ðxÞ��ipðxÞ ð28Þ
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They can be calculated using the derivatives of the partition function:

M c
iþ1ðbÞ ¼

o
obZf ðbÞ
Zf ðbÞ

 !ðiÞ
for iP 1; M c

1 ¼ 0 ð29Þ

Corollary 18. We have approximatively

E~bb½f ðxÞ� � Eb½f ðxÞ� � ð~bb� bÞr2
f ðbÞ ð30Þ

where r2
f ðbÞ is the variance defined as r2

f ðbÞ :¼ M c
2ðbÞ. For any ~bb > b we have

E~bb½f ðxÞ� > Eb½f ðxÞ� unless f ðxÞ ¼ const.

The proof of the above theorem can be found in [22]. Eq. (30) was already

proposed in [13]. It is a macroscopic equation relating the average fitness and

the variance. From (30) we can derive an adaptive annealing schedule. We

recall that truncation selection has proven to be a robust and efficient selection
scheme. For truncation selection the response to selection RðtÞ [21] is approx-

imatively given by equation

RðtÞ :¼ Etþ1½f ðxÞ� � Et½f ðxÞ� � IsbðtÞrf ðtÞ ð31Þ

Is is the selection intensity which depends on the truncation threshold s. We

will make the Boltzmann schedule to mimic truncation selection by setting

DbðtÞ accordingly.

Definition 19. The standard deviation schedule (SDS) is defined by

bðt þ 1Þ ¼ bðtÞ þ c=rf ðbðtÞÞ:

Using SDS we obtain from Eq. (30)

RðtÞ ¼ Ebðtþ1Þ½f ðxÞ� � EbðtÞ½f ðxÞ� � crf ðtÞ ð32Þ

Thus SDS with Boltzmann selection behaves similarly to truncation selec-
tion if c ¼ IsbðtÞ. We recently found that SDS has already been used for genetic

algorithms in [30]. But there SDS has been derived from a different perspective.

5.2. Linear functions

We will shown the connection between SDS and truncation selection for
linear functions

LinearðxÞ ¼
Xn
i¼1

aixi ð33Þ

We easily compute
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pbðxÞ ¼
ebf ðxÞ

Zf ðbÞ
¼
Yn
i¼1

ebaixi

1þ ebai
ð34Þ

Thus we have

piðbÞ :¼ pbðxi ¼ 1Þ ¼ ebai

1þ ebai
ð35Þ

For a linear function the variance is just the sum of the variance of the indi-
vidual variables, therefore

r2
f ðbÞ ¼

Xn
i¼1

a2
i e

bai

ð1þ ebaiÞ2
¼
Xn
i¼1

a2
i piðbÞð1� piðbÞÞ ð36Þ

The SDS schedule is given by

bðt þ 1Þ ¼ bðtÞ þ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i a

2
i piðbÞð1� piðbÞÞ

p ð37Þ

We approximate the difference equation by a differential equation:

db
dt
� cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i a
2
i piðbÞð1� piðbÞÞ

p ð38Þ

If we differentiate Eq. (35) we obtain

dpiðbÞ
dt

¼ ai ebaið1þ ebaiÞb0 � ebaiai ebaib0

ð1þ ebaiÞ2
¼ piðbÞð1� piðbÞÞai

db
dt

ð39Þ

These equations define a dynamical system in continuous time. If we insert Eq.

(38) we obtain

dpiðbÞ
dt

¼ c
piðbÞð1� piðbÞÞaiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i a
2
i piðbÞð1� piðbÞÞ

p ð40Þ

The differential equations remains the same if we multiply all ai by a con-

stant factor. For Onemax we have ai ¼ 1. In this case all marginal frequencies

are equal and we can set pb :¼ piðbÞ. We obtain the differential equation

dpb

dt
¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pbð1� pbÞ=n

q
ð41Þ

This differential equation has been derived for truncation selection in [19].

There the solution can be found.

6. Mutation and the hyper-parameter r

UMDA and FDA can be run without a parameter corresponding to mu-

tation in genetic algorithm. In order to obtain good solutions, the size of the
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population has to be chosen accordingly. But there is an easy way to introduce

‘‘mutation’’. Normally the empirical probability is estimated by pi ¼ m=N .
Here m denotes the number of occurrences of xi ¼ 1 in a sample of size N . But

in the Bayesian approach the estimated probability is set to pi ¼ ðmþ rÞ=
ðN þ 2rÞ. The hyper-parameter r has to be chosen in advance [9]. The hyper-

parameter is simple example of a Bayesian prior. It is related to mutation
in genetic algorithms works. Mutation works in the following way:

When generating new individuals, with a probability of l the generated bit is

inverted.

Theorem 20. For binary variables, the expectation value for the probability using
a hyper-parameter r is the same as mutation with mutation rate l ¼ r=ðN þ 2rÞ
and using the maximum likelihood estimate.

The theorem can easily be proven by calculating the probability of gener-

ating a particular bit for both cases. Wright�s equation can be extended to

include mutation (or equivalently a hyper-parameter r) [23]. The extended

equation defines a dynamical system which we call UNIpðrÞ. r > 0 move the
attractors from the boundary of the hyper-cube into the interior. For r!1
there is a unique attractor at p ¼ 0:5. The hyper-parameter can also be used for

UMDA. This algorithm we call UMDAðrÞ. This algorithm we call UMDAðrÞ.
The relation between the attractors of UNIpðrÞ and the populations generated

by UMDAðrÞ is as follows.

Let 0 < p�i ðxiÞ < 1 denote the values of an attractor of UNIpðrÞ. Then

UMDAðrÞ will generate for t!1 populations according to

pðx;1Þ ¼
Yn
i¼1

p�i ðxiÞ

The dynamical system UNIpðrÞ has converged to an attractor, but UMDAðrÞ
generates populations which can very different from each other other. Thus in

order to be able to observe convergence for UMDAðrÞ, we require that the

attractor is nearby the boundary. To be more specific: r should be so small that

an attractor nearby a global optimum should enable UMDAðrÞ to generate the
optimum with a high probability, say about 30%. Thus we consider mutation

to be a background operator.

The problem of determining a suitable r for UMDA with proportionate and

truncation selection has been investigated in [23]. We obtained the following

rule of thumb:

For truncation selection with selection intensity Is use a value of

r ¼ IsM=n. s is the proportion of individuals selected, M ¼ sN .
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We now compute the attractors of the dynamical system MULTIbðtÞ be-

having for a linear function similar to UMDAðrÞ with Boltzmann selection and
a large population. Let the linear function be defined by LinearðxÞ ¼

P
aixi.

For Boltzmann selection we easily compute

ps
i ðtÞ ¼

piðtÞeai Db

1þ piðtÞðeai Db�1Þ ð42Þ

We now assume our recommended prior of r ¼ aN=n. Then we obtain

piðt þ 1Þ ¼ ps
i ðtÞN þ r
N þ 2r

¼ nps
i ðtÞ þ a
nþ 2a

ð43Þ

This gives

piðt þ 1Þ ¼ npiðtÞeai Db þ aþ apiðtÞðeai Db � 1Þ
ðnþ 2aÞð1þ piðtÞðeai Db � 1ÞÞ ð44Þ

Equilibrium is reached when piðt þ 1Þ ¼ piðtÞ. This is a quadratic equation. Let

ci ¼ ai Db. Then the positive solution is given by

p�i ¼
ðeci � 1Þðnþ aÞ � 2aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððeci � 1Þðnþ aÞ � 2aÞ2 þ 4aðeci � 1Þðnþ 2aÞ

q
2ðeci � 1Þðnþ 2aÞ

ð45Þ

In order to compute a numerical example we set ai ¼ 0:5 and a ¼ 1. In Fig. 1

the probability P �s ¼
Qn

i¼1 p
�
i of generating the optimum is displayed. There is

almost no difference between n ¼ 100 and 1000. But we have to use Db ¼ 3 in

order to have a probability of 0.3 to generate the optimum. This demonstrates

the weakness of a fixed annealing schedule.

Fig. 1. Value of Ps, the probability to generate the optimum, when varying b using Eq. (44).
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For the SDS schedule we have DbðtÞ ¼ c=rðtÞ. In this case an analytical

solution of Eq. (44) cannot be obtained. But the fix-points can be obtained
numerically by iteration until piðt þ 1Þ ¼ piðtÞ. In the next table the results for

different linear functions are displayed. The function Linearinc is defined by

ai ¼ i, the function Expinc c by ai ¼ 2c. The probability to generate the optimum

is about 0.15 – with the exception of Expinc 2:0. For this function a smaller prior

has to be used. If we use r ¼ 0:5N=n then P �s ¼ 0:165.

We next compare the theoretical results with simulation runs of UMDAðrÞ.
In Table 1 the univariate marginal frequency p�i is shown. Note that the at-

tractors of SDS are fairly independent from the size of the population

6.1. Calculating a bound of the prior parameter for FDA

The theory of Bayesian parameters can be extended to conditional proba-

bilities [2]. Our analysis will be very crude, giving a rule a thumb to be tested in
practice. The chain rule of conditional probabilities says that

pðx1; . . . ; xkÞ ¼ pðx1Þpðx2jx1Þpðx3jx1; x2Þ � � � pðxkjx1; . . . ; xk�1Þ ð46Þ

Using the Bayesian estimates, we get the following equation:

Nðx1; . . . ; xkÞ þ r0

N þ 2kr0
¼ Nðx1Þ þ r1

N þ 2r1

Nðx1; x2Þ þ r2
Nðx1Þ þ 2r2

� Nðx1; x2; x3Þ þ r3
Nðx1; x2Þ þ 2r3

� � � Nðx1; . . . ; xkÞ þ rk
Nðx1; . . . ; xk�1Þ þ 2rk

ð47Þ

Function Onemax(16) Linearinc Expinc 1:5 Expinc 2:0 Onemax(100)

P � 0.214 0.170 0.159 0.053 0.147

Table 1

Attractor p� for Onemax and MULTIbðtÞ

Parameters Theory Simulation

n ¼ 100, Db ¼ 1, N ¼ 100 0.98458 0.9843

n ¼ 100, Db ¼ 1, N ¼ 1000 0.9846 0.9863

n ¼ 100, Db ¼ 1, N ¼ 30 0.9846 0.9881

n ¼ 100, Db ¼ 2, N ¼ 1000 0.9887 0.9891

n ¼ 100, Db ¼ 0:25, N ¼ 1000 0.9572 0.9766

n ¼ 100, SDS, N ¼ 100 0.9814 0.9862

n ¼ 100, SDS, N ¼ 30 0.9814 0.9817
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where Nð�Þ ¼ Npð�Þ is the number of occurrences in the population. The de-

nominators where chosen in such a way that
P

x1;...;xk
pðx1; . . . ; xkÞ ¼ 1 andP

xi
pðxijx1; . . . ; xi�1Þ ¼ 1.

In order for (47) to hold, the fractions on the right hand side have to cancel

each other out. We get the following identities for the parameters:

2ri ¼ ri�1 ) ri ¼ 2�ði�1Þr1 and r0 ¼ rk ¼ 2�ðk�1Þr1 ð48Þ

Thus we have obtained the rule of thumb:

Let r be the hyper-parameter for a single binary variable. Then the hyper-

parameter r0 for a marginal distribution pðx1; . . . ; xkÞ and the hyper-
parameter r� for a conditional distribution pðxkjx1; � � � ; xk�1Þ should be

r0 ¼ r� ¼ 2�ðk�1Þr ð49Þ

It is not possible to evaluate the rule of thumb for real attractors defined by

the dynamic equilibrium between selection and mutation. We test our proposal

assuming that the selected points are at the boundary. Let the probability

distribution be the product of marginal distributions of ki variables each. Then

we have l ¼ n=
P

ki factors. The probability P �s of generating the optimum is at

most

P �s ¼
Yl
i¼1

N þ r0

N þ 2ki r0


 �
ð50Þ

where r0 ¼ 2�ðk�1Þr. If we set r ¼ N=n then

P �s ¼
Yl
i¼1

nþ 2�ðki�1Þ

nþ 2


 �
¼
Yl
i¼1

1



� 2ð1� 2�kiÞ

nþ 2

�
P 0:3 ð51Þ

Thus using our rule of thumb we generate the optimum with a probability

greater than 0.3.

6.2. UMDA with very small population size

Formally UMDAðrÞ can run with a very small population size N and a small

number of selected points M . It fulfills even the requirements of weak con-

vergence: with probability greater than zero it will find the optima. UMDAðrÞ
with a tough selection (M ¼ 2) can be seen as a stochastic local search algo-

rithm with an unrestricted neighborhood. The points of the neighborhood are

not chosen uniformly, but points with a small Hamming distance to the
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selected points are chosen more often. In fact, this algorithm can be seen as an

instance of an ð2;NÞ evolution strategy [1] adapted to discrete variables.

We will discuss the case M ¼ 2 in more detail. With two selected points only

three different values of ps
i are possible, namely 0, 0.5, 1. Our recommended

hyper-parameter is r ¼ Is2=n. The relation between N and M is captured by Is.
The larger N , the larger will be r. For N ¼ 4 we have s ¼ 0:5 and Is ¼ 0:8 [19].

This gives r ¼ 1:6=n. Thus UMDAðrÞ generates new points with pi ¼ r=
ð2þ 2rÞ if m ¼ 0, pi ¼ 0:5 if m ¼ 1 and pi ¼ 1� r=ð2þ 2rÞ if m ¼ 2. m denotes
the number of instances of xi ¼ 1 in the two selected points.

pðx; t þ 1Þ ¼
Yn
i

ps
i ðx; tÞM þ r
M þ 2r

ð52Þ

We now investigate the behaviour by simulations. The functions to be op-
timized are Onemax and Jump. The function Jump has a valley of gap bits

before the global optimum consisting of all bits set to 1. At the bottom of the

valley the fitness values are set to 0. Thus Onemax can be seen as a Jump with a

gap of 0.

From Table 2, we conclude that for gap¼ 0 the best result is obtained with

N ¼ 12. For gap¼ 3 a larger value, N ¼ 48, gives the best result. Small pop-

ulation sizes do not reach the optimum in reasonable time. A small population

has difficulties to jump over the valley. With a hyper-parameter r a population
size too small is much worse than a population size too large. The larger gap,

the larger is the population size giving the best results.

7. FDA and the approximation of the Boltzmann distribution

FDA approximates the Boltzmann distribution in a way not used before. It

starts with a uniform distribution. Then Boltzmann selection is applied to

compute the new parameters of the distribution. New points are generated
using these estimates. For an infinite population we get an exact Boltzmann

distribution at every generation (step). But as we use a finite sample, the

Boltzmann distribution will only be approximated. A hyper-parameter makes

Table 2

Function evaluations for different population sizes

Gap 96 64 48 24 12 12 (0.5) 6 (0.5) 4 (0.5) 4

0 801 566 457 348 345 449 697 2527 8020

1 768 627 480 456 610 646 3042 (80) 13 038 (30) 14 682

2 860 693 544 769 4996 4555 (90) 10 917 – –

3 1113 1213 921 3727 36 333 (60) 42 686 – – –

n ¼ 50, s ¼ 0:25 and s ¼ 0:5 for three cases; number in parentheses is success rate out of 100 runs.
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the algorithms more robust concerning the population size and premature

convergence. But it moves the empirical distribution even more away from a
desired Boltzmann distribution. We will now investigate the approximation

error. The following cases will be distinguished:

• FDA with exact factorization and r ¼ 0;

• FDA with exact factorization and recommended hyper-parameter;

• FDA with approximate factorization and r ¼ 0;

• FDA with approximate factorization and recommended hyper-parameter.

For the analysis the Kullback–Leibler divergence between the generated

distribution (by FDA) and a Boltzmann distribution is used. For the Boltz-
mann distribution we have two choices. We can assume that in every genera-

tion b is changed according to Boltzmann selection by b bþ Db. This value

is subsequently used for the Boltzmann distribution. In our second choice we

compute bopt giving the smallest Kullback–Leibler divergence of a Boltzmann

distribution to the empirical distribution.

The Kullback–Leibler divergence of two distributions is defined as

DKLðpkqÞ ¼
X
x

pðxÞ ln pðxÞ
qðxÞ ð53Þ

with pðxÞ ln pðxÞ ¼ 0 when pðxÞ ¼ 0. The divergence is infinite for pðxÞ 6¼
qðxÞ ¼ 0.

If pb is the Boltzmann distribution and q the empirical distribution we

compute

DKLðqkpbÞ ¼
X
x

qðxÞ ln qðxÞ þ ln Zb � b
X
x

qðxÞf ðxÞ ð54Þ

oDKLðqkpbÞ
ob

¼
o
obZb

Zb
�
X
x

qðxÞf ðxÞ ¼ Eb½f ðxÞ� � Eq½f ðxÞ� ð55Þ

where Eb½f ðxÞ� is the average fitness according to the pb distribution and
Eq½f ðxÞ� is the average fitness according to the q distribution. We have nu-

merically solved equation oDKL=ob ¼ 0 to obtain the values bopt in Table 3.

We use two functions, Decep 15, and Grid 16 as example. Decep 15 is a

separable function. It consists of five blocks of three variables. Grid 16 is de-

fined on a 4� 4 grid. For this function we have used an approximate factor-

ization using factors of four or three variables. The exact definition of the

functions is not necessary.

For both problems DKL first increases slightly. It decreases when the algo-
rithm approaches an attractor. DKL is larger for the approximate factorization

and when FDA is used with a hyper-parameter. But in all cases DKL is sur-

prisingly small. For comparison we also show the difference of the UMDA
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factorization to a Boltzmann distribution. It is much higher. This factorization

is not able to approximate the Boltzmann distribution.

8. Hollands schema analysis and the Boltzmann distribution

We will now turn back to the analysis of genetic algorithms made by Hol-
land. We will use Holland�s notation. n denotes a schema, the probability

P ðn; tÞ has been defined in Eq. (8), and the average fitness l̂lnðtÞ is given by

equation (9). Holland makes the following conjecture about a good population

based search algorithm

Holland ([8, p. 88]): Each (schema) n represented in (the current popula-

tion) B(t) should increase (or decrease) in a rate proportional to its ob-

served usefulness l̂lnðtÞ � l̂lðtÞ (average fitness of schema n minus
average fitness of the population)

dPðn; tÞ
dt

¼ ðl̂lnðtÞ � l̂lðtÞÞP ðn; tÞ ð56Þ

Table 3

Results of Kullback–Leibler divergences, n ¼ 15=16

Function N Prior Iter b DKL bopt DKL

Grid 16 100 No 1 0.736 1.051 0.728 1.051

2 1.630 1.779 1.362 1.757

6 8.924 1.596 7.437 1.544

7 15.505 0.798 14.158 0.790

100 Yes 1 0.797 1.061 0.541 1.001

2 1.699 1.705 1.124 1.453

6 5.378 2.578 3.113 1.425

7 6.359 3.023 3.597 1.469

Decep 15 100 No 1 0.389 0.673 0.467 0.672

2 0.829 0.787 0.829 0.787

6 4.159 0.085 4.065 0.085

7 8.349 0.001 12.022 0.001

100 Yes 1 0.428 0.341 0.351 0.315

2 0.864 0.907 0.600 0.672

6 2.738 2.972 1.320 0.421

7 3.216 2.851 1.551 0.392

Decep 15

(UMDA)

100 No 1 0.472 1.021 0.004 0.153

2 0.934 3.780 0.020 0.311

6 2.551 17.945 0.343 2.584

7 2.921 16.435 0.679 3.543
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Holland claimed that a genetic algorithm behaves approximately according

to the above equation. This claim is not true. Instead we have the surprising
result.

Theorem 21. The Boltzmann distribution pðx; tÞ ¼ etf ðxÞ=Zt with P ðn; tÞ ¼P
X jXn¼xn

pðx; tÞ fulfils Holland’s equation (56).

Proof. Taking the derivative we easily obtain

pðx; tÞ
dt
¼ pðx; tÞðf ðxÞ � �ff ðtÞÞ ð57Þ

Let now xn define a marginal distribution. Then

dPðn; tÞ
dt

¼ dpðxn; tÞ
dt

¼ pðxn; tÞ
1

pðxn; tÞ
X

X jXn¼xn

pðx; tÞf ðxÞ

0@ � �ff ðtÞ

1A
¼ Pðn; tÞðl̂lnðtÞ � l̂lðtÞÞ

Thus the Boltzmann distribution with the annealing schedule bðtÞ ¼ t fulfills
Holland�s equation. According to Holland�s analysis FDA with this schedule

should be an almost optimal algorithm. The problem is to define in a precise

manner what is meant by an optimal algorithm. Holland has derived equation

(56) from an information theoretic analysis. We state the result as a conjec-

ture: �

Conjecture. Generating search points according to a Boltzmann distribution
seems a very good search strategy for optimization.

9. A kingdom for approximating the Boltzmann distribution

With it FDA we try to sample efficiently from a Boltzmann distribution. But

also other disciplines need to estimate or sample a distribution. The relation

becomes clear if we summarize the major tasks:
• to estimate and sample pðxÞ (density estimation),

• to estimate and sample N points with high pðxÞ (optimization),

• to estimate y given z, e.g to compute pðyjzÞ (probabilistic reasoning),

• to estimate the probability of y being true given z, e.g to compute pðyjzÞ in a

probabilistic logic setting.
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The difference between probabilistic reasoning and probabilistic logic is as

follows: probabilistic reasoning uses statistical dependencies between variables,
whereas probabilistic logic creates a graph from rules.

In this paper we have mainly dealt with optimization. In statistical physics

there exist some very old and almost forgotten algorithms to effectively cal-

culate the Boltzmann distribution if the energy function ðE ¼ �f ðxÞÞ is known

[25]. Thus a fascinating interdisciplinary research is well on the way - bringing

together such diverse fields as population based optimization, probabilistic

reasoning, and statistical physics. The core of the theory is the same: the fac-

torization of the distribution if the corresponding factor graph is singly con-
nected.

We will explain the approach of statistical physics in more detail. If the

function is given in an analytical form, why do we compute the Boltzmann

distribution by sampling? It is possible to compute an optimal Boltzmann

distribution directly by minimizing the Kullback–Leibler divergence. The

minimization takes the parameters of the factorization as variables to be de-

termined. We will explain the approach with the simplest example.

9.1. The mean field approach

In the mean field approach one assumes that the distribution is given by the
product also used by UMDA

qðxÞ ¼
Yn
i¼1

qiðxiÞ ð58Þ

First we compute

X
x

qðxÞ ln qðxÞ ¼
X
x1

X
x2;...;xn

q1ðx1Þ
Yn
i¼2

qiðxiÞ ln q1ðx1Þ
"

þ
Xn
j¼2

ln qjðxjÞ
#

¼
X
x1

q1ðx1Þ ln q1ðx1Þ
X
x1;...;xn

Yn
j¼2

qjðxjÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼1

þ
X
x1

q1ðx1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼1

�
X
x2;...;xn

Yn
i¼2

qiðxiÞ
Xn
j¼2

ln qjðxjÞ

¼ � � � ¼
Xn
i¼1
ðqi ln qi þ ð1� qiÞ lnð1� qiÞÞ

For the derivation we have used an obvious recursion in n and the fact that

qið0Þ ¼ 1� qi. The Kullback–Leibler divergence of qðxÞ to a Boltzmann dis-

tribution can be written as
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DKLðqkpbÞ ¼
X
x

qðxÞ½ln qðxÞ � bf ðxÞ þ ln Zb�

¼ ln Zb þ
X
x

qðxÞ ln qðxÞ � b
X
x

qðxÞf ðxÞ

¼ ln Zb þ
Xn
i¼1
ðqi ln qi þ ð1� qiÞ lnð1� qiÞÞ � bW ðq1; . . . ; qnÞ

W denotes the average fitness, seen as a function of q. A local minimum of the

divergence can be obtained by setting the derivatives to 0. We obtain:

oDKLðqkpbÞ
oqi

¼ ln
qi

1� qi
� b

oW
oqi
¼ 0 ð59Þ

This has the solution

qi ¼
1

1þ e
�boW

oqi

ð60Þ

Eq. (60) are called the mean field equations in statistical physics [10]. They can

be solved numerically if the expression of W is given. We have computed in [21]

the analytical expression of W if the analytical expression of f is given. W is

simply obtained by an exchange of variables. Thus, if f ðxÞ ¼
P

i aiixiþP
i6¼j aijxixj then we have W ðqÞ ¼

P
i aiiqi þ

P
i6¼j aijqiqj. We will discuss two

examples.

9.1.1. Linear Fitness

For the linear function Linear ¼
P

i aixi Eq. (60) has the closed solution

qi ¼
1

1� e�aib

The solutions are identical to the exact marginal distributions of a Boltzmann

distribution (see in Eq. (35)). Thus for linear functions we have DKL ¼ 0.

9.1.2. Quadratic fitness

Let A ¼ ðaijÞ be a symmetric matrix. Consider the quadratic function

f ðxÞ ¼
P

i aiixi þ ð1=2Þ
P
ðijÞ;i6¼j aijxixj. Here we have W ðqÞ ¼

P
i aiiqiþ

ð1=2Þ
P
ðijÞ;i6¼j aijqiqj. From Eq. (60) we obtain

qi ¼
1

1þ exp½�bðaii þ
P

j 6¼i aij � qjÞ�
ð61Þ

This is a system of nonlinear equations in the parameters qi. There is no closed
solution, the equations have to be iterated to find a numerical solution. It is

difficult to precisely describe the relation of solutions of Eq. (60) to solutions of

the given optimization problem. We can informally derive our next conjecture
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from Eq. (59). For large b the solutions have to fulfill oW =oqi � 0. The con-

jecture is difficult to specify precisely. Therefore we state informally:

Conjecture. For b large enough, the solutions of Eq. (61) are given by either qi 6 �
or qi P 1� �. � can be made as small as wanted by increasing b. If we set � ¼ 0
then the solutions are local optima of the function f ðxÞ concerning 1-bit changes.

Proof. Let q�i be a solution of (61). We can assume q�i 6 � 8 i. Then from Eq.

(61) it follows with a large enough b that

8 i : aii þ
X
j 6¼i

aijq�j < 0 ð62Þ

Let us assume that we have another solution r� where just one r�k is different
from q�k , thus r

�
k P 1� �. Then from Eq. (61) it follows

akk þ
X
j 6¼k

akjr�j ¼ akk þ
X
j 6¼k

akjq�j > 0

But this is a contradiction to our assumption because of Eq. (62). �

At least for quadratic functions the mean field approach seems to be as

powerful as the UMDA algorithm. In theory, the mean field approach needs

just one step. For optimization one chooses just a very large b. But in practice,
the quality of the solutions depend on the stability of the numerical procedure.

This is shown in Fig. 2.

The function to be optimized was a quadratic function of 100 variables on a

10� 10 grid where the coefficients have been drawn randomly. The estimate of

a local optimum has been determined by a simple procedure: if pi < 0:5 set

pi ¼ 0, and if pi P 0:5 set pi ¼ 1. The best local optima are obtained for b ¼ 3.

Fig. 2. Maximum fitness generated after solving Eq. (61).
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Increasing b further gives worse results. Thus also the mean field approach

seem to profit from a good annealing schedule.

9.2. Advanced mean field methods

For many difficult practical problems, the mean field solutions are just local

optima, sometimes far away from the global optima. It is now obvious how to
obtain better approximations––use marginal distributions of higher order. We

take the quadratic fitness function f ðxÞ ¼
P

ij aijxixj as example. In general the

Boltzmann distribution for this function cannot be exactly factorized using

bivariate distributions only. Nevertheless in statistical physics the ansatz has

been made

pbðxÞ �
1

Zb

Yn
i;j

Wi;jðxi; xjÞ
Yn
i¼1

WiðxiÞ ð63Þ

Now one proceeds as in the mean field approach. The parameters of Wij are

determined by minimizing the Kullback–Leibler divergence to the Boltzmann
distribution. The equations are really difficult. But several local iteration al-

gorithms have been proposed. For the quadratic fitness function we start the

iteration with

Wijðxi; xjÞ ¼ ebaijxixj ð64Þ

For singly connected graphs the belief propagation algorithm of Pearl [26] is

the most elegant and efficient iteration algorithm. The following important

theorem has been proven [25].

Theorem 22. If the graph structure defined by Wij is singly connected then there
exist solutions with DKL ¼ 0. Furthermore, the solutions can be obtained by using
the belief propagation algorithm of Pearl [26].

The theorem states that for singly connected graphs the solutions are exact

Boltzmann distributions. A singly connected graph obviously fulfills the run-

ning intersection property. Thus in these cases both FDA and advanced mean

field methods give the same result. The theorem is valid for any graph fulfilling

the running intersection property. Pearl�s algorithm has to be modified ac-

cordingly (see [16]).
If the graph contains cycles, then Pearl�s algorithm does not necessarily

converge. The extension of Pearl�s algorithm to general 2-d graphs is an area of

active research. The interested reader is referred to [25].
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9.3. Approximation of the distribution––structure vs. data

If the graph structure defined by the function fulfills the running intersection

property then FDA as well as advanced mean field methods have for large b
attractors nearby the global optima of the function. In principle, one can use a

very large b, apply Pearl�s algorithm and obtain a distribution which generates

the optima with high probability.

Thus we can obtain the optima in one step. But there exists another

method, which is for such problems even more effective––it is an extension of

dynamic programming. Thus the optimization problems left are those
which do not allow an exact factorization with a polynomial number of pa-

rameters.

There are at least two methods to compute an approximate distribution for

the above problems. In the first approach the structure of the function is used

to compute an approximate factorization. This method is used by FDA and

advanced mean field methods. FDA uses a population to determine the pa-

rameters, the advanced mean field methods use generalization of Pearl�s belief

propagation to determine the parameters.
In the second approach we determine the structure from data. Points with

high fitness are collected. From the empirical data a Bayesian network (BN) is

computed. This is called learning in BNs [9]. Early examples of this method are

EBNA [3,14], LFDA [20], and BOA [27].

In Section 10 we will use a combination of these two methods to solve the

graph bipartioning problem. We will consider only those edges as candidates

for the BN which are contained in the given graph.

10. The graph bipartitioning problem

The graph bipartitioning is defined as follows: Given an undirected graph

ðV ;EÞ with an even number of nodes jV j ¼ n, find the partition of the nodes in

equal sized sets, such that the cut size is minimal. The cut size is defined as the

number of edges between the two partitions A and B:

min
A;B�V
fcs ðA;BÞjjAj ¼ jBjg with

cs ðA;BÞ :¼ jfðv$ wÞ 2 Ejðv 2 A ^ w 2 BÞ _ ðv 2 B ^ w 2 AÞgj
ð65Þ

In this paper we concentrate on graph bipartitioning. The general M-

partitioning problem has been investigated with parallel genetic algorithms in

[33].
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10.1. UMDA for the bipartioning problem

There is a simple mapping from binary vectors to solutions of the graph

bipartitioning problem: the value of xi is 1 if node i 2 A and xi ¼ 0 if node

i 2 B. A graph bipartitioning problem with n nodes can be represented using

an individual with n bits. But there are two problems with this simple approach:

• Most bit strings do not correspond to feasible solutions, we need to have ex-

actly n=2 bits with value 0.

• Fitness remains constant when all bits are inverted.

We try to solve both problems by using a local search procedures. We start
with the second problem. We break the symmetry with the following proce-

dure. We define the best solution in our population as the reference point.

Inversion of bits leave the fitness unchanged. Thus we compute the Hamming

distance to the reference solution for the original string and the inverted string.

We put the string with the smallest Hamming distance into the population.

The calculation of the cut size can be done in the bit string representation

by

csðxÞ ¼
X
ði$jÞ2E

xi þ xj � 2xixj ð66Þ

Obviously, this is a quadratic function.

10.2. The Kernighan–Lin algorithm

The Kernighan–Lin algorithm [11] is an efficient heuristic to find a solution

for the graph bipartitioning problem. It uses several passes. In every pass, the

current solution is improved by swapping pairs of nodes to get a new solution.

This is iterated until a pass does not give an improvement.

In [4] a similar algorithm was introduced that reduced the complexity per
pass from OðjV j2Þ to OðjEjÞ. A conceptional difference is that in every step a

single node may move into the other partition. This violates the constraint

jAj ¼ n=2. Therefore in the next step we will choose an element from the larger

partition to move to the smaller partition.

The speed gain is possible by using an additional data structure. This data

structure makes it possible to calculate the edge with maximum gain in con-

stant time. This is done by storing for every possible gain a linked list of

corresponding nodes. This list can be updated in time OðjEjÞ [4]. The gain gc is
the increase (or decrease) in the cut size when node c changes from one set to

the other, so

v 2 A : gv :¼ jfw 2 Bjðv$ wÞ 2 Egj � jfw 2 Ajðv$ wÞ 2 Egj ð67Þ

and analogously for v 2 B.
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By considering single nodes and not pairs, it is possible to start with non

feasible solutions. In the beginning, only nodes from the larger partition are
considered for movement, until both partitions are equal. The details can be

seen in Algorithm 4. The algorithm has an unknown number of cycles (the outer

while loop) until it converges. In every cycle, two lists of candidate edges QA and

QB are maintained, with initially QA ¼ A and QB ¼ B. Then the gains are cal-

culated. In the inner loop, while there are still elements in QA or QB, the element

with highest gain is chosen from the larger of the candidate sets. The set name is

stored inMi, the element in ci. Then it is removed from the candidate set and the

gains are updated. In fi we mark if we have a bipartitioning state.
Finally, of the sequence of moves c1 till cjV j, one sequence which has the

bipartitioning property and lowest cut size is chosen and those moves are

performed.

Algorithm 4. Kernighan–Lin with single swaps

1. Start with an arbitrary partition A;B.
2. do{

3. QA ( A, QB ( B, i( 1, initialize the gain lists gc.
4. do{

5. if jQAj > jQBj: Mi ( A, choose ci 2 QA with max. gci
6. if jQAj < jQBj: Mi ( B, choose ci 2 QB with max. gci
7. if jQAj ¼ jQBj: Choose ci from QA [ QB with max. gci , set Mi corre-

spondingly to A or B
8. QMi ( QMi n fcig; i( iþ 1; ~ggi ( gci ; update the gain lists.

9. if jQAj ¼ jQBj: fi ( 1, else: fi ( 0

10. } while (QA [ QB 6¼ ;)
11. Select k 2 f1; . . . ; jV jg, such that fk ¼ 1 and

Pk
i¼1 ~ggi maximal.

12. Move the elements fc1; . . . ; ckg to the other set.

13. } while (something was swapped)

On top of Kernighan–Lin we can put UMDA to get Algorithm 5. Note that

UMDA does not use the connection structure of the graph to be partitioned.

Algorithm 5. UMDA for graph bipartitioning
1. Generate a random population with N individuals. t( 0.

2. do{

3. Run Algorithm 4 for every individual.

4. Select bNN 6N points. Let bXX� be the best individual.

5. For all bXXi: When d̂dðbXX�; bXX iÞ > n=2: bXXi ( :bXXi.

6. Calculate bit frequencies piðxi; tÞ from the selected points.

7. Generate new points according to pðx; t þ 1Þ ¼
Qn

i¼1 piðxi; tÞ.
8. t( t þ 1.
9. } until (stopping criterion reached)

184 H. M€uuhlenbein, Th. Mahnig / Internat. J. Approx. Reason. 31 (2002) 157–192



The graph bipartitioning problem has been formulated as a quadratic op-

timization problem (see Eq. (66)). Therefore another possibility is to solve the
mean field equation (61). We are currently evaluating this approach.

10.3. Using LFDA for the graph bipartitioning

Because of the graph structure of the problem, we will use the following

modification of LFDA from Eq. (66) it follows that only variables that are

connected in E give rise to a nonlinear term xixj. Thus we consider for our BN

only those edges wich are also edges of the given the graph. This modification
makes the implementation a hybrid between FDA and LFDA. While learning,

the list of allowed edges is initialized from the list of edges E instead of the full

network. This leads to Algorithm 6.

Algorithm 6. LFDA for graph bipartitioning

1. Let E be the edges of the graph from the problem definition. Generate a

random starting population of N individuals, t( 0.

2. do{
3. Apply Algorithm 4 (Kernighan–Lin with single swaps) to every individ-

ual.

4. Select bNN 6N points. Let bXX� be the best individual.

5. For all bXXi: when d̂dðbXX�; bXXiÞ > n=2: bXXi ( :bXX i.

6. F ( fðXi ! XjÞjðXi $ XjÞ 2 Eg, admissible edges must also be contained

inthe original graph.

7. BN ( ;.
8. do{
9. Choose ðXi ! XjÞ 2 F , such that MDLa is maximally reduced.

10. BN( BN [ ðXi ! XjÞ.
11. Remove ðXi ! XjÞ and ðXj ! XiÞ from F as well as all edges that could

introduce a cycle or more than kmax parents.

12. } while (there is an edge in F that reduces BICa)

13. Calculate a factorization from the graph.

14. Calculate the conditional probabilities pðxbi jxci ; tÞ from the selected

points.
15. Generate new points according to pðx; t þ 1Þ ¼

Ql
i¼1 pðxbi jxci ; tÞ.

16. t( t þ 1.

17. } until (stopping criterion reached)

In LFDA we use a measure which is a tradeoff between goodness of fit and

complexity of the model. It has been first proposed by Schwarz [31] as Bayesian

information criterion (BIC). Let M ¼ jDj denote the size of the data set. Then

BICa ¼ �MHðB;DÞ � aPA log2ðMÞ ð68Þ
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PA ¼
P

i 2
jpai j gives the total number of probabilities to compute. pai denotes

the parents of node i in the BN. HðB;DÞ is defined by

HðB;DÞ ¼ �
Xn
i¼1

X
pai

X
xi

mðxi; paiÞ
M

log2

mðxi; paiÞ
mðpaiÞ

ð69Þ

where mðxi; paiÞ denotes the number of occurrences of xi given configuration
pai. mðpaiÞ ¼

P
xi
mðxi; paiÞ. If pai ¼ ;, then mðxi; ;Þ is set to the number of

occurrences of xi in D. Schwartz proposed a ¼ 0:5 For a discussion of this and

other measures the reader is referred to [20].

11. Benchmark results

There exist at least two other implementations using BNs to solve the graph

bipartitioning problem [28,29]. But both papers are proof of concepts only. For

the test two easy problems have been used. The maximum number of vertices
was 144. We decided to test the algorithm on state-of-the-art benchmarks

defined by the community (ftp://dimacs.rutgers.edu/pub/dsj/

partition/).

In [18], the best results so far for a benchmark suite have been published.

The authors used a genetic algorithm extended by the Kernighan–Lin local

search. Furthermore they compared the results with several other algorithms,

among them a multi-start and an iterated Kernighan–Lin. Most difficult was

the class of randomly generated graphs Gnp In this class, for a given n and p a
random graph was generated having n edges and edges with a probability of p.
For several values of n and p an instance was generated and made available for

download (Tables 4 and 5).

The algorithm DG is a diff-greedy algorithm and IKL an iterated Kerni-

ghan–Linlocal search. We include two different memetic algorithms (MA-GX

and MX), all results from [18]. There 10 different memetic algorithms were

introduced. Four of these use strong mutation, namely M50 to M200. The

number is a parameter of the algorithm, the mutation rate. Of these four the
best result is shown for every problem. The worst result was in almost all cases

considerably worse, so the mutation rate is a critical parameter for this algo-

rithm. From the other algorithms of the paper, MA-GX was the best one. Kim

is the algorithm from [12], standard deviation was not published in this paper.

Shown are the best known solutions in parentheses after the problem name,

the population size N for population based algorithms, the average best cut size

for 30 runs, the standard deviation of the average, the average number of

function evaluations and how often the best known solution was found. In
bold face are the fitness values of the best algorithm and of those algorithms

where the difference to the best is within one standard deviation.
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A stochastic algorithm gets better performance by running for a longer time.

To be able to compare different algorithms, often the run time in seconds is

used. The algorithms in [18] had 60 s to optimize the problems with 500 bits

and 120 s for those with 1000 bits. It turned out that the diff-greedy and the

iterated Kernighan–Lin performed worse when given the same amount of CPU
time.

As the CPU time depends also on the hardware used, we have used a dif-

ferent criterion to compare the results to UMDA and LFDA, namely the

number of function evaluations. One function evaluations corresponds to a

complete run of the Kernighan–Lin algorithm. This is fair, as both memetic

algorithms from [18] and the one from [12] use the same principle, they only

Table 4

Results for graphs with 500 variables

Algorithm N Avg r FE MX

G500.005 (49)

DG 52.0 0.26 15k 0

IKL 55.8 2.11 26k 0

MA-GX 40 49.1 0.37 50k 29

M50 40 50.9 0.40 28k 1

Kim 50 50.4 26k
UMDA 40 49.4 0.57 34k 18

G500.01 (218)

DG 219.3 0.84 9k 5

IKL 229.7 5.21 19k 0

MA-GX 40 218.1 0.51 38k 28

M200 40 218.0 0.00 19k 30

Kim 50 218.0 29k
UMDA 100 218.0 0.0 2k 30

G500.02 (626)

DG 627.8 1.45 6k 8

IKL 638.8 4.26 13k 0

MA-GX 40 627.5 1.14 25k 6

M50 40 626.7 0.71 14k 13

Kim 50 626.9 29k
UMDA 40 626.0 0.18 6k 29

G500.04 (1744)

DG 1747.1 2.12 3k 3

IKL 1763.8 8.67 7.0k 0

MA-GX 40 1745.4 1.50 13k 15

M50 40 1745.3 1.54 7.8k 12

Kim 50 1745.6 32k
UMDA 40 1744.0 0.00 2k 30

N is the population size, Avg the average cut size, r the standard deviation, FE the number of

evaluations and MX counts how often the maximum was found in 30 runs.
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differ in the method of recombination. As a comparison: UMDA took for the

500 bit problems 100–200 s and for the 1000 bit problems roughly 500 s, LFDA

needed 1000 s for the 1000 bit problems. UMDA and LFDA were stopped

when a given number of function evaluations was reached. They were never

given more evaluations than MA-GX.

For the 500 bit problems all population based algorithms give similar re-

sults. The simple iterated algorithms are considerably worse than the memetic

ones and UMDA and LFDA. But the size of these problems seems to be too
small to show a big difference between the algorithms. UMDA is only in one

case not the best, but still within one standard deviation. In two cases UMDA

Table 5

Results for graphs with 1000 variables, see Table 4 for the column descriptions

Algorithm N Avg r FE MX

G1000.0025 (93)

DG 101.4 1.45 11k 0

IKL 99.5 2.87 10k 0

MA-GX 40 94.5 1.33 41k 10

M100 40 96.3 1.03 24k 0

Kim 50 96.2 28k
UMDA 40 95.3 0.75 40k 1

LFDA 100 94.8 0.70 41k 1

G1000.05 (445)

DG 459.9 2.23 7k 0

IKL 452.9 4.09 7k 0

MA-GX 40 447.7 0.99 32k 2

M150 40 448.9 1.48 14k 0

Kirn 50 449.5 35k
UMDA 40 449.1 1.26 30k 0

LFDA 100 447.8 1.53 29k 4

GG1000.01 (1362)

DG 1378.1 2.62 4k 0

IKL 1370.8 4.66 4k 2

MA-GX 40 1363.1 1.04 21k 9

M150 40 1364.6 2.75 8k 7

Kim 50 1364.4 42k
UMDA 40 1363.8 1.03 19k 1

LFDA 100 1362.7 0.70 21k 13

G1000.02 (3382)

DG 3397.5 5.17 2.0k 0

IKL 3399.5 14.73 2.3k 1

MA-GX 40 3384.0 0.49 11.4k 0

M150 40 3383.2 0.81 4.4k 6

Kirn 50 3384.5 40.1k
UMDA 100 3384.1 0.80 8.0k 2

LFDA 100 3383.6 0.90 7.8k 5
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gave the best results with the same number of function evaluations. LFDA is

not needed for these problems.

The problems with 1000 bits are more difficult. Both simple search algo-

rithms (DG, IKL) get considerably worse. Algorithm KIM of [12] performs

worst in the class of the sophisticated population search methods. LFDA and

MA-GX gave the best results and differ only slightly. But UMDA has good

results in two cases as well.

LFDA has an overall good performance with bigger computational effort.
In [18] the authors mention the importance of interactions: ‘‘Gene interaction

in a given representation can be expressed by a dependency graph . . . We think

that the structure of the dependency graph may have a large impact on the

fitness landscape.’’ But they do not use this property in their algorithms. The

property has been exploited by LFDA.

To see the number of edges that were used in a typical LFDA run, consider

Table 6. For the G1000.01 problem edges were chosen with a probability of

0.01. This resulted in a graph with 5064 edges. The table shows the actual
number of edges learned by the LFDA in a typical run. The number of edges of

the BN is much less than in the given graph. As the population converges, less

and less edges are needed to describe the probability structure of the search

population.

Both UMDA and LFDA were not adopted for the problem, only the local

search was added. The local search is essential for all population based search

methods. The algorithms of [18] and [12] were specifically written for the graph

bipartitioning problem. The performance of UMDA in conjunction with local
optimization using Kernighan–Lin is surprisingly good.

12. Conclusion

We have presented a theory of population based optimization methods

using search distributions. We have proven convergence to the global optima

for the FDA if the search distribution is a Boltzmann distribution. Conver-

gence has been defined in a strong sense––the limit distribution of FDA con-

sists of the distribution of the global optima. FDA converges in polynomial
time if the search distribution can be factored so that the number of parame-

ters used is polynomially bounded in n. A general distribution has 2n para-

meters.

Table 6

Number of edges of BN out of 5064 used for the G1000.01 problem

Gen 1 2 3 4 5 6 7 8 9 10

Edges 984 807 514 362 250 169 128 95 72 56
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If FDA is used without a Bayesian hyper-parameter, then for convergence

to the limit distribution the population has to be large enough. The problem of
estimating this critical population size can be reduced by using a Bayesian

hyper-parameter. We have computed upper bounds for Bayesian hyper-

parameters. They are derived from the constraint that the attractors generate

the optima with high probability (e.g P �s > 0:3). Furthermore we have pre-

sented an adaptive annealing schedule for Boltzmann selection.

Thus the mathematical theory is on a solid foundation for optimization

problems where the Boltzmann distribution can be exactly factorized using a

polynomial number of parameters. The research questions left are connected to
finding good approximations for the Boltzmann distribution in the general

case. We have shown the relation of our approach to methods used in prob-

abilistic reasoning and statistical physics.

The theory presented here can be extended to general dynamic systems.

Whereas in optimization problems we can restrict the search distribution to a

Boltzmann distribution, we have to deal in dynamic systems with general time

varying distributions.
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