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The computational cost of automatic quadrature programs is analyzed under the
hypothesis of exactness (or asymptotic consistence) of local error estimates. The
complexity measure used, in this work, is the number N of function evaluations in
real exact arithmetic seen as a function of “he number E of exact decimal digits in
the result. The methods of integration reviewed are m-panel rules, Clenshaw-
Curtis quadrature, global adaptive quadrature, double exponential quadrature.
For m-panel and global adaptive quadrature, based on a local rule of degree r — |
the constants hidden by the ‘O’ notation are determined in terms of the deriva-
tives of the integrand and of the numerical properties of the local rule. Two new
algorithms are introduced, called double-adaptive quadrature and triple-adaptive
quadrature, which achieve outstanding performances on several classes of inte-
grands. © 1994 Academic Press, Inc.

1. INTRODUCTION

We study the asymptotic complexity of computing the exact real repre-
sentation of the definite integral
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1=f"f(x)dx, a<b, (1.1

by using an automatic integration routine.

The complexity measure used in this analysis is the number N of func-
tion evaluations versus the number of exact decimal digits in the result.
More precisely, once given an algorithm that computes (1.f) with any
accuracy, the kth step of the integration process produces a value /%) that
approximates the integral with an absolute error I — [ Let E® =
—logioll — I'¥| and N be the overall number of function values com-
puted from step 1 to step k. The pairs (E®, N®) k=1,2,. .., canbe
viewed as instances of a function N(F), whose asymptotic behaviour is
investigated here. From the point of view of the numerical analysis it is
more natural to study the behaviour of a quadrature algorithm by measur-
ing |/ — I as a function of the number of evaluations N®); this last
measure can be easily converted to our measure. It is worth noting that a
more detailed analysis would be required to estimate the computational
load of the algorithm by taking into account the cost of the arithmetic
operations, the complexity of the integrand, the computational cost of the
error estimation, and the overhead due to the algorithm itself.

Analysis of the asymptotic complexity of numerical quadrature algo-
rithms is a hard task, widely studied in the literature from several points
of view (e.g., see Rice (1975), Traub et al. (1988)). Part of this work
overlaps much of the results present in the literature; nevertheless we feel
that a uniform presentation of the topic is fully justified.

The various approaches to this problem differ especially in the classes
of integrands considered and in the simplifying assumptions which are
adopted for the algorithms under investigation. Our choices are explained
in Section 2, where the main notations, the basic assumptions, and the
classes of integrands taken into consideration are introduced. In Sections
3 and 4 the complexities of nonadaptive quadrature and of classical global
adaptive quadrature are reviewed. We also derive explicit expressions for
the constants associated to the asymptotic cost of the panel nonadaptive
algorithm and global adaptive algorithm. In Section 5 a double-adaptive
quadrature algorithm and a triple-adaptive one, which achieve outstand-
ing performances, are introduced. In Section 6 the complexity bounds are
summarized. Some auxiliary results are given in the Appendix.

For any algorithm, plots of the complexity function N(E), obtained by
extensive computations carried out with high precision arithmetic, are
presented. Moreover, a special type of graphical presentation (see Fig.
2.3 below) is used, allowing a full insight of the evolution of the algo-
rithms.
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2. PRELIMINARIES

Notation

Given two real functions f{x), g(x), and a point xo, € R U {+%},
fix) = O(g(x)) means that lim sup | Ax)g(x)| = ¢, c €R;
flx) = o(g(x)) means that lim | fix)g(x)| = 0;

flx) = Q(g(x)) means that g(x) = O(f(x));
flx) = O©(g(x)) means that f(x) = O(g(x)) and f(x) = Q(g(x));
flx) ~ g(x) means that lim | Ax)/g(x)] = 1;

Ax) = cg(x) means that limﬁsup |fix)g(x) < c, c ER.

In the following, the point x, will be implicitly defined by the context.

Classes of Integrands

A complexity analysis of quadrature algorithms can be made only under
precise definitions on the class of the integrand taken into consideration.
The first class we consider is that of analytic functions in the integration
interval.

Class Ala, b, 8] (Analytic). Analytic functions in [a, #], continuable
analytically to be single-valued and regular in a region I'(a, b, 8), § > 0.
[(a, b, 8) is defined as the region of the complex plane obtained as the
closed union of two semicircles of radius & and centres at a and b, respec-
tively, and the rectangle of vertices (a, *8), (b, =8); oI' denotes the
boundary of I (see Fig. 2.1).

The second class is that of analytic functions in the integration interval,
except in a finite number of singular points. Moreover, in order to bound
the error produced by a local quadrature rule (Theorems A.2 and A.3 in

I(a, b, d) 8

ar

FiG. 2.1. The region I'(a, b, §).
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the Appendix) we allow the function to be unbounded only at the end-
points of the integration interval.

Class Mla, b, s] (Multiple singularities). A function fin A[a, b, 5] has
the following properties:

(1) there exists a finite number k& = 1 of singular points a = y,; <
y:<"’<yksb.

(2) if s = —1, at least one discontinuity in the function is present; if
s = 0, fis in C%la, b) with at least one singularity on the (s + I)th
derivative; if s = x, fis in C*[a, b).

(3) fis analytic in [a, b1 — {y1. ¥2, . . . , »} and bounded in any
closed subinterval of (a, b).

(4.a) if y, = a then there exist two constants 8, > 8, > 0 such that f
is continuable analytically in the interior of I'(a + §,, a + §,, §)), and

inf{8: )| =0z —al#),zET(a+ 8,a+8.8)<1;

(4.b) if some y; € (a, b) then there exist two constants &, > 8§ > 0
such that fis continuable analytically in the interior of both I'(y;, — 8.,
yi— 8, 8)and I['(y; + &, y; + 32, 8, and

inf{B:|f2)] = O0(z—y|P)z€T(y— 8, yi~ 8,8 <1,

inf {B:[f(2)] =00z —vi{™®),z€T(y+ 8,y +8&. 8§I<1;

{4.c) if y, = b then there exist two constants 6, > §; > 0 such that f
is continuable analytically in the interior of I'(b — 8,, & — &,, §/) and

inf {B8:1f(2)] = O(z— b)), zE€T(b =8, b—-8,,8) <1.

Properties 3 and 4 ensure that fis integrable in [a, b] and that the local
quadrature error can be bounded.

Sometimes, for functions of class AL, an additional property can be
useful, which ensures that the rth derivative of fhas a definite behaviour
near any singularity point:

|f(x0)] = Q(x — y)~W*e), forany e >0, x— y, x >y, o0
/0 = Qy — 07 W), foranye >0, x> y, x <y,

where

a.(y) =inf {8 : |f"(x)] = O((x — y) "), x>y}
a_(y) =inf {8 :|fx)] = Oy — x)"F7), x < yh
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Two interesting special cases of class M are the following:

Class % (Piecewise polynomials). These are functions of the type

{p(x), x =<y,
q(x}). x>y,

to be integrated on [a, b], a = y < b, where p(x) and g(x) are polynomi-
als. In this case, if the rule used is precise enough, the only source of error
is the singularity.

Class €% (End-point singularities). These are integrable analytic
functions in (a, b), with algebraic or logarithmic singularities at the end-
points. Class €¥ is essentially the sarne as that used by Takahasi and Mori
(1974).

The Assumptions of Our Ideal Model

In general the analysis of the asymptotic complexity of numerical quad-
rature cannot be made, without some simplifying assumptions. The criti-
cal problems that need to be simplified are the roundoff error management
and the truncation error estimates. We make the following two main
assumptions.

Assumption 2.1. We assume exact real arithmetic is used, or equiva-
lently, a multiple precision arithmetic with a variable number of digits
sufficient to neglect roundoff errors.

Assumption 2.2, For any application of a local quadrature rule let e,
be the estimate of the error used in the algorithm and let e, be the true
error. We assume that

€est = Crrue-

In the Appendix, it will be proved that, for regular enough functions,
Assumption 2.2 is asymptotically true. Indeed, for interpolatory rules
with degree of precision r — 1, applied on a subinterval of length 2A to
Cr'*2 r' > r, functions, there exists a simple error estimate such that

€est = Crrue + O()\rl+l)s
where
e = CATV + OWH), C a constant independent of A.

This is in some sense an extension of the concept of asymptotic consist-
ence of local error estimates given in Kahaner and Stoer (1983).
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These assumptions force us to study ideal programs and the results are
not directly applicable to practical environments, but this approach has
the following advantages:

(1) The analysis of automatic quadrature algorithms with exact
arithmetic and exact error bounds allows investigating the problems re-
lated to the integration strategy (choice of the rules, type of algorithm,
etc.) without considering the influence of the error estimate techniques.

(2) All the questions concerning failures, successes, abnormal ter-
minations, and the computational load due to error estimation can be
avoided.

(3) The performance of an algorithm with an exact error estimate is
clearly the best one among those achieved by the same algorithm with any
practical error estimating strategy. Therefore, this approach allows an
absolute rating of different error estimating strategies.

Number of Evaluations

In the context of automatic quadrature programs, the composition
arises often by bisections; a particular sequence of subintervals is ob-
tained by the repeated bisection of intervals. The total number of evalua-
tions depends on the geometrical properties of the rules used. There exist
rules that allow reusing the previously computed function values: the
most common examples are Newton—-Cotes rules, but they can be used
only with a low degree of precision. RMS rules (Favati et al., 1991a) have
the same geometrical property and can be applied with a large number of
points. For our purposes, it is sufficient to observe that in any case the
number of function evaluations N is proportional to the number of nodes
n of the rule used and the number m of subintervals,

N =uvim + v;

e.g., for Newton-Cotes and RMS rules vg = 1, v; = n — 1, for Gauss—
Legendre and Gauss—Kronrod rules vy = —n, v, = 2n.

In common practice the local quadrature is based on a pair of formulas:
one is used to estimate the integral and the other one is used to get an
estimate of the error. In order to take into consideration this approach in
our model, we should measure the cost of applying both formulas.

Algorithm Presentation
The quadrature algorithms are presented in the form of Pascal-like
programs; the following procedure heading is used:

procedure Quadrature(a, b, epquad: real; var abserr,
result: real),
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where
on input a, b are the extremes of the integration interval;
epquad is the absolute error tolerance specified by the
user.

on output result is the integral value estimated by the program
abserr is the estimate of |/ — result| returned by the
program

The quadrature programs use a local routine

procedurerule(a, b: real; k: integer; var abserr, result:
real) ;

that computes:

result an approximation of the integral obtained by applying the k-th
element of a family of rules 2,, . . . , 2;, . . . of increasing
accuracy.

abserr the absolute value of the exact error.

The algorithms are presented in a very schematic form, without any
roundoff checking or exceptional conditions handling, using Assumptions
2.1 and 2.2.

Graphical Presentations of Numerical Experiments

To improve the clearness of the presentation, the results of numerical
experiments will be presented by means of two types of graphs. The plot
of the complexity function allows comparing the overall behaviour of
different algorithms or of the same algorithm on different integrands (Fig.
2.2).

Another type of plot (Fig. 2.3) allows deep insight into the structure of
the computation of a program based on the composition of elementary
rules. For any subinterval [x, y] let m be the number of evaluations and let
e be the true error; then d = m/(y - x) is the density of the function
evaluations in that subinterval. The quantities |e| and d are plotted in
decimal logarithmic scale versus the integration interval: the ordinates of
black points are —logo|e| and those of grey points are —log;od, while the
abscissas are the midpoints of the corresponding subintervals. In addi-
tion, the number of decimal digits of accuracy for the whole integration
interval, the total number of function evaluations, and the number of
subintervals are printed at the top of the graph.

All the computations were carried out with the help of Mathematica™
on an Apple® Macintosh™ and a workstation Sun™, using 70 decimal digit
arithmetic.
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FiG. 2.2. Plot of the complexity function of two quadrature routines.

3. NONADAPTIVE QUADRATURE SCHEMATA

Clenshaw-Curtis Quadrature

Algorithm 3.1 outlines a nonadaptive automatic quadrature routine
based on a sequence of different rules of increasing precision. Probably,
the best choice is the family of Clenshaw-Curtis formulas (Clenshaw and

Decimal digits of total accuracy
Total number of evaluations
/_ P Total number of subintervals

{27.34, 1289, 128}

50
40 Error in the subinterval
” X
® . Py . d
3 ° o ® ° °

Evaluation density in the subinterval

Cae® & ¢ © & @

s

0.2 0.4 0.6 0.8 1
INTEGRATION INTERVAL

Number of exact digits in any subinterval (black)
Density of evaluation in the subintervals (grey)

Midpoint of the subinterval

FiG. 2.3.  Plot of the status of a quadrature routine.
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Curtis, 1960) which can be computed, with any number of nodes, via the
fast Fourier transform algorithm without precomputing weights and nodes
(Gentleman, 1972).

ALGORITHM 3.1.

procedure CCQuadrature(a, b, epquad: real; var abserr, result:
real);
var k: integer;
{ procedure CCrule(a,b: real; k: integer; var abserr, result

real); }
{ implements Clenshaw-Curtis Quadrature with 2k + 1 points }
begin
k:=1;

CCrule(a, b, k, abserr, result);
while abserr > epquad do begin
k:=k+1;
CCrule(a, b, k, abserr, result);
end;
end;

The number of evaluations after & steps is N = 2* + 1. This algorithm
converges very well for regular functions.

From the results of Chawla (1968) and Riess and Johnson (1972) it is
easy to prove the following theorem.

THEOREM 3.1. Ler f be in the class dAla, b, 7(b — a}], 7 > 0, and let
I(m) be the result of the integration by a Clenshaw—Curtis rule with m
nodes. Then there exist two constants F and mq for which

|1 = I(m)] < FE2 9 max )] pmm2,

2 eatabib-am
where
m=my, p=2r+(1+4)Y2>1+ 27
Then, for any f € dla, b, 7(b — a)], T > 0, we get the bound
I — I(N)| = Cp=™ND, p>1+ 27, 3.1
where C is independent of N and
E = —logill — KN)| = (N + 2)log,gp — log,,C,

whence

N = O(E). (3.2)
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Nonadaptive Composition of a Fixed Rule

Algorithm 3.2 outlines a generic nonadaptive automatic quadrature rou-
tine based on panel rules. This schema is called PNAQ in the following.

ALGORITHM 3.2.

procedure PNAQuadrature(a, b, epquad: real; var: abserr, result
real);
var i,n: integer;
X,v¥,z,h:real;

{ k: integer is a global variable denoting the rule used }
begin
n:=1;
repeat
X:=a;
h:=(b-a) /n;
result := 0;

for i:=1 to n do begin
rule{x, x+h, k, z, y);
result:=result+y;
X: =x+h;

end;

abserr: = a global estimate of the absolute value of the

total error
n:=2*n
until abserr < epquad
end;

Let us discuss the computational cost of this method for a C*{a, b], s =
1, function. Let r — 1 be the degree of precision of the rule 2, ¢ = min|[r,
s]; let vg and v, be the evaluation coefficients for the rule 2 and let 2% be
the number of subintervals. The number of evaluations is

N = 2% + v,. (3.3)

Applying relation (A.1) of the Appendix to each subinterval of length & =
27Kb — a) we get

)
(I ~ I(N)| = (b — a@)4*12-9%+b~1¢ max |f9(x)]
9 cElab) q!

[}

where ¢, is a constant related to the Peano kernel (see Davis and Rabino-
witz, (1984)). Moreover,

E = —logy|l — I(N)| = kq log,s2 + C,, C, independent of k. (3.4)
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Combining (3.3) and (3.4) we get

N = 0(10F9).

This result holds also for functions in the classes d[a, b, 8] or M[a, b, s],
s = 1, with ¢ = r or ¢ = min[r, s], respectively.

A more accurate result can be derived for a symmetric interpolatary
formula 2 and a C“[a, b] function f(x), s = r + 1. By applying to each
subinterval Theorem 3.3 of Favati ez al. (1992), which gives an asymptoti-
cally exact representation of the error, we get

= I(N) = J}I: <g)m%§ﬂj'<a + <i - %) h) + O(h')),

where r = ¢t = 5 — 1 is an even nonnegative integer and, for j even, ; is
the error of integrating on [—1, 1] the polynomial x/ by using rule 2.
From the asymptotic formulas for the midpoint rule we can write

3
=

h

“

f‘f’(a + (,‘ - %) h) = ,;,Z;j h,nfj(_nTC':'_’;j.)_! (fm=(b) — fun-1gq))

meven

+ O(h 72,

"

1

where Cy = 1 and C;, i even, is defined in Davis and Rabinowitz (1984, p.
139). Then we have

I - I(N) — E 2Aj—l% z hnif&’;j._(f(ln*l)(b) — f(m‘l)(a))

“~ e (m — j)!
jeven noeven
+ O(h'*Y),

If f-"a) # £~ 1%b), by setting 1 = r we get

I — I(N) = 2—r71 % hr(f(rf»lj(b) — flr—l)(a)) O(hrﬂ).

More generally, let p be the smaller even integer greater than r — 1 for
which f(P=a) # f'»~V(b). Setting 1 = p, we get
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- - . & i1 B _Coy .
I = I(N) = hr(f7"b) = f'r~"a)) Z 29 S+ Ohe

Jeven
)

3.5
= 290 — @PC, £ Nb) — fr @] + 0@,

where
Co= 22 gy
jeven
Therefore,
10°F ~ 27%)(b ~ @)?C,, Lf'7"b) = f1r-Na)l|
and

N ~vib — @)|C, 1 f177b) = [P~ Na)]|P10E7. (3.6)

For the PNAQ algorithm the density of the function evaluations is
constant in the integration interval; thus the grey points always lie on a
horizontal line. If the integrand function is regular enough, the black
points also lie on a flat curve. As an example, the behaviour of PNAQ for
the function sin(x), integrated on [—1{, 7], is shown in Fig. 3.1.

On the other hand, if the function presents some difficulties, the distri-
bution of black points has minima corresponding to the integration diffi-
culties. The example in Fig. 3.2 shows the behaviour of PNAQ, after a

304 {17.13, 255, 32}
251
201

151

F1G. 3.1.  Sine function, Clenshaw—-Curtis 7-point, 32 subintervals. The meaning of sym-
bols and axes is the same as Fig. 2.3.
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301 {-0.6499, 511, 64}

251

F1G. 3.2. Peak function, Clenshaw-Curtis 7-point, 64 subintervals. The meaning of sym-
bols and axes is the same as Fig. 2.3.

subdivision into 64 subintervals, for the function (107% + (x — 1)?)7!,
integrated on [0, =], which presents a large peak at x = 1 (and complex
poles at z = 1 = i/100).

Double Exponential Quadrature

A common device to integrate functions that are unbounded at one or
both ends of the integration interval is to apply a variable transformation.
The mapping function is so chosen that the singular points of the inte-
grand are moved to infinity, converting the improper integral into a con-
vergent infinite one, and the midpoint rule is applied to the transformed
integral. In other words, after the transform

r= jl. fx) dx = f A(Sw)) ¢'(w) du,

I is approximated by

[}, f6w) ¢'(w) du.

Then, applying the midpoint rule, the finite sum

> f6UR) ¢'Gh),  hn+ 8 =A G.7)

i==n

is computed. The analytical error of this method is the sum of two compo-
nents, one deriving from approximating the infinite integral in a finite
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interval (trimming error) and the other is due to the use of the midpoint
formula (discretization error). Among the various transforms proposed in
the literature, the best one is the so-called double exponential, i.e., ¢(u) =
tanh(7r/2 sinh «), which causes the transformed integrand to decay as the
double exponential function exp(—m/2 exp |ul).

The trimming error is an asymptotically decreasing function of [A| ex-
hibiting a double exponential decay; on the other hand, the discretization
error decreases in a transitory phase and tends to an asymptotic value
which is studied by letting A = +. For any choice of A and A, an open
symmetric quadrature formula (not of interpolatory type) in the interval
(—1, 1) can be derived. The use of such a rule will be called, in the
following, the DE-quadrature.

The relation between the number of evaluations and the error has been
studied for €Y functions (Takahasi and Mori, 1974), for further references
see Davis and Rabinowitz (1984, p. 214). In the suggested algorithm 4 is
reduced and |A| is increased until the desired accuracy is reached. The
resulting error is estimated asymptotically as

N
exp(—C log N) ’

that is, in our notation
N = O(E log E).

To implement the method in practice, one has to empirically estimate
both the trimming and discretization errors, stopping the process when
the desired accuracy is reached. The sum (3.7} is evaluated with increas-
ing values of n and two different values of h (e.g., 27% and 27%*~"). The
difference between the resulting approximations of the integral (with the
same n) gives an estimate of the discretization error. Since the trans-
formed integrand has a double exponential decay, when the contribution
of further terms in (3.7) becomes negligible with respect to the discretiza-
tion error, the step size is halved (i.e., k is increased by one) and the
process starts again. Due to the properties of trapezoidal sums, no func-
tion values are wasted.

Double exponential quadrature is implemented as one of the possible
methods in the built-in Mathematica™ NIntegrate routine. Clearly this
method has a poor behaviour for integrands with singularities inside the
integration interval,

Remark. 1n the literature there exist proofs of lower bounds for the
possible asymptotic behaviour of the errors involved in a quadrature
scheme that are higher than the upper bound proved for the DE-quadra-
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ture; see Stenger (1978) and Traub ez al. (1988). Murota and Iri (1982) note
that there is no contradiction because the classes of functions examined
by Stenger are different.

4. GLOBAL ADAPTIVE QUADRATURE SCHEMATA

Global Adaptive Composition of a Fixed Rule

The first schema of automatic adaptive quadrature that we consider
(called GQ in the following) is essentially the algorithm used in QAG
(Piessens et al., 1983), and QXG (Favati et al., 1991b) and consists of
repeatedly dividing the worst subinterval until the total error estimate is
better than the user requested tolerance. The relevant information on the
subintervals is stored in a priority queue, ordered according to the error
estimate and accessed by the routines put_interval and get_inter-
val. We assume that the routine

procedurerule (a, b :real; k: integer; var abserr, result:
real)

implements a symmetric interpolatory rule 9 with degree of precision
r — 1 and evaluation coefficients vy and v, .

ALGORITHM 4.1.

procedure GQuadrature (a,b,epquad: real; var abserr,result: real);
var res,est,resl,estl,res2,est?, middle: real;

{ k: integer is a global variable denoting the rule used }
begin
rule(a, b, k, abserr, result),; { integrate on the first
interval }
put_interval (a, b, abserr, result); { put the interval in the
queue }
while abserr > epquad do begin
get_interval (a,b, est, res); { get the interval with
the largest error }
middle:=(a+b) /2 { perform bisection }

rule (a,middle, k, estl, resi)
rule (middle, b, k, est2, res2);
put_interval (a,middle, estl,resl);
put_interval (middle, b, est2, res2);
result:=result-rest+resl+res2; { update estimates }
abserr: =abserr-estt+estitest2;
end;
end;
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Let m be the number of subintervals at some step of the integration
process and let ), i = 1,2, . . . , m be the true errors associated to the
subintervals. In this algorithm abserr is an approximation of the quan-
tity 212 |e®| which, in general, is greater than or equal to |I — Zcomputed|-
There are some special cases where the sum of the absolute values of the
errors on the subintervals is much greater than the total error |{{ —
Lompued|- In these cases, the algorithm GQ can be outperformed by the
algorithm PNAQ (e.g., it is well known that the best way to integrate
periodic functions is to use trapezoidal or midpoint rules).

If fis a polynomial of degree less than r, only one interval suffices to
exactly compute the integral, and the computational cost is O(1). Other-
wise, by using Assumption 2.2 one has abserr = 2, |e?)|, and the
asymptotic computational cost is studied by investigating the relationship
between the number of function evaluations N and the quantity £ =
—logy abserr in the infinite integration process (using exact real arith-
metic) produced by a zero error requirement. The following facts can be
easily verified:

(i) any subinterval with nonzero error will be halved in the integra-
tion process;
(i1) subintervals with exactly zero error do not further influence the
integration process;
(iii) the number of subintervals increases by one at each bisection.

When a global adaptive quadrature algorithm, based on bisections, is
used, then, after some transitory phase, the integration process can be
reduced to independent integrations of the same function on different
intervals, on which the integrand function has no more than one singular-
ity. Moreover, any point of the form ¢ + (b — a)y, where vy is a binary
machine number, will be the end-point of two subintervals at some step of
the integration process. In the following such points will be called reach-
able. Step singularities (of the function or its derivatives), located at
reachable points, will be automatically removed. More precisely, we say
that a function of class At has only apparent singularities if there exist # +
1 reachable points @ = xo < x; <+ - - < x, = b, such that the integrand is
of class A[x; + &, x1vy — 8,81, i=0,1,. .. ,h—1

Our goal is to determine both the order of N(E) and the constant hidden
by the ““O’’ notation. In the following we prove that N = @(105") for
several classes of functions with no more than one singularity in the
integration interval, and we determine the expression of the constant
involved. Then, we will show that the same bound, with the same expres-
sion of the constant, holds for a generic M[qa, b, 5] function, with one
additional condition on the growth of rth derivative. Numerical experi-
ments suggest the conjecture that this additional condition is not needed.
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Analysis 1: C™* Functions

Let us discuss the computational cost of GQ for C"*?[a, b] functions.
The following analysis is applicable to functions in the classes H[a, b, 8]
or Mla, b, s], with s = r + 2, as well. We denote with R(m) the set of the
m subintervals in the queue at the mth step of the integration process. Let
R =[x — A\, x + A] € R(m) be a subinterval of length 2\ with a nonzero
associated error e, let R|, R, € A(m + 1) be the subintervals obtained by
halving R and let ¢), e; be the errors of the integrals of fon R; and R,,
respectively. In virtue of Theorem A.1, since | f"*2(x)| is bounded on [a,
b], we have, apart from numerical coincidences,

e ~ N (x) % (4.1)

Then, from Theorem A.4, we have
e = 277 e + O(NFY, ey = 270te 4+ O(NY), (4.2)

The above equations mean that, when a sufficiently small subinterval is
halved, two subintervals are generated for which the error is reduced by a
factor close to 2¢*D,

Let the integration process have progressed enough to have mq subin-
tervals sufficiently small to neglect the O(A"*2) terms in (4.2). Let ¢, i =
1.2,. .., mp, be the errors associated to the subintervals and let P be
the best subinterval (with nonzero error) in R (my), i.€.,

lep| = min |e'].
1<i<mygy
ol &g

Let m, be the number of subintervals when P is halved. Any other subin-
terval in R(m,) has been generated ty bisecting a subinterval having an
error with absolute value greater than |ep|. Then, applying Theorem A .4,
for any interval R € R (m,) of length A we have

27 Mepl(l + OM)) =< |eg] < lep|. (4.3)
Let
EMIN = min ’6“", eMax — Mmax ‘E'i)l;
I<i=m I<i=m
40

then, for m = m, inequality (4.3) implies that

emax = 2 emin(l + O(N)).



AUTOMATIC QUADRATURE 313

BOl (13.4S, 2047, 256}

FiG. 4.1. Peak function, Clenshaw-Curtis 7-point, 256 subintervals. The meaning of
symbols and axes is the same as Fig. 2.3.

This relation can be proved for any successive step of the integration
process by induction on the number m of subintervals starting from m,
and using relation (4.2). This allows uvs to write

emax € 27 emin. 4.4)

Relation (4.4) implies that, in the graphical representation explained in
Fig. 2.3, most black points lie in a strip of size (r + 1) log;y 2 decimal
digits. As an example, Fig. 4.1 shows the behaviour of GQ for the func-
tion (107¢ + (x — 1)) ! after 255 interval bisections. A comparison with
Fig. 3.2 shows that the adaptivity achieves a more uniform error distribu-
tion at the expense of a nonuniform evaluation density.

Let us consider a point u belonging to the integration interval. Let 2A(u)
and e(u) denote the length and the associated error of the subinterval
containing the point u# at some step of the integration process, respec-
tively. Relation (4.1) can be written as

Br

ﬁv

e(u) ~ M) f P y(w))

where y(u) denotes the midpoint of the subinterval which contains u«.
Since y(u) — u as max,egp,.pn Mu) — 0, then we can write

e(u) ~ Muy ' (w) %

as max Alu) — 0
u€la.bl

and, therefore,
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a0 ~ [feq) /{1roao B

The density of subintervals is (2A(«)) ' and the number m of subintervals
contained in T = [a, b] is

1 , 1ir+ 1) Vit
m = % [ At du~3 |, (] £ ‘»?,—‘ / [e(u)]) du = Cremn"",

4.5
where
et ) .
Cr= % O%Q J7 | fOG Y du (4.6)
is a constant depending on 2, f, and 7. Since
- n ) l N
10 E = gbserr = z 'g“" = -2— fT [e(ll)')\(ll) ! dll,
i=1
we have
l tﬁr{ Hr+ 1) T
10-E ~ 51, e[+ D (]ﬁ”(u)[ ';T) du = Crepmax 4.7)

Combining (4.5) and (4.7) and using N = vym + vy and Lemma A.2 of the
Appendix, we get

Hir+ )

; . [ €MaX

v CYTVIOE = N = (‘e /") v, C7 U108, “.8)
MIN

Finally, using (4.4), relation (4.8) can be rewritten as

v, CU0Er = N (4.9a)
N Z 2u,C§HV7 1057, (4.9b)

ie.,

N = 0(10r),
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Fi1G. 4.2. N versus E for the program GQ using Clenshaw-Curtis 7-point rule, applied to
the integrand x, compared with the theoretical bounds given by (4.9).

In the special case f(x) = x’, the bound (4.9a) and the expression (3.6)
for PNAQ are both equal to

_ r+1)/r
v, (b_za) {Br‘”rlomr~

The computational cost of GQ for the function x3, integrated on [0, 1] with
the Clenshaw—Curtis 7-point rule is presented in Fig. 4.2 compared with
the theoretical bounds of (4.9). We note that, since the rth derivative of x8
is a constant, the lower bound is periodically reached when all the inter-
vals have the same length and the algorithm coincides with PNAQ. The
computational cost of a nonpolynomial function like exp(20 x), integrated
on [0, 1], is less oscillating (Fig. 4.3).

70001
6000¢
5000¢
4000¢
3000¢
2000t
1000¢

4.

2.5 S5 7.5 10 12.5 15 17.5

FiG. 4.3. N versus E for the program GQ using Clenshaw~Curtis 7-point rule, applied to
the integrand exp(20 x), compared with the theoretical bounds given by (4.9).
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Analysis 2: Bounded (r + 2) th Derivative Integrands

We now investigate the computational cost of the global adaptive algo-
rithm for a function in the class M[a, b, s] with —1 = s < r + 2 and having
the (r + 2)th derivative bounded in [a, #]. We assume also that only one
singular point ¢ = y < b is present. We divide the subintervals contained
in the queue, at any time of the integration process, into three classes:

(1) the “‘red’’ subinterval which contains the singularity,
(2) the *“*white”’ subintervals,
(3) the ‘‘black’ subintervals.

The definition of the color of a subinterval is recursive:

(i) at the beginning of the integration process there is only the red
subinterval: [a, bl;

(ii) the red subinterval is bisectzd into one red subinterval (contain-
ing the singularity) and one white subinterval;

(iii) a white subinterval is bisected into two black subintervals:
(iv) a black subinterval is bisected into two black subintervals.

The meaning of white and black subintervals is clear in the following
graph taken after 127 bisections for the step function

{sin 10 x, x=<1,

2 exp(x), x> 1,

integrated on [0, 7).

We denote with $(i) the red subinterval after / bisections. As long as the
error es;, on the subinterval S(i) is dominating, the red subinterval is
divided. If the error on S(i) is less than the error on some white subinter-
val (say W), then W is divided and black subintervals start to be pro-
duced. The integration on black subintervals will proceed without being
affected by the singularity.

The following lemma allows us to relate the number of bisections of the
interval containing the singularity with the quantity eyax, which denotes
the error of the worst interval at the same time. Note that, during the
integration process emax is attained repeatedly on red, white, and black
intervals, so it is not worth distinguishing the color of the worst interval.
On the other hand for epyn on the whole interval a lower bound cannot be
derived (very small values can be atrained on white intervals, see Fig.
4.4), We consider, instead, the quantity eyyng that denotes the minimal
error on black intervals and for which a relation analogous to (4.4) holds.
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FiG. 4.4. Step function. Clenshaw-Curtis 7-point, 128 subintervals. The meaning of
symbols and axes is the same as Fig. 2.3: moreover, the open circles denote the negative
base-10 logarithm of the error for white intervals.

LEMMA 4.1. The number i of bisections performed to get the red
subinterval S(i) is related to eyax by the following bound:

i = —log,emax t+ log:D.

Proof. From Theorem A.2 of the Appendix we have |esy| = B(b —
a2~ i.e.,

i = ~logyjesi1| + log:B(b — a).

Since |esi-1)] = emax, the thesis is proved with D = B(h — a). ®

Let T be the subset of the integration interval covered by black subin-
tervals and let mg, mw be the numbers of black and white subintervals,
respectively. During the integration process max, et A(u) — 0 and T — [a,
b]. Since the first r + 2 derivatives of f are bounded in [a, b] and black
subintervals are obtained by halving subintervals that do not contain the
singularity, we have

(1) Clus, defined in (4.6), has a finite value;

(ii) on the set T, relation (4.5) holds for mp and
Cregas™ = mg = Creyiniy . (4.10)
Moreover, there are

my = —log,emax + logaD



318 DI MARCO ET AL.

white subintervals and, since m = mg + my + 1 and —log emax is domi-
nated by eyiv*?, then m ~ mpg.

In a similar way it is possible to prove the relation

m 1
10°€ = abserr = Y, |e@] ~ 5 JT le(u)A(u)~" du,
=

that ensures that the contribution of white and red intervals to the total
error is negligible. Finally relation (4.9) can be obtained again for T— [a.
#] and the computational cost is the same as in the regular case.

It is possible to verify this fact, experimentally, for two functions which
have the same constant C_; ./):

—exp(x), x=0

F1: exp(x); F2: [ } integrated on {1, #/2]).

exp(x), x>0

Both the functions have been integrated with GQ (using Gauss—Legendre
S-point rule) until 42 decimal digits of accuracy have been obtained. As a
matter of fact, after an initial transitory phase in which the smooth func-
tion F1 is integrated much better, both the complexity plots remain be-
tween the theoretical limits of (4.9).

In the case of piecewise polynomials of degree less than r, there are no
black subintervals since the error on white subintervals is zero. In this
case the only source of error is the singularity. It is easy to prove that the
complexity function is linear, i.e., N = @(F). It is remarkable that the
linear computational cost is attained by GQ for any singular function in
the transition phase before black subintervals begin to be generated.

Analysis 3: Unbounded Integrands with an End-point Singularity

Let us now investigate the computational cost of the global adaptive
algorithm restricting the analysis to an M[0, 1, —1] function f(x) with only
one unbounded singularity at 0 and

a = inf{B: | (D) = O(|z|™#), z € T'(5,, &, 8} < 1.

We assume also that f satisfies the additional property (2.1). We divide
the subintervals contained in the queue, at any time of the integration
process, into red, white, and black subintervals, as in the previous analy-
sis. For a fixed constant € > 0, an interval [x — A, x + A] is called ‘‘large”’
if A = (x + A3 and “‘small” otherwise.

The following lemma allows us to relate the number of bisections of the
interval containing the singularity with the quantity emax, which denotes
the error of the worst interval at the same time.
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Function F2

Function F1

32 34 36 38 40 42
FiG. 4.5. N versus E (30 < E < 42) for the program GQ using Gauss-Legendre 5-point

rule, applied to the integrands F1 and F2, compared with the theoretical bounds given by
(4.9).

LEMMA 4.2. The number i of bisections performed to get the red
subinterval S(i) is related to eyax by the following bound.

—log,emax + log,B
l —a—¢

Proof. The proof is analogous to that of Lemma 4.1, using Theorem
A.3 instead of Theorem A.2. =

Therefore the number of white subintervals is my = O(—log epax). If
we take ¢ < (1 — «)/(3r + 4) and ¢t = 27/, then from Lemma A.3, the
number of large subintervals m; contained in (¢, 1] is

mp = 0(7%) = 0(2*) = Oleyiy' ™™ = olemax ")

The analysis of the asymptotic computational cost can be carried out by
using a technique similar to that used for the previous case, considering
black small subintervals instead of black subintervals.

Let T be the subset of the integration interval covered by black small
subintervals, during the integration process max,ey AM(u) — 0 and T — [0,
1]. From Lemma A.1, we have | f(x)]/¢+D = O(x~ere+n/0+0) "and Cio.,
defined in (4.6), has a finite value. Relation (4.10) is true for the number of
small black intervals mgs and relation (4.7) holds for the error on T. Since
m = mgs + m, + my + 1, then m ~ myg. Applying Theorem A.5 to the
small black subintervals we can derive again relation (4.4) on T and
relation (4.9) can be obtained again for T — [0, 1]. This result has been
experimentally verified for the function x ! log x, integrated on [0, 7]
(Fig. 4.6).
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F1G. 4.6. N versus E for the program GQ using Gauss-Legendre 5-point rule, applied to
the function x~'? log x, compared with the theoretical bounds given by (4.9).

It is interesting to verify experimentally the behaviour of the singular
unbounded function F3: x~V4(3/4 cos log x — sin log x), integrated on [0,
1], which does not satisfy property (2.1). Note that F3 changes sign infi-
nitely many times in [0, 1]. Also ir this case the theoretical bounds
bracket the complexity; it can be conjectured that hypothesis (2.1) is not
needed for the validity of (4.9) (Fig. 4.7).

Analysis 4: Unbounded (r + 2)th Derivative Integrands

Let us now investigate the computational cost of the global adaptive
algorithm for a bounded A [a, b, s] function f(x) with —1 = s <r + 2, and
only one singular point a < y < b. Let

—M

5 10 15 20

F1G6.4.7. N versus E for the program GQ usiag Gauss-Legendre 5-point rule, applied to
the integrand F3, compared with the theoretical bounds given by (4.9).
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inf{B: |[fD)l = Oz — y|P), z€T(y - &,y - &, 8)} <1,
inf{B: |flz)] = Oz — y|), 2 ET(y + &, y + &, 8D} < 1.

i

23]

I

(25

We assume also that f satisfies the additional property (2.1). We divide
the subintervals contained in the queue, at any time of the integration
process, into three classes: red, white, and black subintervals. We associ-
ate a color to each subinterval recursively:

(i) at the beginning of the integration process there is only the red
subinterval;

(ii) the red subinterval is bisected into one red subinterval (that
containing the singularity) and a white subinterval;

(iii) a white subinterval is divided into two black subintervals if
neither of them is adjacent to the interval containing the singularity; oth-
erwise it is split into one black and one white subinterval (the one adjacent
to the interval containing the singularity);

(iv) a black subinterval is bisected into two black subintervals.

Moreover, we assume that the red interval is not larger than any other
white subinterval.

For a fixed constant £ > 0, an interval [x — A\, x + A} is called “‘large’” if
A= (Jx — y) + AN, and ‘“‘small” otherwise. From Lemma 4.1 the
number of white subintervals is my = O(—log eyax). The red interval is
surrounded by two white intervals of length not smaller than 272 The
number of large subintervals m contained in [a, b] can be bounded taking
e < 1/(3r + 3) and applying Lemma A.3 to the intervals (a, y] and [y, b]
with |t — y| > 2-1t-a:

m = Ot = y|7) = 0Q*) = Oteyiix) = olewx™)-

The analysis of the asymptotic computational cost can be carried out by
using a technique similar to that used for the previous case. Let T be the
subset of the integration interval covered by black small subintervals,
during the integration process max,er Mu) — 0 and T — [a, b]. Relation
(4.10) is true for the number of small black intervals mps and relation (4.7)
holds for the error on T. Since m < mpgs + mw + my + 1, then m ~ mgg.
Applying Theorem A.5 to the small black subintervals we can derive
again relation (4.4) on T and relation (4.9) can be obtained again for T —
[a, b).

Analysis of GQ for Integrands with Multiple Singularities

Now we have the theoretical background to study the total computa-
tional cost of the algorithm GQ for the integration of a generic function in
Ma, b, s].



322 DI MARCO ET AL.

LeEMMA 4.3. Consider an integrable function f and a set of disjoint

intervals T\, T», . . . , T,. If the following relations hold on each T;,
1 3, 1r+1)
— L (100 B frequr) ™ du,
} | 1{r+ )
1078 ~ = ]e(u)lr/(rﬂ) (If‘(r)( )j ) du,

then the total computational coston T=T,U T, U - - - U T; satisfies Eq.
(4.9) with

1 ’ 1ir+ 1) I3
Cr= 5 (l—é—‘) fr.ur:uv-w; 'ﬁr)(u)’mrﬂ) du = ,:El CT/‘

r!

Proof. Since the number of intervals and the absolute value of
the error are additive quantities, relations (4.5)-(4.9) can be derived
again. W

THEOREM 4.2.  For a function fin Mla, b, s] with singular points y,,
Ya,. . ., yand satisfying the additional property (2.1), the total asymp-
totic computational cost of the algorithm GQ satisfies Eq. (4.9) with

LG+ 1
Cr = 2(|B’) [ 1rocor e du, T =1a, b

Proof. Letus split the interval [a, b] into A subintervals 7; = [x;, x;.,],
i=0,1,...,h—=1,xy=a, x, = b, such that
(i) each x;is reachable.

(ii) each interval T; contains nc more than one singularity;

(i) if a singularity is in a reachable point y then y = x,; for some i.
The hypotheses of Lemma 4.3 can be fulfilled, by using for each interval
T,':

Analysis 1, if fis a C"*[T;] function;

Analysis 2, if f has a bounded (r + 2)th derivative on T;;

Analysis 3, if fis unbounded with singularity at a ({ = 1) or at b
(i = h);

Analysis 4, if fis bounded and has a singularity with unbounded (r +
2)th derivativeon 7;. ®
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5. DouBLE-ADAPTIVE QUADRATURE SCHEMATA

Querall Description of the Algorithm

From the results of the previous sections it turns out that the best
performances for class & functions are obtained by the Clenshaw-Curtis
quadrature (N = O(E)) and for general functions in class M they are
obtained by the GQ algorithm (N = @(10%')). In this section we introduce
a quadrature schema that is applicable to functions of any class, attaining
better complexity bounds than GQ.

The basic idea (see also Oliver, 1972) consists of combining, in a gen-
eral global adaptive schema, the two main strategies for improving the
approximation of the integral, i.e., the interval subdivision and the appli-
cation of more accurate formulas. This idea is also the basis of the ‘‘h-p”’
version of the finite element method for the solution of partial differential
equations (for a detailed analysis see Gui and Babuska, 1986).

In practice the active subintervals are ordered into a queue according to
the error estimate, and at any step the subinterval with the worst error
estimate can be bisected or processed with a higher degree formula (in the
following we shall use formulas in the Clenshaw-Curtis family). The
choice between the two alternatives is determined by the presence of
difficulties in the subinterval. Obviously, if the location of the singularities
is not a priori known, an empirical test (which can sometimes fail) has to
be performed. For class & functions, since, apart from transitory numeri-
cal difficulties, no singularities can be detected, the integration process is
reduced to the application of the Clenshaw-Curtis nonadaptive algorithm
of Section 3 on a finite number of subintervals and the resulting computa-
tional cost is O(E). In the following, we discuss, for integrands with only
one singularity, the algorithm which uses the integration strategy of halv-
ing the worst subinterval, if it contains the singularity, and of processing it
with a higher order formulas, otherwise. Without loss of generality, we
assume that the integrand is continuable analytically in a sufficiently large
neighborhood of the singularity. Finally, we present a general algorithm
that can be applied to any function (including functions with several sin-
gularities).

Analysis 1: Unbounded Integrands with an End-point Singularity

We now investigate the computational cost of the double-adaptive algo-
rithm for an AL{0, 1 —1] function f(x), continuable analytically in the
interior of I'(4, 1, $), with only one unbounded singularity at zero and

a=inf{B:|f(2)] = O(z] ™), z € TG, 1, H} < 1.
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FiG. 5.1. Subinterval structure.

Since the singularity is at zero, only the leftmost subinterval is bisected.
At any step there is one ‘‘red’’ subinterval containing the singularity,
which is halved more and more, generating “‘black’ subintervals that
never will be halved (Fig. 5.1).

Let S = [0, 27/] be the red subinterval on which a Clenshaw—Curtis
formula with my nodes is applied. A bound on i as a function of the
absolute value w = eyax of the error of the worst subinterval, is given in
Lemma 4.2. Let RY = [27/, 27771] be a black subinterval and let e(w) be
the associated error when the Clenshaw—Curtis rule with u = mg nodes is
applied on RY. Let m; be the number of nodes of the formula actually used
on R, Let us assume that the integration process has progressed enough
to guarantee that

my = max m; > my.

0=/=i
From Theorem 3.1, with7 =4, p = | + V2 > 2, we obtain

le(m)| = F 277! max )[f(z)i P =120

€al 2~/ 27 20!

moreover, for any 0 < £ < | — a, there exist two constants Q and C, for
which

teijl(mj)l < FQ 2—]—1*(—j~|)(a+si p*mj~3 < FQ 2—(I-a‘E|U+l)~mj~2

<C 27, j=1,2,. .., 4
When the red subinterval is divided, forany m; > my,j=1,2,. . ., i, we
have
leNm)| = o < [N mi2 + 1/2)].
Then,
C, 272712 > oWy /2 + 1/2)] > w
and

—log, Ci + ma/2 + 1/2 < log; 1/ w.
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Therefore, there exist constants C,, . . ., Cs for which, for o sufficiently
small,

my, < Cylog; Ve + Cy;

N=simy+ (i+ 1)my<Cq(log el

W E=s(+Dw

IA

Cswlog; l/w
E = ]Ogm 1w — IOglo IOgg (l/w) - lOgl() C5 = C lOg: lw

from which, finally, we have N = O(E?).

Analysis 2: Bounded Integrands with Internal Singularity

We now investigate the computational cost of the double-adaptive algo-
rithm for a bound M{0, 1, s] function f(x) with only one singular point 0 <
y = I, continuable analytically in the interior of both I'(0, y/2, y/2) and
I'i((y + 1)/2, 1, (1 — y)/2). Let

1l

inf{B: |f(2)] = O(lz — y|B), z € T(0, y/2, y/2)} < 1,
inf {8:f(2) =00z~ y®.z€TWy + D2, 1,1 — Y2} < 1.

23]

ay

There is one red subinterval containing the singularity, which is halved
more and more, each time generating one red and one white subinterval.
A white subinterval is divided into two black subintervals if neither of
them is adjacent to the singularity; otherwise it is split into one black and
one white subinterval. A Clenshaw-Curtis formula with my nodes is ap-
plied on red and white subintervals. Black subintervals are processed
with increasing order formulas and they are never halved. The structure
of subintervals can be exemplified with the help of a binary tree: the root
(level 0) denotes the interval [0, 1]; the 2/ nodes at level i denote the
possible subintervals of length 27/ (Fig. 5.2).

It is easy to see that there are only two white subintervals surrounding
the red one. Let § denote the red subinterval of length 27/ ({ > 1); a
bound on i as a function of @ = epmax is given in Lemma 4.1. For what
concerns black subintervals, we point out that the distance from the sin-
gularity of any black subinterval of length A is greater than or equal to A;
moreover, if we assume that S is not larger than any other subinterval,
then there are exactly 3/ — 5 black subintervals. If the Clenshaw-Curtis
rule with m; nodes is used on the jth black subinterval, Theorem 3.1, with
p > 2, can be applied. The analysis is similar to the previous one. Clearly,
one has

le‘f)(mj)l < C| 2°m,
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F1G. 5.2. Tree associated with the subinterval structure; the grey circles represent the
red subintervals.

When the red subinterval is divided, for any m; > mq,j=1,2,. . .,3i —
S, we have

leMmy)| = w < |e(mi2 + 1/2)].
Let my, = maXgsj=3i-s Mm; > my, then
C, 272712 > eW(n /2 + 1/2)] = w.

Then, there exist constants C,, . . . , Cg such that, for a sufficiently small
w,
my, < Cs lOg2 llew + Cy;
N=Q@Bi-5m,+3im< C, (log 1/0))2;
0 E=Bi-2)w=Cwlog llw;
E= |Ogm e — log,o lng (1/w) — logm Cs = Cs log, lo.

Whence, finally, we have N = O(E?).
DAQ Algorithm

We now describe a general algorithra DAQ, implementing the double-
adaptive strategy. DAQ also works with several singularities located any-
where in the interval. The program is based on the consideration that an
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empirical test on fast convergence can detect the presence of both singu-
larities and numerical difficulties that prevent the estimated error from
behaving as predicted by the asymptotic theory.

By using the theory of the error for Clenshaw—Curtis quadrature for
functions of class &§ and assuming that the bounds in relation (3.1) are
asymptotically sharp, we get

i — Im)| ~ Cy p~2,
I —12m — 1| ~ C, p~2m~),

e

Il

€y
Once given a constant 8 < 2,

eh _ _ B B
o C\B=D p(1=28) p2-pm = C, 52-Bm,

I.e., the relation lim,, .. (e,/ef) = 0 is a necessary condition for the asymp-
totic validity of (3.1). Following these considerations we adopt the empiri-
cal test:

e; = 0.01 '3,

Algorithm 5.1 shows how DAQ can be implemented. The basic strategy
is to apply bisection in the presence of integration difficulties and to apply
the Clenshaw-Curtis rule if the convergence test has been passed. The
function test (est, estl) returns true if estl = 0.01 est! and is
used to stop the use of more accurate rules and to force the application of
bisection. Obviously, the test may fail, but the resulting overhead does
not affect the asymptotic computational cost of the algorithm.

ALGORITHM 5.1.

procedure DAQuadrature (a, b, epquad: real; var abserr, result
real);
var res,est,resl,estl,res2,est2,middle: real;
k: integer;
{ kO: integer; is a global variable denoting the starting point
for the local rule
{ procedure CCrule(a,b: real; k: integer; var abserr, result:
real);
implements Clenshaw—Curtis Quadrature with 2k+1 points
function test(est,estl : real):boolean;
tests the convergence after doubling the points
put_interval_k and get_interval_k handle the priority queue.
k = 0 means that the kth Clenshaw—-Curtis rule has been
applied }
{ k = —1 means that a singularity has been detected }

—

v S A gt gt
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begin
CCrule(a, b, kO, abserr, result); {integrate on the first
interval}
put_interval_k(a,b,k0, abserr, result); {put the interval in
the queue}

while abserr > epquad do begin
get_interval_k(a, b, k, est,res); {get the interval with
the largest error}
if k>=0 then

{ no singularity nor an integration difficulty was detected for the
interval [a,b] }

begin
k:=k+1;
CCrule(a,b,k, estl, reslj;
result:=result-res+tresi; {update estimates}
abserr:=abserr—est+estl;
if test (est,estl) then k:=-1; {test for convergence}
put_interval_k (a, b, k, aoserr, result)
end else
{ a singularity or an integration difficulty was detected for
the interval [a,b] }
begin
middle: =(atb) /2 {perform bisection}

CCrule (a,middle, kO, estl, resl);
put_interval_k (a,middle, kO, estl, resly);
CCrule (middle, b, k0, est2, res2) ;
put_interval_k (middle, b, k0, est2, res2);
result:=result-restresl+res2; {update estimates}
abserr: =abserr—esttestl+est2
end
end;
end;

Since DAQ is a global adaptive quadrature algorithm based on bisec-
tions, after some transitory phase the integration process can be reduced
to independent integrations on a finite number of intervals on which one
of the following facts holds:

(1) the integrand is regular;

(2) the integrand has only one singularity and the interval is suffi-
ciently small to satisfy the conditions used in Analyses I and 2.

Moreover, the considerations on reachable points and apparent singulari-
ties previously introduced apply too.

In practice, since the subintervals surrounding the singularity are bi-
sected only if the proximity of the singularity affects the convergence of
Clenshaw-Curtis rules, the complexity analysis made before, using
black, white, and red intervals is conservative, then the overall computa-
tional cost is
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N = O(E) for functions in class #{a, b, 8] and

for functions in class M[a, b, s] with only
apparent singularities;

N = O(E? for the other functions in class M[a, b, s].

Figures 5.3-5.5 show the behavior of GQ and DAQ compared for the
function x*? interated on [0, 1}. The reduced rate of growth of the number
of subintervals in the DAQ algorithm is obvious.

A preliminary version of this algorithm was implemented in Mathe-
matica™ high level language and compared with the straightforward use
of the built-in (low level coded) Mathematica™ Nlntegrate function. The
new program is more efficient and reliable, than NIntegrate in the range of
accuracy from 20 to 80 decimal digits, (Romani, 1992).

Triple-Adaptive Quadrature

The efficiency of DAQ can be improved by exploiting the superior
performance of the double exponential quadrature on some integrands
with end-point singularities. In this section we given a sketch of the triple-
adaptive algorithm (TAQ in the following) which attains the bounds

N = OE) for functions in class sla, b, 8] and
for functions in class Mla, b, s] with only
apparent singularities;

N = O(E log E) for functions of class €%,
N = O(EY) for the other functions in class Al.

{19.65, 1023, 128;
50

40

Fi1G. 5.3. Function x*?, Clenshaw—Curtis 7-point, 128 subintervals, Algorithm GQ. The
meaning of symbols and axes is the same as Fig. 2.3.
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{(27.34, 1289, 128}

" " "

0.2 0.4 0.6 0.8 1

Fi1G. 5.4. Function x¥2, 128 subintervals, Algorithm DAQ. The meaning of symbols and
axes is the same as Fig. 2.3.

The basic idea consists of combining, in a general global adaptive schema,
the three main strategies for improving the approximation of the integral,
i.e., the interval subdivision, the application of increasing precision Clen-
shaw-Curtis quadrature, and the application of DE-quadrature. In other
words, the active subintervals are ordered into a queue according to the
error estimate, and at any step the subinterval with the worst error esti-
mate can be bisected or processed with a higher degree formula. If an
integration difficulty is detected in an interval containing an end-point
then, before bisecting the interval, DE-quadrature is attempted. The
quadrature program uses a local routine

procedure DErule(a, b: real; k: integer; var abserr, result: real)

3000¢

! DAQ

2500¢ ! ~&5
4

2000¢ :

1500¢

1000¢

500t .
| el .

5 10 15 20 25 30 35

FiG. 5.5. N versus E for the programs GC (using Clenshaw—Curtis 7-point rule) and
DAQ, applied to the integrand x¥2.
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that implements DE-quadrature with step & = 2 %b — a) choosing the
smallest integration interval for which the estimated trimming error is
negligible. The function test (est, estl) can be used to see whether
the DE-quadrature converges slower than the theoretical expectations.

ALGORITHM 5.2.

procedure TAQuadrature (a0, b0, epquad: real; var abserr, result:
real);
var res,est,resl,estl,res2,est2, middle,a,b: real;
k: integer;
{ k0: integer; iIs a global variable denoting the starting point

for the local rule }

{ procedure CCrule(a,b: real; k: integer; var abserr, result:
real); }

{ implements Clenshaw-Curtis Quadrature with 2k+1

points }

{ procedure DErule(a,b: rule; k: integer; var abserr, result:
real); }

{ implements double exponential Quadrature with step
h = 27k (b-a) '
{ function test(est,estl : real):boolean; }

—~—

tests the convergence after doubling the points in
Clenshaw—-Curtis quadrature
or after halving h in DE quadrature

{
{
{ put_interval_k and get_interval_k handle the priority queue,
{
{

k > 0 means that the kth Clenshaw—Curtis rule has been

applied }
{ k <1 means that double exponential quadrature with step
h = 27k (b-a) }
has been applied
{ k = 0 means that a singularity has been detected }
{ k = —1 means that DE quadrature application was unsuccessful }
begin
CCrule (a0, b0, k0, abserr, result): { integrate on
the first

interval }
put_interval_k (a0, b0, k0, abserr, result); { put the interval in

the queue }
while abserr > epquad do begin
get_interval_k(a,b,k, est, res); { get the interval
with the largest
error }

if k>0 then begin {no singularity was detected for the
interval [a,b}}

k:=k+1;

CCrule(a,b,k, estl, resil):

result:=result-res+resl; {update estimates}
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end;

end
end;
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abserr:=abserr—esttestl;
if test(est,estl) then k:=0; {test for convergence}

put_interval_k(a,b k,abserr,result)

end else if k=0 then {a singularity was detected for the

interval [a,b]}

if the subinterval does not contain an end-point
then begin

middle: =(a+b) /2 {perform bisection}
CCrule(a,middle, kO, estl, resl);
put_interval_k(a,middle, k0, estl, resl);

CCrule (middle, b, k0, est2,res2);
put_interval_k (middle, b, k0, est2,res2);
result:=result-res+resl+res?2; {update
estimates}
abserr:=abserr—-esttestltest2

end else begin

DErule(a,b,2,estl, resl); {perform DE quadrature}
DErule(a, b, 3, est2, res2): {perform DE quadrature}
if test(estl,est2)
then put_interval_k(a,b,-1, est, res);
else begin
put_interval_k(a,b,—3, estl, resl):
result:=result-res+res2;
abserr: =abserr—est+est2
end
end

else if k=—1 then begin

middle:=(a+b) /2 {perform bisection}
CCrule (a,middle, kO, estl, resl);
put_interval_k(a.middle, k0, estl, resl);
CCrule (middle, b, kO, est2, res2);
put_interval_k (m:.ddle, b, kO, est2, res2);
result:=result-restresl+res2;
abserr:=abserr—est+estl+est2

end else{k<-1} begin

DErule (a,b,-k+1,est1,resl); {perform DE quadra-
ture}
if test (est,estl)
then put_interval_k(a,b,-1, est, res);
else begin
put_interval_k(a,b,k-1, estl, resil);
result:=result-res+resi:
abserr:=abserr—esttestl
end
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The computational cost of the algorithm can be discussed by investigat-
ing the following cases:

(1) the integrand is regular at the end-points. The DE-quadrature is
not attempted and the behaviour is the same of DAQ.

(2) the integrand is singular at one or both the end-points and DE-
quadrature achieves fast convergence. The integration in the intervals
containing the singularities costs O(F log E) and the integration in the rest
of the interval is done with cost O(E);

(3) the integrand is singular at one or both the end-points and DE-
quadrature achieves fast convergence in a neighbourhood of these singu-
larities; moreover, a finite number of bounded singularities are located in
the integration interval. The integration near the end-points costs O(E log
E) and the integration in the rest of the interval is done with cost O(E?) by
the same technique of DAQ.

(4) the integrand presents end-point integration difficulties which do
not pass the test of fast convergence. The overall behavior is the same as
DAQ with an additional cost due to the attempts made to check whether
DE-quadrature is applicable. The asymptotic cost is of order O(E?).

6. CONCLUSION

The complexity results of the classical algorithms reviewed and of the
two new ones inroduced here, are summarised in Table 1. The quantities p
and r have been defined previously. The bounds proved here or those for
which the value of the constant has been derived in this paper, are shown
in boldface.

TABLE 1

MAGNITUDE ORDER OF THE NUMBER OF EVALUATIONS N v§ THE NUMBER OF
EXAcCT DECIMAL DIGITS IN THE RESULT

Algorithm Class: HAla, b, 8] Mla, b, 5] PP €S
Clenshaw-Curtis (CCQ) E — — —
Panel 10%r [Qg/minlrs] g = | — —_
Double exponential Elog E — — Elog E
Global adaptive (GQ) 10E" 10Er « E 1QEr «
Double-adaptive (DAQ) E E? E E?
Eh
Trinle-adaptive (TAQ) E E? E Elog E
E))

2 This result has been proved under the additional hypothesis (2.1).
¢ If the integrand has only apparent singularities.
< If the polynomials have degree less than r.
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APPENDIX

Error of Single Rule, Regular Functions

Consider an interpolatory formula 2 with degree of precision r — 1 and
a function f € C* [a,b]. Let L ompued be the result of the approximation of
the integral I of f on [a, b], obtained using 2. The inequality

— J+1 f)
[ = Lcomputed] =< (b 3 a) ¢, max M I <j =< min[r,s], (A.1)

xE€la.b) .]'

can be stated for the absolute value of the truncation error, where we
denote by ¢; the quantities:

l -
¢ =it [ K wld,  1=j=r,

and Ki(1) is the so-called Peano kernel defined as in Davis and Rabinowitz
(1984, p. 286). For sdla, b, 8] functions, the folloiwng important property
of the derivatives of class #d[a, b, 8] functions is known (Davis and Ra-
binowitz, 1984, p. 301):

max )j—w—fi)—' =87 max |flal, Jj=1 (A.2)

xE{a.b] .I . zEdl'(a b .8}

Combining (A.1) and (A.2) we get the bound

_ r+l
,1 - [computedl = (b a) Cy 67" max ‘f(Z)‘ (A3)

2 €ol(a.b.8)

An asymptotic representation of the error can be obtained by applying
the results of Favati ef al. (1992) which involve constants 8, and vy,.,,,
related to the Peano coefficients, depending on 2, only.

THEOREM A.1. Let A > 0andletfhe a C"*3[x — \, x + N] function. Let
Lcomputed b€ the result of the approximation of the integral I of fon [x — X,
x + A], obtained using a symmetrical rule 9. Then for the truncation error
I = Iompued the followng equality holds:

- Icomputed = )\er[r)(x) % + A3 A,
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with

Yr+2
Al = —%= max 2w,
| | (r + 2)! uE[x—Ax+A] |f ( )|

where B, and vy,.; are constants depending on 2, only.

Proof. The theorem is a direct consequence of Theorem 3.3 in Favati
etal (1992), =

Theorem A.1 allows us to prove the asymptotic validity of Assumption
2.2. Consider two symmetrical rules 2 and 2’ of degrees of precision r — 1
andr' — 1,7 > r. Let I, and I be the corresponding computed values of
the interal. For C"*2[x — A, x + A] functions we have

I—1Ig=n! % (x) + O+

and, analogously,

B

=1y =\ r, F9x) + O3,

Since r' > r,

lopp—Ig=1-1p— \'"! %f‘"’(x) + O\ *3)
=1-1p+ O\,
This proves the asymptotic correctness of the trivial error estimate
Io — 1.
Error of Single Rule, Singular Functions

The following theorem provides an upper bound to the error that holds
for all bounded integrands.

THEOREM A.2. Let f be a bounded function in [a, b). Suppose that [ is
integrated by an interpolatory rule with positive weights in an interval of
length [x — A, x + Al C [a, b]. Then

“ - Icompuxedl = BA,

where B is a constant depending on f, a, b, and is independent of \.
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Proof. The proof follows by elementary calculus. ®

THEOREM A.3. Leff be an unbounded function in [0, 1) with only one
singularity at 0. Let o < 1, |Ax)] = O(x =%, forany 0 < g < 1 — a.
Suppose that f is integrated on [0, 2)], 0 < X = 1/2, with an interpolatory
rule Q with positive weights. Then

‘I - Icomputed‘ = B}\(l—a—s),

where B is a constant depending on e, Q, f, and is independent of X.
Proof. The proof follows by elementary calculus. ®
Error Behaviour after Bisections
THEOREM A.4. LetR=[x—ANx+ AL R =[x—\x],R,=[x,x +1A].
Let f be a C*¥x — A, x + A] function; let e, e, e;, be the errors of the
integrals of fon R, R\, and R, respectively, computed by the symmetri-
cal rule Q of degree r — 1. Then
e = 270 De + O(N*2),
e; = :Z—(erI)"7 + O(Ar+2).

Proof. Applying Theorem A.l to R, R, and R, the associated errors
are

e = )\r+l _‘i_'ff(r)(x) + )\MJAm

Il

e 2—(r+l))\r+] %f(r)(x —_ )\/2) + 2~(r+3J)\r+3AI’

ey = 270 IpH D B SPTO + N2) + 2N,

B0l 18], 18] = sy max |70,

Using the Taylor formula we can write

2
FOx = M) = fOx) = % £ + —’;—r, | = max |f2(u).

u€la,b)

Hence
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e = 2-(rthe — 2‘"(r+2))‘r+2 %f(r+l)(x) + 2—(r+3))\r+3 (_g‘ffz_' + Al — 4A0>
— 2—(r+l)e + 0()\!+2)’
ey = 2—(r+l)e + 2*(r+2})\r+2 _rTrf(r+]l(X) + 2—(r+3)>\r+3 (%1;_2 + AZ — 4A0>

=20 + O(A2), [Ty}, IT2) = max [f0 " w),

u€la.b}

from which the result follows. ®

LEMMA A.1.  Let fbe a funcrion that is continuable analytically in the
interior of I'(a + &, b, 8); let

« = inf{B: |f(2) = Oz — al#), z € Ta + &, b, &)} <I;

andletR =[x — A, x+ A, x>a,A<(x—a)/2<8. Then, foranye,0<eg
<1 — a, we have

max| f'u)|= O(x — a) *~27).

wER

Proof. By using relation (A.2) on I'(x — A, x + A, (x — a)/4) we get

max AT = (x — a)ﬁ max (A2 = Ox — @)y **7). m

uER J! 4 20 (5= A, X+ A (x—a)/4)

Theorem A.5. Let f be a C*? function in (y, b), with the properties:

[fO(0} = Ox ~ y)y=*==="),  forany e >0, x>y,

IfPx) = Q((x — y) e ), forany £ > 0, x > y.
LetR=[x—-Ax+A,Ri=[x-MANx],Ry=[x,x+A],RCla, bl,y €R.
Let, for some positive constant g, X = o(|x — y|'*%), x— y. Let e, ¢y, e,

be the errors of the integrals of f on R, R,, and R,, respectively, com-
puted by the symmetrical rule Q of degree r — 1. Then we have

e~ xro1 B gy

ey = 27" De + ofe),

e; = 270 De + ofe).
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Proof. Applying Theorem A.1to R, R, and R,, the associated errors
can be written

= At %f(r)(x) + 0(}\r+3(x - y)*a—£~r—2)’

a
|

e 2-(r+l)€ + 0(}\’+2(X — y)—a—':wr—l) + 0()\’+3(X — y)—afs—r~2),
ey = 2—(r+lje + 0()\r+2(x — y)fa—s—r‘l) + O(AH—](X _ y)fa—s~r-2).

We have
)\r+l’f(r)(x)' — Q()\H-](x — y)~a—r+s),

since

Nt (x — y)yoerz ( A )2 _
At (x — y)a-rte = lim (x — y)te =0,

x—y

lim

x—y

and thus it follows that
le] ~ ! Lﬁd |f(0)] = Q1 — y)merre),

Analogously

hm )\r+2(x — y)—afs—r—l N llm A _ 0
. )\’”(JC —_ y)—a~r+s . (x — y)1+2e 4

and the result follows. =
The same result can be trivially derived for the interval [a, y).

LEMMA A.2. Let ¢(x), n(x) be nonnegative functions and let r > 1;
then

{r+1)r

(" etomeo ae)([* ptomerras) = ([ otax ) (ad

where the equality holds if and only if n(x) is a constant.

Proof. Let us write, for two nonnegative functions f(x) and g(x), the
Holder inequality,

(J,: f(x)pa'x) np(j.: g(x)qu) Vg = f:f(x)g(x) dx, p,qg>1, pl + é =1,
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and the equality holds if and only if f(x)?~'/g(x) is a constant. Raising
both sides of (A.4) to the r/(r + 1) power we get

Hr+ 1)

(fdﬁMMdJWYf¢ummﬂd > [" p(odx.

Letp = (r + 1)/rand g = r + 1 and let f(x) = [@(x)/n(x))""* " and g(x) =
[e(xX)n(x)7)r/(r + 1); then f(x)g(x) = ¢(x) and f(x)? V/g(x) = n(x)"! and
the result follows. ®

LEMMA A.3. Consider an interval [y, b} and a point t € (y, b]. For a
fixed constant € > 0, an interval [x — A, x + Al C [t, b] is called **large’’ if
A= (lx — y| + A7, and “small” otherwise. Then we have

(1) the number of large intervals in t, b is of order O(|t — y|~*) for
t—y.
(2) for small intervals A = o(|x — y|'**) for x — y.

Proof. (1) Letus split the interval [r, b] into & subintervals [x;, x;+1],
i=0,1,...,k—1,x3=1,xx = b, and let m be the number of large
subintervals. Let 2A(u) denote the length of the subinterval containing the
point ¥ € [t, b]; the density of subintervals is (2A(#))"! and, for large
subintervals, we have Mu) = |u — y|'**. Let L be the union of large
subintervals; then

1 1 L
m = EL AMu) 'du = EL lu — y|" ' 7du = ff: lu — y|~'odu
= 0(t = y|™).

(2) Lets = (x— y), then we have for small intervals A < (s + A)}!*%;
moreover, A — 0 for s — 0 and

s>s+A—(s+ M3 =(s+ A1l — (s + A)9).
Then

A (S + )\)1+3£ sl+35
SHZB glt2e SHZE(I — (s + }\)3s)l+35

and

. A
hrl(‘)ls—,;-z;=0. n

s

The same result can be analogously derived for the interval [a, y).
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