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We consider the heat equation in a straight strip, subject to a com-
bination of Dirichlet and Neumann boundary conditions. We show
that a switch of the respective boundary conditions leads to an
improvement of the decay rate of the heat semigroup of the or-
der of t−1/2. The proof employs similarity variables that lead to
a non-autonomous parabolic equation in a thin strip contracting
to the real line, that can be analysed on weighted Sobolev spaces
in which the operators under consideration have discrete spectra.
A careful analysis of its asymptotic behaviour shows that an added
Dirichlet boundary condition emerges asymptotically at the switch-
ing point, breaking the real line in two half-lines, which leads
asymptotically to the 1/2 gain on the spectral lower bound, and
the t−1/2 gain on the decay rate in the original physical variables.
This result is an adaptation to the case of strips with twisted
boundary conditions of previous results by the authors on geomet-
rically twisted Dirichlet tubes.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

We consider the heat equation

ut − �u = 0 (1)

in an infinite planar strip Ω := R × (−a,a) of half-width a > 0, subject to
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Fig. 1. Planar strips with untwisted (left) and twisted (right) boundary conditions; the thick and thin lines correspond to Dirich-
let and Neumann boundary conditions, respectively.{

Dirichlet boundary conditions on Γ D
π := (−∞,0) × {−a} ∪ (0,+∞) × {a},

Neumann boundary conditions on Γ N
π := (0,+∞) × {−a} ∪ (−∞,0) × {a},

and to the initial condition

u(·,0) = u0 ∈ L2(Ω). (2)

This model is considered as a ‘twisted’ counterpart of the explicitly solvable problem given by
(see Fig. 1):

{
Dirichlet boundary conditions on Γ D

0 := (−∞,+∞) × {−a},
Neumann boundary conditions on Γ N

0 := (−∞,+∞) × {a}.

Henceforth we shall use the common subscript

θ ∈ {0,π}

when we want to deal with the two problems simultaneously (the value of θ suggests the rotation
angle giving rise to twisting/untwisting).

The solution to (1)–(2) is given by u(t) = e�θ t u0, where e�θ t is the semigroup operator on L2(Ω)

associated with the Laplacian −�θ determined by the respective boundary conditions (depending
on θ ).

The operators −�π and −�0 have the same spectrum

σ(−�θ) = σess(−�θ) = [E1,∞), where E1 :=
(

π

4a

)2

. (3)

Consequently, for all t � 0,

∥∥e�θ t
∥∥

L2(Ω)→L2(Ω)
= e−E1t, (4)

irrespectively of the value of θ .
In this paper, we are interested in additional time decay properties of the heat semigroup, when

the initial data are restricted to a subspace of the Hilbert space L2(Ω). We restrict ourselves to the
weighted space

L2(Ω, K ) with K (x) := ex2
1/4, (5)

which means that the initial data are required to be sufficiently rapidly decaying at the infinity of the
strip. As a measure of the additional decay, we consider the (polynomial) decay rate

γθ := sup
{
γ

∣∣ ∃Cγ > 0, ∀t � 0,
∥∥e(�θ+E1)t

∥∥
L2(Ω,K )→L2(Ω)

� Cγ (1 + t)−γ
}
. (6)

Our main result reads as follows:
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Theorem 1. We have γ0 = 1/4, while γπ � 3/4.

Here the power 1/4 corresponding to the untwisted case θ = 0 reflects the quasi-one-dimensional
nature of our model (recall that d/4 is the analogous decay rate for the heat semigroup in the L2-
space over the whole Euclidean space R

d for initial data in L1(Rd) ⊃ L2(Rd, e|x|2/4dx)). Indeed, the
result for θ = 0 follows easily by separation of variables (cf. Section 3).

The essential content of Theorem 1 is that solutions to (1) when the strip is twisted (i.e. θ = π )
gain a further decay rate 1/2. The proof of this statement is more involved and constitutes the main
body of the paper (cf. Section 4). It is based on the method of self-similar solutions developed in the
whole Euclidean space by Escobedo and Kavian [5] and adapted to waveguide systems by the present
authors in [10], where it was shown that the heat kernel decays faster in geometrically twisted tubes
than in untwisted ones. An open problem is to show that the decay rate γπ is precisely 3/4 (cf. Sec-
tion 5).

The way how to understand the difference in the decay rates of Theorem 1 is due to a fine differ-
ence between the operators −�0 and −�π in the spectral setting: Although the operators have the
same spectrum (cf. (3)), the shifted operator −�0 − E1 is critical, while −�π − E1 is subcritical. The
latter is reflected in the existence of a Hardy-type inequality

−�π − E1 � ρ (7)

with a positive function ρ (while such an inequality cannot hold for −�0 − E1).
Various Hardy inequalities for −�π − E1 were established in [8]. A general conjecture on the influ-

ence of the subcriticality of an operator on the improvement of the decay of the associated semigroup
was made in [10], where an analog of Theorem 1 was proved for the decay rate in three-dimensional
Dirichlet tubes. We also refer to [6] where the conjecture (for not necessarily self-adjoint operators)
is analysed from the point of view of heat kernels and its relationship with Davies’ conjecture [2] is
observed.

The organisation of this paper is as follows. In the following Section 2 we give a precise defini-
tion of the Laplacians −�θ and the associated semigroups. The untwisted case is briefly treated in
Section 3, obtaining, inter alia, the first statement of Theorem 1. The main body of the paper is repre-
sented by Section 4 where we develop the method of self-similar solutions to get the improved decay
rate of Theorem 1 (and also to establish an alternative result, Theorem 2). The paper is concluded in
Section 5 by referring to physical interpretations of the result and to some open problems.

2. Preliminaries

The Laplacians −�θ are introduced as the self-adjoint operators associated on L2(Ω) with the
quadratic form ψ 
→ ‖∇ψ‖2 having the domains

Dθ (Ω) := {
ψ ∈ H1(Ω)

∣∣ ψ = 0 on Γ D
θ

}
.

Here and in the sequel ‖ · ‖ denotes the norm in the Hilbert space L2(Ω). It is possible to specify the
operator domains (cf. [3]), but we will not need them. We only mention the result from [3] that the
set of restrictions of functions from C∞

0 (R2) to Ω that vanish on Γ D
θ is dense in Dθ with respect to

the H1(Ω) norm (cf. [3, App. B]).
In view of (3), both the operators −�θ satisfy the Poincaré-type inequality

−�θ � E1 (8)

in the sense of forms on L2(Ω). Here E1 is the first eigenvalue of the one-dimensional operator
−�

(−a,a)
DN , i.e. the Laplacian in L2((−a,a)) subject to the Dirichlet boundary condition at −a and Neu-

mann boundary condition at a. This inequality is sharp for −�0, while it follows from [8] that (8) can
be improved to a Hardy-type inequality (7) if θ = π .



D. Krejčiřík, E. Zuazua / J. Differential Equations 250 (2011) 2334–2346 2337
Recalling (4) and that we are interested in additional decay properties of (1), it is natural to rather
consider the shifted parabolic problem (obtained from the standard heat equation (1) by the replace-
ment u(x, t) 
→ e−E1t u(x, t)):

ut − �u − E1u = 0, (9)

subject to the initial condition (2) and the boundary conditions

u = 0 on Γ D
θ × (0,∞),

∂u

∂n
= 0 on Γ N

θ × (0,∞), (10)

where n denotes the normal vector to the boundary ∂Ω .
As usual, we consider the weak formulation of the problem and, with an abuse of notation, we

denote by the same symbol u both the function on Ω × (0,∞) and the mapping (0,∞) → L2(Ω).
Standard semigroup theory implies that there exists a unique solution of (9)–(10), subject to the
initial condition (2), that belongs to C0([0,∞), L2(Ω)). More precisely, the solution is given by u(t) =
Sθ (t)u0, where

Sθ (t) := e(�θ +E1)t (11)

is the heat semigroup associated with the shifted Laplacian −�θ − E1.
It is easy to see that the real and imaginary parts of the solution u of (9) evolve separately. By

writing u = (u) + i�(u) and solving (9) with initial data (u0) and �(u0), we may therefore reduce
the problem to the case of a real function u0, without restriction. Consequently, all the functional
spaces are considered to be real in the sequel.

3. The untwisted strip

If the strip is untwisted (i.e. θ = 0), the heat equation (9) can be easily solved by separation of
variables. Indeed, the Laplacian −�0 can be identified with the decomposed operator

(−�R
) ⊗ 1 + 1 ⊗ (−�

(−a,a)
DN

)
in L2(R) ⊗ L2((−a,a)

)
, (12)

where −�R denotes the one-dimensional free Hamiltonian (i.e. the usual self-adjoint realisation of
the Laplacian in L2(R)) and 1 stands for the identity operators in the appropriate spaces.

The eigenvalues and (normalised) eigenfunctions of −�
(−a,a)
DN are respectively given by (n =

1,2, . . .)

En := (2n − 1)2 E1, Jn(y2) :=
√

1

a
sin

[√
En(y2 + a)

]
, (13)

while the spectral resolution of −�R is obtained by the Fourier transform. Then it is easy to see that
the heat semigroup S0(t) is an integral operator with kernel

s0
(
x, x′, t

) :=
∞∑

n=1

e−(En−E1)t Jn(x2)p
(
x1, x′

1, t
)

Jn
(
x′

2

)
, (14)

where

p
(
x1, x′

1, t
) := e−(x1−x′

1)2/(4t)

√
4πt

is the well-known heat kernel of −�R .
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Using the explicit form of the heat kernel, it is straightforward to establish the following bounds:

Proposition 1. There exists a constant C such that for every t � 1,

C−1t−1/4 �
∥∥S0(t)

∥∥
L2(Ω,K )→L2(Ω)

� Ct−1/4.

Proof. To get the lower bound, we may restrict to the class of initial data (2) of the form u0(x) =
ϕ(x1)J1(x2) with ϕ ∈ L2(R, K1), K1(x1) := ex2

1/4. Then it is easy to see from (14) that

∥∥S0(t)
∥∥

L2(Ω,K )→L2(Ω)
�

∥∥P (t)
∥∥

L2(R,K1)→L2(R)
,

where P (t) is the heat semigroup of −�R for which the lower bound with t−1/4 is well known (or
can be easily established by taking ϕ = K −α

1 with any α > 1/2 and evaluating the integrals with the
kernel p explicitly). On the other hand, using the Schwarz inequality, we have

∥∥S0(t)u0
∥∥2 � ‖u0‖2

K

∫
Ω×Ω

s0
(
x, x′, t

)2
K

(
x′)−1

dx dx′

= ‖u0‖2
K

∞∑
n=1

e−2(En−E1)t
∫

R×R

p
(
x1, x′

1, t
)2

K1
(
x′

1

)−1
dx1 dx′

1

for every u0 ∈ L2(Ω, K ). Here the sum can be estimated by a constant independent of t � 1 and the
integral (computable explicitly) is proportional to t−1/2. �
Remark 1. It is clear from the proof that the bounds hold in less restrictive weighted spaces. Indeed,
it is enough to have a corresponding result for the one-dimensional heat semigroup P (t).

As a consequence of Proposition 1, we get:

Corollary 1. We have γ0 = 1/4.

Proof. The lower bound of Proposition 1 implies γ0 � 1/4. The opposite inequality follows from the
upper bound and (4). �
4. The self-similarity transformation

Our method to study the asymptotic behaviour of the heat equation (9) is to adapt the technique of
self-similar solutions used in the case of the heat equation in the whole Euclidean space by Escobedo
and Kavian [5] to the present problem. Following [10], devoted to the analysis of the heat kernel in
twisted tubes, we perform the self-similarity transformation in the first (longitudinal) space variable
only, while keeping the other (transverse) space variable unchanged.

4.1. An equivalent time-dependent problem

More precisely, we consider a unitary transformation U on L2(Ω) which associates to every so-
lution u ∈ L2

loc((0,∞),dt; L2(Ω,dx)) of (9) a self-similar solution ũ = U u in a new s-time weighted
space L2

loc((0,∞), esds; L2(Ω,dy)) via

ũ(y1, y2, s) = es/4u
(
es/2 y1, y2, es − 1

)
.
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The inverse change of variables is given by

u(x1, x2, t) = (t + 1)−1/4ũ
(
(t + 1)−1/2x1, x2, log(t + 1)

)
.

When evolution is posed in that context, y = (y1, y2) plays the role of space variable and s is the
new time.

It is easy to check that, in the new variables, the evolution is governed by

ũs − 1

2
y1∂1ũ − ∂2

1 ũ − es∂2
2 ũ − E1esũ − 1

4
ũ = 0 (15)

subject to the same initial and boundary conditions as u in (2) and (10), respectively.

Remark 2. Note that (15) is a parabolic equation with s-time-dependent coefficients. The same occurs
and has been previously analysed in twisted three-dimensional tubes [10] and for a convection–
diffusion equation in the whole space but with a variable diffusion coefficient [4]. A careful analysis
of the behaviour of the underlying elliptic operators as s tends to infinity leads to a sharp decay rate
for its solutions.

Since U acts as a unitary transformation on L2(Ω), it preserves the space norm of solutions of (9)
and (15), i.e.,

∥∥u(t)
∥∥ = ∥∥ũ(s)

∥∥. (16)

This means that we can analyse the asymptotic time behaviour of the former by studying the latter.
However, the natural space to study the evolution (15) is not L2(Ω) but rather the weighted

space (5). Following the approach of [10] based on a theorem of J.L. Lions [1, Thm. X.9] about weak
solutions of parabolic equations with time-dependent coefficients, it can be shown that (15) is well
posed in the scale of Hilbert spaces

Dθ (Ω, K ) ⊂ L2(Ω, K ) ⊂ Dθ (Ω, K )∗,

with

Dθ (Ω, K ) := {
ũ ∈ H1(Ω, K )

∣∣ ũ = 0 on Γ D
θ

}
,

where H1(Ω, K ) denotes the usual weighted Sobolev space.

4.2. Reduction to a spectral problem

Multiplying Eq. (15) by ũK and integrating by parts (precisely this means that we use ũK as a test
function in a weak formulation of (15)), we arrive at the identity

1

2

d

ds

∥∥ũ(s)
∥∥2

K = − J s
θ

[
ũ(s)

]
. (17)

Here ‖ · ‖K denotes the norm in (5) and

J s
θ [ũ] := ‖∂1ũ‖2

K + es‖∂2ũ‖2
K − E1es‖ũ‖2

K − 1‖ũ‖2
K
4
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is a closed quadratic form with domain D( J s
θ ) := Dθ (Ω, K ) (independent of s). It remains to analyse

the coercivity of J s
θ .

More precisely, as usual for energy estimates, we replace the right-hand side of (17) by the spectral
bound, valid for each fixed s ∈ [0,∞),

∀ũ ∈ D
(

J s
θ

)
, J s

θ [ũ] � μθ(s)‖ũ‖2
K , (18)

where μθ(s) denotes the lowest point in the spectrum of the self-adjoint operator T s
θ associated

in L2(Ω, K ) with J s
θ . Then (17) together with (18) implies the exponential bound

∀s ∈ [0,∞),
∥∥ũ(s)

∥∥
K � ‖ũ0‖K e− ∫ s

0 μθ (r)dr . (19)

In this way, the problem is reduced to a spectral analysis of the family of operators {T s
θ }s�0.

4.3. Study of the spectral problem

In order to investigate the operator T s
θ in L2(Ω, K ), we first map it into a unitarily equivalent

operator T̂ s
θ := U T s

θ U −1 in L2(Ω) via the unitary transform

U ũ := K 1/2ũ.

By definition, T̂ s
θ is the self-adjoint operator associated in L2(Ω) with the quadratic form Ĵ s

θ [v] :=
J s
θ [U −1 v], v ∈ D( Ĵ s

θ ) := U D( J s
θ ). A straightforward calculation yields

Ĵ s
θ [v] = ‖∂1 v‖2 + 1

16
‖y1 v‖2 + es‖∂2 v‖2 − E1es‖v‖2,

v ∈ D
(

Ĵ s
θ

) = Dθ (Ω) ∩ L2(Ω, y2
1dy

)
. (20)

In particular, D( Ĵ s
θ ) is independent of s. In the distributional sense, we can write

T̂ s
θ = −∂2

1 + 1

16
y2

1 − es∂2
2 − E1es. (21)

We observe that the ‘longitudinal part’ of T̂ s
θ coincides with the quantum harmonic-oscillator

Hamiltonian

H := − d2

dy2
1

+ 1

16
y2

1 in L2(R) (22)

(i.e. the Friedrichs extension of this operator initially defined on C∞
0 (R)). We recall the well-known

fact that the form domain

D
(

H1/2) = H1(R) ∩ L2(
R, y2

1dy1
)

is compactly embedded in L2(R), so that the spectrum of H is purely discrete. In fact, the spectrum
can be computed explicitly (see any textbook on quantum mechanics, e.g., [7, Sec. 2.3]):

σ(H) =
{

1

2

(
n + 1

2

)}∞
. (23)
n=0
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Using now the discreteness of spectra of H and −�
(−a,a)
DN together with the minimax principle,

one may easily conclude that also T̂ s
θ (and therefore T s

θ ) is an operator with compact resolvent for all
s ∈ [0,∞). In particular, μθ(s) represents the lowest eigenvalue of T s

θ .

4.4. The asymptotic behaviour of the spectrum

In order to study the decay rate via (19), we need information about the limit of the eigen-
value μθ(s) as the time s tends to infinity. Notice that the scaling of the transverse variable in (21)
corresponds to considering the operator T̂ 1

θ in the shrinking strip R × (−e−s/2a, e−s/2a). This suggests

that T̂ s
θ will converge, in a suitable sense, to a one-dimensional operator of the type (22). We shall

see that the difference between the twisted (θ = π ) and untwisted case (θ = 0) consists in that the
limit operator for the former is subject to an extra Dirichlet boundary condition at y1 = 0.

Thus, simultaneously to H introduced in (22), let us therefore consider the self-adjoint opera-
tor H D in L2(R) whose quadratic form acts in the same way as that of H but has a smaller domain

D
(

H1/2
D

) := {
ϕ ∈ D

(
H1/2) ∣∣ ϕ(0) = 0

}
.

In fact, it is readily seen that T̂ s
0 can be identified with the decomposed operator

H ⊗ 1 + 1 ⊗ (−es�
(−a,a)
DN − E1es) in L2(R) ⊗ L2((−a,a)

)
, (24)

where 1 denotes the identity operators in the appropriate spaces. Using (23), it follows that μ0(s) =
1/4 for all s ∈ [0,∞). Consequently,

μ0(∞) := lim
s→∞μ0(s) = 1/4. (25)

Moreover, (24) can be used to show that T̂ s
0 converges to H in the norm-resolvent sense as s → ∞, if

the latter is considered as an operator acting on the subspace of L2(Ω) consisting of functions of the
form ϕ(y1)J1(y2), where J1 is introduced in (13).

It is more difficult (and more interesting) to establish the asymptotic behaviour of μπ(s). A fine
analysis of its behaviour leads to the key observation of the paper, ensuring a gain of 1/2 in the decay
rate in the twisted case.

We decompose the Hilbert space L2(Ω) into an orthogonal sum

L2(Ω) = H1 ⊕ H⊥
1 , (26)

where the subspace H1 consists of functions of the form

ψ1(y) = ϕ(y1)J1
(
sgn(−y1)y2

)
. (27)

Notice that y2 
→ J1(−y2) is an eigenfunction of −�
(−a,a)
ND , i.e. the Laplacian in L2((−a,a)) subject

to the Neumann boundary condition at −a and Dirichlet boundary condition at a (reversed boundary
conditions with respect to −�

(−a,a)
DN ). Hence ψ1 satisfies the boundary conditions of −�π . Given any

ψ ∈ L2(Ω), we have the decomposition ψ = ψ1 + φ with ψ1 ∈ H1 as above and φ ∈ H⊥
1 . The mapping

ι : ϕ 
→ ψ1 is an isomorphism of L2(R) onto H1. Hence, with an abuse of notations, we may identify
any operator h on L2(R) with the operator ιhι−1 acting on H1 ⊂ L2(Ω). Having this convention in
mind, we state the following convergence result.
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Proposition 2. The operator T̂ s
π converges to H D ⊕ 0⊥ in the strong-resolvent sense as s → ∞, i.e.,

∀F ∈ L2(Ω), lim
s→∞

∥∥(
T̂ s
π + 1

)−1
F − [

(H D + 1)−1 ⊕ 0⊥]
F
∥∥ = 0.

Proof. We proceed as in the proof of [10, Prop. 5.4]. For any fixed F ∈ L2(Ω), let us set ψs := (T̂ s
π +

1)−1 F . In other words, ψs satisfies the resolvent equation

∀v ∈ D
(

Ĵ s
π

)
, Ĵ s

π (v,ψs) + (v,ψs) = (v, F ), (28)

where (·,·) denotes the inner product in L2(Ω) and Ĵ s
π (·,·) is the sesquilinear form associated

with (20). In particular, choosing ψs for the test function v in (28), we have

‖∂1ψs‖2 + 1

16
‖y1ψs‖2 + es(‖∂2ψs‖2 − E1‖ψs‖2) + ‖ψs‖2 = (ψs, F ) � 1

4
‖ψs‖2 + ‖F‖2. (29)

Notice that ‖∂2ψs‖2 � E1‖ψs‖2 by Fubini’s theorem and the Poincaré inequality for −�
(−a,a)
DN and

−�
(−a,a)
ND . Consequently,

‖∂1ψs‖2 � C, ‖y1ψs‖2 � C, ‖ψs‖2 � C, ‖∂2ψs‖2 − E1‖ψs‖2 � Ce−s, (30)

where C is a constant proportional to ‖F‖2.
Now we employ the decomposition

ψs(y) = ϕs(y1)J1
(
sgn(−y1)y2

) + φs(y)

where φs ∈ H⊥
1 , i.e.,

∀y1 ∈ R,

a∫
−a

J1
(
sgn(−y1)y2

)
φs(y1, y2)dy2 = 0. (31)

That is, y2 
→ φs(y1, y2) is orthogonal to the ground-state eigenfunction of −�
(−a,a)
DN (respectively of

−�
(−a,a)
ND ) if y1 < 0 (respectively y1 > 0). Then

‖∂2ψs‖2 − E1‖ψs‖2 = ‖∂2φs‖2 − E1‖φs‖2

= 1

2
‖∂2φs‖2 + 1

2
‖∂2φs‖2 − E1‖φs‖2

� 1

2
‖∂2φs‖2 +

(
1

2
E2 − E1

)
‖φs‖2,

where E2 = 9E1 denotes the second eigenvalue of −�
(−a,a)
DN (which coincides with that of −�

(−a,a)
ND ).

Thus it follows from the last inequality of (30) that

‖φs‖2 � Ce−s and ‖∂2φs‖2 � Ce−s, (32)

where C is a constant proportional to ‖F‖2.
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It follows from (30) that {ψs}s>0 is a bounded family in D := H1(Ω) ∩ L2(Ω, y2
1dy1) (equipped

with the intersection topology). Therefore it is precompact in the weak topology of D. Let ψ∞ be a
weak limit point, i.e., for an increasing sequence of positive numbers {sn}n∈N such that sn → ∞ as
n → ∞, {ψsn }n∈N converges weakly to ψ∞ in D. Actually, we may assume that it converges strongly
in L2(Ω) because D is compactly embedded in L2(Ω). Since {φsn }n∈N converges strongly to zero in
L2(Ω) due to (32), we know that ψ∞ ∈ H1, i.e.,

ψ∞(y) = ϕ∞(y1)J1
(
sgn(−y1)y2

)
with some ϕ∞ ∈ L2(R). Since the weak derivative ∂1ψ∞ ∈ L2(Ω) exists, we necessarily have ϕ∞ ∈
H1(R) and

ϕ∞(0) = 0.

Finally, let ϕ ∈ C∞
0 (R \ {0}) be arbitrary. Taking

v(y) := ϕ(y1)J1
(
sgn(−y1)y2

)
as the test function in (28), with s being replaced by sn , and sending n to infinity, we easily check
that

(ϕ̇, ϕ̇∞)L2(R) + 1

16
(y1ϕ, y1ϕ∞)L2(R) + (ϕ,ϕ∞)L2(R) = (ϕ, f )L2(R),

where

f (y1) :=
a∫

−a

J1
(
sgn(−y1)y2

)
F (y1, y2)dy2.

That is, ϕ∞ = (H D + 1)−1 f , for any weak limit point of {ϕs}s�0. Summing up, we have shown that ψs

converges strongly to ψ∞ in L2(Ω) as s → ∞, where ψ∞(y) = [(H D + z)−1 ⊕ 0⊥]F . �
Corollary 2. One has

μπ(∞) := lim
s→∞μ(s) = 3/4.

Proof. In general, the strong-resolvent convergence of Proposition 2 is not sufficient to guarantee the
convergence of spectra. However, in our case, since the spectra are purely discrete, the eigenprojec-
tions converge even in norm (cf. [12]). In particular, μπ(s) converges to the first eigenvalue of H D as
s → ∞. It remains to notice that the first eigenvalue of H D coincides (in view of the symmetry) with
the second eigenvalue of H which is 3/4 due to (23). �
4.5. A lower bound to the decay rate

We come back to (19). Recalling (25) and Corollary 2, we know that for arbitrarily small positive
number ε there exists a (large) positive time sε such that for all s � sε , we have μθ(s) � μθ(∞) − ε.
Hence, fixing ε > 0, for all s � sε , we have
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−
s∫

0

μθ(r)dr � −
sε∫

0

μπ(r)dr−[
μθ(∞) − ε

]
(s − sε)

�
[
μθ(∞) − ε

]
sε − [

μθ(∞) − ε
]
s,

where the second inequality is due to the fact that μθ(s) is non-negative for all s � 0 (it is in fact
greater than or equal to 1/4, cf. Proposition 3 below). At the same time, assuming ε � 1/4, we trivially
have

−
s∫

0

μθ(r)dr � 0 �
[
μθ(∞) − ε

]
sε − [

μθ(∞) − ε
]
s

also for all s � sε . Summing up, for every s ∈ [0,∞), we have

∥∥ũ(s)
∥∥

K � Cεe−[μθ (∞)−ε]s‖ũ0‖K , (33)

where Cε := esε � e[μθ (∞)−ε]sε .
Now we return to the original variables (x1, x2, t) = (es/2 y1, y2, es − 1). Using (16) together with

the point-wise estimate 1 � K , and recalling that ũ0 = u0, it follows from (33) that

∥∥u(t)
∥∥ = ∥∥ũ(s)

∥∥ �
∥∥ũ(s)

∥∥
K � Cε(1 + t)−[μθ (∞)−ε]‖u0‖K

for every t ∈ [0,∞). Consequently, we conclude with

∥∥Sθ (t)
∥∥

L2(Ω,K )→L2(Ω)
= sup

u0∈L2(Ω,K )\{0}
‖u(t)‖
‖u0‖K

� Cε(1 + t)−[μθ (∞)−ε]

for every t ∈ [0,∞). Since ε can be made arbitrarily small, this bound implies

γθ � μθ(∞).

This together with Corollary 1 proves Theorem 1.

4.6. A global upper bound to the heat semigroup

Theorem 1 provides quite precise information about the extra polynomial decay of solutions u
of (9) in a twisted tube in the sense that the decay rate γπ is better by a factor 1/2 than in the
untwisted case. On the other hand, we have no control over the constant Cγ in (6) (in principle it
may blow up as γ → γθ ). We therefore conclude this section by establishing a global (in time) upper
bound to the heat semigroup (i.e. we get rid of the constant Cγ ) but the prize we pay is just a
qualitative knowledge about the decay rate. It is a consequence of (19) and the following result:

Proposition 3. ∀s � 0, μ0(s) = 1/4, μπ(s) > 1/4.

Proof. The identity for μ0 is readily seen from the decomposition (24) and (23). Using Fubini’s the-
orem and the minimax principle, it is also easy to deduce from (20) that μπ(s) � 1/4 for all s � 0.
To show that the inequality is strict, let us assume by contradiction that μπ(s) = 1/4 for some s � 0.
Let v denote the corresponding eigenfunction of T̂ s

π . Then the identity Ĵ s
π [v] = μπ(s)‖v‖2 yields
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‖∂1 v‖2 + 1

16
‖y1 v‖2 = 1

4
‖v‖2 and ‖∂2 v‖2 − E1‖v‖2 = 0. (34)

Using the direct-sum decomposition (26), the second identity implies that v is of the form (27). The
continuity of the eigenfunction v inside Ω in turn requires that ϕ(0) = 0. However, this contradicts
the first identity in (34) which says, in view of (23), that ϕ is the first (therefore nowhere vanishing)
eigenfunction of H . �

Combining this result with Corollary 2, we see that the number

cθ := inf
s∈[0,∞)

μθ (s) − 1/4 (35)

is positive if θ = π and zero if θ = 0. In any case, (19) implies

∥∥ũ(s)
∥∥

K � ‖ũ0‖K e−(cθ+1/4)s

for every s ∈ [0,∞). Using this estimate instead of (33), but following the same type of arguments as
in Section 4.5 below (33), we thus conclude with:

Theorem 2. We have

∀t ∈ [0,∞),
∥∥Sθ (t)

∥∥
L2(Ω,K )→L2(Ω)

� (1 + t)−(cθ+1/4),

where cπ > 0 (and c0 = 0).

5. Conclusions

The classical interpretation of the heat equation (1) is that its solution u gives the evolution of
the temperature distribution of a medium in the strip Ω surrounded by a perfect insulator on the
Neumann boundary Γ N

θ and by a substance of a high-heat capacity and of zero temperature on the
Dirichlet boundary Γ D

θ . It also represents the simplest version of the stochastic Fokker–Planck equa-
tion describing the Brownian motion in Ω which is normally reflected on Γ N

θ and killed on Γ D
θ

(cf. [11] for a probabilistic setting in an analogous higher-dimensional model). Then the results of the
present paper can be interpreted as that the twisting of boundary conditions (i.e. θ = π ) implies a
faster cool-down/death of the medium/Brownian particle in the strip. Many other diffusive processes
in nature are governed by (1).

Our proof that there is an extra decay rate for solutions of (1) if the boundary conditions are
twisted was far from being straightforward. This is a bit surprising because the result is quite ex-
pectable from the physical interpretation, if one notices that the twist makes it more difficult for
the Brownian particle to pass through the channel at {x1 = 0}, because of the proximity of killing
boundary conditions. At the same time, the Hardy inequality (7) did not play any role in the proof
of Theorem 1 (although, combining the theorem with the results of [8], we eventually know that the
existence of the Hardy inequality is equivalent to the extra decay rate for the heat semigroup). It
would be desirable to find a more direct proof of Theorem 1 based on (7).

We conjecture that the inequality of Theorem 1 can be replaced by equality, i.e., γπ = 3/4 for
twisted strip. The question of optimal value of the constant cπ (and its quantitative dependence on
the half-width a) from Theorem 2 also constitutes an interesting open problem. Note that the two
quantities are related by cπ + 1/4 � γθ .

The present paper can be viewed as a continuation of the research initiated by our work [10],
where we investigated the large-time behaviour of the heat semigroup in geometrically twisted
Dirichlet tubes. It confirms that the effect of twisting (leading to the subcriticality of the Laplacian and
implying an improvement of the decay rate of the associated heat semigroup) is more general, namely
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it holds true also in waveguide systems twisted via boundary conditions. We expect that the extra
decay rate will be induced also in the systems twisted via embedding of the strip into a negatively
curved manifold, for which the existence of Hardy inequalities is already known [9].

More generally, recall that we expect that there is always an improvement of the decay rate for
the heat semigroup of a subcritical operator (cf. [10, Conjecture in Sec. 6] and [6, Conjecture 1]).
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[8] H. Kovařík, D. Krejčiřík, A Hardy inequality in a twisted Dirichlet–Neumann waveguide, Math. Nachr. 281 (2008) 1159–

1168.
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