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spacing and a height of 4-12 mm. In this range forces of 1-50 nN per pillar are
measured. The PDMS pillars were stamped with partly fluorescently labeled fi-
bronectin that allowed us to accurately determine the pillar deflections. Subse-
quently, 3T3 mouse fibroblasts were seeded onto the pillars. Immunostaining
was employed using standard procedures to visualize the actin cytoskeleton
and focal adhesion complexes. The actin cytoskeleton, focal adhesions and pillar
deflections were imaged with a confocal spinning disk setup. From these results,
we quantified the degree of co-orientation of focal adhesion elongation with
force direction and the increase in stress fiber- and focal adhesion sizewith forces
in the range of 1-15 nN.
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Mechanical Strain in Actin Networks Regulates FilGAP and Integrin
Binding to Filamin A
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Mechanical stresses elicit cellular reactions mediated by chemical signals. De-
fective responses to forces underlie human medical disorders, such as cardiac
failure and pulmonary injury. Despite detailed knowledge of the cytoskeleton’s
structure, the specific molecular switches that convert mechanical stimuli into
chemical signals have remained elusive. Here we identify the actin-binding
protein, filamin A (FLNa) as a central mechanotransduction element of the cy-
toskeleton by using Fluorescence Loss After photo Conversion (FLAC), a novel
high-speed alternative to FRAP. We reconstituted a minimal system consisting
of actin filaments, FLNa and two FLNa-binding partners: the cytoplasmic tail
of ß-integrin, and FilGAP. Integrins form an essential mechanical linkage be-
tween extracellular and intracellular environments, with ß integrin tails con-
necting to the actin cytoskeleton by binding directly to filamin. FilGAP is
a FLNa-binding GTPase-activating protein specific for Rac, which in vivo
regulates cell spreading and bleb formation. We demonstrate that both
externally-imposed bulk shear and myosin II driven forces differentially regu-
late the binding of integrin and FilGAP to FLNa. Consistent with structural pre-
dictions, strain increases ß-integrin binding to FLNa, whereas it causes FilGAP
to dissociate from FLNa, providing a direct and specific molecular basis for cel-
lular mechanotransduction. These results identify the first molecular mechano-
transduction element within the actin cytoskeleton, revealing that mechanical
strain of key proteins regulates the binding of signaling molecules.
‘‘Mechanical strain in actin networks regulates FilGAP and integrin binding to
filamin A’’
A.J. Ehrlicher, F. Nakamura, J.H. Hartwig, D.A. Weitz and T.P. Stossel. Nature
(2011) doi:10.1038/nature10430.
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The Src substrate p130Cas has previously been identified as one of several focal
adhesion proteins implicated in mechanosensing, the process by which cells
feel changes in their physical environment. As a protein that has also been im-
plicated in enhanced cell migration, actin dynamics, and focal adhesion turn-
over, the manner by which p130Cas orchestrates such sensing is becoming
of increasing interest. In vitro studies have suggested that the central substrate
domain may relay mechanosensing information via spring-like stretching of
this domain. However, in vivo detection of such a mechanism has not been
possible to date. To gain greater insight into this problem, we used polyacryl-
amide substrates of varying rigidities and observed the abilities of mouse em-
bryonic fibroblasts (MEFs) to adhere, spread, and form focal adhesions by
spinning disk confocal microscopy. By comparing cells lacking and stably
re-expressing p130Cas, we addressed the following questions: 1) How sensi-
tive is p130Cas to these mechanical changes (i.e. at what rigidity does
p130Cas first become tyrosine phosphorylated)? 2) Is p130Cas critical to the
ability of the cell to sense these changes (analyzed by tracking changes in focal
adhesion characteristics as well as cell spread)? and 3) What is the mechanism
underlying the ability of p130Cas to transduce mechanical signals (i.e. is there
a spring-like domain within p130Cas)? Our multi-parameter experimental
strategy allowed us to analyze increases in cell spread and focal adhesion orga-
nization as substrate rigidity was altered from ~100 Pa to 69 GPa. Interestingly,
we observed that MEFs deficient for p130Cas displayed changes in cell spread
and focal adhesion rearrangement at lower rigidity scales than was observed in
wild-type counterparts, illustrating a need for p130Cas to sensitize cells to sub-
strate rigidity.
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We consider the coupled mechano-chemistry governing the cytoskeletal force
in cells with stress fibers and focal adhesions. Our studies include published ex-
perimental work in which we monitor the cytoskeletal forces in cells on elas-
tomeric substrates of micron-sized posts. These experiments demonstrate
complex dynamics involving substrate strain as well as the binding/unbinding
of cytoskeletal and focal adhesion proteins. Our model explains these dynam-
ics, which underlie force generation and motility of, especially, mesenchymal
cells. The broader motivation for this research comes from our ongoing work
on cancer cell motility and invasion. Guided by our experiments, our model
considers a single stress fiber, the focal adhesion by which it is attached to a mi-
cropost, the cell reservoir of cytoskeletal and focal adhesion proteins, the
deforming micropost and underlying substrate. The complex mechano-
chemistry that controls these sub-systems’ interaction is itself governed by
non-equilibrium thermodynamics: The binding/unbinding of proteins is driven
by free energy changes due to chemistry, elasticity and mechanical work done.
The stress fibers’ mechanical response has viscoelastic and active contribu-
tions, the latter due to myosin contractility. Our model, an extension of our re-
cently published work, generates a very rich range of responses depending on
the mechanical and chemical boundary conditions, and parameter values
(which are obtained from our experiments, and well-established estimates
from the literature). This range of model responses includes every case ob-
served in our experiments. We find that while applied strain and acto-myosin
contractility dictate the increase of force in stress fibers over the short to me-
dium time scale (~600 sec.), the longer time scale response (~1000-10000
sec) is dominated by the growth and disassembly of focal adhesions. These
findings have direct implications for published and ongoing work on cancer
cell locomotion in our group.
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Exploring Feedbacks Between Small GTPases, Phosphoinositides, and the
Actin Cytoskeleton
Leah Edelstein-Keshet.
University of British Columbia, Vancouver, BC, Canada.
I survey work done in my group on eukaryotic cell polarity and motility. The
crosstalk and feedback between small GTPases, phosphoinositides (PIs), and
F-actin has been probed both experimentally and computationally. In so doing,
we have identified both likely connectivity of these signaling networks and
their functional roles in motility. We found that GTPases can account for
most essential polarity-motility function, but PIs sensitize the cells, and help
to filter out conflicting spatial cues. This work is joint with Stan Maree, William
R Holmes, Ben Lin, Andre Levchenko, and Veronica Grieneisen.
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Branching actin network growth is the primary engine driving cell motility. At
the front of a motile cell, inside the lamellipodium, is a dense mesh of actin fil-
aments pushing the membrane forward. The structure of the mesh is believed to
be largely regulated by three processes: branching of new filaments off of ex-
isting ones, capping of filament tips stopping filament growth, and filament
growth. Filaments inside the lamellipodium have been observed to organize
into a strict orientation pattern where filaments are angled approximately
�35/35 degrees from the direction normal to the membrane. It has been previ-
ously hypothesized that the three processes above are sufficient to generate the
unique orientation pattern.
We derive and analyze an integro-differential PDE for the angular density of
branching actin network by incorporating the three constituent processes. Our
analysis implies that there exist multiple equilibrium angular distributions, which
strongly suggests additional process that regulates actin filament orientation.
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Unraveling the Role of the SCAR/WAVE Complex in Regulating the
Traction Stresses during Amoeboid Motility
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Chemotaxis, or guided cell migration plays an essential role in many key phys-
iological and disease processes. Chemotaxis requires a tightly regulated,
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